
What are my students doing? Introducing ELENA, the
E-Learning Event Notification Architecture

Manuel Caeiro, Jorge Fontenla, Martin Llamas
Department of Telematic Engineering

E.E. Telecomunication, Universidade Vigo
Vigo, Spain

Manuel.Caeiro@det.uvigo.es

ABSTRACT
In this article we introduce ELENA, a new architecture for
notifying events to a Learning Management System (LMS)
by an external tool. At the core of this work is the idea of in-
tegrating external tools exposed as Web Services. Although
some progress is being done in this field by the research
community, current solutions achieve at best a very “soft”
integration, it is, the LMS can link an external tool but can-
not monitor or alter its workflow. The ELENA system tries
to alleviate this problem by introducing an architecture that
allows an LMS to track the use that teachers and students
make of the tool. Therefore, the LMS can have a greater
control over the integrated tools. The ELENA system is
based on Web Services and specific APIs and protocols, re-
sulting on a simple and scalable architecture.

1. INTRODUCTION
In recent years we have witnessed a massive deployment of
the so-called Learning Management Systems (LMSs, [17]).
These platforms provide their users (namely, students and
teachers) with a holistic environment involving a broad va-
riety of tools such as wikis, chats, podcasts, blogs, media
players or simulators to carry out their tasks [3]. These fea-
tures, along with the possibility to carry out learning units
avoiding spatial and temporal barriers, and their low cost of
deployment and maintenance, are the cause of their rapid
dissemination during last years. Well-known examples of
LMSs are Moodle [11] or Blackboard [4].

Unfortunately LMSs cannot cover by themselves all the ed-
ucational needs, as they fail to adapt to specific contexts.
This problem is currently addressed by means of extensions
[10], small plugins providing the LMS with new function-
alities. This mechanism allows, for example, to include a
new wave simulator in an Hydrodynamics course, therefore
expanding the original possibilities of the platform.

Nevertheless, extensions have reusability concerns as long
as they must be programmed LMS by LMS. This limita-

tion has led several working groups to work on new ways
to extend LMSs. Nowadays, the most promising alternative
is following the Software as a Service (SaaS) deployment
model [13][6][7]. This approach relies on hosting and run-
ning the tool as a Web Service that can be invoked from the
LMS: when a user wants to operate the tool the LMS grants
him/her seamless access, in such a way that he/she is not
aware to be operating an external system. Among the many
advantages of this approach we can mention its scalability
and the reusability of a single tool in many LMSs.

However, despite the advantages of the SaaS model a prob-
lem remains: how can a teacher (or an automated monitor-
ing system) be aware of what students are doing with the
tools, provided they are external systems that are out of
the scope of the LMS? The tracking of users in e-Learning
environments is a very important issue as it allows to iden-
tify difficulties or conceptual problems of the users as soon as
they appear and assist them. This tracking is quite straight-
forward if they are operating an extension of the LMS, as
extensions are designed to work in coordination with the
core of the LMS. Nonetheless, external third-party tools de-
ployed following the SaaS model are standalone applications
which are exploited by the LMS, and in general they do not
support the tracking of their users by external systems.

The goal of this article is to describe ELENA (standing
for E-Learning Event Notification Architecture), an event-
notification system designed and developed at the University
of Vigo to support the tracking of students in distributed e-
Learning environments. ELENA supports the subscription
of the LMS to events in external tools and the corresponding
notification of such events.

2. INTEGRATION OF TOOLS FROM THIRD-
PARTY PROVIDERS

The integration of external functionalities has recently boosted
due to the increase of popularity of Cloud Computing [15]
and side efforts such as mashups [8]. However, in this paper
we are more interested in a tighter integration of learning
tools in e-Learning platforms. This section is devoted to de-
scribe what we try to accomplish by this integration, and
how tight it must be.

