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RESEARCH ARTICLE

An Online Tree-Based Approach for Mining Non-Stationary
High-Speed Data Streams
Uma Abordagem Baseada em Árvore Online para Mineração de Fluxos de Dados
Não-Estacionários em Alta Velocidade

Isvani Inocencio Frías Blanco 1, Agustín Alejandro Ortiz Díaz 2*,Fabiano Baldo 2,Laura María
Palomino Mariño 3.

Abstract: This paper presents a new learning algorithm for inducing decision trees from data streams. In
these domains, large amounts of data are constantly arriving over time, possibly at high speed. The proposed
algorithm uses a top-down induction method for building trees, splitting leaf nodes recursively, until none of them
can be expanded. The new algorithm combines two split methods in the tree induction. The first method is
able to guarantee, with statistical significance, that each split chosen would be the same as that chosen using
infinite examples. By doing so, it aims at ensuring that the tree induced online is close to the optimal model.
However, this split method often needs too many examples to make a decision about the best split, which delays
the accuracy improvement of the online predictive learning model. Therefore, the second method is used to split
nodes more quickly, speeding up the tree growth. The second split method is based on the observation that
larger trees are able to store more information about the training examples and to represent more complex
concepts. The first split method is also used to correct splits previously suggested by the second one when it
has sufficient evidence. Finally, an additional procedure rebuilds the tree model according to the suggestions
made with an adequate level of statistical significance. The proposed algorithm is empirically compared with
several well-known induction algorithms for learning decision trees from data streams. In the tests, it is possible
to observe that the proposed algorithm is more competitive in terms of accuracy and model size using various
synthetic and real-world datasets.
Keywords: Data stream — decision tree — incremental learning — machine learning — online learning

Resumo: Este artigo apresenta um novo algoritmo de aprendizagem que induz árvores de decisão a partir
de fluxos de dados. Nesses domínios, grandes quantidades de dados chegam constantemente ao longo do
tempo, possivelmente em alta velocidade. O algoritmo proposto usa um método de indução descendente para
construir árvores dividindo os nós folha recursivamente até que nenhum deles possa ser expandido. O novo
algoritmo combina dois métodos de divisão para a indução da árvore. O primeiro método é capaz de garantir,
com significância estatística, que cada divisão escolhida seria a mesma escolhida usando exemplos infinitos.
Ao fazer isso, o objetivo é garantir que a árvore induzida online esteja próxima do modelo ótimo. No entanto,
esse método de divisão geralmente precisa de muitos exemplos para tomar uma decisão sobre a melhor divisão,
o que afeta a melhoria da precisão do modelo de aprendizagem preditiva on-line. Portanto, o segundo método é
usado para dividir os nós mais rapidamente, acelerando o crescimento da árvore. O segundo método de divisão
se baseia na observação de que árvores maiores podem armazenar mais informações sobre os exemplos de
treinamento e representar conceitos mais complexos. O primeiro método de divisão também é usado para
corrigir divisões sugeridas anteriormente pelo segundo método, quando existirem evidências suficientes. Por
fim, um procedimento adicional reconstrói o modelo de árvore de acordo com as sugestões feitas com um nível
adequado de significância estatística. O algoritmo proposto é comparado empiricamente com vários algoritmos
de indução bem conhecidos para aprender árvores de decisão a partir de fluxos de dados. Nos testes é possível
observar que o algoritmo proposto é competitivo em termos de precisão e tamanho do modelo usando vários
conjuntos de dados sintéticos e reais.
Palavras-Chave: Fluxo de dados — árvore de decisão — aprendizado incremental — aprendizado de máquina
— aprendizado online
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1. Introduction
An emerging challenge for learning algorithms is to be able
to process unbounded streams of data constantly arriving at
high speed. Common sources of these data streams include
the Internet, computer networks, phones, and sensors [1].
Because of the large size, learning algorithms are allowed
to read the input data only a small number of times, using
limited computing and storage resources. Classical batch
learning algorithms are unsuitable for these domains, as they
assume that all input data are available at the beginning of the
processing, and they are not able to provide online answers.
Many incremental and online approaches have therefore been
developed, and they are currently a powerful tool for learning
from data streams [2].

Decision trees have successfully been used in classifica-
tion tasks both for batch [3] and online learning [4, 5, 6].
Essentially, a decision tree learner splits leaf nodes in a re-
cursive way, until none of them can be expanded. In online
learning, the training data are possibly infinite, and the main
problem is then to decide how many examples are necessary
to guarantee, with a statistically significant result, that a split
chosen at a given moment is the same as that chosen using
infinite examples [5, 6]. The most prominent approaches try
to induce a decision tree that is identical, theoretically, to that
induced by a batch learning algorithm from the entire data
stream [4, 5, 6, 7]. Thereby, they aim at ensuring that the tree
induced online is close to the optimal model.

To solve the problem, various research work used interval
estimation [5, 8, 6, 9]. These approaches rank the possible
splits by using a split evaluation function, and the best split is
selected when an adequate confidence level can be guaranteed.
A higher confidence level used for splitting can provide, with
higher probability, a decision tree model that is more simi-
lar to that one induced from the entire data stream. Several
approaches have computed confidence intervals making no
assumption regarding the form of the probability distribution
of the input data [5, 8, 6, 9].

