

Patterns of Musical Interaction with Computing Devices

Luciano V. Flores1, Marcelo S. Pimenta1, Damián Keller2

1Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre, RS – Brazil

2Amazon Center for Music Research (NAP) – Federal University of Acre (UFAC)
Caixa Postal 500 – 69.915-900 – Rio Branco, AC – Brazil

{lvflores, mpimenta}@inf.ufrgs.br, dkeller@ccrma.stanford.edu

Abstract. In line with the efforts from the Ubiquitous Music Group, our
research identified recurring patterns of interaction between humans and
computing devices in existing music software and hardware. These four kinds
of repeatedly implemented musical interactions are being documented in the
form of interaction design patterns, providing an alternative taxonomy of
interaction types, suitable for musical and computational developments in
ubiquitous music research. In this paper we briefly describe the meaning of
patterns in design fields. We also defend the use of interaction patterns in the
design of ubiquitous music systems, and present the four proto-patterns
proposed in our research. We intend with this paper to foster discussions at
this 3rd Ubimus workshop, which can lead to refinement and improvement of
the proposed interaction design patterns.

1. Introduction
Our research in the fields of Human-Computer Interaction (HCI) and Musical Interaction
is related to the interdisciplinary efforts from the Ubiquitous Music Group [G-Ubimus
2012], contributing particularly with the formation of a conceptual and methodological
framework for this new area. In a recent discussion at the online Ubimus forum, a broad
definition of Ubiquitous Music (ubimus, in short) was suggested: “Ubiquitous systems of
human agents and material resources that afford musical activities through creativity
support tools”. This definition suits the interdisciplinary character that this research group
seeks for the area.

 Groups from several disciplines participate in this interdisciplinary research
effort, each one contributing with particular knowledge from its specific domain, but
trying to achieve an efficient communication, and to establish connections with the other
involved areas.

 From the specific perspective of Computer Science research, which contributes
especially to the “material resources” and “creativity support tools” components of the
above definition, ubiquitous music is, in practice, music (or musical activities) supported
by Ubiquitous Computing (or ubicomp) technology [Satyanarayanan 2001; Weiser 1991]
and applying its concepts. That is the perspective we take in this paper. Considering this
perspective, “resources” and “tools” are – or may be – those various kinds of stationary
and portable computing devices usually integrated into ubicomp systems; and “systems”
will generally be, or involve, interactive computing subsystems.

CI • Volume 8 • Número 2 • 2014 68

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archives of the Faculty of Veterinary Medicine UFRGS

https://core.ac.uk/display/303975753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 There seems to be already a long academic history of experiments in interaction
with computing devices for music. Actually, there is a long history of research concerning
musical interfaces for computing devices (see Miranda and Wanderley, 2006). Trough
our investigation, we are trying to expand what is currently known about the actual
musical interaction, with and without computing devices. That is, the inter-actions that
occur in music making, independently from the types of user interfaces.

 Musical activities may be highly interactive, so musical interaction is a very
interesting object for HCI research. Then again, if we want “human agents” to creatively
interact with/in ubiquitous music systems – if we want to “afford” possibilities when we
build such systems – we’ll have ultimately to provide access to the ubiquitous/pervasive
“material/musical resources” that they’ll offer, through “support tools”. So, indeed, we’ll
have to work in the interface level at some point. However, all involved resources, tools,
and the humans that use or access these, must be properly integrated. Hence we must also
understand, as deeply as possible, how and what kinds of interactions take place – or
may take place – in these ubimus contexts, which would produce musical results. In this
sense, what we are calling musical interaction is interaction that produces musical
results (in the context of a musical activity), and musical interfaces are the user
interfaces (physical and virtual) that enable these musical interactions. We need to know
all this, about musical interaction and interfaces, in order to better build such systems,
and to enable more interesting and satisfying musical results or experiences.

 In our research on musical interaction with computing devices and systems, we
began to notice that the existing devices and systems all implement some or a set of
recurring general solutions to the problem of interacting with music or manipulating
musical material. Thus, we discovered that there are observable patterns of musical
interaction within the universe of computer music systems.

