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Exact Algorithms for the Graph Coloring Problem

Algoritmos Exatos para o Problema da Coloracao de Grafos

Alane Marie de Lima'*, Renato Carmo?

Abstract: The graph coloring problem is the problem of partitioning the vertices of a graph into the smallest
possible set of independent sets. Since it is a well-known NP-Hard problem, it is of great interest of the computer
science finding results over exact algorithms that solve it. The main algorithms of this kind, though, are scattered
through the literature. In this paper, we group and contextualize some of these algorithms, which are based in
Dynamic Programming, Branch-and-Bound and Integer Linear Programming. The algorithms for the first group
are based in the work of Lawler, which searches maximal independent sets on each subset of vertices of a
graph as the base of his algorithm. In the second group, the algorithms are based in the work of Brelaz, which
adapted the DSATUR procedure to an exact version, and in the work of Zykov, which introduced the definition of
Zykov trees. The third group contains the algorithms based in the work of Mehrotra and Trick, which uses the
Column Generation method.
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Resumo: O problema de coloracdo de grafos consiste em particionar os vértices de um grafo na menor
quantidade possivel de conjuntos independentes. Por tratar-se de um problema NP-Dificil conhecido, é de
grande interesse da computagéo encontrar resultados sobre algoritmos exatos para sua solugéo. Entretanto, os
principais dentre estes algoritmos estao espalhados pela literatura. Neste artigo, agrupamos e contextualizamos
alguns destes algoritmos, a saber, solugbes baseadas em Programacdo Dinamica, Branch-and-Bound e
Programagéo Linear Inteira. Os algoritmos do primeiro grupo séo baseados no trabalho de Lawler, que busca
conjuntos independentes maximais em cada subconjunto de vértices de um grafo como base de seu algoritmo.
No segundo grupo, os algoritmos sao baseados no trabalho de Brelaz, que adaptou a heuristica DSATUR para
uma versao exata, e no trabalho de Zykov, que introduziu o conceito de arvores de Zykov. O terceiro grupo
contém algoritmos baseados no trabalho de Mehrotra e Trick, que utilizaram o método Geragao de Colunas.
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1. Introduction and Linear Programming. Besides these, we also discuss the
DSATUR algorithm for graph coloring.

The text is organized as follows. In Section 1.1 we briefly
state some definitions and the notation used. Section 2 dis-
cusses algorithms based in Dynamic Programming. Section 3
discusses algorithms based in Branch-and-Bound. Section 4
discusses algorithms based in Linear Programming. Finally,
Section 5 contains the conclusions.

Graph coloring is the problem of assigning colors to the ver-
tices of a graph in such a way that neighbor vertices are as-
signed with different colors. The problem of coloring a graph
with the minimum possible number of colors is a fundamental
NP-Hard problem with a number of applications of interest
such as timetabling, code optimization and seating plans [1].
Information on different approaches for this and related
computational problems are scattered throughout the literature.
We survey some of these approaches discussing their strengths ~ 1-1 Definitions and Notation
and weaknesses. Given a set S and an integer k, we denote by (i) the set of
The algorithms we discuss are based on three main ap-  subsets of S of size k.
proaches, namely, Dynamic Programming, Branch-and-Bound A graph G is a pair (V(G),E(G)) where V(G) is a finite
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set (the vertices of G) and E(G) C (V(2G>) (the edges of G).
Note that, according to these definitions, graphs in this text
are simple, that is, have no multiple edges or loops.

Two vertices u and v are neighbors in G if {u,v} € E(G).
The degree of vertex v in G is the number of neighbors of v in
G and is denoted by dg(v).

The induced subgraph of G by a set S C V(G) is denoted
by G[S] and the graph G — S is the graph G[V(G) —S]. If
v € V(G), we write G —v instead of G — {v}.

The set S C V(G) is independent in G if no vertices in S
are neighbors in G and is a maximal independent set in G if it
is not properly contained in another independent set in G. We
denote by I(G) the set of all maximal independent sets in G.

Given an integer k < |V(G)|, a k-coloring of G is a parti-
tion of V(G) into k independent sets in G. Each such set is
called a color in the coloring. A graph G is k-colorable if it
admits a k-coloring. The smallest k for which G is k-colorable
called the chromatic number of G and is denoted Y (G). An
optimal coloring of G is a ) (G)—coloring of G.

1.2 Graph Coloring Problems
We define the following NP-Hard problems:

Graph Coloring

Instance :a graph G
Answer :a y(G)-coloring of G

Chromatic Number
Instance :a graph G
Answer :x(G)

k-coloring

Instance :a graph G and k € N
Answer :YES, if we can color G with no more than k
colors; NO, otherwise.

Graph coloring problems are polynomially solvable when
the given graph G is 2-colorable. The problems are also
efficiently solvable for some graph classes, where we highlight
here the perfect graphs [2].