2.1 Business Model
Figure 1 depicts the new business model where we can see
three kinds of stakeholders involved, represented into clouds:
LMSs, educational tools and the final users. On the one

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archives of the Faculty of Veterinary Medicine UFRGS

https://core.ac.uk/display/303975715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Cadernos de Informática - Volume 6 - Número 1 - 2011

hand, LMSs provide the core functionality of the learning
platform. These include authentication modules, databases
to store students’ personal data (e.g. name, email, grad-
ing, preferences, portfolio), tasks sequencing, etc. Along
with this functionality, LMS developers also have to em-
brace some specifications to support the interaction with
third-party tools, involving issues such as how to control the
tools and supervise them. This interaction is represented
linking the LMSs’ cloud with the tools’ cloud as it makes
possible the integration between every pair LMS–Tool. On
the other hand, tools’ developers also have to embrace these
interaction specifications and develop their products. It is
important to notice that in this scenario educational tools
are standalone software products that do not need an LMS
to operate. Instead, LMSs use them to complement their
functionalities. Finally we have the end users that access
the LMS and the tools. It is important to notice that when
a user is accessing a tool the later has to communicate with
the LMS to inform it about what the user is doing and to
enable its control by the LMS.

Figure 1: Business model.

This business model supposes a Copernican change with re-
gards to the traditional model in the e-Learning domain.
Up to date, the LMS has been at the centre of the business
model, as it included all the provided functionality. With
the Web Services approach we turn things upside-down re-
moving the LMS from the centre, and granting the tools
the same importance in the schema. Now the LMS can
use many different tools, but also each tool can be used by
many LMSs. This solution implies that the development of
the LMSs and educational tools can follow separate paths.
This business model is related to two increasingly popular
methodologies:

1. Cloud Computing [15]. This approach is showing us
that many applications that previously had to be in-
stalled locally can be made available through the In-
ternet providing a satisfactory user experience.

2. Service Oriented Architectures (SOA, [12]). SOA is a
concept of software architecture that allows to build
up highly scalable systems, based on the invocation of
stateless functions called services. The most habitual
way to accomplish this is by the use of Web Services.

Due to this loose coupling it is more feasible to add
new services to the system.

These same approaches can be taken in order to fulfil the
need of tools in LMSs, where the required simulators, text
editors or evaluation tools have not to be executed locally at
the server of the LMS Core, but can be provided remotely.

2.2 Soft and Hard Integration
At this point we consider two different alternatives to inte-
grate third-party functionalities in a software system, which
are also considered in [2]:

• Soft integration. The software system functionality
can be extended through a hyperlink to an (external)
third-party component. Once the user clicks on it,
the graphical user interface of the new component is
displayed. From this point, the user is operating a
system that the original one cannot control by any
means. Therefore, a new functionality is included, but
with very low integration with the former.

• Hard integration. It includes soft integration, but pro-
viding a more comprehensible control over the inte-
grated functionalities by means of some integration
mechanisms. These integration mechanisms vary with
the kind of software system. The term “hard” comes
from the fact that the integration is such that the new
functionality seems to be a part of the original system.

2.3 Need for Event Notification in e-Learning
Systems

In this article we are only interested in studying the issues
concerning the subscription and notification of events. As
pointed out in [5], events in the context of a distributed e-
Learning system are the result of recording and retrieving
information, typically as a result of undertaking learning
activities or interacting with materials. These events may
contain important information for teachers, system admin-
istrators, or students themselves. Nevertheless, it is up to
the LMS to subscribe to those relevant events. For exam-
ple, in the case of a schematics simulator the LMS may be
interested in knowing when the student launches a simula-
tion and obtains a result, but not when the student places a
resistor or a capacitor, and therefore it has to subscribe just
to the corresponding event.

In traditional, centralized LMSs the notification of events
is a pretty straightforward process, provided that the tools
and the LMS core run at the same machine. The case of dis-
tributed LMSs is slightly different. Two peculiarities justify
an in-depth study of it:

1. Tools are generally in different network domains

from the LMS core. This fact has deep program-
matic implications from the point of view of which
technologies to use to make an efficient implementa-
tion of the Publisher–Subscriber design pattern [9]. In
centralized systems the most common choices for no-
tifying events to the LMS core are low-level solutions

172



Anais do VI Congresso Ibero-americano de Telemática (CITA 2011) - Gramado RS (Brasil), 16-18 Maio 2011

such as signals or pipes, which usually achieve reliable
and low-latency notifications. In distributed systems,
however, such low-level solutions are not feasible, and
therefore the choice of a suitable network-based event-
notification technology deserves careful consideration.