 But we are not only interested in understanding and organizing musical interaction
– we are also studying how to design it. We study musical interaction so we may design it
better. Yet, since we are involved in the interdisciplinary research context of ubiquitous
music, there are two main problems that impact on the design process. The first problem
is that, in this case, it is interdisciplinary design. So, communication and knowledge
transfer between team members of many different backgrounds are of key importance,
though sometimes these are very difficult to achieve. A second problem is designing for
new information technologies such as ubiquitous computing and mobile devices. When
developing for such platforms we cannot focus on specific user interfaces, due a
presumed device-independence [Costa et al. 2008]. Interaction design for ubicomp has to
be done from within higher levels of abstraction.

 We have found that interaction design patterns [Borchers 2001; Tidwell 2005]
are a suitable means to address both these issues. We use the design pattern form to
encapsulate the structure and to abstract solutions for specific subproblems of musical
interaction design. This way, we create a common language for improving communication
and exchange of ideas in the design process, and we can concentrate on the broader
conception of an interactive ubiquitous system to support musical activities, without
having to depend on implementation constraints or target platform specifications. This
allows focusing on the higher-level human, social, and contextual aspects of interacting
with these systems.

CI • Volume 8 • Número 2 • 2014 69

Patterns of Musical Interaction with Computing Devices

 As a result, we are documenting four musical interaction patterns (they are
actually proto-patterns [Appleton 2000], since we are still refining their documentation)
that can be used in the interdisciplinary design of ubiquitous music systems. In this paper
we briefly describe the meaning of patterns in design fields. We also defend the use of
interaction patterns in the design of ubiquitous music systems, and present the four proto-
patterns proposed in our research.

2. Interaction Design Patterns and Ubiquitous Music Systems Design
Patterns are repeating things. “A pattern is the abstraction from a concrete form which
keeps recurring in specific non-arbitrary contexts” [Riehle and Züllighoven 1996].
However, in design fields, the modern notion of patterns refers to common, high-quality
solutions to also common design problems, which have been systematically collected and
documented: “A design pattern is a structured textual and graphical description of a
proven solution to a recurring design problem” [Borchers 2001].

 The patterns concept in design originated with architect Christopher Alexander
and colleagues [1977]: “Patterns are solutions to a [recurring] problem in a context”.
Patterns were later adopted in object-oriented software design [Gamma et al. 1995] and
in interaction design [Borchers 2001; Tidwell 2005].

 In HCI literature we can find at least two kinds of HCI patterns:

- User interface patterns or UI design patterns (UIDPs), usually related to the
“technical” design of various types of user interfaces, such as the design of
forms in form-based interfaces, and templates for many widgets used for
input/output in distinct applications. They are usually concrete (i.e., platform
dependent) patterns, and there exist several UI design pattern libraries;

- Interaction patterns, usually related to high-level and abstract views for the
design of human-computer interfaces. Since they are abstract (platform-
independent), these patterns work for several possible target platforms
(desktop, Web-based, or even palmtops, cell phones, and iTV-based
applications). Examples of interaction patterns may be found in Borchers’
book [2001].

 As our research considers the use of conventional mobile devices within
ubiquitous computing contexts, we have to work in high levels of abstraction. Therefore,
the design patterns that we present next are truly interaction patterns, and not musical
interface patterns, which would be lower in a musical design pattern hierarchy, and
would “instantiate” the proposed interaction patterns.

 Patterns are more than a kind of template to solve one’s problems. They are a way
of describing motivations by including both what we want to have happen along with the
problems (or “forces”) involved (and which the solution tries to balance). So they suit
our need to formalize concepts of ubiquitous music (in this case, types of musical
interaction), taking into account the ubiquitous context and the creative motivations.

 But a design pattern is also an element of language: “[...] a pattern is an
instruction, which shows how this [...] configuration can be used, over and over again, to
resolve the given system of forces, wherever the context makes it relevant. [...] The
pattern is, in short, at the same time a thing, which happens in the world, and the rule
which tells us how to create that thing, and when we must create it” [Alexander et al.

CI • Volume 8 • Número 2 • 2014 70

Patterns of Musical Interaction with Computing Devices

1977]. Thus, patterns can also facilitate the ubiquitous music interdisciplinary design, by
supporting team communication and exchange of ideas.