2. Dynamic Programming Algorithms

In this section, we discuss dynamic programming algorithms
for the graph coloring problem. Dynamic Programming is the
approach of computing the answer to an instance of a problem
by computing and combining the answers to “sub-instances”
of that instance (see, for example, [3, chapter 15]).

We start with an algorithm from Lawler [4] (Section 2.1)
which has 0*(2.4423") running time. Then we discuss an
algorithm from Eppstein [5] (Section 2.2) which, through
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a modification of the idea of Lawler’s algorithm, improves
this bound to O(2.4150"). Next (Section 2.3), we discuss a
modification of Eppstein’s algorithm in Byskov [6] yielding
an 0(2.4023") algorithm.

All the above algorithms require exponential space. In
Section 2.4 we discuss an 0(5.283") running time algorithm
from Bodlaender and Kratsch [7] requiring polynomial space.

Unless otherwise stated, the proofs of the results in sec-
tions 2.1, 2.2 and 2.3 are based on those in [6].

2.1 Lawler’s Algorithm

Lawler[4] was the first to propose a dynamic programming
algorithm for the graph coloring problem, as described in
Algorithm 4. One may view his algorithm as based in the
following result.

Theorem 1 (Wang[8]). Every graph has an optimal coloring
in which (at least) one of the colors is a maximal independent
set.

Proof. Let C={Py,..., P} be an optimal coloring of G and
let / be a maximal independent set containing P;. Then
{I,P,\1,...,P\I} is an optimal coloring of G and one of its
colors is a maximal independent set. O

It follows from Theorem 1 that if G is a graph and S C
V(G), then x(GIS]) is the minimum among 1+ x(G[S\ 1])
over all maximal independent sets  in G[S], that is,

if S =0,

0,
x(G[S)) = {1+min{x(G[S\1])i 1€X(G[S])}, otherwise.

Algorithm 4: LAWLER(G)
Input: A graph G
Result: The chromatic number of G
n« |V(G)|
X < array indexed from 0 to 2" — 1
X[0]+0
For S« 1102"—1
s £(S)
X[s] = o0
For I € I(G[S])
i< f(S\])
X[+ 1<X][s]
X[s] < X[i] +1
Return X[2" — 1]

For each S C V(G), the chromatic number of G[S] is stored
in X[£(S)]. The function f: 2V(©) — {0,...,2" — 1} indexes
the subsets of V(G) in such a way that f(X) < £(S) for all
X C S (for instance, by returning f(S) = ¥, c52' — 1, where
V(G) = {vo,...,vn—1} is an ordering of V(G)).

It should be noted that the inner loop in Algorithm 4
performs a non-trivial task, namely, enumerating all maximal
independent sets of a graph. As Lawler [4] itself notes, this
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can be done in time O(nml) for a graph with n vertices, m
edges and I maximal independent subsets [9].

Theorem 2. Algorithm 4 runs in time O(2.4423"nm) and
space ©(2"), if the input is a graph with n vertices and m
edges.

Proof. Let G be a graph with n vertices and m edges. For each
S CV(G), let T(S) denote the time spent in the execution
of the inner loop in Algorithm 4 using the algorithm from
Tsukiyama[9]. Then we know that there exist ¢ > 0 and
no € N such that, whenever |S| > no,

T(S) < c|S|[E(GIS))| [HG(S))| < enm3173,

because a graph on k vertices can have at most 3k/3 maximal
independent sets [10].
Summing over all S C V(G) we get

Z T(S) < Z enm3S13 = cnm Z 31173

SCV(G) SCV(G) SCV(G)

—cnmz Z 3‘5‘/3—cnm2 Z 3i/3

Sse("0) Sse("T0)

= cnm;) (7) 313 = cnmi‘é (7) (31/3>i
< cnm (1 +31/3)" < cnm (2.4423)".

Hence we can conclude that the execution time of Algo-
rithm 4 with G as input is O(nm (2.4423)"). O

2.2 Eppstein’s Algorithm

Lawler’s algorithm (Algorithm 4) had the best upper bounds
for the graph coloring problem until Eppstein [5] proposed
two modifications. The first one is the preprocessing of the
3-colorable subgraphs of the input graph. The other one is
filling in vector X (the dynamic processing table) in a different
order which allows for skipping the processing of maximal
independent sets beyond a certain size.

Let us start with the following result.

Theorem 3 (Madsen, Nielsen and Skjernaa [11]). Let G be
a graph and let J' C V(G) be such that G[J'] is a maximal
k-colorable subgraph of G. For every O < ki < k there is a set
J CJ' such that G[J] is a maximal ky-colorable subgraph of
G|J') and G[J'\J] is a maximal (k — ky)-colorable subgraph
of G—J.

Proof. Let G be a graph and let J' C V(G) be such that G[J']
is a maximal k-colorable subgraph of G. Given k; <k, let
{I1,...,Ix} be an optimal coloring of G[J'] in such a way
that |[I,| > || > ... > || and J := U;ll I; is the largest pos-
sible. Then G[J] is a maximal k;-colorable subgraph of
G|J']. Because G[J'] is maximal, there can be no vertex
v € V(G)\J that can be added either to G[J] or to G[J' \ J]
so that G[J' U {v}] remains k-colorable. Hence, G[J'\ J] is a
maximal (k — kj)-colorable subgraph in G —J.

