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An Analysis of a Real Mobility Trace Based on Standard
Mobility Metrics
Uma Análise de um Traço Real de Mobilidade Baseada em Métricas Padrões de
Mobilidade
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Abstract: Better understanding mobility, being it from pedestrians or any other moving object, is practical and
insightful. Practical due to its applications to the fundamentals of communication, with special attention to
wireless communication. Insightful because it might pinpoint the pros and cons of how we are moving, or being
moved, around. There are plenty of studies focused on mobility in mobile wireless networks, including the
proposals of several synthetic mobility models. Getting real mobility traces is not an easy task, but there has
been some efforts to provide traces to the public through repositories. Synthetic mobility models are usually
analyzed through mobility metrics, which are designed to capture mobility subtleties. This work research on the
applicability of some representative mobility metrics for real traces analysis. To achieve that goal, a case study is
accomplished with a dataset of mobility traces of taxi cabs in the city of Rome/Italy. The results suggest that the
mobility metrics under consideration are capable of capturing mobility properties which would otherwise require
more sophisticated analytical approaches.
Keywords: Mobility analysis — mobility metrics — mobility traces

Resumo: Um melhor entendimento da mobilidade, seja esta de pedestres ou qualquer outro objeto móvel, é
útil e enriquecedor. Útil devido suas aplicações aos fundamentos da comunicação, com especial atenção à
comunicação em redes móveis sem fio. Enriquecedor porque torna-se possı́vel apontar vantagens e desvanta-
gens de como nos movemos ou somos movimentados. Há muitos estudos focados em mobilidade em redes
móveis sem fio, incluindo-se entre eles propostas de vários modelos sintéticos de mobilidade. Conseguir traços
reais de mobilidade não é uma tarefa fácil, mas tem-se visto um crescente esforço em disponibilizar traços
via repositórios públicos. Modelos sintéticos de mobilidade são geralmente analisados através de métricas
de mobilidade, as quais são desenvolvidas para capturar sutilezas da mobilidade. Este trabalho investiga a
aplicabilidade de algumas métricas de mobilidade representativas no processo de análise de traços reais. Para
se alcançar esse objetivo, um estudo de caso é elaborado utilizando-se uma base de dados de traços de
mobilidade de táxis obtidos na cidade de Roma/Itália. Os resultados sugerem que as métricas de mobilidade
em questão são capazes de capturar propriedades da mobilidade que de outra forma exigiriam abordagens de
análise mais sofisticadas.
Palavras-Chave: Análise de mobilidade — métricas de mobilidade — traços de mobilidade
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1. INTRODUCTION

A better understanding of mobility is paramount for enhanc-
ing wireless communications. Users want to get connected
to the network no matter where and when. However, cur-
rent solutions are usually limited when addressing mobility
issues. One way to keep improving on mobility awareness in
wireless communications is through the analysis of mobility
traces. Such approach consists on obtaining mobility metrics

from real movement traces, and then identifying patterns that
may be useful when configuring or designing communication
protocols.

There are many possible mobility patterns, depending on
who or what are the mobile entities (e.g., pedestrians, cars,
buses, airplanes). One important input for mobile network
simulations regards to the movement of mobile entities, which
could be fed into the simulator or computed in real time.
However, due to the lack of real mobility traces, synthetic
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mobility models came first, making them the de facto standard
in wireless network simulators when it comes to defining
movement properties.

The first synthetic mobility models do not capture any
realistic movement properties, forcing the design commu-
nity to work on more realistic models. Mobility metrics were
proposed to provide some analytical insight into models’ prop-
erties, and for capturing basic movement properties which are
useful for identifying mobility patterns [1].

Gathering mobility traces is a crucial issue, because it
usually relies on some volunteer entrepreneurship. That is,
volunteers provide information about their locations for some
period of time (days, weeks, or months), usually without any
reward other than their contribution to science and technology.
There is also privacy issues which must be dealt with in order
to protect users’ anonymity.

Once mobility traces are available, one must plan on how
to analyse such data. From the traces, one could possibly
derive synthetic models which capture real movement proper-
ties [2, 3]. On its turn, more realistic models can enhance the
simulation of mobile networks [4, 5].

