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A Model for the Diffusive Filling-In Algorithm Operating in
Spike Mode
Um Modelo para o Algoritmo do Completamento e Preenchimento em Modo Pulsado

Genildo Nonato Santos1*, José Gabriel Rodriguez Carneiro Gomes2

Abstract: To run cortical circuit simulations in spike mode, i.e. taking into account the neural representation of
information in terms of sequences of electrical pulses (also known as spikes), the use of customized hardware,
which is specific for this purpose, is recommended. Simulations using more traditional hardware can be
prohibitive. In this context, theoretical predictions are important for customized hardware design. For example,
theoretical predictions lead to an adequate neuron model choice. To make such theoretical predictions, the
cortical circuit simulations are carried out in amplitude mode. Differently from the spike mode, in amplitude mode
information is represented by sequences of scalar values that describe neural input and output spike rates. In
this paper, it was proposed amplitude and spike mode simulations of a cortical algorithm, namely the diffusive
filling-in algorithm, to investigate whether predictions based on the amplitude-mode results approximate well the
behavior of the customized hardware (spike mode results). The diffusive filling-in algorithm was chosen because
it is simple enough for spike-mode simulation in a conventional computer, but the proposed amplitude-mode
prediction method is the same for more complex algorithms or circuits. We provide a highly realistic comparison
between amplitude-mode and spike-mode in the diffusive filling-in case, which suggests that the amplitude mode
is reliable for theoretical predictions useful for customized hardware design for cortical circuit simulation. The
goal of this paper is not to bring closure to these discussions but to suggest a way of avoiding possible issues
that could compromise the success of the customized device design.
Keywords: diffusive filling-in — visual system — silicon retina — spike encoding

Resumo: Para realizar simulações de circuitos corticais em modo pulsado, considerando a representação de
informação por meio de sequências de pulsos elétricos (também são conhecidos por spikes), o uso de um
hardware dedicado, que são especı́ficos para esse propósito, é recomendado. Simulações usando hardware
mais tradicional podem ser proibitivas. Nesse contexto, predições teóricas são importantes na fase de projetos
desse hardware. Por exemplo, tais predições permitem a escolha de um modelo de neurônio mais adequado.
Para fazer tais predições teóricas, as simulações dos circuitos corticais são conduzidas em modo de amplitude.
Diferentemente do spike mode, em modo de amplitude a informação é representada por sequências de valores
escalares que descrevem as taxas de pulsos nas entradas e saı́das neuronais. Neste trabalho, foi proposto
simulações em ambos os modos de um algoritmo cortical, nomeado de completamento e preenchimento, para
investigar se as predições baseadas nos resultados das simulações em modo de amplitude aproximam bem
o comportamento do hardware customizado (resultados das simulações em modo pulsado). Esse algoritmo
foi escolhido por ser simples o bastante para permitir simulação em modo pulsado em um computador com
hardware convencional, considerando que o proposto modo em amplitude pode ser usado em casos mais
complexos. Nós provemos uma comparação altamente realista entre ambos os modos para o caso do algoritmo
de completamento e preenchimento que sugere que o amplitude mode é capaz de gerar predições teóricas
suficientes para projetos de hardware especı́fico para simulações de circuitos corticais em modo pulsado. O
objetivo deste trabalho não é o de encerrar as discussões sobre esse assunto mas sugerir formas de evitar
possı́veis problemas que possam comprometer o sucesso do projeto de customização do dispositivo.
Palavras-Chave: completamento e preenchimento— sistema visual — retinas de silı́cio — codificação por
pulsos
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1. Introduction

Studying cortical circuits is important to understand the brain,
but it also leads to inspiration for the development of effi-
cient signal processing systems [1], [2]. The computational
burden associated with cortical circuit simulation using con-
ventional hardware becomes prohibitive, as the simulations
start to address realistic neural circuits [3]. Spike neuron
models are non-smoothing and highly non-linear functions
[4], and therefore it is computationally expensive in computer
simulations using more traditional methods. For these reasons,
very realistic simulations of the large-neural networks, which
are composed of spike neurons, could become prohibitive
(in a traditional computer). For example, spike-mode sim-
ulations of cortical circuits maybe 9,000 times slower than
the real-time behavior of the biological cortical circuits [5].
The development of customized hardware (neuromorphic),
specific for cortical circuit simulation, has become popular
among research centers and academic institutions [6]. The
neuromorphic hardware is a customized semiconductor device
which is implemented by millions of spike neurons (analog or
digital microelectronic circuits that mimic the behavior of the
model) [7]. Parallel and distributed processing characteristics
of the neuromorphic hardware allow running simulations of
cortical circuits in real-time. To design neuromorphic hard-
ware, one must study either the behavior of the cortical circuit
itself or of cortical circuits in general. A design like this is not
generic for all types of the cortical circuit since neuron model
parameters need to be drastically changed according to the
simulated circuit. If one can analyze a cortical circuit before
it is implemented in hardware, then the analysis may provide
insight into the hardware implementation details. However, it
is not simple to perform this analysis. There are some ways
to conduct this preliminary cortical circuit analysis. Cortical
circuit simulation may be carried out using high-performance
computers (some models) [8], using amplitude mode [9],[10]
or neglecting the preliminary cortical circuit analysis [6]. Su-
percomputers, FPGA (Field Programmable Gate Arrays) or
GPU (Graphic Processor Units) grids are examples of the
high-performance computers. In an amplitude-mode simula-
tion, neural spike rates, also denoted as neural firing rates, are
represented by scalar numbers organized into conventional
discrete sequences. It allows that functions related to the neu-
ron model become smoother and thus computationally less
expensive. Therefore, an accessible starting point for cortical
analysis is thus amplitude-mode simulation. However, by rep-
resenting neural signals by conventional discrete sequences
containing neural firing rates, the amplitude-mode simula-
tion approach does not capture important features of neural
dynamics such as the influence of spike timing on feedback
loops, the influence of spike timing on the linear combina-
tion among the inputs of a neuron, the definition of an exact
moment when a neuron fires (as an internally established
threshold is reached), the exact behavior of a neuron after it
has started to fire, and the influence of the spike shape on
the signal processing results. It is therefore not obvious that