O
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It is possible to prove (see [12, sec. 3.2.2]) that if k; =
k—1 then G[J'\ J] is a maximal independent set in G—J. The
proof is similar to the one of Theorem 3 with the chosen opti-
mal coloring being one in which I; has the smallest possible
size.

From Theorem 3, we have that if G[J'] is a maximal
k-colorable subgraph of G, then it has an optimal coloring
{Ii,...,I;,} such that I; has the smallest size as possible. Then
we have a set J such that J = J'\ I and G[J] is (k—1)-
colorable. The same way as G[J'], the graph G[J] has a color
I;_1 in one of its optimal colorings such that [;_; has the
smallest size as possible. Hence,

x(GU1) x(GU1)

= Y L= Y el =halx(GU)

i=1 i=1

Since |I;| < |Ix—1], then |I;| < |J|/x(G[J]). Hence, for
each S C V(G), the value of x(G[SU I]) is the minimum
among 1 + x(GIS]) over all maximal independent sets / <

|S|/x(GIS)), that is,

0, ifSUI=0,

1+ min{x(G[S])}, otherwise.

Amcmunyzeuc—sy_{

The chromatic number of G[S] is stored in X[f(S)], for
each S C V(G). The function f(S) is the one defined in Sec-
tion 2.1. The function ¢(S) associates each S to its correspond-
ing graph GI[S].

Algorithm 5: EPPSTEIN(G)
Input: A graph G
Result: The chromatic number of G
n+ |V(G)|
X ¢+ array indexed from O to 2" — 1
X[0] <0
For S+ 1702"—1
i f(S)
Run the algorithm of Beigel and Eppstein [13] in
G[S].
If 2(Gle(S)]) <

X[i] < x(G[e ( )]
Else

X[i] o0
For S« 1102" -1
i f(S)
If 3 < X|[i] <
For I € I(G —S) such that |I| <|S|/X[S]
Jj f(SUI)
If X[]] + 1 < X[j]
][] X[i]+1

Return X[2"

Theorem 4. Algorithm 5 runs in time 0(2.4150") and space
o@2").
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Proof. Let G be a graph with n vertices and m edges. For each
S CV(G),let T(S) denote the time spent in the preprocessing
of the 3-colorable subgraphs using the algorithm from Beigel
and Eppstein[13], which runs in O(1.3289"). Then we know
that there exist ¢ > 0 and ny € N such that, whenever |S| > no,

T(S) < ¢1.3289!
Summing over all S C V(G) we get

Y 1)

)< Y 132898 =c Y 1.32898

SCV(G) SCV(G) SCV(G)
—CZ Z 1.32895 —c): Yy 13289
i= OSE( ) i= OSG(V(G))

—cZ ( )1 3289' <c(1+1.3289)" < ¢ (2.3289").

Let 7'(S) be the time to process the maximal independent
sets of size at most k in G[S], for k € N. Then, there exist
¢’ >0 and n; € N such that, whenever |S| > nj,

y 7s)< Y 3B = (n-18) 4 (n—Is) 35
SCV(G) SCV(G)
—C'Z Y 3 -lshgn-ish-3
z:OSE(V(iG))
n . .
—/ Z Z 3%7(,14)4("4)73%
izoSe(‘“ﬁ)

n n T\ "
! n Ly n—2i ! 4 33
= 352 (2 [ 1422
E () () (%)
4 4/3 "

because the number of maximal independent sets of size
at most k, for k € N, is

Lfl/kj (\_n/ijrl)kfn(Ln/kJ + l)nf\_n/kjk

and Eppstein[5] proves that these maximal independent
sets can be found in O (3%-n47=3k),

Hence, the execution time of Algorithm 5 is O(2.4150").

O

2.2.1 Eppstein’s Algorithm for an Optimal Coloring
Eppstein [5] proposed Algorithm 6 for finding an optimal
coloring of a graph G.

Let x(G) = k. The algorithm searches for a maximal
k'-colorable graph G[T] in G, for kK’ € {1,2,...,k} and T C
V(G). If ¥ =k — 1, then by Theorem 3, the vertices in G— T
constitute a maximal independent set / that can be removed
from the graph. This process is repeated for the remaining
vertices of G until an empty set be found.
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Algorithm 6: EPPSTEINOPTCOLOR(G)
Input: A graph G
Result: An optimal coloring of G
X ¢+ array calculated in Algorithm 5
S+ V(G)
ForT+2"—11t0
s f(S)
t — f(T)
i f(S\T)
IfT C Sand X[i]| =1 and X[t] = X[s] — 1 then
Set the same color to every vertex of S\ T
ST

The vertices subsets 7" and S are represented as binary
arrays as in previous algorithms. Function f(S) is the one
defined in Section 2.1.