There are some trace repositories [6, 7, 8] which have
received increased attention from the research community.
Among them, CRAWDAD (Community Resource for Archiv-
ing Wireless Data At Dartmouth) [7] is focused on wireless
network traces, providing an archive for mobility traces ob-
tained from the research community.

Even though mobility metrics are usually designed having
in mind synthetic mobility models, the metrics could well be
explored into real mobility traces. One important question that
arises is regarding their effectiveness on pointing out mobility
properties. This work tries to assess the applicability of some
representative mobility metrics for a dataset of mobility traces
of taxi cabs in the city of Rome/Italy [9].

The remaining of this paper is organized as follows. Sec-
tion 2 presents the background and methodology employed
along this work. Section 3 shows all the results and their
analysis, while Section 4 presents the related work. Section 5
concludes this work.

2. Background and methodology
First of all, we present a brief survey on synthetic mobility
models and the mobility metrics under consideration. Second,
we comment on the data used for our analysis and the tools
employed for processing the data.

2.1 Mobility models
The first mobility models, targeted for Mobile Ad Hoc Net-
works (MANETs), were introduced in the late 1990’s, and
are solely based on mathematical modeling. Their main rep-
resentative is the Random Waypoint (RWP), which remains
broadly used in simulation-based works. In the RWP model,
a node randomly chooses a destination point, and a constant
speed to move toward such destination. Once reaching the
destination, the node may stand still for some time (i.e., pause

time), before eventually starting a new move. Among other
early models, there are the Random Walk, Random Direction,
RPGM [10], Gauss-Markov [11], and Manhattan [12].

Mobility models started to improve circa 2005, when real
movement traces were employed for designing and validating
the models. Some representative models are the model based
on communities (CMM) [13], SLAW (Self-similar Least Ac-
tion Walks) [14], and Smooth [15]. CMM is basicaly based
on the theory of social networks, taking into account how
people come together and move according to their social rela-
tions (i.e., social attractiveness). SLAW is a complex model
that leverages on several statistical features found in the eval-
uation of real human walks, such as pause time power-law
distributions, inter-contact time, and trip length, as well as
restriction on node’s mobility within confined areas, and frac-
tal waypoints. Smooth was proposed as a simple alternative
to generate realistic traces similar to SLAW, but using sim-
pler input parameters. There are some surveys [16, 17, 18]
covering the main mobility models.

2.2 Mobility metrics
Mobility metrics are analytical measures for capturing move-
ment patterns. Some metrics are derived from the graph theory
(e.g., vertex degree, and link/path measurements), while oth-
ers are velocity-based (e.g., speed magnitude, angle) [12].
When the distance among nodes is a key factor, the metric is
classified as distance-based (e.g., the degree of node proxim-
ity) [19]. In case time is a prime factor, we have a time-based
metric (e.g., average link lifetime). Metrics addressing both
the node location and the network area are labeled as spatial
metrics.

Next, we briefly describe some mobility metrics which
have been shown to be effective on analysing the most repre-
sentative synthetic mobility models [20, 21, 22, 23, 19].

2.2.1 Speed-Angle Rate (SAR)

Let
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q direction angles of node i during the same period of time,
such that ai

k 6= ai
k+1, k,q ∈ N, 0 < k ≤ q−1, and q≥ 1.

Given that T is the the maximum number of speed/angle
changes, the cardinality of

〈
V i
〉

and
〈
Ai
〉

is always bounded
by T (i.e., 〈V i〉, 〈Ai〉 ≤ T ). Since 〈V i〉= p and 〈Ai〉= q, the
rate p

q refers to the number of speed changes for each angle
change, and it is referred to as the Speed-Angle Rate (SAR).
As both p and q varies from 1 to T, it follows that 1

T ≤
p
q ≤ T .

2.2.2 Angle Coefficient of Variation (ACV)
Due to the diversity of units for speed, angle, and time, velocity-
based metrics should be independent of unit (i.e., dimension-
less). One of the measures used to characterize the variability
of a variable that can be represented by different units of
measure is the coefficient of variation (CV), which is defined
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as the ratio of the standard deviation to the mean. CV as a
normalized measure of dispersion is free of scales (i.e., di-
mensionless). Since the magnitude and angle of the speed are
ratio variables, the CV can be used without restrictions.

Let µa denotes the average between all nodes’ angle of
speed during T , and σa be the standard deviation of these
values. The Angle Coefficient of Variation (ACV) is given by
σa/µa.