 Finally, as well as recording knowledge, a pattern can be used as a pre-fabricated
part of a new design. By reusing already established designs, a designer can obtain the
benefit of learning from the experience of others, and do not have to reinvent solutions for
commonly recurring problems. Moreover, patterns can be combined into more complex
designs. That is one primary reason for which we chose the pattern format to document
ubiquitous music interaction design: a more traditional taxonomy documentation perhaps
wouldn’t account for this possibility of solution combinations.

 Today there are several different forms of describing design patterns. Because
this is not a paper about writing design patterns, we are not focusing on selecting a best
structure for describing ours. In this paper, the pattern descriptions are informal, showing
the central idea of the solution, a description (with examples and illustrations), and a
motivation for use (“why”). The basic answers our pattern documentation provides,
though, are the same: What; How and Examples; Use When; and Why.

3. Musical Interaction Patterns
Our research group has over ten years of expertise in computer music. This has helped us
in the process of collecting musical interaction patterns, since we already had experience
on the commonly adopted solutions in this domain for interacting with musical data. In a
first investigation, focusing everyday mobile devices [Flores et al. 2010b], we did a
survey on the state of the art in mobile music applications and, through the lens of our
computer music expertise, we could identify four patterns of frequent solutions for
musical interaction that were being used in those mobile applications, which we present
in the next subsections. Later, we concluded that these design patterns also account for
musical user-interaction with other computing devices and systems.

 General problem statement: All of the four proposed interaction patterns
address, in different ways, the general problem of “How may humans manipulate music
and musical information using computing devices?” Thus, in a general collection of
patterns or a pattern language for interaction design, these proposed patterns could be
classified under a “Music Manipulation” or “Multimedia Manipulation” category.

 Principles:

- These musical interaction patterns are musical-activity-independent, i.e., they
can support any musical activity, and not just some activity in particular.

- These musical interaction patterns may be combined to generate more complex
designs, as also happens with patterns for other domains (e.g., software
design, architectural design, etc.).

3.1. Natural Interaction

Aliases: Natural Manipulation; Natural Behavior; Natural Mapping [Norman 2002].

Solution: Imitate real-world, natural interaction.

Description: This pattern corresponds to musical interaction which imitates real
interaction with a sound-producing object. Thus, all musical gestures that we might regard
as “natural” or “real” may be explored herein: striking, scrubbing, shaking, plucking,

CI • Volume 8 • Número 2 • 2014 71

Patterns of Musical Interaction with Computing Devices

bowing, blowing, etc. It expands the metaphor of “musical instrument manipulation”
[Wanderley and Orio 2002], and includes the “one-gesture-to-one-acoustic-result”
paradigm [Wessel and Wright 2002] – hence our alternative label, “natural behavior”.

 One advantage of designing interaction as a reproduction of natural musical
gesture is that it will generally include a passive haptic (tactile) feedback, similar to the
one we have when interacting with real sound-producing objects. This “primary”
feedback (linked to the secondary feedback of hearing the resulting sound) [Miranda and
Wanderley 2006] is supposed to be important for a “fine-tuned” control of the musical
interaction – that “intimate” control suggested by Wessel and Wright [2002], which
allows the performer to achieve a sonic result that is closer to the intended, and that also
facilitates the development of performance technique.

 For example, a rhythm performance activity may be implemented using the
touchscreen of a PDA, where sounds are triggered when it is gently struck with the stylus,
like on a real drum. Or, one may implement a shaker-like instrument by using
accelerometer sensors of some mobile device, and musically interacting with this
instrument by shaking the device.

 But exploring “naturality” in musical interaction design refers not only to
designing user input as natural musical gestures, but also to simulating, through UI output,
any natural behavior which is expected from real-life objects when they produce sound
(i.e., behavior that is linked to sound producing phenomena). This can be implemented
either through representations on the graphical interface (GUI), or through an adequate
mapping, applied to the physical UI, between possible gestures and their naturally
expected sonic results.