Since the inner loop of the algorithm is O(2") and each
instruction inside of it is constant in time, then Algorithm 6 is
0(2.4150") (because of the processing of the array X).

2.2.2 Beigel and Eppstein Algorithm for the 3-coloring
The algorithm used in the stage of preprocessing is the one of
Beigel and Eppstein [13], which has complexity O(1.3289").
The algorithm is based in a reduction from the Graph Col-
oring problem to a particular restriction of the Constraint
Satisfaction problem (CSP) named (3,2)-CSP.

Given positive integers a and b, we define the (a,b)-CSP
problem as follows.

(a,b)-CSP
Instance :
a triple (X, D, R), of disjoint finite sets which are called,
respectively, the set of variables, the set of values and
the set of constraints. Each constraint in R a pair (z, f),
where ¢ is a b-tuple of variables and f is a relation of b
values from D.
Answer : a valuation of the variables that does not

violate any of the constraints..

Beigel and Eppstein [13] use backtracking and polynomial
time reductions of an instance to solve the CSP. Lemma 1
contains one of these reductions, which is the main one among
them. We describe Lemma 1, which was stated and proved
by the authors, and we give a brief idea of the 3-coloring
algorithm.

The value that will be assigned to each variable is limited
to at most a elements of D. The constraints describe the combi-
nations of values that each b-uple cannot have simultaneously.
In the case of the instances of the graph coloring problem, we
can describe them as (3,2)-CSP instances where each variable
represents a vertex and the set of values corresponds to the set
of colors that will be assigned to each vertex. Since we are
solving the 3-coloring problem, then each variable is limited
to at most 3 colors of D. Besides, each constraint will have
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two variables because it corresponds to an edge of the given
graph and the respective vertices that cannot have the same
color. Figure 1 shows an example of this reduction, where
X ={A,B,C, D}, the domain of the values is {0,1,2} and

{A=1,B=1),(A=2,B=2),(A=3,B=3),

(A=1,C=1),(A=2,C=2),(A=3,C=3),
R= (B=1,C=1),(B=2,C=2),(B=3,C=3),
(B=1,D=1),(B=2,D=2),(B=3,D=3),
(C=1,D=1),(C=2,D=2),(C=3,D=3)}

The colors 0,1 and 2 are represented by the “black”, “dots”
and “grid” patterns, respectively.

Figure 1. Example of a 3-coloring (adapted from Beigel and
Eppstein [13])

Lemma 1. Given a (X,D,R) instance of the (a,2)-CSP prob-
lem, let v € X be a variable such that only two colors of D are
allowed to v. We can get a (X',D',R') instance from (X,D,R)
with one less variable, such that (X',D’,R’) does not contain

v and any optimal solution to this instance is also optimal for
(X,D,R).

Proof. Let x,y € X be two variables of (X,D,R). Let v be
a variable limited to only two values % and i of D. Without loss
of generality, let {(y = w),(v = h)}and {(x = 2),(v = i)}
be constraints of R such that w and z are values of D. If y and
x receive colors w and z at the same time, respectively, then
there will be no possible color to be assigned to v. Therefore,
we can avoid this adding the constraint {(y = w),(x = z)}.
Let (X',D',R’) be the instance obtained from (X,D,R) with
this new constraint and without the variable v. Hence, any
optimal solution to (X', D', R’) is also an optimal solution for
(X,D,R) setting h or i to v. O

The algorithm of Beigel and Eppstein [13] for the 3-
coloring problem turns a graph G as input into a graph G’
(as represented in Figure 1), that corresponds to the reduction
of the original instance into a CSP instance. The main idea
of the algorithm consists on finding a subset 7 C V(G'), such
that 7 is small in relation to |V (G’)| and it has a large set of
neighbors, that we denote by N. Besides, G[T] must be a tree.
Supposing that the original graph G is 3-colorable, then we
can ensure that each neighbor of a vertex in 7 is limited to 1
or 2 values of the domain in G'.

We color all the vertices in T choosing one of its 3!7
possible proper colorings. Each v € N will be limited to at
most two possible colors of the domain, since each one of
these vertices has a colored neighbor in 7. By Lemma 1, the
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vertices in N can be removed from the CSP instance. The

resulting subgraph formed by V(G') \ {T UN} constitutes a

(3,2)-CSP instance that is solved by a backtracking algorithm

proposed by Beigel and Epsstein [13]. The valuation of the

variables in the optimal solution of this instance corresponds

to the color assignment of the vertices in the original graph.
This algorithm has complexity O(1.3289").

2.3 Byskov’s Algorithm

Byskov’s algorithm [6] (Algorithm 8) is very similar to the
one of Eppstein [5]. It also searches for the 3- colorable sub-
graphs of G and for all the maximal independent sets  C G—S.
The improvement consists on searching for the 4-colorable
subgraphs of G after finding the 3-colorable ones. This modi-
fication leads to an algorithm of complexity O(2.4023") (The-
orem 5), which has the best results for the worst case analysis
of dynamic programming algorithms for the graph coloring
problem.