2.2.3 Average Trip Length (ATL)
A trip (or flight) is defined as the movement between two
consecutive waypoints. Let

〈
W i
〉

=
{

wi
1,w

i
2, · · · ,wi

n−1,w
i
n
}

be the waypoints of node i during a period of time. The
distance of the trip from wk to wk+1 is given as follows:

AT L(wi
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i
k+1) = Dist((xi
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,yi
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where xi
wk

and yi
wk

are the x and y-coordinates of node i at
the kth waypoint, and Dist(wi

k,w
i
k+1) is the Euclidean distance

between two consecutive waypoints.

2.2.4 Degree of Link Changes (DLC)
The number of link changes (LC), for any pair of nodes i and
j, is the number of times the link between them is effectively
established [12]. Let E(i, j, t) be a boolean variable equal to
1 when there is a link between nodes i, j, and 0 otherwise.
Additionally, let E(i, j) denote a boolean value that is equal
to 1 if at least once there was a link between i and j during
the network lifetime, and 0 otherwise. Based on that, LC is
define as follows:

LC(i, j) =
1
P

N−1

∑
i=1

N

∑
j=i+1

T

∑
t=1

C(i, j, t) (2)

where P is the number of node pairs i, j such that E(i, j)
= 1, and C(i, j,t) = 1 if E(i, j,t − 1) = 0 and E(i, j,t) = 1 or
E(i, j,t−1) = 1 and E(i, j,t) = 0.

On its turn, the Degree of Link Changes (DLC) normalizes
the LC metric, as follows:

DLC =
2

N(N−1)

N

∑
i=1

N

∑
j=i+1

LC(i, j). (3)

2.2.5 Degree of Network Spatial Distribution (DNSD)
The degree of network spatial distribution at time t is defined
as follows:

DNSD(t) = 1− log(DEV (t)+1)/ log(MAX +1) (4)

where MAX = log(4(N− 1)) is the maximum node dis-
tribution deviation, and DEV (t) is the sum of all elements in
the horizontal and vertical distribution matrices (HDM and
VDM, respectively) at time step t. The DNSD value will be
the average of DNSD(t) over 0 < t ≤ T .

2.2.6 Degree of Spatial Accessibility (DSA)
Considering the same modeling employed for computing
DNSD, the degree of spatial accessibility is given as the pro-
portion of visited cells by the total number of cells. Note that
a cell c(i, j) is said to be visited if at least one node was placed
in the cell at some moment.

In geographic restricted mobility models, there are regions
on the map where a node can never be. Consequently, the
DSA will be lower in those models than in random models
(e.g., Random Waypoint), where a node may be anywhere.
Thus, the benefits of this metric are twofold: a) to distinguish
between geographic restricted and geographic unrestricted
mobility models, and for somehow quantifying the user move-
ment freedom level for a given scenario.

Let x(i, j) be an indicator random variable that informs
whether a cell was visited by at least one user, which means
that x(i, t) = 0 if c(i, j) = 0 or x(i, t) = 1 if c(i, j)> 0. Thus,
the degree of spatial accessibility of a network at time t is
defined as follows:

DSA(t) =
∑

N
i=1 ∑

N
j=1 x(i, j)

N2 (5)

2.2.7 Improved Degree of Temporal Dependence (IDTD)
The degree of temporal dependence indicates whether the
movement is random or predictable (i.e., temporal). For its
representation, a scale from 0 to 1 is apropriate, where value 0
indicates a totally random movement, while value 1 suggests
a totally temporal movement. In order to be properly captured,
the metric should be computed only when a node velocity
changes.

Let Cos(i, t) be the cosine of the angle between the veloci-
ties of node i at time steps t and t−1 (Equation 6), and SR(i, t)
be the speed ratio of node i at time steps t and t− 1 (Equa-
tion 7). Thus, the Improved Degree of Temporal Dependence
for node i at time t, IDTD(i,t), is shown in Equation 8.