these predictions, which are made based on amplitude-mode,
to be realistic. There is a gap in the literature concerning
academic studies deal with how realistic these predictions are.
In this paper, we perform the implementation of a well-known
cortical algorithm, the diffusive filling-in (DFI) [11], using
the amplitude-mode approach and the spike-mode approach
to assess the extent to which the obtained results are similar.
A comparison between modes permits evaluating the error as-
sociated with predictions that were made in amplitude-mode.
Thus, more accurate estimates about the expected behavior
of the customized hardware can be achieved. And these esti-
mates can help to identify problematic features of the design.
A bio-inspired imager was built, in an electrical-simulation
level, to generate the input stimulus for the implemented cor-
tical algorithm model. Main electrical parasitic effects, which
certainly would be present on the real device, were considered
in this electrical simulations. It has provided a more realistic
estimate. Section 2 briefly describes fundamental concepts
that are needed for understanding cortical circuit behavior.
Section 3 describes the DFI algorithm. This algorithm is in-
volved in image reconstruction at the visual cortex. The DFI
behavior (in conventional hardware implementation) has been
previously assessed in spike-mode [9] and amplitude-mode
[11] and, for that reason, we chose it for a comparison between
spike-mode and amplitude-mode implementation of cortical
circuits. The system-level numerical simulation results regard-
ing amplitude-mode and spike-mode DFI implementations
are presented in Section 4, and the conclusions of this work
are presented in Section 5.

2. Visual System
In this section, we briefly describe the retina behavior, the
signals that are generated by the retina, and the way these
signals are processed at the early stages of the visual cortex.
For that purpose, we start with a working model for the retina,
including details about its input and output signals. Visual
cortex signal processing is briefly mentioned and, after that,
two neural models, namely amplitude-mode and spike-mode,
are introduced. To show how these neural models are used for
signal processing, an example is presented in Figs. 3a and 3b.

2.1 Retina Computational Model
We use the model introduced in [12] and [13]. It takes into
account three signal processing features of the retina: spa-
tial filtering, rectification, and conversion into a time-domain
representation. The model input is a still image Ip and the
model output is a pair of images, vOn and vO f f . The output
images vOn and vO f f correspond to bandpass filtering in space
and time domains applied to Ip. Our description considers
four layers of the retina: photoreceptors, outer plexiform layer
(horizontal cells), inner plexiform layer, and ganglion cells.
Bandpass filtering in space and time domains: the interac-
tion between photoreceptors and horizontal cells at the outer
plexiform layer (OPL) of the retina was modeled in [14] by
equations that describe electrical signal propagation in a net-
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work composed by electrical cables. These networks have the
space domain and time domain filtering property that is taken
into account by the model. The model presented in [14] e and
[13] is more adequate for a silicon implementation based on
analog CMOS transistors. It is indicated in:

{
Ic = Ip +λc · ∂ 2Ic

∂x2 − τc · ∂ Ic
∂ t − kch · Ih,

Ih = λh · ∂ 2Ih
∂x2 − τh · ∂ Ih

∂ t + khc · Ic,
(1)

The I symbol indicates electrical current that changes con-
tinuously as a function of position x and time t. Photoreceptor
network activity is represented by Ic, where the subscript
stands for a kind of photoreceptor known as cone. The OPL
input is represented by Ip. The scalar constant λc describes
the electrical conductivity of spatial connections between
neighboring photoreceptors, and the scalar time constant τc
represents the speed in photoreceptor response. Similarly,
the symbols Ih, λh and τh represent analogous characteris-
tics in the horizontal cell layer. The kch and Khc constant
gains indicate, respectively, amplification applied to varia-
tions of Ic at the horizontal cell network, and amplification
applied to variations of Ih at the photoreceptor network. If
the time-domain filtering is ignored, which means that only
still images are used as retina inputs, then the operation im-
plemented by Eq. (1) may be approximately represented by
a difference-of-gaussians (DoG) operation [15]. If an input
image Ip contains a single edge separating two regions, and
the pixel values within each region are constant, then the reti-
nal spatial passband filtering creates an output image that is
mostly composed of zero values. Only pixels that are close
to the edge (i.e. the separation boundary between the two
regions) will have nonzero values. Positive pixel values are
obtained at the side of the boundary corresponding to the
higher input values, and negative pixel values are obtained at
the other side. After the visual signal is processed by the OPL,
the output Ic goes to the inner plexiform layer input.