Non-parametric interval estimations are commonly fa-
vored because real data rarely follow well-known probability
density functions. However, the most common split evaluation
functions need large deviation bounds to guarantee appropri-
ate confidence levels. These large deviation bounds require
more examples being processed for splitting leaf nodes. There-
fore, in practice, these well-founded statistical approaches are
outperformed in predictive accuracy by algorithms able to
split more quickly without theoretical guarantees [7, 10].

For example, a well-known family of algorithms uses the
Hoeffding bound for interval estimates [11, 12, 10]. However,
it has recently been shown that this family does not guarantee
the user-predefined confidence level for splitting [6] and thus,
they often split nodes more quickly than algorithms ensuring
appropriate confidence levels. This fast splitting can lead to
bad split being installed in internal nodes and to large trees
being induced. However, larger trees are also able to store
more information about the training instances and to represent

more complex target concepts. Naturally, speeding up the
tree growth can lead to higher levels of predictive accuracy
[13]. In order to split leaf nodes with less training data and to
speed up the tree growth, various approaches have focused on
computing tighter probabilistic bounds for entropy [7], gini
index [7], misclassification error [14] or even a combination
of these heuristic measures [14].

Some work have also assumed normality in order to ob-
tain tighter bounds [15, 14]. This problem has to lead us to
study methods of finding good splits, instead of best. For such,
in this paper, we propose a new learning algorithm, named
Online Hybrid Tree (OHyT), which combines two different
split methods for the tree induction. The first one is based
on the split method used by the IADEM family of algorithms
[4, 16, 8]. It guarantees statistical significance on each split
chosen for internal nodes. As mentioned, this guarantee often
requires too many training examples, delaying the tree growth
significantly and thus, harming the online predictive accu-
racy of the decision tree model. The second method tries to
overcome this drawback by splitting leaf nodes more quickly,
without being exhaustive in finding the best split. During the
tree induction, the first split method is also used to correct
splits previously suggested by the second one. Then, an ad-
ditional algorithm rebuilds the tree model according to the
suggestions made by the IADEM split method. The empirical
study shows that new online hybrid algorithm often reaches
higher levels of predictive accuracy than the algorithm which
only expands the tree when statistical significance can be
guaranteed on each split chosen (IADEM-2 [8]).

The rest of this paper is structured as follows. In Section 2
we review some outstanding research works dealing with the
online induction of decision trees from data streams. Then, the
proposed algorithm, OHyT, is discussed in Section 3. Section
4 presents an empirical study that shows the performance
of the new decision tree algorithm over both synthetic and
real data; in this section, we compare the new algorithm with
respect to two state-of-the-art learning algorithms based on
decision trees: IADEM-2 [8] and the Very Fast Decision Tree
algorithm [5]. Finally, Section 5 presents the conclusions,
summarizing the most notable results and proposing future
work.

2. Related work
Domingos and Hulten [5] proposed the Very Fast Decision
Tree algorithm (VFDT) in order to induce decision trees from
extremely large datasets. VFDT was designed for situations
in which the examples are constantly arriving over time and
thus, they cannot possibly be stored on disk because of the
large dataset size. To estimate the number of examples needed
to split a leaf node, VFDT uses Hoeffding’s bound, aiming
at guaranteeing that the split test chosen is the same as that
chosen using infinite examples.

However, Rutkowski et al. [6] recently showed that Ho-
effding’s bound is not an adequate tool to solve the problem
of estimating this number of examples, and proposed to use
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McDiarmid’s bound instead. Unfortunately, the probabilistic
bounds derived are too large, and they perform poorly in prac-
tice [7]. De Rosa and Cesa-Bianchi [7] also proposed another
method that uses McDiarmid’s bound, providing additional
empirical evidence that their trees are more accurate than trees
with the same number of leaves generated by other algorithms.

Although the VFDT algorithm applies Hoeffding’s bound
erroneously, in practice, it often reaches very satisfactory pre-
dictive accuracy. This performance is caused because VFDT
is able to split leaf nodes very quickly. This fast splitting leads
to large trees being induced. Larger trees are able to store
more information about the training examples, and thus they
can be more accurate even having bad split tests. Therefore,
it may be possible to induce decision trees that are more ac-
curate than trees induced by VFDT with the same number
of nodes [7]. However, VFDT can reach higher levels of
predictive accuracy with the same number of examples.

Alternative approaches used Gaussian approximations in-
stead of these probabilistic bounds in order to compute tighter
confidence intervals [15, 9]. OnlineTree2 [17] gives a trivial
solution, fixing this number of examples to a threshold. Re-
cently, Rutkowski et al. [14] proposed to combine a splitting
criterion based on the misclassification error with the Gini in-
dex, showing that such a combination is a promising research
area.

The IADEM family of algorithms [4, 16, 8] also estimates
confidence intervals by using Chernoff’s and Hoeffding’s
bounds. Different from VFDT, this family assumes that a
relative frequency stored in a given leaf node is a sum of inde-
pendent random variables, not the heuristic measure. Then,
Chernoff’s and Hoeffding’s bounds are applied for this sum.
The tree construction by this family uses these estimates into
account when splitting leaf nodes.