2. The LMS core is not the centre of the busi-

ness model anymore. Centralized systems feature a
rather simple Publisher–Subscriber model, as the LMS
core is the only subscriber and all the events are no-
tified to it. Distributed systems have the peculiarity
that tools are completely detached from specific LMS
cores. In other words, one LMS core can use many
tools, but also one tool can be used by many LMS
cores. This implies that an identification mechanism is
required at the tool to discern the several subscribers.

The rest of this paper is devoted to provide an in-depth
study on several issues concerning the design and imple-
mentation of an event-notification system for distributed e-
Learning environments.

3. USE CASE
In this section we introduce a complete example where the
notification of events plays a key role in a distributed e-
Learning system. This example will let us derive, in Section
4, a set of formal requirements that must be fulfilled by any
e-Learning-oriented event-notification solution.

The example is based on a Web fluid simulator with the ca-
pability of notifying events, which is being operated by sev-
eral users. These users are students of two different LMSs,
which subscribe to the events triggered by the simulator.
The LMSs are hosted and managed by University 1 and
University 2 respectively.

The corporative networks of the two universities have two
outbound routers. The router of University 1 is a router with
NAT capabilities and does not allow inbound connections,
whereas the router of University 2 is a normal router whose
only open port for inbound connections with the LMS is the
TCP:8080. Figure 2 depicts the scenario.

Figure 2: Summary of the use case.

The LMSs. The process starts when LMS1 grants two of
its students access to an instance of the simulator. LMS1
wants to know what happens at the instance to know whether
or not students can progress in their tasks or, on the con-
trary, they have any troubles. Therefore, LMS1 is interested
in receiving information about the events event.actions.us
ers.execution.success and event.actions.users.execut

ion.failure, which are generated every time a simulation
ends up successfully or unsuccessfully, respectively.

LMS1 cannot tell the simulator to notify it every time one
of these events is triggered due to the restrictions in the con-
figuration of its corporative network. Therefore it chooses
to poll periodically the simulator asking whether or not any
events of the type event.actions.users.execution.success
or event.actions.users.execution.failure have been trig-
gered since the last polling.

In a certain moment the students of LMS1 launch a success-
ful simulation. Next, LMS1 requests information concerning
all the events event.actions. users.execution.success

and event.actions. users.execution.failure that took
place in the last hour, and the tool replies with information
about the last simulation.

Now it is LMS2 which grants its student access to another
instance of the simulator. LMS2 also wants to know about
the success or failure of the simulation of its student, and
therefore it is also interested on receiving notifications about
the events event.actions.users.execution.success and
event.actions.users.execution.failure.

Unlike what happens with University 1, the configuration of
the corporative network of University 2 does allow inbound
connections from Internet. This fact is exploited by LMS2,
which allows the simulator to actively notify it when a rel-
evant event takes place. Therefore, LMS2 subscribes to the
abovementioned event types and closes the connection with
the tool.

Now it is the student from LMS2 who carries out a success-
ful simulation, and so the simulator opens a new connection
with LMS2 on TCP port 8080, sends the notification and
closes the connection again. The student carries out an-
other simulation, this time unsuccessful, which causes the
simulator to open another connection with the on the same
port, sends the notification, and closes the connection.

Meanwhile, LMS1 keeps on polling the simulator period-
ically in case that new events have been triggered by its
students. Despite the students of LMS2 has also launched
simulations, the tool only reports LMS1 about events re-
garding the instance of its own students.

The tasks of the students of LMS1 go on until the didactic
unit reaches a point when LMS1 wants to collect information
about the individual work of each student separately, and
wishes to know how many simulations have been run by
each of them. Therefore, in its periodical polling, instead of
requesting information about the events that take place at
the instance LMS1 also specifies the student that triggered
the event.

173



Cadernos de Informática - Volume 6 - Número 1 - 2011

At the end of the learning unit the students of both LMSs
exit the tool, their instances are deleted, and the information
retrieved as events is used to elaborate statistics and carry
out a close study of the performance of the students.