Rectification: the positive and negative values in the Ic
image are separated into exclusive channels, denoted as on
channel for the positive values, and off channel for the nega-
tive values, for transmission into the subsequent visual system
stages. This is a biologically efficient signal representation
because it allows for negative signal representation without
dynamic range loss, and it also saves energy by not have
spike transmission in the zero-signal case [12]. To represent
positive-valued pixels, we define the vOn image, and to rep-
resent negative-valued pixels, we define the vO f f image. At
the inner plexiform layer of the biological retina, this oper-
ation is implemented by bipolar cells (not to be confused
with bipoles or bipole groups, which will be described in Sec-
tion 3). This operation is denoted as rectification. Besides
rectification, the inner plexiform layer also filters high tem-
poral frequency content out from the vOn and vO f f images,
and prepares that content for transmission along specialized
channels [15]. Since we only consider still input images Ip,
we do not take the time-domain highpass filtering operation

into account in this work. Next, the inner plexiform layer
output signals vOn and vO f f are processed by the ganglion
cells. As described next, the ganglion cells provide suitable
time-domain encoding for the vOn and vO f f information.

Time-domain representation: ganglion cells convert the
image representation from an amplitude-based representation
into a time-domain, spike-mode representation. Instead of
having a pixel value continuously represented in time (such
as in the case of Ic, for example), at a ganglion cell output
we have a neural spike sequence representing the pixel value.
Pixel is individually encoded by spike sequences so that the
time interval between two spikes (also denoted as inter-spike
interval) is a function of their corresponding amplitude-mode
pixel values. The ganglion cells form the last signal processing
stage at the retina. The optical nerve takes the retina outputs
to the visual cortex.

2.2 Neuron Models: Spike and Amplitude Mode

Several models for the biological neuron have been proposed
in the literature. In the integrate-and-fire (IF) model [3], [4],
for example, the neuron inputs are described by N continuous-
time spike sequences vi(t), i = 1, . . . ,K. At the neuron, each
input spike sequence is multiplied by a constant synaptic
weight gi, i = 1, . . . ,K. The K resulting spike sequences at
added according to s(t) =∑i(vi(t, i) ·g(i)), and the summation
result is integrated according to v(t) =

∫
s(t) ·dt. Whenever

the v(t) integral value goes above an arbitrary threshold vth, a
spike is generated at the neuron output vo(t) and the v(t) value
is reset to zero. The integrate-and-fire model is not suitable for
the implementation of signal processing operations contain-
ing positive feedback loops, which is the DFI algorithm case,
because the direct path from the neuron input to the neuron
output may contribute to the instability of the loop. To over-
come this limitation, the integrate-and-fire model is enhanced
by also taking into account a refractory period. The refractory
period is a time interval during which, immediately after hav-
ing fired, the neuron cannot fire again, even if v(t) reaches the
pre-established threshold. The integrate-and-fire model with
a refractory period is useful for the implementation of signal
processing operations containing positive feedback loops [3],
[9].

Spike Mode: In the present work, we will use the leaky
integrate-and-fire (LIF) model [4], which corresponds to the
basic integrate-and-fire model improved by an adaptation
mechanism that causes an effect similar to the effect obtained
with the refractory period. The leaky integrate-and-fire model
is similar to the basic integrate-and-fire model, except that
the integrating variable v(t) is leaky. In the LIF model, a
neuron that does not receive any input (or, more generally,
that receives an amount of input that is below the amount of
leakage) will have its integration variable value reduced until
it reaches a minimum value vL. In [4] was applied the Euler
integration method to a differential equation system including
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Figure 1. Illustration of the LIF model described by Eq. (2). At the vertical axis, labels 1, 2, and 3 indicate signals vi(n),
i = 1,2,3. The label 4 indicates v(n), and the label 5 indicates vo(n). In this example, we used A = 0.9, B = 1, C = 0.1, D = 1,
E = 0.2, we have vth = 1, vH = 1, and vL = 0.

leakage on v(t), and was obtained the result shown in Eq. (2):


v(n+1) = A · v(n)+B · vi(n)−C · va(n),
va(n+1) = D · vo(n)−E · va(n),
i f v(n)> vth, then vo(n)← vH , and v(n)← vL,

(2)