 In our Drum! prototype, the user “strikes” the PDA screen and hears a percussion
sound, what would be naturally expected (Figure 1). In our Bouncing Balls prototype,
little balls are constantly moving horizontally on the device’s screen, making sound every
time they bounce on obstacles (a barrier, or the sides of the screen – see Figure 2).

Figure 1. “Drum pads” in Drum!, which will trigger percussion sounds.

CI • Volume 8 • Número 2 • 2014 72

Patterns of Musical Interaction with Computing Devices

Figure 2. Cell phone screen during a performance with Bouncing Balls, with the
lower ball barrier in the middle of the screen.

 Notice that this natural behavior has one drawback: it will generally limit musical
interaction to the “one-gesture-to-one-acoustic-result” rule of nature (except for some
very particular cases – effect instruments like mark trees, rain sticks, etc.).

Motivation for use: To make musical interaction more “intuitive”, that is, to take
advantage of what Jef Raskin [1994] prefers to call the user’s “familiarity” with the
interaction. This is justified by the hypothesis that, by designing interaction in a form
which “resembles or is identical to something the user has already learned” [Raskin
1994], its learning curve is reduced, what is a usability attribute (“learnability”).

Known uses: Traditional musical instrument inspired controller hardware; Gesture
musical user interfaces, when mapped directly to sound, such as the Wii Remote
controlled instruments developed at NICS/UNICAMP (e.g., a virtual berimbau – see
[NICS/ UNICAMP 2012]); Smule’s Ocarina [Smule 2012].

3.2. Event Sequencing

Aliases: Sequencer; Asynchronous Event Sequencing.

Solution: Allow the user to access the timeline of the musical piece, and to “schedule”
musical events in this timeline, making it possible for him/her to arrange a whole set of
events in one single task.

Description: In this pattern, users interact with music by editing sequences of musical
events. This can be applied to any interpretation of these – individual notes, whole
samples, modification parameters, in short, any kind of “musical material”.

 Now, it is important to state that, although our interaction patterns aim primarily
musical control, this does not imply a necessary coupling with performance activities.
Neither is this pattern, of event sequencing, useful solely for composition. They are all
higher level abstractions which may be applied creatively to any type of musical activity,
and should be much more useful if regarded this way. In this sense, it may even be
preferable to classify them not under “musical control”, but as “music manipulation
patterns”.

 Actually, event sequencing is a good example of this flexibility, since it can be
observed both in CODES (asynchronous, compositional tool – see Figure 3) [Miletto et
al. 2005] and, for instance, in Yamaha’s Tenori-On portable instrument (real-time
performance) [Nishibori and Iwai 2006], where the sequences execution is looped, but it
can be edited (and so played) in real-time (Figure 4). This last, synchronous use was also
added later to our Drum! prototype, the first prototype in which we combined patterns.

CI • Volume 8 • Número 2 • 2014 73

Patterns of Musical Interaction with Computing Devices

Figure 3. Asynchronous Event Sequencing in CODES, a music composition tool.

Figure 4. Event Sequencing in Tenori-On, during a looped real-time
performance.

 From designing Drum! and Bouncing Balls we conclude that, by combining
interaction patterns, it is possible to create richer interaction. We later added Event
Sequencing to Drum!, to enrich its musical possibilities. This way, the user may now
build a looped background rhythm and improvise over it using the triggering regions.
Moreover, the “sequence map” may be edited indirectly, by being set to record what is
being played with natural gestures (Figure 5). Bouncing Balls is another rhythmic
instrument, which the user plays by choosing the number of balls and their sounds, and
then by positioning barriers at 1/4th, 1/3rd or half the way into each ball’s horizontal
trajectory (see Figure 2). So, this is actually an implementation which also combines
interaction patterns, since the input from the user follows the pattern of Process Control
(presented in the next subsection), whereas the balls exhibit Natural Behavior.

Motivation for use: Usually, to extend interaction possibilities – increase interaction
flexibility – by explicitly allowing, and facilitating, epistemic actions as a complement to
pragmatic actions on the system [Kirsh and Maglio 1994].

CI • Volume 8 • Número 2 • 2014 74

Patterns of Musical Interaction with Computing Devices

Figure 5. Implementation of Event Sequencing in Drum!.