The Tool. The fluid simulator receives two requests to cre-
ate instances, one from LMS1 and another from LMS2. Two
users are assigned to the instance of LMS1, who start run-
ning simulations using the graphical user interface of the
tool.

During their interaction with the simulator users carry out
several actions, including simulations, that the tool keeps
registry about by storing relevant information (action per-
formed, time, etc.). Next, LMS1 opens a connection with
the tool requesting information regarding when successful
simulations have been run, and keeps it open waiting for the
reply of the tool. The latter access the requested informa-
tion, serializes it in a format that LMS1 can understand,
sends it, and closes the connection.

On the other hand, LMS2 grants access to the second in-
stance of tool to its user, and next the simulator receives an
incoming request from LMS2 requesting a notification every
time a simulation is launched, be it successful or not. LMS2
does not wait for a response, but tells the tool to notify it on
the TCP port 8080 every time a new simulation is launched,
and closes the connection.

The student of LMS2 starts running simulations, and the
tool operates as described before. The learning units of
LMS1 and LMS2 reach the end and the two instances are
deleted, which implicitly cancels the subscription to events
of LMS2.

4. REQUIREMENTS
The previous use case allows us to derive a list of formal
requirements that must be fulfilled by any event notification
technologies for e-Learning.

Requirement 1: Interoperability. The LMS must be
able to interoperate with a Web tool even if they are in dif-
ferent network domains. This is necessary because in general
the Web tool is not managed by the same entity of the LMS,
and hence it is located at a different network domain. This
requirement is implicit in the use case above.

Requirement 2: Ad-hoc events. The need for ad-hoc
events arises from the fact that distributed e-Learning en-
vironments try to provide the same functionalities of cen-
tralized ones, but in a more scalable way. Given that in
centralized environments the LMS core can perform an in-
depth tracking of the operation of the users with a tool, the
only way to perform such tracking in distributed systems is
to notify events whose nature depends of the kind of tool
being operated. As a counterpart, we have generic naviga-
tion events, which only provide information concerning the
navigation of the user through the different parts of the tool.

The use of ad-hoc events instead of generic navigation events
is a requirement which is addressed in the use case of Section
3.

Requirement 3: Primitive events. At the time of choos-
ing what kind of events (primitive or composite) will be trig-
gered by the tool, it is important to discern the events trig-
gered by it from the composition of such events. Primitive
events provide objective information about the operation of
the user with a tool (in use case of Section 3 the simulator re-
ports the primitive events event.actions.users.execution.
success and event.actions.users.execution.failure). A
different issue is their composition, which has the purpose
of interpreting them according to the course planning or the
rules established by the teacher (e.g. if many event.actions.

users.execution.failure events are generated by the same
user, it can be interpreted as the composite event “The user
has conceptual problems”). Therefore, provided that this
is something that concerns just the LMS, the tool does not
have to worry about what kinds of composition will be done,
if any. In this case, primitive events are the preferable choice.

Requirement 4: Vocabulary independence. The so-
lution should be agnostic in terms of the vocabulary used
to name events. This would allow, for example, to use a
different (but similar) tool while keeping the same vocabu-
lary and, on the contrary, to use the same tool changing the
vocabulary if required.

Requirement 5: Publisher–Subscriber architecture.
The scenario depicted in Section 2.3 describes a single pub-
lisher (the tool) and a single subscriber (the LMS). There-
fore, a Publisher–Subscriber architecture is more suitable
than a P2P one.

Requirement 6: Push-pull notifications. Push notifi-
cations are ideally more preferable than pull notifications
for a couple of reasons. Nevertheless in several scenarios
they may not be feasible due to several network restrictions.
Therefore, the LMS should be able to choose the kind of no-
tifications that matches best the characteristics of the net-
work. This need is addressed in the use case of Section 3.

Requirement 7: Brokerage. The work load of a tool can
be alleviated by delegating the notification process itself to
a dedicated broker. This is specially in cases like the one
depicted in Section 3. Notice how many notifications and
accesses to databases are required in a scenario involving
just two LMSs, two instances, two event types and three
users. In high performance external tools, with lots of users
and subscribers, the work load can be unfeasible unless there
is a dedicated agent responsible for the notifications (i.e. a
broker).