In Eq. (2), the A, B, C, D and E positive constants must
be adjusted according to the available data set. To obtain
the results provided in Section 4, we used A = 0.9, B = 1,
C = 0.1, D = 1, and E = 0.2. There are two discrete-time
state variables (v(n) and va(n)), where va(n) causes adaptive
leakage, which will lead to an effect similar to the one ob-
tained with the refractory period. The neuron inputs are vi(n),
i = 1, . . . ,N, and the neuron output is vo(n). An example of
the model in Eq. (2) is shown in Fig. 1, for vth = 1, vH = 1,
and vL = 0.) The dotted line in Fig. 2 shows the output firing
rate of a biological neuron located at the V2 layer of the visual
cortex [16], plotted as a function of the firing rate of its single
input. This input firing rate corresponds to the normalized
contrast (0.5 contrast correspond to an input firing rate ap-
proximately equal to 120 spikes/sec) of an image to which
the visual system of an animal was exposed. To perform the
fitting of this relationship between the output firing rate and
the input firing rate, we used the IF model and the LIF model.
One can clearly note the difference between the IF and LIF
behavior as the input firing rate increases, which suggests that
the LIF model can capture the limitation in output firing rate
that takes place in a biological neuron, as the neuron input
firing rate increases.
Amplitude Mode: Because of the large computational ef-
fort required for the simulation of circuits composed by a
large number of spike-mode neurons modeled by Eq. (2),
the neuron model is replaced by a simplified model, denoted
as amplitude-mode model, in which scalar values represent
firing rates. The amplitude-mode neuron model does not have
effective spikes at its inputs or at its output, but it describes
nevertheless the firing rate at the neuron inputs or at its output,
and it is able to handle approximate computations in that way.

The neuron firing rate is defined as the summation of the num-
ber of spikes generated by the neuron within a time interval
of t, divided by t itself. Not explicitly using spikes reduces
the computational burden, which makes a difference between
viable simulations, and simulations with prohibitive compu-
tational cost [9]. Eq. (3) shows an amplitude-mode model
corresponding to the spike-mode model that was presented in
Eq. (2). In Eq. (2), we also have A = 0.9 and B = 1.

{
v(n+1) = A · v(n)+B · vi(n),
vo(n) = [tanh(v(n)− vth)]

+,
(3)

At the visual cortex, biological circuits process visual
information according to operations that are performed in-
dividually by the neurons and according to the connections
established among those neurons. In the spike-mode simula-
tion, the individual operations are implemented by Eq. (2).

Each connection corresponds to a synaptic weight placed
between one neuron output and one input of another neuron.
In the remainder of this paper, we will compare spike-mode
and amplitude-mode implementations of edge detection oper-
ations on still images. Spike-mode implementations have the
structure shown in Fig. 3a, and amplitude-mode implementa-
tions have the structure shown in Fig. 3b. In both block dia-
grams, I(x,y) is an input image, vth denotes a thresholding op-
eration, and g(x,y) is a set of synaptic weights. In spike-mode
implementations the value of vth is 1 and amplitude-mode im-
plementation is 0.1. The synaptic weights describe a highpass
filter such as g(x,y) = [−1 −1 −1; −1 8 −1; −1 −1 −1].
In this work, the small blocks with input vi(n) and output
vo(n) at the lower right corner of Figs. 3a and 3b are denoted
as neuron activation processing stages, are these stages are
indicated by an N symbol according to equations such as
vo(n) = N[vi(n),vth]. In the cases of Figs. 3a and 3b, we have
vo(n) = Np[vi(n),vth] and vo(n) = Na[vi(n),vth], respectively.
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Figure 2. Output firing rate of a biological neuron (dotted line) as a function of an input firing rate corresponding to normalized
contrast [16], and approximations of that function based on the integrate-and-fire model (solid line) and on the leaky
integrate-and-fire model (line with square markers).

3. Diffusive Filling-In (DFI)

Diffusive filling-in is a signal processing operation that is exe-
cuted by the visual cortex in order to completely fill-in finite
and fully connected regions. Each region is fully surrounded
by a closed contour. The block diagram of the DFI algorithm
is shown in Fig. 4. The diffusive fill-in operation inputs are
the still images vOn and vO f f , which are coming from the
retina, and the output is vDFI . In the vDFI , fully connected
regions inside closed contours are filled in.

Because of the space-domain filtering that takes place in
the retina according to Eq. (1), the vOn and vO f f images con-
tain contours. The contours may be closed imperfectly. The
DFI algorithm uses the partial contour information available
in vOn and vO f f in order to prevent that only the correct re-
gions are filled in. In the visual system, a border between a
closed region and its surroundings is described by two con-
tours (inner and outer), which are not transmitted by the same
visual channel. As a consequence, information fill-in may
begin with the vOn contour and finish off with (or be blocked
by) the vO f f contour, or the opposite may take place. In the
remainder of this paper, we will use vOn as a reference for
fill-in, and we will use vO f f as the blocking signal. Because