Known uses: Classic sequenced drum machine hardware, such as Roland’s TR-808
[Vintage Synth Explorer 2012]; Sequencer or multitrack editing software, such as Kristal
[Kreatives.org 2012]; Yamaha’s Tenori-On [Nishibori and Iwai 2006].

3.3. Process Control

Aliases: Conductor Mode [Dodge and Jerse 1997].

Solution: Free the user from event-by-event music manipulation, by allowing him/her to
control a process which generates musical events or musical material.

Description: This is a well-known interaction pattern in interactive computer music,
corresponding to the control of parameters of a generative musical algorithm [Winkler
2001]. It solves that important problem in ubiquitous music, which is the repurposing of
non-specific devices: how can we “play” a cell phone, with its very limited keyboard,
not ergonomically suited to be played like a piano keyboard?

 The Process Control solution suggests a mapping from the (limited) interaction
features of mobile devices, not to musical events, but to a small set of musical process
parameters. This way, the user is freed of manipulating each musical event, since he/she
only needs to start the process – which generates a continuous stream of musical events,
usually through generative grammars or algorithms – and then manipulate its parameters.
One possible analogy is with the conductor of an orchestra: he/she doesn’t play the actual
notes, but he/she controls the orchestra. This pattern, in fact, corresponds to the
“conductor mode” suggested by Dodge and Jerse [1997] as one of the possible
performance modes in computer music.

 For the mapping we find it useful to follow suggestions given by Wessel and
Wright [2002] when describing their metaphor of a “space of musical processes”. Put
simple, the idea is that mapping parameters into a key matrix (a keyboard) or a touch-
sensitive surface does not need to follow much previous planning: an “intuitive”
arrangement of controls in the “parametric space”, done by a musician or computer music
expert, is enough to yield a satisfactory mapping.

 Although it is possible to apply the “parametric navigation” metaphor from these
authors, as we did in our Arpeggiator prototype (Figure 6), we believe that it is also
possible to use other metaphors they suggest, for the control of interactive musical
processes: “drag & drop”, “scrubbing”, “dipping” and “catch & throw” [Wessel and
Wright 2002]. As for the mapping of control parameters to the different kinds of sensors
on mobile devices, we refer to the work of Essl and Rohs [2009].

CI • Volume 8 • Número 2 • 2014 75

Patterns of Musical Interaction with Computing Devices

Figure 6. Layout for mapping process parameters into a keyboard matrix in the
Arpeggiator.

 A further useful heuristic for designs using this pattern is that of allowing the user
him/herself to configure which process parameters does he/she wants to manipulate.

 Our Arpeggiator is an extremely simplified version of a generative musical
algorithm, but it is sufficient for our exploration of Process Control with mobile devices.
The user is freed from controlling the music note by note, needing just to start the
arpeggiator process and to control its parameters. In our exploratory prototype, these
were mapped to cell phone keys as in rows of a matrix (see Figure 6), so each parameter
(p1, p2, and p3) may vary between three possible values.

 Another example of applying the parametric control of a musical process is the
Bloom application for iPhones [Opal Limited 2012]. This software was developed in
collaboration with musician Brian Eno, and allows one to introduce events, through the
touch screen, into a generative process. Then, the user may alter the “path” of the process,
changing parameters while the music is playing (Figure 7).

Figure 7. Parameter configuration for a generative musical process in Bloom, an
iPhone application.

Motivation for use: To avoid the paradigm of event-by-event music manipulation,
allowing for more complex musical results through simpler interaction with a process,
which in turn deals automatically with the details of generating the definitive musical
material. This pattern implements HCI principles like “simplicity” and “process

CI • Volume 8 • Número 2 • 2014 76

Patterns of Musical Interaction with Computing Devices

automation”. Since it simplifies interaction, it is also a sound answer to design
restrictions imposed by the limitation in interaction features, which is typical of standard
mobile devices.

Known uses: Bloom application for iPhones [Opal Limited 2012]; Systems for interactive
music pieces, such as Jeffrey Stolet’s infrared controlled system for his Tokyo Lick
[Stolet 2012]; Applications based on the RjDj framework [Reality Jockey Ltd. 2012],
such as Little Boots Reactive Remixer for iPhones [Hesketh 2012], specifically in the
Meddle and Remedy “scenes”, where the music changes according to user movement.