Requirement 8: Plain events submission. The fact
that the use case of Section 3 involves different LMSs, prob-

174



Anais do VI Congresso Ibero-americano de Telemática (CITA 2011) - Gramado RS (Brasil), 16-18 Maio 2011

ably developed in different programming languages, stresses
the importance of choosing a neutral format to serialize and
submit notifications by the simulator.

Requirement 9: Negotiable transport protocol. Given
the potential diversity of tools that may be integrated by the
LMS it is not sensible to pre-establish whether or not noti-
fications must take place in real time or elastic time. This
fact, together with the potential packet filtering carried out
by intermediate routers, suggest that a more convenient ap-
proach is to negotiate the transport protocol and the port
number that will be used to send notifications.

Requirement 10: Instance orientation. All events trig-
gered by a tool are generated by (or due to) actions that
take place at the core of one of its instances. Recall that
an instance of a tool is a standalone working environment,
together with a set of data elements and a group of users
allowed to access it, and one instance is disjoint from other
instances. Therefore, event notifications must refer to the
instance they were triggered.

5. A SOLUTION FOR THE NOTIFICATION
OF EVENTS IN E-LEARNING

With ELENA (E-Learning Event Notification Architecture)
we support the subscription and notification of events be-
tween LMSs and exernal tools. Its operation is based on
rssCloud, but featuring some characteristics from other tech-
nologies.

In this section we provide an in-depth description of ELENA.
In the next Section we give a high-level description of the
system, giving an overview of the static architecture and
defining the actors involved. Section 5.2 describes the sys-
tem from the point of view of the sequence of messages ex-
changed between the several actors. Section 5.3 describes
the fields and format of the messages exchanged.

5.1 General Architecture
The LMS core and the tool are glued up by means of the
Tool Binding Adapter and the Primitive Events Vocabulary.
This section is devoted to describe these four elements. The
result is depicted in the UML component diagram of Figure
3.

Figure 3: General architecture of ELENA.

The LMS Core. The LMS Core is the central element
of the e-Learning system. It stores information related to

educational scenarios, such as participants, learning goals,
temporal constraints and so on [16]. Additionally, the LMS
Core makes the state of educational scenario instances evolve
depending on the events received (both from the Tool and
internal to the LMS Core). As a consequence, users may
be assigned new tasks to attempt after the completion (or
attempt) of the previous ones.

The LMS Core may optionally feature an Event Composer.
The Event Composer processes and interprets the events re-
ceived from the Tool, in order to provide the LMS Core with
higher-level information. A typical example of the Event
Composer in action would take place if the Tool, an Electro-
magnetism simulator, triggers three consecutive “The user
tried to run a simulation without setting the boundary con-
ditions”. The first two notifications would bypass the Event
Composer and be reported to the LMS Core. However, at
the third notification the Event Composer may interpret
that the user has problems in understanding the underly-
ing theory, and report to the LMS Core the “The user needs
assistance on differential equations”.

The Tool. The Tool is the component that provides some
functionality that complements those of the LMS Core. We
can consider, for example, tools such as calendars, wikis, me-
dia players, simulators, virtual world or forums, and there-
fore the specific characteristics of the tool may differ from
one case to another. However, for the purposes of this paper
we assume that the tool is such that it is in its nature to
notify events. At this point two possibilities arise:

1. The tool has been developed in such a way that it
notifies events by default.

2. The tool did not notify events by default, but is has
been slightly modified to make it possible.

The Tool Binding Adapter. The Tool Binding Adapter
(hosted at the Tool Binding Adapter Server) has many func-
tions in the system. Firstly, it provides the LMS Core with
a unified set of methods called the Generic Tool Interface.
These methods allow the LMS to control issues of the sev-
eral tools such as their instances, the assignment of permis-
sions, the transfer of data, the authentication of their users,
functions which are specific from each tool, and the issue
covered in this article, the subscription and notification of
events. Table 1 provides a summary of the methods of the
Generic Tool Interface related to the management of events.