of the retina biological structure, not all image samples are
transmitted to the cortex via vOn and vO f f . Information is lost
at specific pixel positions and the corresponding original sam-
ple values are replaced by zero. The artifacts created by the
missing samples in vO f f translate into discontinuities along
imperfect contours that would otherwise be fully closed. With
missing samples, vO f f is obviously unable to block the fill-in
operation over vOn. The contours in vO f f must be properly
completed. To work with properly closed contours in vO f f ,
the DFI algorithm has a contour completing stage, which is
the first stage in a set of two stages that are simultaneously
executed: - In the first stage (contour completing), the vO f f
image is processed so that zero-valued pixels located on gaps
among neighboring parts of a to-be-completed contour take
larger values, which are typically closer to the original pixel
values. To achieve that result, neural activity is propagated
across neighboring pixels according to properties, such as
direction and offset, which are common to the neighboring
pixels. The image vBCS is the result of the signal processing
operation over the input image vO f f that occurs in this stage.

- In the second stage (filling-in), Regions defined by vOn
are filled-in by neural activity spreading among neighboring
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I(x,y) Np[vi(n),vth] 
g(x,y) 

vo(n) 

v(n+1)=A!v(n)+B!vi(n)+C!va(n) 
If vo(n)>0 then v(n)=0 

va(n+1)=D!vo(n)+B!vi(n)
+C!va(n) 

vth 

vo(n) 

vi(n) 

va(n) 

vi(n) vo(n) 

= 

vi(n) 

(a)

I(x,y) Na[vi(n),vth] 
g(x,y) 

v(n+1)=A!v(n)+B!vi(n) vth 

vo(n) vi(n) 

vi(n) vo(n) 

= 

vi(n) 

tanh[.] 

(b)
Figure 3. Spike-mode (a) and amplitude-mode (b) implementations of an edge-detection example. The input image vi(n) is
obtained from the space-domain convolution between an input image I(x,y) and a highpass filter g(x,y) (also denoted as a set
of synaptic weights). In the spike-mode implementation (a), the input image vi(n) is applied to difference equations according
to the LIF model in Eq. (1). In the amplitude-mode implementation (b), the difference equations correspond to the IF model in
Eq. (3)

pixels. For the vOn signal, it is expected that only pixels lo-
cated on the closed contours will have nonzero values, and
therefore the starting points for neural activity spreading are
precisely those located on the estimated inner side of the
closed contours. In the vFFI image in Fig. 4, neural activity
spreads among neighboring pixels along all directions hav-
ing connected neighbors. To prevent neural activity from
spreading indefinitely, the vO f f information is used. The ex-
pression second stage refers to the fact that the cortical layer
in charge of the filling-in task is, in the visual cortex struc-
ture, hierarchically superior to the layer in charge of contour
completing. Both layers process signals simultaneously. By
completing and filling-in, the visual system recovers origi-

nal low-frequency information that had been lost because of
defects in the visual system or because of the retina space-
domain passband filtering [17], [11]. Low-frequency informa-
tion recovery is important because it significantly improves
the perception of the faces of solid objects or, equivalently,
the inner part of flat objects. More details about contour
completing and filling-in will be provided next, in Section
3.1.

3.1 DFI Details
The vDFI(x,y) is obtained from vDFI(x,y) = N[vOn(x,y) +
vFFI(x,y),vth1], as shown in Fig. 4. The initial value of
vFFI(x,y) is zero, so the initial vDFI(x,y) contains approxi-
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vOn(x,y) +

+vBCS(x,y) 

N[.,vth] 

N[.,vth1] 

gFFI(x,y) 

- 

vFFI(x,y) 

vDFI(x,y) 

Figure 4. Diffusive filling-in algorithm block diagram (either spike-mode or amplitude-mode). To generate vDFI(x,y) from
vOn(x,y), vFFI(x,y) and vth, we use one of the neuron activation processing stages indicated at the lower right corners of Figs.
3(a) or 3(b). Spatial convolution with gFFI(x,y) spreads neural activity from one pixel to its neighbors. To obtain feedback via
a neural pathway, an additional neural activation processing stage prepares the convolution result for feedback, prior to
subtraction with the boundary contour system (BCS, more details in Section 3.1) output signal vBCS(x,y). In amplitude mode,
we have vth = vth1 = 0.01. In spike mode, we have vth = vth1 = 1. More details are provided in the text.

mately the same contours that are present in vOn(x,y). Af-
ter that, a space-domain convolution between vDFI(x,y) and
gFFI(x,y) is computed. We use gFFI = [010;101;010]. This
convolution copies the value from one pixel at the vDFI(x,y)
image to its four immediate neighbors (up, down, left and
right), which represents the fact that contour information is
spread among neighboring pixels. To represent the convo-
lution result in terms of a neural signal (either amplitude-
mode or spike-mode), we execute the operation N[gFFI(x,y)∗
vDFI(x,y)], which corresponds to one of the neuron activation
processing stages indicated at the lower right corners of Figs.
3(a) or 3(b). Positive feedback allows the active pixels in
vOn(x,y)+N[vDFI(x,y)∗gFFI(x,y),vth1]− vBCS(x,y) to rein-
force the corresponding pixel values in vDFI(x,y), as long as
these active pixel values are large enough (i.e. larger than
vth). After undergoing these reinforcement operations, the
vDFI(x,y) image contains its own original contours, and also
pixels that are neighbors to this original contour. As the algo-
rithm proceeds, all contours get thicker. If the filling process
was not interrupted (based on the boundary contour system
information, in this work), then the image would be entirely
covered with active pixels. As we have stated before, we
assume that the vOn information is used for filling-in, whereas
the vO f f information is used to prevent neural activity from
spreading beyond the closed contour surrounding the activity
region. To interrupt the filling-in process, the vO f f image
might replace the vBCS image in being subtracted, pixel-by-
pixel, from the image that is fed back in order to generate vFFI .
Such subtraction would generate negative values at the corre-
sponding pixel positions on the corresponding contour in vO f f