The algorithm proposed in the next section takes advan-
tage of two different split methods. The first one aims at
splitting leaf nodes fast, with a simple method to control the
tree size. The second split method, which is able to estimate
split tests with high statistical confidence, is used to correct
previous split tests suggested by the first method.

3. Online Hybrid Tree

In this section, we present OHyT, an online algorithm based
on decision trees for mining high-speed data streams (see
Algorithm 1). OHyT starts the tree induction with a single
root node and processes all the training examples in their
temporal order. It stores no example, but each node only
maintains the statistics needed for the tree induction. As an
example arrives, it traverses the tree into the corresponding
leaf, depending on the split tests currently installed in the
internal nodes. For this example, the statistics stored in both,
the internal and leaf nodes belonging to this path (from the
tree root to the leaf) are updated accordingly.

Procedure OnlineHybridTree :

S is a sequence of examples

ġ is a split evaluation function

δ is one minus the desired probability of choosing the
correct attribute at any given node

τ is a tie threshold for splitting

ν controls the maximum number of internal nodes
allowed to split by the tie threshold

Result: A decision tree HT updated according to the
current training instances

1 begin
2 Let HT be a tree with a single leaf (the root)
3 forall training examples in S do
4 Sort example into leaf l using HT
5 Update sufficient statistics in the internal

nodes belonging to the path for the tree root
to leaf l

6 Update sufficient statistics in leaf l
7 if examples seen at l are not all of the same

class then
8 Compute ġ for each possible split
9 Let ȧ be the split with the highest value of

ġ
10 Let ḃ be the split with the lowest value of

ġ
11 if IADEM_Test( ȧ, ḃ) then
12 Replace l with an internal node i that

splits on Xa
13 Mark the internal node i as split by

IADEM
14 forall branches of the split ȧ do
15 Add a new leaf with initialized

sufficient statistics

16 else
17 Let ṅ(S) be the number of training

examples seen by leaf l
18 if ṅ(S)> τ then
19 Let ν ′ be fraction between the

number of internal nodes split by
the tie-breaking threshold and
the total number of nodes of the
current tree

20 if ν ′ ≥ ν then
21 ReviseSplit (l)

22 else
23 Let ȧ be the split suggested by

the parent of l with greatest
height and marked as split by
the tie-breaking threshold

24 if ȧ == null then
25 Let ȧ be the split with

highest value of ġ in l

26 Replace l with an internal
node i that splits on ȧ

27 Mark the internal node i as
split by tie-breaking
threshold

28 Store l in the split node i and
maintain it updated
according to new training
examples

29 forall branches of the split do
30 Add a new leaf with

initialized sufficient
statistics

Algorithm 1: Online Hybrid Tree induction algorithm.R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 1 • p.38/47 • 2020
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OHyT uses the IADEM split method in the tree induction.
OHyT also splits leaf nodes by an alternative method based
on a tie-breaking threshold (τ), to be used when the IADEM
split method cannot make a decision on the best split even
with a large number of training examples.

During the tree induction, OHyT tries to guarantee a sta-
tistically significant result for each split test installed in the
internal nodes. Thus, if a given leaf node is split by the
tie-breaking threshold, the internal node resulting from this
expansion maintains the sufficient information needed to pe-
riodically check the previous split decision over time. This
periodical checking is again performed by IADEM. If OHyT
decides that a different split should be installed in a previous
internal node, it changes to a stage in which the splits sug-
gested by the tie-breaking threshold, in the descendant leaf
nodes, are chosen in order to rebuild the tree accordingly.

Although the tie-breaking threshold can speed up the tree
growth and the convergence of the learning model, it can also
harm the quality of the tree (e.g., number of nodes), because
tree expansions occur more often without enough information
to guarantee good splits. In Algorithm 1, the parameter ν

restricts the number of internal nodes created by this alter-
native split mechanism. The parameter ν is simply defined
as a percent of the total number of internal nodes. Then, if
the number of internal nodes created by the tie-breaking split
method exceeds this percent, OHyT disables the alternative
split method.

Next subsections provide more details about the three
main components of OHyT: the IADEM split method (Section
3.1), the alternative one based on the tie-breaking threshold
(Section 3.2), and the mechanism to revise and change split
tests previously installed in internal nodes (Section 3.3).

3.1 Splitting with Confidence
To build a decision tree, it is necessary to find, at each leaf
node, the split that is the best in discriminating the classes
in the input data. In online learning, this split often involves
a single attribute. The possible splits are usually ranked by
using some split evaluation function, which measures depen-
dencies between splits and classes. There is a great variety
of split evaluation functions, and many investigations have
measured the effectiveness of these functions for obtaining
good decision trees. However, various studies showed that,
in general, there are no significant differences in choosing
different split evaluation functions [3].

Each internal node of OHyT has associated one attribute,
which is involved in the corresponding split test. Similar
to previous approaches [10, 18], decision trees induced by
OHyT have a border of virtual nodes. Figure 1 shows a
possible decision tree generated by the algorithm, in this case
considering four possible splits (ȧ, ḃ, ċ, and ḋ). The leaves that
form the tree border are called real leaves, and the nodes for
all possible splits of real leaves are called virtual leaves. The
leaves (real or virtual) have counters that allow the algorithm
to estimate a set of variables needed for the tree induction.