3.4. Mixing

Aliases: Mixer; Track Mixing; Real-time Sound Layer Combination.

Solution: Music manipulation through real-time control of the simultaneous execution of
long musical structures (musical material) – i.e., by mixing musical material.

Description: This pattern consists in selecting and triggering multiple sounds or events,
so that they may play simultaneously. If some material is triggered while another is still
playing, they are mixed and play together, hence the name of the pattern. Here, music is
made as a layered composition, but by triggering events in real-time, so we may see
sound mixing as the real-time version of event sequencing.

 The musical events in this case are sounds or musical structures, and may be of
any duration. If they are long (one may even be an entire music sample, triggered just
once, or a small but looped sample), we are again avoiding, with this pattern, the
traditional note-by-note paradigm of musical control, which is very difficult to implement
in conventional mobile devices. But remember: this can be applied not only to music
performance. Our mixDroid prototype, for example, is a compositional tool where the
user records quick, small performances, and combines those into a complete composition
(Figure 8).

Figure 8. mixDroid’s mixing screen.

CI • Volume 8 • Número 2 • 2014 77

Patterns of Musical Interaction with Computing Devices

 Events triggering might also not be necessarily instantaneous. One way to
instantiate this pattern is by emulating a real sound mixer (Figure 9). Sounds will be
already playing, but all initially muted. The user will then combine these sounds by
manipulating their intensities, perhaps gradually. In this form, interaction by sound mixing
can be noticed as the method of choice in modern popular electronic music. This form
also corresponds to Wessel and Wright’s [2002] “dipping” metaphor, in which you “dip”
musical material into an effect (a modification parameter) – in this case, the user “dips”
muted sounds into an amplitude intensifier.

Figure 9. GUI from Tanaka’s system for PDAs, based on volume-controlled
mixing of network transmitted music streams [Tanaka 2004].

Motivation for use: As in Process Control, to avoid the paradigm of event-by-event
music manipulation, that is very difficult to implement in conventional mobile devices.
Each musical gesture from the user will result in a longer, more complex acoustic result,
and the user will be focused in combining these “layers” of sounding musical material.

Known uses: Looptastic [Sound Trends LLC 2012]; Looped tracks software, such as
Ableton Live [Ableton AG 2012]; Matrix Music Pad [Yudo Inc. 2012], which combines
Mixing and Process Control.

4. Final Discussion
In our work we identified four musical interaction patterns that can be used in ubiquitous
music systems design. This small, initial set of proto-patterns obviously does not mean to
be a thorough taxonomy of musical interaction in general. We are also still on the process
of compiling other related pattern sets: for interactions made possible by ubiquitous
music environments (i.e., involving cooperation, sharing, emergence, location awareness,
awareness of contextual sound/music resources, etc.), and for musical interfaces (which
instantiate musical interaction patterns, possibly using existing UIDPs). Nevertheless, the
four patterns listed here already account for musical interaction in ubiquitous
environments when mobile devices (“tools”) are the user interface (“affordances”), plus
they suit designs that need to ensure that music can still be made with a mobile device

CI • Volume 8 • Número 2 • 2014 78

Patterns of Musical Interaction with Computing Devices

even with no access to pervasive musical resources (in case those are not available or
are unreachable, e.g., due to connectivity limitations).

 We have also been conducting preliminary tests on patterns comprehensibility
(assimilation), to see if the proposed patterns can be understood and learned quickly by
designers from outside the computer music area [Flores et al. 2010a]. Some other tests
are being made to confirm the independence of patterns in relation to different types of
musical activities, e.g., by comparing user performance and quality of use (usability)
when carrying out the same musical activity following two different interaction patterns.
These tests and their results will be the subject of forthcoming papers. The tests are not
particularly rigorous, but they are sufficient for us to get first impressions on the design
patterns efficiency for knowledge transfer, their flexibility, and their suitability regarding
ubiquitous music systems design. Preliminary outcomes from observing our own design
processes, and from the comprehensibility experiment, suggest the potential of interaction
design patterns to convey domain-specific knowledge to collaborators from other
domains in interdisciplinary projects.