Secondly, it adapts the calls to the methods of the Generic
Tool Interface into methods of the API of the Tool itself.
The reason of the existence of the Tool Binding Adapter
is that, while the Generic Tool Interface has been designed
for general-purpose tools (featuring generic methods such
as createInstance()) the API of the tool features a spe-
cific syntax (e.g. newCalendar() in the case of a calendar
tool), and therefore a conversion must be carried out. In
many cases there is a one-to-one correspondence between a
method of the Generic Tool Interface and a method of the
tool, because the former has been created keeping in mind

175



Cadernos de Informática - Volume 6 - Número 1 - 2011

Table 1: Summary of the methods of the Tool Binding Adapter to manage events.
Method Input parameters Output param-

eters

Description

subscribe eventType, in-

stanceURI, user-

name*, protocol,
port

result, sub-

scriptionId

Subscribe to all the events of the type eventType

that are triggered within the instance with URI
instanceURI. If the parameter user is present, the
only events notified are those which were trig-
gered by that user. The parameters protocol and
port indicate the protocol and port number used
to send notifications to the subscriber. Returns
an error code, if any, and an identifier of the sub-
scription for future references.

unsubscribe subscriptionId result Cancels a previous subscription given by the iden-
tifier subscriptionId. Returns an error code, if
any.

getEventsSince eventType, time,
instanceURI, user-

name*

result Requests a list of all the events of the type event-

Type that took place since the time time in the
instance whose URI is instanceURI. If the param-
eter username is present, the only events notified
are those which were triggered by that user. Re-
turns an error code, if any.

Those parameters marked with the * symbol are optional.

that it should fit the characteristics of (ideally) any kind of
tools. The output of the Tool Binding Adapter is a request
that can be appropriately processed by the Tool API.

Finally, the Tool Binding Adapter also features broker func-
tionalities. It is the only agent directly notified by the Tool,
which delegates on it to carry out the notifications to all the
interested subscribers. To do so, it keeps a registry (rep-
resented in Figure 3 as a database) of which subscribers
showed interest on which topics, and notifies them in case
that some event meeting these characteristics are triggered.
This registry also allows the Tool Binding Adapter to cach
all the events and do pull notifications without even polling
the Tool.

The Primitive Events Vocabulary. The Primitive Events
Vocabulary categorizes all the possible events that can be
triggered by the Tool. Optionally, and depending on the for-
mat used to carry out this categorization (e.g. if an ontology
is used), the Primitive Events Vocabulary may include rela-
tionships among these event types. In this paper we assume
that the particular vocabulary has been previously negoti-
ated between the LMS Core and the Tool Binding Adapter
using some protocol for that purpose.

It is important to mention that an automated classification
of all the events triggered by the Tool in the categories de-
fined by the Primitive Events Vocabulary exceeds by far
the scope of this article. Therefore, the developers or ad-
ministrators of the Tool Binding Adapter must carry out a
previous manual classification for each of the vocabularies
they wish to support.

5.2 Dynamic Behaviour
After the static description of the system, in this section we
describe the dynamic issues of the system.

Starting with Figure 4, we describe the actions of the sev-
eral roles involved to make notifications following the pull
approach. The process starts when the tool triggers some
events. The Tool Binding Adapter, due to its broker capa-
bilities, is the only recipient of the notifications. From this

point, the Tool Binding Adapter stores the notifications us-
ing some storage solution (e.g. a database) and waits for
incoming requests from interested users.

Later, the LMS Core invokes the getEventsSince()method
of the API of the Tool Binding Adapter with the parameters
specified in Table 1.

After the appropriate queries to the appropriate databases,
the Tool Binding Adapter gathers all the events with such
characteristics, serializes them, and packs them in the pay-
load of a HTTP message (see Section 5.3 for more details).

Figure 4: UML sequence diagram of the process to

support pull notifications.

As for push notifications, the process is summarized in Fig-
ure 5. In this case, the choreography is initiated by the LMS
Core, which shows its interest in knowing about some kind
of events by invoking the subscribe() method of the Tool
Binding Adapter. The input parameters of this method have
been detailed in Table 1.