and, inhibited by those negative values at those positions, the
neural activity would stop spreading. However, a biological
visual system has natural anomalies present throughout the
retina signal processing stages. These anomalies are usually
created by the blind spot, and by blood vessels that partially
cover photoreceptors and prevent them from receiving com-
plete light input [18]. Because of these anomalies, some vO f f
positions correspond to incorrect retinal readings. The vO f f
signal may contain inactive pixel positions where activity
should have been detected. The contour defined by vO f f may,
in this case, be open, but it must be closed in order to block
neural activity from spreading from within the contour to its
outer side. We assume that the vO f f signal always contains
at least one closed contour that was originally present in an
image captured by the retina, although the contour may be de-
fective or incomplete. The boundary completion operation is
therefore required for keeping the contour closed. As it closes
the contour (or more than one contour), the boundary com-
pletion operation recovers missing samples in vO f f (samples
that were unavailable because of the blind spot, or samples
that were corrupted because of any other natural defect of
the visual system). The BCS (boundary contour system) is
detailed in Fig. 5. It operates on vO f f and generates, from it, a
new version of vO f f (in which all contours are closed), which
is the vBCS output image. As we mentioned before, the vBCS
output image will be used to interrupt the filling-in process.
To recover missing/defective samples in vO f f , the BCS uses
three operations: directional filtering, spatial competition, and
bipole grouping.
Directional Filtering: At the directional filtering stage, an
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Figure 5. Boundary contour system block diagram. The input is vO f f (x,y) and the output is vBCS(x,y). All operations are
simultaneously performed along 0o, 30o, 60o, 90o, 120o, and 150o orientation channels. Convolution with DF (directional)
filters followed by comparison against threshold vth2 tends to keep contour segments along particular orientations. Convolution
with SC (spatial competition) filters followed by vth3 thresholding removes residual (weak) segments that may remain after
previous filtering operations, also taking into account reinforced segments along the correct orientations. Convolution with BG
(bipole grouping) filters connects contour segments that should be merged into the same original contour, although they may
have been separated by missing samples or directional filtering. The BG outputs reinforce the SC results. The BCS output is
obtained by adding all SC channels.

image described by input signal vOff is filtered by a Gabor
filter bank [19]. Each Gabor filter gFD,θ (x,y) corresponds to a
specific direction θi, i = 1,2, . . . ,N, where N is the number of
discrete directions taken into account by the visual system. In
this work, we use N = 6, for the multiples of 30 degrees from
0 to 150 degrees. All Gabor filters are on the same scale. This
operation generates one output image for each Gabor filter.
In every output image, objects or closed contours will have
their edges emphasized along the direction associated with
the Gabor filter that generated that very image. Pixel values
below an arbitrary threshold (vth2) are set to zero. vth2 = 1
in spike-mode or vth2 = 0.01 in amplitude-mode are used in
these implementations. This helps in eliminating residual
segments from other contours not having a direction related to
the associated Gabor filter, but a few residual segments remain
at the output image after the thresholding. The directional
filtering procedure is defined by Eq. (4).

vFD,θ (x,y) =

 vO f f (x,y)∗gθ (x,y),
if vO f f (x,y)∗gDF,θ (x,y)> vth2

0, otherwise.
(4)

Spatial Competition: To further reduce the presence of resid-
ual contours, every image coming out from the thresholding
after directional filtering is convolved with the filter gSC =
[−1 −1 −1; −1 8 −1; −1 −1 −1] and every pixel from
the resulting image is compared with an arbitrary threshold
vth2. If the pixel value is lower than vth3, then it is set to zero.