Algorithm 8: BYSKOV(G)
Input: A graph G
Result: The chromatic number of G
n|V(G)|
X < an array indexed from 0 to 2" — 1
X[0]«+ 0
For S 1102"—1
Run the algorithm of Beigel and Eppstein [13] in
G|[S] to find the 3-colorable subgraphs of G like
Eppstein’s algorithm [5].
For I € I(G)
For all S C (V(G)\I)
i f(S)
IfX[i]=3
J < f(SUI)
IfX[j] >4
X[j] 4
For S+ 1t2"-1
i« f(S)
If4 <X[i] <oo
For I € I(G — S) such that |I| <|S|/X[S]
J < f(SUI)
IfX[j] > X[i]+1
X}[]] — X[i]+1
-1

Return X[2"

Theorem 5. Byskov’s algorithm [6] runs in time O(2.4023")
and space O(2"), if the input is a graph G with n vertices and
m edges.

Proof. Let I (G) be the set of all maximal independent sets
of G that have size at most k. The time to find the 4-colorable
subgraphs G[S] of G corresponds to

Y )Y

ICGSC(V(G)\I)

=Y Y )

n
1=Y k(G2
k=11€l(G) SC(V(G)\Ik) k=1
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According to Byskov [14], the maximum number of max-
imal independent sets that have size at most & in a graph is

d(d“)k_"(d + 1)"_‘”‘7 for any d > 3 such that d € N,

This bound is tight when n/d <k < n(d+1). So, we have

n
Z|Ik ‘2" kS Z d+1k n d+1)n dk2n k

We denote y(n,k) = d@+Dk=n(g 4 1)"~%2n—k  The maxi-
mum point of this function is attained when k = n/53, so we
can divide the function in this point:

ln/5) n
y(nk) =Y y(nk)+ y(n,k).
=1 k=|nJ5]+1
Setting k = n/5, we obtain d = 5 in the left part, since
n/d <k <n/5. In the other part, we obtain d = 4, since
n/5 <k<n/(d+1). Hence, we have

[n/5] ln/
Z y(n,k) =

Z 56k ngh— 5k2n k
k=1

y(n,k) =
k=|n/5]+1 k=|n/5]+1

45k7n5n74k2n7k.

Both of these sums are 0(2.4023"). Then, the time to find
all the 4-colorable subgraphs of G is 0(2.4023").

The running time of the last loop of the algorithm corre-
sponds to O(2.3814"). The proof is similar to the second part
of Eppstein’s algorithm [5] (Theorem 4), but the bound of the
sum is 421574 and |1| < |S|/4. O

2.4 Bodlaender and Kratsch Algorithm
As we mentioned before, the difference from the algorithm
of Bodlaender and Kratsch [7] in relation to the other ones
is that although it is much less efficient in time, polynomial
memory is required in their algorithm (Algorithm 9). They
defined the Lemma 2 as the base of their work.

Lemma 2. Let G be a graph such that n = |V(G)| and let
0< a< 1. Forall S CV(G), the chromatic number of GS|
corresponds to

14+ min{x(G—S)}, forall S CV(G)
if |S| > an and S is a maximal independent set.
x(GlS]) =
min{x(G[S]) + x(G —S)}, forall S CV(G)
such that (n—an)/2 < |S| <n/2
6]
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Proof. Let P= (P}, P,,...,PB;) be an optimal coloring of G.
Let P; be a color such that |P;| > an for some i € {1,...,k}.
Either P; is a maximal class (and then S = P;) or it is a subset of
another maximal set P (and then S = P/). Then, the chromatic
number of G is equal to 14+min{)(G—S)} (Theorem 1).

Otherwise, if all || < an for i € {1,... k}, then there
is a subset S C V(G) where every color of P is either in S or
in G — S. Then, the chromatic number of G corresponds to
min{)(G[S])+ x(G—S)} (Theorem 3).

Let |P| < |P| < -++ < |P| be an ordering of the colors.
Choosing the first g colors of this ordering such that § =
Pi+P+---+ P, and |S| <n/2 for some g € {1,...,k}, we
have that either S and V(G) \ S have the same size (that is,
n/2) or |S| < |V(G)\S|. In this case, the difference between
S and its complement is on. Hence, |S| = (n — an)/2 and
[V(G)\S|=(n+a)/2. Then,n/2>|S| > (n—a)/2. O

Algorithm 9: ¥ (G, @)
Input: A graphGand0 < o < 1
Result: The chromatic number k of G
n<+ |V(G)|
k<n
For all S CV(G)
If S is maximal independent set |S| > on
Ifk>14+x(G-S,0)
k—1+x(G-S,a)
If(n—an)/2<|S|<n/2
If k > x(G[S],a)+ x(G—S, )
k< x(G[S],a) +x(G—S,)
Return &

The Algorithm 9 has time O(5.283") and this value was
obtained for o = 0.19903.