Cos(i, t) =
~v(i, t)•~v(i, t−1)
|~v(i, t)| · |~v(i, t−1)|

(6)

SR(i, t) =
min(~v(i, t), ~v(i, t−1))

max(~v(i, t), ~v(i, t−1))
(7)

IDT D(i, t) =

{
0, if velocityHasNotChanged()
Cos(i, t)×SR(i, t), otherwise

(8)

where the function velocityHasNotChanged() is true iff
~v(i, t) = ~v(i, t − 1) and θ(i, t) = θ(i, t − 1). Therefore, the
average IDTD is computed as follows:

IDT D =
1
Q

N

∑
i=1

T

∑
t=1

IDT D(i, t) (9)

where Q is the number of tuples (i, t) such that IDT D(i, t) 6= 0.
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2.2.8 Degree of Node Proximity (DNP)
The Degree of Node Proximity (DNP) is a spatial mobility
metric based on the distance between pairs of nodes. Let N be
the number of mobile nodes, T the network simulation time,
and D(i, j, t) the Euclidean distance between nodes i, j at time
t. The transmission range (R) is employed as the distance
unit for computing a relative distance between nodes [24].
Therefore, the average relative distance between nodes i, j
from time 0 to T , AD(i, j), is defined according to equation 10.

AD(i, j) =
∑

T
t=1 D(i, j, t)/R

T
(10)

Considering that the number of pairs of nodes in the net-
work is N(N−1)/2, the average relative distance between all
nodes from time 0 to T (AD) is computed as follows:

AD =
1

N(N−1)/2

N

∑
i=1

N

∑
j=i+1

AD(i, j) (11)

In order to normalize the values of AD into the range [-
1,+1], AD is divided by the maximum average distance, MAD,
which is equal to the half of the maximum possible distance
between two points in the scenario. MAD is also measured
relative to R, being computed as follows:

MAD =

√
X2 +Y 2

2R
(12)

The ratio between AD and MAD gives a notion about the
degree of mobility dependence. When the average distance
among nodes keeps short, it is possible that nodes are moving
along. Given that, DNP is defined in Equation 13.

DNP = 1− AD
MAD

(13)

2.3 Data and tools
Getting mobility traces from third parties is not a straightfor-
ward task. To address that, there has been a joint effort in
the research community to make publicly available mobility
traces through repositories [6, 7, 8]. Among them, CRAW-
DAD [7] is focused on mobile wireless networks, by keeping
mobility traces ranging from pedestrians mobility to vehicular
traces. In particular, our analysis is focused on a CRAW-
DAD’s dataset of mobility traces of taxi cabs in the city of
Rome/Italy [9, 25]. The dataset presents the traces gathered
from more than 300 taxis during 30 days, with the current
locaction of each active taxi being recorded every six seconds.
Figure 1 depicts the region of Rome under consideration, de-
limited by the geographical coordinates (41.7908, 12.3538)
and (42.0062, 12.6216) (represented by the red and green
markers, respectively).

For analysing the dataset, we have extended the Mobility
Trace Analyzer (MTA) [26], which is by itself an extension of

Figure 1. Region of Rome corresponding to the dataset

the IMPORTANT framework [27]. First of all, all the required
mobility metrics were included in the MTA. Secondly, the
dataset had to be converted to the format natively supported
by the MTA (i.e., ns2 [28] trace format). Such conversion
was not straightforward, because there are some MTA input
parameters (e.g., the average pause time) which have to be
computed properly beforehand; otherwise, metrics would not
be duly computed or not computed at all.

For the purpose of reproducibility and repeatability, our
dataset1 and tools2 are publicly available through an on-line
repository.

3. Results and analysis
We have computed the selected mobility metrics for all dataset.
Results are depicted on Figures 2, 3, 4, and 6, with metric
ATL shown separately in Figure 5. As radio range (RR) is one
important input parameter, we have defined it as 500 m for
our first analysis. Even though it might be considered a large
range when taking some usual technologies as reference (e.g.,
WiFi), it leverages on the fact that wireless communication
in our scenario has a renewable source of energy (i.e., one
can take as granted the fact that batteries are dinamically
recharged).

DNP values range from −1 to 1, meaning that nodes are
farthest or closest to each other, respectively. The overall
results show that most cabs are usually within range of other

1Available at https://doi.org/10.5281/zenodo.1217602
2Available at https://doi.org/10.5281/zenodo.1217611
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Figure 2. First week results

cabs.
When the Coefficient of Variation (CV) is lower than one

(i.e., CV < 1), it indicates low-variance; meanwhile, CV > 1
points to high-variance. Particularly for the ACV metric,
results suggest that the majority of cabs follow paths with
similar directions (i.e., there might be very similar rides, not
necessarily by the same users/clients).