Procedure ReviseSplit :
l is a leaf node

Result: A decision tree with split tests revised by
IADEM

1 begin
2 forall internal node i in the path from tree root to

the leaf node l do
3 if i is marked as split by misclassification

error then
4 Compute Gl′(Xi) for each attribute in the

leaf l′ stored in the internal node i
5 Let Xa be the attribute with highest Gl
6 Let Xb be the attribute with lowest Gl
7 if IADEM_Test(Xa,Xb) then
8 if i was split by attribute Xa then
9 Mark i as split by IADEM

10 else
11 Let Xc the attribute involved in the

split test currently installed in
the internal node i

12 ReplaceSplit (i,Xc)

Algorithm 2: Algorithm that checks whether a split test
previously installed in an internal node by using the accu-
racy gain, is the same as that suggested by IADEM.

The process of splitting a leaf consists of removing this real
leaf and replacing it with an internal node, in accord with the
corresponding virtual node. The virtual leaves related to this
split become new real leaves and children of the new internal
node.

Let S be the set of training examples seen at a given leaf
node and ṅ(S) be the cardinality of S. The OHyT algorithm
uses the split method of IADEM to solve the problem of
deciding, with statistical significance, how many examples
are necessary at each node to select the best split test. The
IADEM family uses Hoeffding’s (εH) and Chernoff’s (εC)
bounds to compute a final confidence interval (εIADEM), for a
sum of independent random variables (X = ∑

ṅ(S)
i=1 Xi):

εH =

√
1

2ṅ(S)
ln(1/δ ) (1)

εC =
1

2ṅ(S)

(
3ln

2
δ
+

√
9ln2 2

δ
+12ṅ(S)X ln

2
δ

)

εIADEM =

{
1 ṅ(S) = 0
min{εH ,εC,1} ṅ(S)> 0

The IADEM family assumes Boolean values drawn ac-
cording to independent random variables (e.g., 1 if an example
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ḋ
d1 d2

a3
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Figure 1. Example of a decision tree induced by the Online Hybrid Tree algorithm.

has a given class label and 0 otherwise). The leaf nodes store
relative frequencies in accord with these random variables.
Each relative frequency has then associated a confidence in-
terval. Therefore, even with a single tree structure, we can say
that the IADEM family of algorithms maintains a variety of
different trees because each relative frequency is not unique
(it has associated a confidence interval). For each possible
combination of values in the corresponding confidence inter-
val having a possible tree, and every tree having vectors in
leaf nodes whose components are relative frequencies. Each
vector must meet certain restrictions; for example, the sum of
the probabilities of reaching a leaf node must be one.

Ramos and Morales [4] also proposed an algorithm to
calculate confidence intervals for any heuristic measure in
leaf nodes. Different from VFDT, in a given leaf node, the
best split test is compared with the worst one based on these
interval estimates, assuming that the strict determination of
the best split test is not decisive to achieve good trees. If
these two confidence intervals are very different (e.g., a split
test is statistically better than the worse one) or very similar
(implying that all split tests have the same importance), then
the IADEM family selects the best split test to expand the
corresponding leaf node.

3.2 Breaking Ties in Split Evaluations
It may be that the contending splits are approximately equally
good in discriminating the classes in the input data and thus,
the split evaluation function would approximately take the
same value for these splits. In this situation, the decision tree
algorithm would require too many training examples to decide
between them, only based on the confidence intervals. If the
different split options have similar gain, waiting too long to
make a decision on the best split can harm the accuracy of the

tree because the tree growth can get paused for a long time.
Domingos and Hulten [5] proposed a tie-breaking param-

eter τ to be used when various contending splits cannot be
separated by only comparing confidence intervals. This way,
the current best split is chosen if the probabilistic bound (εH )
is less than this threshold (τ). This tie-breaking parameter
can also be viewed as fixing a number of training example
to make a decision on the best split, as the threshold (τ), the
probabilistic bound (εH ) and the number of examples (ṅ(S))
are related by Equation (1). This method is therefore similar
to that one used by OnlineTree2 [19, 17], which fixed the
number of training examples seen to evaluate the contending
splits.

The configuration of this threshold can also be viewed as
adjusting the importance that the best split has for the decision
tree algorithm. Larger values give less importance to selecting
the best split but can also speed up the tree growth. OHyT
controls the tree growth rate by means of the tie-breaking
threshold τ and the parameter ν (see Algorithm 1). The
threshold τ forces to split on the best-observed split at a given
point, without having enough information to make a decision
on the best split with a statistically significant result.

OHyT also maintains the balance between splits made by
this alternative split method and splits made by the IADEM
test. This balance is controlled by means of the parameter ν .
OHyT revises the coherence of previous splits if, in the path
traversed by the training example, the tree has reached the
maximum number of splits made by the accuracy gain test, or
by reaching the tie-breaking threshold.

3.3 Revising Splits
As mentioned, the tree growth rate is regulated by means of
the parameter ν (see Algorithm 1), which fixes the maximum
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number of internal nodes that are allowed to split by the accu-
racy gain, or by the tie-breaking parameter τ . When this num-
ber reaches the parameter ν , OHyT checks the corresponding
splits by using the IADEM split method (see Algorithm 2), in
order to again enable both split mechanisms.