 A pattern is not only a tested solution to a standard problem, but essentially most
patterns come with a little essay about the alternatives for solving the problem and why
the recommended solution is superior. Revealing the reasoning behind the advice in a
pattern invites readers (designers) to decide for themselves how they want to approach a
recurring problem.

 Therefore, the charm of adopting some pattern is that it makes your solution easily
reusable, extendable, and maintainable: a pattern encapsulates good design techniques.
All a non-expert has to do is to recognize which pattern fits which situation and adopt it.
This way, the pattern creator can help the team to review the general case, which will
come with simplified and encapsulated examples, but more importantly, he or she can
then show the team how the patterns should or should not be used in the project at hand.
The other value of patterns is to establish a standard vocabulary: everyone can talk about
a solution to a recurring problem confident that a moderately experienced designer will
have a good chance of understanding what it means without a lot of extra explanation.
This vocabulary makes it easier to discuss our interdisciplinary designs.

 But in ubiquitous music systems design, interaction patterns are not only useful for
improving interdisciplinary team communication and design knowledge transfer. First of
all, interaction patterns suit well the necessary abstraction that the design for today’s
new digital contexts requires. When designing for ubicomp and mobile devices we cannot
focus on specific user interfaces, because: we’ll have limited knowledge of low-level
requirements; device specifications may not be uniform; they may rapidly change; the
system may have to cope with several and diverse devices; user profile may also be
varied, and hard to define; and the use of the system may change with time (something
Petersen and colleagues [2002] call the “development in use”). Interaction patterns let us
concentrate on the interactions that will happen in the system, no matter what user
interfaces are involved. And interaction patterns, especially when organized in pattern
languages, include the documentation of relationships and possible combinations
between them. Thus, they may also be a better – richer – alternative if we want to
formalize a taxonomy of musical interaction allowed by ubiquitous music contexts.

 Finally, a pattern-oriented approach for interaction design in ubiquitous music is
an effort towards a necessary switch from the current technology-oriented perspective to

CI • Volume 8 • Número 2 • 2014 79

Patterns of Musical Interaction with Computing Devices

a more user-centered perspective of computer music as a whole, and this paper is just a
small step towards this goal. We believe that a better understanding of HCI issues in
computer music research and development is a good starting point to establish a common
ground for discussing several interesting questions that are still open. Interdisciplinary
areas like ubiquitous music are promising platforms for exploring the benefit that can be
obtained from this dialogue among different disciplines in research projects.

References
Ableton AG (2012) “Ableton Live 8”, http://www.ableton.com/live-8/, April.

Alexander, C., Ishikawa, S. and Silverstein, M. (1977) “A Pattern Language: Towns,
Buildings, Construction”. New York, NY: Oxford University Press.

Appleton, B. (2000) “Patterns and Software: Essential Concepts and Terminology”,
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html#PatternityTests,
April, 2012.

Borchers, J. (2001) “A Pattern Approach to Interaction Design”. Chichester, UK: John
Wiley & Sons.

Costa, C. A., Yamin, A. C. and Geyer, C. F. R. (2008) “Toward a General Software
Infrastructure for Ubiquitous Computing”, IEEE Pervasive Computing, 7(1): 64-73.

Dodge, C. and Jerse, T. A. (1997) “Computer Music: Synthesis, Composition, and
Performance”. New York, NY: Schirmer Books.

Essl, G., and Rohs, M. (2009) “Interactivity for Mobile Music-Making”, Organised
Sound 14(2): 197-207.

Flores, L. V. et al. (2010a) “Musical Interaction Patterns: Communicating Computer
Music Knowledge in a Multidisciplinary Project”, In: Proc. of the 28th ACM
International Conference on Design of Communication (SIGDOC), São Carlos, Brazil.
New York: ACM, p. 199-206.

Flores, L. V. et al. (2010b) “Patterns for the Design of Musical Interaction with Everyday
Mobile Devices”, In: Proc. of IHC 2010 – 9th Brazilian Symposium on Human Factors
in Computing Systems, Belo Horizonte, Brazil. Porto Alegre: SBC, p. 121-128.