The Tool Binding Adapter keeps a registry of all the inter-
ested subscribers and, when the appropriate event has been
triggered, notifies them encoding the notification in the pay-
load of a HTTP message following the same format of pull
notifications.

176



Anais do VI Congresso Ibero-americano de Telemática (CITA 2011) - Gramado RS (Brasil), 16-18 Maio 2011

Figure 5: UML sequence diagram of the process to

support push notifications.

5.3 Message Format
The ELENA message format has been designed as a sim-
ple, fast and interoperable way to request and notify events
between the LMS Core and the Tool Binding Adapter. It
consists of the exchange of standard HTTP messages with
special header extensions and a special structure for their
payload in order to request and notify events.

There are basically two types of messages, depending on
whether the information is encoded in the header or in the
payload. In this section we depict a simple (but complete)
scenario involving a pull request followed by a reply. An
example featuring a push notification would be exactly the
same, with the difference of the method invoked.

The process begins when the LMS Core opens a connection
with the Tool and invokes the getEventsSince() method.
Both the method name and its input parameters are en-
coded in the header of the HTTP message. The purpose of
the Tool is that the Tool Binding Adapter handles all the
subscriptions and notifications, and therefore replies with a
HTTP message with status code 301 (Moved Permanently)
and a Location header with the URI of the Tool Binding
Adapter. The LMS Core resends the original message to
the Tool Binding Adapter, concluding the process to request
events. The structure of these three messages is summarized
in Figure 6. It is important to say that the first two messages
are just a redirection to the Tool Binding Adapter. For fu-
ture requests they are not necessary because the LMS Core
already knows about its existence as a component where all
the requests must be forwarded to. Also notice the Connec-
tion: close header in message number three, which indi-
cates that when the Tool Binding Adapter has replied with
the message containing the requested events the connection
will be closed. This particular issue differs with regards to
push notifications, which use the Connection: open HTTP
header to keep the connection alive for the notification of fu-
ture events.

The Tool Binding Adapter makes the appropriate queries
and, when it has retrieved all the events matching the char-
acteristics of the request, serializes them in the payload of
the HTTP message that is sent back in response. For each
event notified several fields are specified:

Figure 6: Process to request events in ELENA using

pull notifications.

• Subject: the user that originated the event, given by
a unique username. Optional parameter.

• Event-type: the action that triggered the notification.
The particular nomenclature is given by the Primitive
Event Vocabulary (see Section 5.1). Mandatory pa-
rameter.

• Object: the user (given by a unique username) or data
element (given by its URI) that suffers the action. Op-
tional parameter.

• To-whom: the beneficiary (a user given by a unique
username, or a data element given by its URI) of the
action. Optional parameter.

• Time: the time when the action took place, in POSIX
format. Mandatory parameter.

• Instance: the instance where the action took place,
given by its URI. Mandatory parameter.

• Using: the data element or functionality (given by
their URI) that was used by the Subject in order to
carry out the action. Optional parameter.

• Cause: indicates some action whose consequence was
the action denoted by Event-type. Optional parame-
ter.

• Other: reserved for future use.

This notation provides a good support to encode any kind
of information regarding what happened at the tool [1],
while at the same time being compatible with any nota-
tion specified in the Primitive Events Vocabulary. Using
this notation it is possible to send complex notifications
such as “User XXX (Subject) sent (Event-type) the docu-
ment www.foo.zzz/ instanceURI/doc.xml (Object) to user
YYY (To-whom) in the context of instance www.foo.zzz/ in-
stanceURI (Instance) in March 14th at 12:34 (Time), af-
ter its automatic generation by a XML generator service
(Cause), using the messaging service www.foo.zzz/ instanceU
RI/fileexchange (Using).”.

The abovementioned fields are the information about a sin-
gle event, and is copied line by line in plaintext in the pay-
load of the HTTP message. If more than one event is no-
tified, the information of the several events is concatenated

177



Cadernos de Informática - Volume 6 - Número 1 - 2011

with the AND word. Optionally the payload can be com-
pressed using the zip algorithm, indicating this by the use
of the Content-Type: application/zip header of the mes-
sage. Figure 7 gives an example of a message following this
structure.