3. Branch-and-Bound Algorithms

Branch-and-bound algorithms solve an optimization problem
by a systematic enumeration of its possible solutions. The
state space search constitutes a tree where each branch forms
a possible solution. A point of a solution, that is, a node of the
tree, is branched only if its value is less or equal than a global
upper bound!. Algorithms of this kind for the graph coloring
problem are based in the work of Brelaz [15] and Zykov [16],
described in subsections 3.1 and 3.2, respectively.

3.1 Brelaz’s Algorithm

The Branch-and-Bound algorithm of Brelaz [15] is based
on his DSATUR greedy procedure for determining an upper
bound to the chromatic number. The author defined the degree
of saturation of a vertex, which is the number of different
colors that are assigned to its neighbors in a coloring.

'We are dealing with minimization problems here. In maximization
problems, the point of the solution is branched only if its value is greater or
equal than a global lower bound.
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Each color has an index i € N. At each step of the heuristic,
the vertex with the greatest degree of saturation is selected to
receive the color such that i is minimum. If more than one
vertex has the same degree of saturation, then the vertex with
the greatest number of neighbors is chosen as a tie breaker. If
a tie occurs in this case again, then one of the tied vertices is
chosen at random. A description to the heuristic is given in
Algorithm 10.

Algorithm 10: DSATUR(G)
Input: A graph G
Result: A coloring § of G

n=1[V(G)|

0

Iiiscolor of G, for 1 <i<n.

Get an ordering (vi,va,...,v,) for V(G), such that
dG(V,') > dg(V,'_H), fori e {17 . ,I’l}.

Add vy to ;.

Foralli< 1ton

Il‘ 0

While there are uncolored vertices
Select the uncolored vertex v that has the great-

est degree of saturation. If there are more than one
vertex with the greatest degree of saturation, then
choose the one that has the greatest dg(v). If a tie
occurs again, then choose one of these vertices at
random.

j1
While v is uncolored and k < n
If Ng(v)NI; =0
Addvtol;.
Add I; to g.
Else
j—j+1
Return §

The exact version of the DSATUR routine is an adapta-
tion of Brown’s algorithm [17], which we describe in Algo-
rithm 11. Further modifications have been done by Sewell [18],
San Segundo [19] and Furini, Gabrel and Ternier [20].

In the adaptation of Algorithm 11 as the exact DSATUR,
the greedy DSATUR routine is executed at first to find an
initial coloring and an upper bound k. If G is a graph, then
v € V(G) is the vertex that was assigned with the color that has
index k in this initial solution. The algorithm tries to improve
the upper bound coming back to a vertex u that was colored
before v in the previous solution and that can be assigned
with a different color /, such that [ < k. The algorithm then
selects the other vertices according to the DSATUR criteria
to recolor.

Every time the algorithm finds a complete coloring that
uses less than k colors, the upper bound is updated and the
algorithm tries to improve the current solution again. Other-
wise, if some vertex in a partial solution cannot be colored
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with a color that have index less than k, then it is not necessary
to continue this coloring. The algorithm comes back to other
point of the solution tree to recolor the vertices. If this point
is the root node of the tree, then the execution stops.

Figure 3 is an example of the Branch-and-Bound DSATUR
on the graph of the Figure 2. Each node of the tree and its
predecessors forms a partial solution. For example: the nodes
where the vertices A, F and B were assigned with colors 1,2
and 2, respectively, forms a 2-coloring. The value ¢ is a
lower bound for a partial solution and U; is the set of col-
ors that can be assigned to the vertex i, that is, the colors in
{1,2,...,q+ 1} that was not used by a colored neighbor of i
and that are not scratched in the Figure 3.

In Figure 3, for instance, an initial upper bound k = 4
and a 4-coloring was found in the steps 1 to 8. Since the
vertex E was the one that got the color 4 in the step 6, then
the algorithm verifies if there is another color that could be
assigned to the vertex D. Since there is no other possible color,
then the algorithm checks if there is another color for vertex
C. In this case, the color 3 is a feasible one. The algorithm
recolor the other vertices from this point.

A
L Ny

Figure 2. Example graph for the branch and-bound
DSATUR algorithm

G
@)

H

()4() >

The most recent adaptation of Brelaz’s algorithm [15] can
be found in the work of Sewell [21] and San Segundo [19].
They proposed new tie breakers in the step of choosing the
vertex with the greatest degree of saturation.

The algorithm of Sewell [21] chooses the vertex that
shares the greatest amount of available colors with its neigh-
bors in the uncolored subgraph, while the algorithm of San Se-
gundo [19] chooses the vertex that shares the greatest amount
of colors with the vertices that have the same greatest degree
of saturation. Furini, Gabrel and Ternier[20] also made an
adaptation of Brelaz’s algorithm, although their modification
was done in the updating step of the global upper bound for
the chromatic number.