Gamma, E. et al. (1995) “Design Patterns: Elements of Reusable Object-Oriented
Software”. Boston, MA: Addison-Wesley.

G-Ubimus (2012) “Ubiquitous Music”, http://groups.google.com/group/ubiquitousmusic/,
April.

Hesketh, V. C. (2012) “Reactive Remixer iPhone app tutorial”, http://www.youtube.com/
watch?v=f1LuxWeo11w, April.

Kirsh, D. and Maglio, P. (1994) “On Distinguishing Epistemic from Pragmatic Action”,
Cognitive Science 18: 513-549.

Kreatives.org (2012) “Kristal Audio Engine”, http://www.kreatives.org/kristal/, April.

Miletto, E. M. et al. (2005) “CODES: A Web-based Environment for Cooperative Music
Prototyping”, Organised Sound 10(3): 243-253.

CI • Volume 8 • Número 2 • 2014 80

Patterns of Musical Interaction with Computing Devices

Miranda, E. R. and Wanderley, M. M. (2006) “New Digital Musical Instruments: Control
and Interaction Beyond the Keyboard”. Middleton, WI: A-R Editions.

NICS/UNICAMP (2012) “Berimbau Hero - YouTube”, http://www.youtube.com/
watch?v=MZXVAbzghg8, April.

Nishibori, Y. and Iwai, T. (2006) “Tenori-On”, In: Proc. of NIME ’06 – International
Conference on New Interfaces for Musical Expression, Paris, France. Paris: IRCAM,
p. 172-175.

Norman, D. A. (2002) “The Design of Everyday Things”. New York, NY: Basic Books.

Opal Limited (2012) “Bloom - Generative Music”, http://www.generativemusic.com/,
April.

Petersen, M. G., Madsen, K. H. and Kjær, A. (2002) “The Usability of Everyday
Technology: Emerging and Fading Opportunities”, ACM Transactions on Computer-
Human Interaction 9(2): 74-105.

Raskin, J. (1994) “Intuitive Equals Familiar”, Communications of the ACM 37(9): 17-18.

Reality Jockey Ltd. (2012) “We don’t do apps. We craft sonic experiences! - RjDj”,
http://rjdj.me/, April.

Riehle, D. and Züllighoven, H. (1996) “Understanding and Using Patterns in Software
Development”, Theory and Practice of Object Systems 2(1): 3-13.

Satyanarayanan, M. (2001) “Pervasive Computing: Vision and Challenges”, IEEE
Personal Communications 8(4): 10-17.

Smule (2012) “Ocarina by Smule”, http://ocarina.smule.com/, April.

Sound Trends LLC (2012) “Looptastic FREE”, http://itunes.apple.com/us/app/looptastic-
free/id314976566, April.

Stolet, J. (2012) “Tokyo Lick”, http://www.youtube.com/watch?v=AUaK9-qiJ6M, April.

Tanaka, A. (2004) “Mobile Music Making”, In: Proc. of NIME ’04 – International Conf.
on New Interfaces for Musical Expression, Hamamatsu, Japan. p. 154-156.

Tidwell, J. (2005) “Designing Interfaces: Patterns for Effective Interaction Design”.
Sebastopol, CA: O’Reilly Media.

Vintage Synth Explorer (2012) “Roland TR-808 Rhythm Composer”,
http://www.vintagesynth.com/roland/808.php, April.

Wanderley, M. M. and Orio, N. (2002) “Evaluation of Input Devices for Musical
Expression: Borrowing Tools from HCI”, Computer Music Journal 26(3): 62-76.

Weiser, M. (1991) “The Computer for the Twenty-First Century”, Scientific American
265(3): 94-101.

Wessel D. and Wright, M. (2002) “Problems and Prospects for Intimate Musical Control
of Computers”, Computer Music Journal 26(3): 11-22.

Winkler, T. (2001) “Composing Interactive Music”. Cambridge, MA: MIT Press.

Yudo Inc. (2012) “Matrix Music Pad”, http://itunes.apple.com/us/app/matrix-music-
pad/id333221071, April.

CI • Volume 8 • Número 2 • 2014 81

Patterns of Musical Interaction with Computing Devices