With very few exceptions, we notice some regularity in
the average trip lenght (ATL) when comparing results for each
individual week (Figure 5). The results suggest that there is
some similar trips taking place during or around the same
period of time along each day of the week. Considering that
we do not have more details about the trips, it could well be
that there is some sort of pattern for the type of usual trips
users take during specific time throughout the day. That is, it
does not unveil that there are some regular customers, but at
least that there are some sort of common trajectories for most
of the periods of each day of the week.

Even though DNP results indicate that most of the time
there are many cabs within range of each other, DLC results
add to that the fact that there might have high volatility on link
duration. That is, as links get established frequently they also
break very often, resulting in a high degree of link changes.

The DSA metric gives a measure of the user movement
freedom level. When the movement is geographicaly re-
stricted, as it is when moving along the streets in a city, the

DSA metric is expected to present lower values. That is ex-
actly what we see for our dataset, with DSA values mostly
lower than 0,4. Likewise, the DNSD metric measures the
node distribution along the network, with lower and upper
bounds reflecting less or more spatial uniformity, respectively.
DNSD results suggest a low uniformity, what is expected
given the large area of the city taken under consideration. It is
worthwhile to mention that, as cabs tend to go to overlapping
regions in the city, there will be smaller regions with more
cabs, hence reducing uniformity along the whole area.

The degree of temporal dependence tells us about whether
the movement is random or predictable (i.e., temporal). Re-
sults for the IDTD metric suggest that movement is not pre-
dictable for the overall scenario. Even though that might
sound awkward, given that there is some particular patterns
as pointed out before, one should look at the facts which may
be leading to such results. We have to consider that there are
many individual and independent rides comprising the overall
data set. Even though each individual ride is somehow pre-
dictable (i.e., any particular ride can be seen as a well defined
itinerary), they are still independent, and as the IDTD results
add up they end up reflecting such independence.
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Figure 3. Second week results

3.1 Extending the analysis to the context of mobil-
ity models

As mentioned before, dozens of mobility models have been
proposed in order to mimic real mobility. From the simplest,
with strictly artificial movements, to the more complex ones
that take into account geographical constraints or group be-
havior among nodes. Amongst the most popular there are
those included in the Bonnmotion [29] tool, broadly used by
the research community in mobile ad hoc networks.

For the identification of the mobility model that best rep-
resents the traces under consideration, we have applied the
model proposed by Cavalcanti and Spohn [30], which basi-
caly derives a Decision Tree (DT) for classifying traces based
on mobility metrics. As previously mentioned, the dataset
was split into 720 files corresponding to the 28 days in an
hourly basis. After processing the 720 files, and applying the
DT, three mobility models were identified to match the traces:
CMM for 480 files, Column for 123 files, and RPGM for 117
files. Even though different models have been identified for
the dataset, all the three identified models follow a realistic
approach aimed at the simulation of ad hoc networks. The
Column [31] model understands the scenario as a grid when
computing the traces, with nodes moving strictly over the grid.
For our scenario, we have taxis moving in a geographicaly
constrained environment defined by the streets within sets of
blocks. The Reference Point Group Mobility (RPGM) [32]

employs a clustering policy for nodes, having groups of nodes
moving along. In our case, the match is most likely due to the
common destinations during the observed periods. CMM [33]
was the model with more observed matches. It is based on the
social network theory, by modeling the movement of nodes
based on their social relations. Once again, it is possible that
the results reflect not only the implications of common desti-
nations or interests, but also any possible relations among the
users moving to/from such destinations.

4. Related work
Hoque et al. [34] present an analysis of mobility patterns
for taxi cabs in San Francisco/CA. Their work is focused on
cabs’ characteristics such as: instantaneous velocity; spatio-
temporal distribution; pick up and drop off frequency distri-
bution; hot-spots identification; busy and vacant durations;
connectivity among vehicles; and, clustering and network par-
titioning. The mobility metric Average Degree of Connectivity
(ADoC) was introduced for characterizing the reachability
of any random node in the network. Their results show that
as the radio range increases, the ADoC increases faster for
smaller number of hops (i.e., more cabs are reachable within
shorter paths).