Tests of the algorithms of Brelaz [15] and Sewell [21]
have been done by San Segundo [19]. The algorithms were
executed in random graphs with at most 80 vertices and in
some DIMACS [22] instances. The author concluded that
the three algorithms have similar results, except in graphs of
densities up to 0.7, which [19] is more efficient. In almost
all DIMACS instances, San Segundo’s algorithm [19] had
the best performance. Results in [20] are similar to the ones
in [19]. For the random graphs instances, the algorithm of
Furini, Gabrel and Ternier [20] had better results to graphs
from 75 to 80 vertices, but the computational costs in relation
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Figure 3. State space search tree of the branch-and-bound DSATUR on the graph of Figure 2

to [19] is small.

3.2 Zykov’s Algorithm
The algorithm of Zykov [16] (Algorithms 12 and 13 [23]) is
based in his recurrence which states that, if G is a graph and
for any pair of vertices x,y € V(G) that do not share an edge,
an optimal coloring of G can either assign the same color to x
and y or not (Theorem 6).

In this section, we first show the basis of Zykov’s algo-
rithm, which he called a Zykov tree. Then, we discuss about
the analysis of the worst case of the algorithm (Theorem 7),
based in [23], and some of the results found in the literature.

3.2.1 Zykov Trees

Zykov [16] has stated we can obtain two new graphs from G,
for a given pair of vertices x,y € V(G) that are not neighbors.
One of these graphs will contract x and y into a single vertex,
while the other will create an edge between x and y. The chro-
matic number of G corresponds to the minimum chromatic
number of one of these graphs. In other words, an optimal
coloring of the first graph assign the same color to x and y,
while an optimal coloring of the second graph assign different
colors to x and y.

Definition 1. For two vertices x,y € V(G) that do not share
and edge, a contraction in G produces a new graph G;Cy given

by

V(Gy) =V(G)\{xy}U{z}

{u,v} € E(G) such that x ¢ {u,v} and y ¢ {u,v}
E(G,,) =4 U

{u,z} such that {u,x} € E(G) or {u,y} € E(G)

For two vertices x,y € V(G) that do not share and edge, an
addition in G produces a new graph G;’y given by

Theorem 6. The chromatic number of G is given by the re-
currence

such that x,y € V(G) and {x,y} ¢ E(G)

The recurrence of Theorem 6 builds a binary tree called
Zykov tree where its leaf nodes are cliques and the chromatic
number of the graph is given by the smallest clique of the tree.

Zykov trees have exactly one branch formed only by con-
traction operations, where the size of the clique of this branch
is an upper bound ¢ for the chromatic number. This bound
is updated each time a better coloring than the current one is
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Algorithm 11: BROWN(G)

Input: A graph G
Result: The optimal coloring ¢ of G
n <+ |V(G)|.
Get an ordering (vi,vy,...,v,) to V(G), such that
de(vi) > dg(viyy) foralli e {1,...,n}.
Set color 1 to v;.
i< 2
k<n
g1
U 0
I+ 1
updateU <— TRUE

While i > 1
/ISolutions are generated while the root of the

solution tree is not reached.

If updateU = TRUE
Calculate the set U;, such that U; has the

colors in {1,2,...,q+ 1} minus the ones that
are not used by the neighbors of v;.
IfU =0
i+—i—1
g1
updateU < FALSE

Else
Choose j € U;, such that j has the minimum

value as possible, and set color j to the vertex

Vi.
Delete the color j of the set U;.
If the color j is smaller than the upper
bound k
If the color j is greater than the lower
bound q
qg+—qg+1
Ifi=n
Store the current solution and set
k+q.

Find the smallest index j such that
the color of v; is equals to k.
i—j—1
qg—k—1
updateU < FALSE
Else
li<q
i< i+ 1 //anew vertex is selected
to be colored
updateU < TRUE
Else
i+—i—1
q<li
updateU < FALSE
Return A function ¢ : V(G) — {1,... k}
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found. In a Branch-and-Bound version of Zykov’s algorithm,
operations of contractions and additions will happen only in
graphs that do not have a g-clique on its structure. Figure 4
shows an example of the Algorithms 12 and 13 on the graph
represented in the tree’s root.

Algorithm 12: COLOR(G)

Data: A graph G

Result: The minimum value ¢

n|V(G)|

If G is a complete graph
q + min{n,q}

else if G does not have a g-clique then
Choose x,y € V(G) such that {x,y} ¢ E(G).
Color(G,,) //vertex contraction
Color(GY,) //edge addition

Return ¢

Algorithm 13: ZYKov(G)
Data: A graph G
Result: The chromatic number of G
n+ |V(G)|
x(G) < Color(G)
Return x(G)

Figure 4. Pruned Zykov tree

Theorem 7. An algorithm based on Zykov trees has complex-
ity (9(2”2) and space O(n*(n+m)), if the input is a graph
with n vertices and m edges.