To change a split previously installed in an internal node,
Algorithm 3 performs a recursive call for all the children.
Thus, there are two possible options to be considered in this
recursive algorithm: (1) installing the required split in a leaf
(lines 2–6); or (2) installing the split in an internal node (lines
7–16). In a leaf node, the algorithm simply forces the leaf to
split. In an internal node, the algorithm firstly ensures that
all its children have split accordingly, to then move up the
required split from the children, move down the current split
to be changed, and update the parent-child relationships in
accord with the new structure.

Figure 2 illustrates an example in which Algorithm 3
installs a new split (ḃ), different from the previous one (ȧ), in
the root node of a given decision tree. In this basic situation,
the decision tree has three different split types (ȧ, ḃ, ċ), whose
outputs are independent each other (ȧ∈ {a1,a2}; ḃ∈ {b1,b2};
ċ ∈ {c1,c2}). We can see that after the required restructuring,
all paths from the root to leaf nodes remain constant (e.g.,
the leaf l4 is always reached by passing through the path
ȧ = a2, ḃ = b2, ċ = c1).

4. Empiriral Study
In this section, we evaluate OHyT using both synthetic and
real datasets. We compare the new algorithm with respect
to two baseline learners based on decision trees: VFDT and
IADEM-2. We principally evaluate the stability of the induced
model and the evolution of the learning over time. All the
experiments were performed over MOA [10], a framework
for online analysis. It provides a collection of evaluation tools,
a great variety of algorithms and several methods to generate
artificial data streams.

We assessed the performance of OHyT considering three
important performance measures in online learning: accuracy,
model’s complexity (in terms of tree nodes) and processing
time. We calculate these metrics online, in order to mea-
sure how the learning process evolves over time [20, 21, 10].
Specifically, we used a test-then-train approach in all the
experiments [22, 23]. It basically consists in calculating mea-
sures as each example arrives (test step); and then, the exam-
ple is made available to the method which continues with the
learning (train step) [12]. We calculated metrics by means
of a sliding window considering only the last performance
measurements (test-then-train with a forgetting factor) [22]. It
has been shown [23] that the test-then-train approach with for-
getting mechanisms converges on the measurement calculated
with the holdout approach.

Therefore, at each new example, the classifiers were first
tested and then trained. During the learning process, accuracy
was computed with respect to a sliding window of size 1000
[10, 24]. We computed the instantaneous accuracy of classi-

Procedure ReplaceSplit :
node is a tree node

ȧ is the split test to be installed in node

Result: The node i splits by ȧ
1 begin
2 if node is a leaf then
3 Replace node with an internal node i that

splits on ȧ
4 Mark the internal node i as split by IADEM
5 forall branches of the split do
6 Add a new leaf with initialized sufficient

statistics

7 else
/* node is an internal node */

8 if node splits by attribute ȧ then
9 Mark node as split by IADEM

10 return
11 else
12 forall child of node do
13 ReplaceSplit (child,ȧ)

14 Let ḃ be the attribue involed in the split
test installed in node

15 Split node by attribute ȧ, split the children
of node by attribute ḃ and update
parent-child relationships according to
the new structure

16 Mark the internal node node as split by
IADEM

Algorithm 3: Algorithm that changes a split test previ-
ously installed in an internal node by splitting the neces-
sary leaves and moving up split tests.

fiers every 1000 examples processed by means of the fraction
between the number of well-classified examples in this sliding
window and the window’s size. Measurements of the model’s
complexity were also computed every 1000 examples, whilst
we measured the processing time that each algorithm took to
process all examples.

We set VFDT with the default configuration they have in
MOA [25, 10]. VFDT, OHyT, and IADEM-2 handle numeric
attributes via the Gaussian approximation [25, 10] with a
maximum number of bins fixed to 10. All algorithms predict
in leaf nodes with a na ive Bayes approach. Unless otherwise
stated, in OHyT, each experiment used τ = 2000 and ν =
10%.

4.1 Synthetic Data
The performance of the algorithms was evaluated using com-
mon benchmark generators of data streams [10]. Table 1 sum-
marizes the main characteristics of these generators. Thus, the
data streams used in the experiments presented noise and irrel-
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Figure 2. Algorithm 3 transforming a decision tree in order to install a different split (B) in the root node.

evant attributes, nominal and numeric attributes, and different
types of target functions.

The Random Tree Generator [5] produces data streams
by means of a decision tree. To construct the tree (the target
function), it chooses attributes at random to split and assigns
a random class label to each leaf. The training and test exam-
ples are generated by assigning uniformly distributed random
values to attributes, and this attribute values determine the
class label via the tree. In this experiment, two random trees
were generated as target functions [25]. The first data stream
was generated by a random tree having ten nominal attributes
with five values each, ten numeric attributes, two classes, a
tree depth of five, with leaves starting at level three and a 0,15
chance of leaves thereafter. The second stream was generated
by a random tree having 50 nominal attributes with five values
each, 50 numeric attributes, two classes, a tree depth of ten,
with leaves starting at level five and a 0,15 chance of leaves
thereafter. We added 10% noise to both data streams.

The Radial Base Function Generator [25] fixes a number
of random centroids. Each centroid has a random position,
standard deviation, class label, and weight. New examples are
generated by selecting a centroid at random so that centroids

Table 1. Main characteristics of the data streams generators
used in the experimental study.