Figure 7: Event notification message.

6. CONCLUSION
Current LMSs are playing an important role in providing ac-
cess to educational contents all around the world, avoiding
spatial and temporal barriers. However, their possibilities
are limited due a clear “one size doesn’t fit all” problem.
These limitations have been the starting point of our re-
search. The work described in this paper tries to identify
mechanisms to tackle these issues with tailorability and ex-
tensibility in mind by the use of the SOA paradigm, and
propose a solution to one of them: the notification of events.

The concept of hard integration implies an evolution to cur-
rent integration mechanisms, and is at the heart of our re-
search. It allows an LMS to take advantage of external tools,
and work in coordination with them as if they were local plu-
gins. As a result, the LMS can extend its functionality, and
can do it in a controlled way. Many of the design principles
of ELENA are based on this idea.

Currently we are working on giving full support to the other
aspects of hard integration, apart from the notification of
events. Nonetheless, the six parts we have considered are
completely separate from each other, and they can be used
in a standalone way if desired.

We would be remiss if we did not make some comments
on two important issues. The first one is the negotiation of
the Primitive Events Vocabulary, which we have deliberately
omitted. During this paper we have assumed that a previous
negotiation process has taken place between the LMS and
the tool, with the result of a commonly agreed vocabulary
for future transactions. We have designed ELENA so that
it is agnostic in terms on how the negotiation is carried out,
for the sake of keeping the protocol simple. However, such
negotiation is necessary, and therefore ELENA should be
complemented with another protocol. ELENA does not im-

pose any restrictions on the characteristics of this protocol,
as long as the result is a shared vocabulary.

The other aspect we have omitted is privacy, which has to be
addressed from two complementary points of view. Firstly,
one may wonder whether it is possible for a fraudulent LMS
to subscribe to events from any instance of a given tool. The
approach we follow is to make the legitimate subscriber the
only one that knows the URI of the instance, understanding
by “legitimate subscriber” the one that created the instance
[14]. Finally, eavesdropping should also be taken to account
depending on the kind of tool and the information that is
notified. Again, ELENA is deliberately neutral and can be
used over SSL if desired.

7. ACKNOWLEDGMENTS
Authors want to thank Spanish Ministerio de Ciencia e In-
novacion for its partial support to this work under grant
“Methodologies, Architectures and Standards for adaptive
and accessible e-learning (Adapt2Learn)” (TIN2010-21735-
C02-01) and to CYTED Program under Coordinating Ac-
tion 508AC0341 SOLITE.

8. REFERENCES
[1] English Syntax. The MIT Press, 1995.

[2] Computers and Design in Context. The MIT Press,
1997.

[3] Survey of learning-related services, April 2010.

[4] Blackboard Web site, March 2011.

[5] E-Learning Framework home page, March 2011.

[6] Five benefits of software as a service, March 2011.

[7] IMS Tools Interoperability specification, March 2011.

[8] Mashups: The new breed of Web app, March 2011.

[9] Microsoft patterns and practices. publish/subscribe,
March 2011.

[10] Moodle modules and extensions, March 2011.

[11] Moodle Web site, March 2011.

[12] F. Coyle. XML, Web Services and the data revolution.
Addison-Wesley Professional, 2002.

[13] D. Dagger et al. Service-oriented e-learning platforms:
From monolithic systems to flexible services. IEEE
Internet Computing, 11(3):28–35, 2007.

[14] J. Fontenla et al. A Middleware for the Integration of
Third-Party Learning Tools in SOA-Based Learning
Management Systems. Supporting Instance
Management and Data Transfer. Proceedings of
EDUCON 2010, 2010.

[15] G. Gross et al. Google, ibm promote cloud computing.
PC World, 2007.

[16] R. Perez-Rodriguez et al. Design of a Flexible and
Adaptable LMS Engine in Conformance with PoEML.
International Journal of Emerging Technologies in
Learning (iJET), 4(0), 2009.

[17] M. Roqueta. Learning Management Systems. A focus
on the learner. Distance Learning, 5(4).

178