Otherwise, the convolution result is kept. To describe a bio-
logical counterpart for this operation [17], we point out that
the convolution and thresholding cascade association approxi-
mately corresponds to spatial competition among the center
pixel value (times 8) and the summation of its eight neigh-
bors. If the center pixel wins the competition, then its value
is kept. Otherwise, its value is set to zero, which corresponds
to information loss. Spatial competition thus leads to a sim-
ple implementation of a well-known edge detector, which is
composed of a difference-of-Gaussians filtering operation fol-
lowed by thresholding, vth3 = 1 in spike-mode or vth3 = 0.01
in amplitude-mode. As a result of spatial competition, weaker
(residual) contours are eliminated, whereas stronger contours
are emphasized. The spatial competition procedure is defined
by Eq. (5), which also takes into account nonzero feedback
vBG,θ (x,y) from a subsequent operation denoted as BG, which
stands for ”Bipole Grouping”. The bipole grouping operation
will be defined next, but Eq. (5) may be understood at this
point as having vBG,θ (x,y) = 0 for the description that was
presented.

vSC,θ (x,y) =


(vFD,θ (x,y)+ vBG,θ (x,y))∗
gSC(x,y),

if (vFD,θ (x,y)+ vBG,θ (x,y))∗
gSC(x,y)> vth3,

0, otherwise.

(5)

Bipole Grouping: Similarly to what happened inside the
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directional filtering and spatial competition building blocks,
the bipole grouping building block also processes images
individually according to their orientation (dominant direc-
tion). A horizontal image (i.e. an image associated with
a horizontal Gabor filter) is filtered along the horizontal di-
rection, a 30-degree image is filtered by a 30-degree Gabor
filter, and so on for all directions that are described by the
Gabor filter bank. We may focus on the horizontal direction
and so describe the image shifts to the left or to the right.
The explanation for other directions is similar. At first, the
horizontal image is shifted twice: one pixel to the left, and
one pixel to the right. As the image content corresponds pri-
marily to horizontal edges, adding the shifted images tends
to connect horizontal segments which were originally dis-
connected because of defects in the visual system. In other
words, the missing samples in the vOff signal are recovered.
In the one-pixel shift cases (left and right), the summation is
equivalent to convolution between the input image and the
[0 0 0; 1 0 1; 0 0 0] filter. We typically need larger shifts
to the left and to the right, because the defects create gaps
larger than one pixel between segments that must be merged.
Adding images that were shifted (left and right) by more than
one pixel is equivalent to the convolution with filters such as
[0 0 0 0 0; 0 0 0 0 0; 1 0 0 0 1; 0 0 0 0 0; 0 0 0 0 0] and
so on. To keep only the summation results with a larger in-
tensity, the convolution and summation results are compared
(pixel-by-pixel) with an arbitrary threshold (vth4). vth2 = 2
in spike-mode or vth2 = 0.015 in amplitude-mode are used
in these implementations. Typically, a pixel located midway
between segments to be merged has magnitude larger than
that of a pixel close to a single segment. Image shifts (to the
left and to the right, in the horizontal direction case) create
nonzero values for pixels which, by not being between seg-
ments to be merged, should otherwise have their values equal
to zero. Pixels whose values are below the threshold will,
therefore, be set to zero. The bipole grouping procedure is
defined by Eq. (6).

vBG,θ (x,y)=

 vSC,theta(x,y)∗gSC(x,y),
if vSC,theta(x,y)∗gSC,θ (x,y)> vth4,

0, otherwise.
(6)

Shifts to the left or to the right (or similar shifts along other
orientations) have a biological counterpart: in natural systems,
specific structures (neural circuits involving long-range con-
nections [20]) known as bipoles [21], [22] implement those
shifts. Bipoles are neural circuits composed by a large number
of neurons, which can together generate a weighted response
that takes into account two input connection types: short-range
connections (with smaller weight) and long-range connections
(with larger weight). Since long-range connections are taken
into account, these neural circuits may generate nonzero out-
put even if its hierarchically and immediately previous inputs
are equal to zero. In the implementation of the filters inside
the Bipole Grouping building block, for example, the summa-
tion of several images shifted by many pixels along opposite

directions corresponds to the same operation that is imple-
mented by natural bipoles located at the visual cortex V2 layer.
By grouping (adding by means of bipoles) oriented filtering
results obtained at different vOff signal locations, the visual
system becomes able to merge disconnected parts belonging
to the same segment, if those parts were originally perceived
as disconnected.
Space Competition using Nonzero Feedback from Bipole
Grouping: As Eq. (5) has already defined, the bipole group-
ing output contains information that must be used as feedback
to reinforce edge detection based on spatial competition. The
bipole grouping stage generates an output signal vBG,θ in
which originally missing samples were recovered at the con-
tour positions to which they belong. This output signal thus
contains enhanced contours that must be used, in feedback
mode, to reinforce the spatial competition block input. To
obtain that effect, all bipole grouping output channels vBG,θ

are added to their respective vSC,θ (x,y) at the spatial competi-
tion input, so that the spatial competition that was previously
described actually operates on those combined channels.