Dataset N
om

in
al

N
um

er
ic

C
la

ss
es

Simple Random Tree Generator 10 10 2
Complex Random Tree Generator 50 50 2
Simple Radial Base Functions 10 2
Complex Radial Base Functions 50 2
Simple Waveform Generator 21 3
Complex Waveform Generator 40 3
Hyperplane 1 10 2
Hyperplane 2 15 2
Hyperplane 3 20 2
Seven segments LED display 24 10(5%, 10% and 15% of noise)
STAGGER Generator 3 2(three target functions)
AGRAWAL Generator 6 3 2(ten target functions)
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with higher weight are more likely to be chosen. The attribute
values are randomly drawn from a Gaussian distribution with
standard deviation determined by the chosen centroid. The
chosen centroid also determines the class label of the example.
Two data streams were generated by this type of target func-
tion: (1) 100 centroids and 10 attributes, (2) 1000 centroids
and 50 attributes.

The Waveform Generator [10] differentiates between three
different classes of waveform, and the data stream is generated
from a combination of two or three base waves. We included
two versions of the problem: the first one with 21 numeric
attributes; and the second one which introduces an additional
19 irrelevant attributes and adds noise to all attributes.

A hyperplane in d-dimensional space is the set of vectors−→
A ∈ Rn that satisfy the equation

d

∑
i=1

wiai = y

where ai is the ith component of
−→
A . In our setting, examples

for which ∑
d
i=1 wiai ≥ y are labeled positive, and examples

for which ∑
d
i=1 wiai < y are labeled negative [10]. We gen-

erated three different data streams varying the dimension of
the hyperplane: d = 10, d = 15 and d = 20. The generator
included 5% of random noise to each class. The weights wi
are initialized randomly in the interval (0;1].

In the LED Generator [10], the goal is to predict the digit
displayed on a seven-segment LED display. In our experi-
ments, we used 24 binary attributes, 17 of which are irrelevant.
We generated three different data streams by varying the noise
level for each attribute, introducing, respectively, 5%, 10%
and 15% chances of being inverted.

STAGGER generates concept functions introduced by
Schlimmer and Granger [26]. The concepts are boolean
functions of three attributes encoding objects: size (small,
medium, and large), shape (circle, triangle, and rectangle),
and color (red, blue, and green). We generated data streams
in accord with three different classification functions: (size =
small)∧ (color = red), (color = green)∨ (shape = circle),
or (size = medium)∨ (size = large) [10].

Finally, AGRAWAL generates streams according to ten
different predefined functions which rules binary class labels
from the attributes [27]. The generator produces streams
containing nine attributes: six numeric and three categorical
ones. These attributes describe hypothetical loan applications
[25, 10].

Therefore, we ran algorithms over data streams generators
according to Table 1 (25 artificial data streams in total). There
were 1000000 training examples per data stream. In order to
assess the performance of the algorithms, the accuracy and
the number of nodes were calculated every 1000 examples
by a test-then-train approach, as described in Section 4. The
experiment was repeated 30 times under this setting. For each
run, we changed the random seed of the instance generators.
Tables 2 and 3 summarize the performance of the algorithms

Table 2. Algorithm’s results regarding predicting accuracy.
There were 1.000.000 training instances, 25 artificial dataset
generators, and 30 runs for each configuration. The accuracy
was computed by using the test-then-train methodology with
forgetting factors.

Algorithms Against VFDT Against IADEM-2
Wins Ties Losses Wins Ties Losses

OHyT 14 4 7 21 4 0
VFDT - 13 3 9

Table 3. Algorithm’s results regarding number of nodes.
There were 1.000.000 training instances, 25 artificial dataset
generators, and 30 runs for each configuration.

Algorithms Against VFDT Against IADEM-2
Wins Ties Losses Wins Ties Losses

OHyT 13 0 12 0 0 21
VFDT - 0 0 21

regarding predictive accuracy and number of nodes for these
25 data streams, in terms of number of wins, losses and ties.

Table 2 shows that the new algorithm often reached higher
levels of predictive accuracy in the artificial datasets consid-
ered. It is noteworthy that OHyT never was outperformed
by IADEM-2. The Wilcoxon Signed-Rank test with the two-
tailed hypothesis and with a significance level of 0.01 yields
significant statistical difference. The value of z is −4.0145
and the p-value is less than 0.01. However, when performing
the same Wilcoxon test, statistically significant results are not
achieved between the OHyT and VFDT algorithms despite the
fact that the OHyT algorithm obtains higher accuracy values
over 14 of the analyzed data sets. In 7 of the cases analyzed,
the VFDT algorithm obtains higher accuracy values.

On the other hand, Table 3 reports that VFDT and OHyT
are approximately equivalent regarding the size of the tree
induced. The experiment also showed that they induced deci-
sion trees with similar size on average. For example, VFDT
induced, on average, trees with 297 nodes, whilst OHyT in-
duced trees with 275 nodes on average.

As mentioned, IADEM-2 guarantees a statistically signif-
icant result for each split installed in decision nodes. As a
result, IADEM-2 requires more training examples to make a
decision on the best split and thus, it induces very small trees.
Table 3 gives evidence of this fact, as it shows that IADEM-
2 always induced smaller trees than OHyT and VFDT (on
average, IADEM-2 induces trees with 37 nodes). However,
IADEM-2 has also associated slower learning, which is nega-
tively reflected in online predictive accuracy.