Cunha et al. [35] analyzed two mobility datasets: the
same one used in our work, and another one gathered in San
Francisco/CA. When equipped with radios, the cabs can be
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Figure 4. Third week results

Figure 5. ATL results
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Figure 6. Fourth week results

seen as comprising a Vehicular Ad hoc NETwork (VANET).
Their main objective was to better understand and characterize
the interactions among the cabs. The analysis was based on
statistical techniques, temporal graphs, and some metrics of
complex networks. The main results point to the existence of
some regularity (e.g., presence of rush times) and common
interests (i.e., users sharing some destinations).

Silva et al. [36] pointed out that there are spatial and
temporal gaps in some mobility data traces. They focused
their analysis on taxi traces: the dataset from Rome, the one
from San Francisco/CA, and an additional one from Shangai.
The dataset from Rome was shown to present the smallest
gaps among all three datasets. They proposed a cluster-based
solution to fill the gaps (i.e., to calibrate the datasets). Even
though the resulting calibrated datasets are said to be publicly
available, the paper presents no reference from where one
could possibly obtain such data.

5. CONCLUSIONS
Even though we analysed just one dataset of mobility traces,
results suggest that mobility metrics, originaly designed for
synthetic models, can provide some useful details for real
traces. For our particular scenario (i.e., taxi cabs), we can
summarize the main results as: i) most of the time, cabs are
within range of communication of other cabs; ii) rides share
some similarity, due to regular customers and/or particular

points of interest in the city, resulting in rides with related
lenghts; iii) even though cabs might have frequent commu-
nication contacts with other cabs, links are as quite prone
to breakage as they are to get established; iv) in addition to
mobility being geographicaly restricted, it also indicates a low
uniformity, likely due to the fact that cabs usually concentrate
in regions with more demand; and v) apart from having some
micro patterns, it also shows an expected level of randomness
in the whole process (e.g., there are similarities among over-
lapping rides, but they remain independent among all other
non overlapping rides).

When extending the analysis to synthetic mobility models,
three somehow related mobility models (i.e., CMM, Column,
and RPGM) were identified to better match the behavior de-
picted in the real traces. Even though such synthetic models
are aimed at providing more realistic traces for the simulation
of mobile ad hoc networks, the metrics may have some pon-
tential for supporting the analysis of a greater variety of real
mobility traces.

In order to advance the research following the proposed
methodology, one could analyse the impact of varying the
radio range. Given that it affects how and when cabs are
able to reach each other, it is expected to affect some metrics,
allowing new insights into the resulting scenarios. In addition
to that, one can extend the analysis to other mobility traces
and metrics, as they become more and more available.
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R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 1 • p.34/35 • 2019



[23] CAVALCANTI, E. R.; SPOHN, M. A. On realistic
evaluation of recent spatial and temporal mobility metricsfor
mobile ad hoc networks. In: Proceedings of the 10th ACM
International Symposium on Mobility Managementand
Wireless Access. Paphos, Cyprus: ACM, 2012. (MobiWac,
’12).

[24] KURKOWSKI, S. Credible Mobile Ad Hoc Network
Simulation-Based Studies. Tese (Doutorado) — Colorado
School of Mines, Golden, USA, 2006.

[25] AMICI, R. et al. Performance assessment of an epidemic
protocol in vanet using real traces. Procedia Comput. Sci.,
v. 40, p. 92 – 99, 2014.

[26] CAVALCANTI, E. R. TraceAnalyzer 2.5. 2013. Online,
https://sites.google.com/site/elmano/code.

[27] BAI, F.; SADAGOPAN, N.; HELMY, A. User Manual
for IMPORTANT Mobility Tool Generators in ns-2 Simulator.
1. ed. Los Angeles, USA, 2004.

[28] MCCANNE, S. et al. The Network Simulator NS-2.
1997. Online.

[29] ASCHENBRUCK, N. et al. BonnMotion - a
mobility scenario generation and analysis tool.
http://net.cs.uni-bonn.de/wg/cs/applications/bonnmotion,
2013.

[30] CAVALCANTI, E. R.; SPOHN, M. A. On the
applicability of mobility metrics for user movement pattern
recognition in manets. In: NIKOLETSEAS, S.; RUMı́N
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