4. Results and Discussion
We implemented the DFI algorithm using both the spike-mode
and amplitude-mode neuron models, which were described
by Eqs. (2) and (3), and numerical simulation results are
presented in this section. In both cases, the DFI input images
are described by signals vOn and vO f f , which were estimated
from an electrical model of the retina. This electrical model
corresponds to an impulse response estimated from electrical
simulations of a CMOS imager (the retina), which is shown at
the bottom part of Fig. 6. There are no new relevant features
in the design of the imager and details about implementation
can be found in [12]. The original input image is shown at
the top left part of Fig. 6. To generate a DFI input image, we
compute the convolution between this original image and the
retina impulse response. At any given time instant, positive
values from the convolution result are represented exclusively
by vOn (top center part of the figure), and the negative values
are represented exclusively by vO f f (top right part of the
figure). We use either Eq. (2) or Eq. (3), so that vO f f and
vOn represent neural signals (spike-mode or amplitude-mode).
Because of the convolution with a retina impulse response
that was obtained from electrical simulations, the DFI inputs
(spike or amplitude-mode) are more realistic than the inputs
that would be obtained by difference-of-Gaussians filtering
of the original image. The retina impulse response approach
generates pixel values with a larger dynamic range, which
leads to more variation among spike sequences, in the spike-
mode simulation. Additional differences between spike-mode
and amplitude-mode simulations are observed, in the case of
DFI input signals that are more realistic [9]. The simulated
DFI results are shown in Fig. 7. The spike-mode results have
larger variations at pixel positions that are close to the vBCS
contours, which may be interpreted as slightly noisier results.
Except for that, the amplitude-mode and spike-mode results
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Figure 6. The original image, from which the DFI input is generated, is shown at the top left part of the figure. To generate a
DFI input image, the original image is filtered by the imager (retina). The retina impulse response in space and time domains is
shown at the bottom part of the figure. For simplicity, only one space dimension is shown in this figure. The impulse response
along the other spatial dimension is the same. The retina output corresponds to the convolution between the original image and
this impulse response. At any given time instant, the convolution result contains positive values and negative values. The
positive values are represented exclusively by vOn (top center) and the negative values are represented exclusively by vO f f (top
right). To obtain spike-mode vOn and vO f f signals, Eq. (2) is used. Otherwise, Eq. (3) is used.

are similar.

In Figs. 8a and 8b, we show histograms of DFI pixel
values on the vOn and vO f f channels vOn values on the pos-
itive part of each plot and vO f f on the negative part) under
two different circumstances: DFI image obtained by con-
volution of the input image with the retina impulse response
estimated from electrical simulations, and DFI image obtained
by difference-of-Gaussian filtering applied to the input image.
This emphasizes the fact that the convolution with an im-
pulse response estimated from an electrical simulation leads
to larger diversity in the DFI input values. This larger diver-
sity leads to larger variations in the spike-mode results, which
are nevertheless well-approximated by the amplitude-mode
results. In Fig. 9, we show the mean squared error (MSE)
between the spike-mode and amplitude-mode DFI outputs.
After approximately 50 ms, the amplitude-mode DFI output
has converged to the spike-mode DFI output with a small
error.
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5. Conclusions
In this paper was performed spike-mode and amplitude-mode
simulations (Figure 7) of a signal processing algorithm that
implements a cortical mechanism known as DFI. To compare
(visually) the results, image sequences showing the tempo-
ral evolution of boundary completion and filling-in stages
(parts of the DFI algorithm) in spike mode and amplitude
mode were presented. In both simulations, it was used as
input a non-ideal stimulus (Figure 6). This non-ideal stim-
ulus, which was estimated from electrical simulations of a
retina model, highlights the differences, in a comparative
analysis, between both approaches. The richness in details
of the retina model impulse response in comparison of the
difference-of-Gaussian model impulse response becomes ap-
parent as Figures 8a and 8b are analyzed. The DFI outputs
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vBCS vDFI 

Spike-mode Spike-mode Amplitude-mode Amplitude-mode 

10 ms 

20 ms 

30 ms 
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Figure 7. Filling-in and boundary completion results at four different time instants (from the bottom to the top: 10 ms, 20 ms,
30 ms, and 40 ms). The two leftmost columns show vBCS results, and the two rightmost columns show vDFI results. The first
and third columns (from left to right) are obtained from spike-mode neuron models. The second and fourth column are
obtained from amplitude-mode neuron models.

(vDFI) in both modes were compared and, although the spike-
mode results seem slightly noisier, both simulation results
are similar, which suggests that amplitude-mode simulations
may be used to theoretically predict the behavior of hardware
dedicated to cortical circuit simulation. This comparison is
important to know the best performance (minimum error) that
can achieve when amplitude-mode simulations are used to
predict spike-mode system behavior. The most important con-
tribution of this work was showing that the minimum error
related to amplitude-mode predictions is about 20 percent
(steady-state response). However, the minimum error in tran-
sient response can overcome the 30 percent (Figure 9). A way
to improve this result would be to introduce main electrical
parasitic effects, which influence the behavior of dedicated

hardware, in the spike-mode simulation, but, such simulation
may become prohibitive in non-dedicated hardware.
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(a)

(b)
Figure 8. Histogram of DFI input values (vOn on the right part of the plots and vO f f on the left part of the plots) under two
circumstances: (a) DFI input values obtained from convolution between an original input image and the retina impulse
response estimated from electrical simulations, and (b) DFI input values obtained from difference-of-Gaussians filtering
applied to an original input image.
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