Figures 3 and 4 show the values of the predictive accu-
racy and number of nodes respectively averaged over the 25
datasets involved in the experiment. In these figures, we
include the performance of OHyT varying the tie-breaking
threshold τ . We can note that OHyT has a good performance
for various of these configurations, inducing, on average, ac-
curate decision trees with approximately the same number of
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Figure 3. Algorithms’ accuracy averaged over 25 synthetic
datasets (in a single run), including various values of the
tie-breaking threshold τ in OHyT (fixing the parameter
ν = 0.10).
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Figure 4. Tree size of the induced models averaged over 25
synthetic datasets (in a single run), including various values
of the tie-breaking threshold τ in OHyT (fixing the parameter
ν = 0.10).

Table 4. Main characteristics of the real datasets used in the
experimental study.

Dataset In
st

an
ce

s

N
om

in
al

N
um

er
ic

M
is

si
ng

va
lu

es

C
la

ss
es

Elec2 45.312 1 7 yes 2
Adult 48.842 7 6 yes 2
CoverType 58.1012 44 10 no 7
KDDCup99 494.021 7 34 no 2
Nursery 12.960 8 0 no 5
Poker 1.025.010 10 0 no 2
Spam corpus 2 9.323 500 0 no 2
Usenet 1 1.500 100 0 no 2
Usenet 2 1.500 100 0 no 2

nodes.
As described in the previous session, τ is a tie-breaking

threshold for splitting. This threshold controls the minimum
necessary value of training examples in a node to apply the
second method of division of the OHyT algorithm. Figures
3 and 4 use a range of acceptable values for this parameter
τ . In this range, as shown in the experiments, the accuracy
values remain stable. It is important to note that low values
of the parameter τ can harm the quality of the tree because
tree expansions occur more often without enough information
to guarantee good splits. On the other hand, high values of
this parameter (τ) would greatly reduce the use of the second
method of division, which is one of the contributions of this
work.

4.2 Real Data
The selected real-world datasets have been used in various
studies about online learning. The final objective of designing
learning algorithms is to apply then to real-world problems, so
the benefit of evaluating methods with these datasets explains
their presence. For these datasets, we evaluate the methods
processing the training examples online in their temporal or-
der. At each new example, the classifier is first tested and then
trained. Again, we used a test-then-train approach to calculate
the accuracy and number of nodes. In this experiment, we
also include the processing time that each algorithm took to
process all examples. We experiment with the Electricity Mar-
ket dataset (Elec2)1 and other eight datasets obtained from
the UCI Machine Learning Repository:2 Adult, Forest Cover
Type (CovType), 10% of the KDD Cup 1999 data, Nursery
(KDDCup99), Poker Hand (Spam), the Spam Assassin col-
lection (Spam), and two datasets based on the 20 newsgroup
collection (Usenet1 and Usenet2). Table 4 summarizes the
main characteristics of these datasets.

1http://moa.cms.waikato.ac.nz/datasets/
2http://www.ics.uci.edu/mlearn/MLRepository.html
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Table 5. Algorithms’ result in real world datasets. The accuracy and number of nodes were computed by using the
test-then-train methodology with forgetting factors.

Algorithms Measures Elec2 Adult CovType KDDCup99 Nursery Poker Spam Usenet1 Usenet2

OHyT

Precision 79,50 78,33 82,51 99,69 89,19 64,78 90,92 61,77 70,70
± 7,00 ± 5,39 ± 6,39 ± 1,16 ± 6,42 ± 3,19 ± 6,19 ± 5,38 ± 1,64

Nodes 37,98 15,73 399,72 488,69 7,42 168,78 6,47 1,00 1,00
± 26,04 ± 9,10 ± 251,49 ± 179,32 ± 3,24 ± 91,02 ± 2,41 0,00 0,00

Time (sec.) 5 5 454 612 1 394 5 0 0

VFDT

Precision 76,86 75,37 79,69 99,66 88,95 71,67 90,31 60,40 70,80
± 9,14 ± 6,05 ± 7,87 ± 1,97 ± 5,37 ± 9,35 ± 8,28 ± 6,46 ± 1,69

Nodes 31,23 30,79 183,16 83,30 12,81 113,60 4,58 1,00 1,00
± 12,48 ± 19,66 ± 104,98 ± 23,10 ± 5,30 ± 80,61 ± 1,79 0,00 0,00

Time (sec.) 1 1 51 37 0 31 2 0 0

IADEM-2

Precision 76,21 82,07 73,29 98,22 86,25 60,52 90,81 61,77 70,70
± 8,80 ± 1,22 ± 9,39 ± 7,29 ± 9,93 ± 5,50 ± 6,09 ± 5,38 ± 1,64

Nodes 17,29 2,91 48,74 4,73 4,08 27,26 5,74 1,00 1,00
± 9,89 ± 0,42 ± 18,38 ± 0,79 ± 1,14 ± 14,29 ± 1,74 0,00 0,00

Time (sec.) 3 2 61 28 1 89 4 0 0

Table 5 shows the average and standard deviation of the
fraction among the number of the well-classified examples
and the total of the examples every 100 examples processed.
The accuracy is computed with respect to a sliding window
with a size 100 [23, 10].

First, taking into account the accuracy values shown in
Table 5, we can verify that the results of the OHyT algorithm
were visibly promising. The OHyT algorithm obtained results
superior to those obtained by the VFDT and IADEM-2 algo-
rithms in six of the nine experiments performed on real bases.
However, when performing the Wilcoxon Signed-Rank test
with the two-tailed hypothesis and with a significance level of
0.05 no statistically significant difference was obtained. As
a second aspect, we can highlight that the tree models gener-
ated by the IADEM-2 algorithm are remarkably smaller in all
experiments with real data. As mentioned above, IADEM-2
requires more examples of training in each node of the tree to
make a decision about the best division. Therefore, it induces
very small trees since in general, it makes fewer divisions.
The size of the trees generated by the OHyT and IADEM-2
algorithms are approximately equivalent.

However, table 5 also reflects that OHyT is more time-
consuming than VFDT and IADEM-2. OHyT checks the
splits of internal nodes previously suggested by the tie-breaking
threshold. In the presence of numeric attributes, the computa-
tional cost of revising previous splits increases significantly,
because different from nominal attribute values, the number
of candidate splits increases as the tree grows. Therefore, a
future line of investigation is to give a more intelligent method
for splitting numerical attributes without decreasing predictive
accuracy significantly.

4.3 Final Considerations
In this session, two comparison scenarios were structured,
the first used real data sets and the second synthetic data
sets. In both scenarios, we have analyzed the behavior of the

OHyT algorithm compared to two other algorithms, VFDT
and IADEM-2. The three analyzed algorithms induce decision
trees. For the comparative analysis, three parameters were
used, accuracy, runtime, and tree size. All three algorithms
behaved consistently in both scenarios. The IADEM-2 algo-
rithm shows in the experiments that it is capable of generating
very small decision trees. In addition, this algorithm offers
statistical guarantees in the division decisions in each internal
node of the tree. However, in order to offer these statistical
guarantees, IADEM-2 may need many instances to make its
decisions to divide the nodes of the tree or not, therefore its
learning process is usually a bit slow. On average, their accu-
racy values were the least promising of the three algorithms.
However, in terms of runtime, IADEM-2 was in second place
just after the VFDT algorithm. IADEM-2 is a recommended
algorithm for data stream analysis, especially when it has
stabilized the tree model, that is, once it has analyzed enough
training instances.

The VFDT algorithm obtained as a result of the experi-
ments the best execution time of the three analyzed algorithms
in both real and synthetic data sets. On the other hand, al-
though its mean accuracy showed no significant statistical
difference in relation to the OHyT algorithm, its accuracy
results were numerically inferior, loosing in 14 cases against
7 over the synthetic sets and 7 against two over the real sets.
The VFDT algorithm is highly recommended for scenarios
where you work in real-time where the runtime is a crucial
factor. It is a very fast algorithm and with suitable accuracy.

The OHyT algorithm obtained promising results in terms
of accuracy values compared to the other two algorithms. In
addition, it has the characteristic of faster learning, which
needs a few instances to make decisions of division in the
nodes of the tree. In addition, these decisions are supported
by a statistical guarantee. All these characteristics can be
considered positive for online learning. OHyT is a highly rec-
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ommended algorithm for scenarios where the best accuracy
values are needed. However, in real-time learning scenarios,
when time can be a vital factor, your choice should be an-
alyzed more deeply, due to its worst results in runtime the
experiments.

5. Conclusions
In this paper, we have presented a new learning algorithm
for the online induction of decision trees. The proposed algo-
rithm, Online Hybrid Tree (OHyT), uses two different split
methods for building decision trees. The objective of incorpo-
rating a second split method is to increase the convergence of
the learning algorithm, namely, the usage of fewer training ex-
amples to reach similar levels of accuracy. Therefore, the first
split method guarantees statistical significance for each split
chosen. This method uses probabilistic bounds to estimate
the best splitting attribute, and it may wait too long to make
a decision on this split. Waiting too long to decide can slow
down the learning of the tree, this situation being particularly
harmful at the beginning of the tree induction because the
decision tree model is often more inaccurate. The second
method is then able to split leaf nodes more quickly, without
being exhaustive in finding the best. During the tree building
process, OHyT also uses the first split method to revise splits
previously suggested by the second one, and an additional
algorithm rebuilds the tree model according to this revision,
trying to ensure an adequate statistically significant result for
each split.

The computational complexity of the proposed algorithm
does not depend on the number of examples processed so far.
Additionally, OHyT is able to learn with a single pass over the
training data. These characteristics make the new algorithm
suitable for learning from possible unbounded data streams.

We have empirically compared OHyT with various pre-
vious algorithms based on decision trees, including the well-
known Very Fast Decision Tree system. According to the
empirical study, OHyT is more competitive in accuracy and
model size, considering several synthetic and real-world datasets.
We expect to continue this research by focusing on the dis-
cretization methods applied to OHyT. In the presence of nu-
meric attributes, the computational cost of revising previous
splits increases significantly, because different from nominal
attribute values, the number of candidate splits increases as
the tree grows. A future line of investigation is to give a more
intelligent method for splitting numerical attributes without
decreasing predictive accuracy significantly.
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