Proof. The height of a Zykov tree is at most 7, which is the

number of complementary edges so that the graph be complete.
Each level i of the tree has 2' nodes, so the size of the tree is
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The amount of memory necessary in algorithms of this
kind is O(n?(n+m)), since the whole graph is stored on each
level of the recursion. O

Corneil and Graham [24] adapted Zykov’s algorithm to
find the pair of vertices that are not neighbors in a g-cluster,
which is a dense subgraph of G. Their algorithm uses an
amount O(n?) of memory.

McDiarmid [25], on the other hand, focused on doing
a more detailed worst case analysis of Zykov’s algorithms,
concluding that this algorithms are not more efficient than the
ones that are based on generating the maximal independent
sets of a graph. He concluded that for almost all graphs, a
Zykov tree has size O(e“"V1°¢"), where c is a constant ¢ > 1.

4. Integer Linear Programming Algo-
rithms

In this section, we present the algorithms that solve graph
coloring instances as integer linear programs, which are based
in the previous work of Mehrotra and Trick [26]. We first show
some definitions of Linear Programming and formulations of
the graph coloring problem as integer linear programs (ILP).

Mehrotra and Trick [26] use the Branch-and-Price method,
which combines the methods of Branch-and-Bound and Col-
umn Generation. We describe their algorithm and discuss
about its most recent adaptations.

4.1 Integer Linear Programming

When we have an optimization problem where a linear func-
tion subject to a set of linear constraints is given, then we have
a linear program. When the objective is to find the smallest
value for the function, then we have a linear minimization
program.

Let n,m € N*, A € Q"™ and the arrays ¢ € Q", x € Q"}
and b € Q" represented as columns. ¢! denotes the array ¢
transposed. The canonical and the standard formulations of a
linear program are defined below.

Definition 2. The canonical formulation of a linear program,
defined by A, b and c, is given by

Minimize z=c'x
subject to Ax > b
x>0

Definition 3. The standard formulation of a linear program,
defined by A, b and c, is given by
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Minimize z = ¢ x
subject to Ax =b
x>0

A canonical formulation can be converted into a standard
one with the addition of slack variables. More details about it
can be checked in [27].

When we have a linear program where the values of x
are integer, then we have an integer linear program. The
value of the non-integer optimal solution of a linear program
is a lower bound for its integer optimal solution value, and
the difference between these two values is called integrality
gap. Solving a linear program is a polynomial problem, and
the most known algorithm that solves a linear program is the
Simplex Algorithm [28]. On the other hand, solving an integer
linear program is a NP-Hard problem, since a Branch-and-
Bound algorithm combined to the Simplex is necessary to
solve it optimally [29].

4.1.1 ILP formulations for the graph coloring problem
For a graph G where n = |V(G)| and m = |E(G)|, a first for-
mulation for the graph coloring problem as an ILP is given by
Formulation (2), defined by the equations (2a), (2b), (2¢), (2d)
and (2e).

Minimize i Xj (2a)
];1
subject to: Zyvj =1, forallv e V(G)
=1
and j€{1,...,n} (2b)
yoj+yuj <xj,  forall {vu} € E(G)
and j € {l,....n} (2¢)
wvj € {0,1}, forallv € V(G)
and j€{1,...,n} (2d)
x;€{0,1}, forall je{l,...,n}
(2e)

In this formulation, there is one binary variable x; for each
color j indicating if that color is part of a solution or not. Each
variable y,; indicates if the color j is assigned to the vertex v.
The objective function describes a minimization integer linear
program, since an optimal solution has the minimum number
of colors assigned to the vertices. The set of constraints in (2b)
describes that a vertex can only have one color assigned to it.
Each constraint in (2c) describes that vertices that share an
edge cannot have the same color.

Formulation (2) has a polynomial amount of constraints
and variables, but it generates a factorial set of symmetric
solutions. That is, a solution is symmetric when it can be
represented as a combination of different valuations. It turns
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the state space search tree of the Branch-and-Bound algorithm
too large, as Lewis [1] exposes.

Let the equations (3a), (3b) and (3c) be the Formula-
tion (3), proposed by Mehrotra and Trick [26].

Minimize sz (3a)
Ses

subject to: Z xs > 1, forallve V(G)  (3b)
{Sves}
xs €4{0,1}, forallS€S (3¢c)

In Formulation (3), S is the set of the maximal independent
sets of a graph and the binary variable xg indicates whether a
set S € S is part of a solution or not. The objective function
in (3a) indicates that the chromatic number of a graph cor-
responds to the minimum set cover. Each constraint in (3b)
indicates that each vertex v must be contained in at least one
maximal independent set S. Although this formulation has an
exponential number of variables, the problem of symmetry is
avoided.

Fractional coloring A non-integer optimal solution of the
Formulation (3) gives a fractional coloring of G. That is, since
each maximal independent set represents a color, then each
vertex will receive a set of colors instead of just one in a
fractional coloring. Besides, the sets of vertices that share
and edge will be disjoint. The value of an optimal fractional
coloring is called fractional chromatic number, denoted by
x7(G).

For example, let S; and S be two maximal indepen-
dent sets and let x5, + x5, > 1 be the constraint for a vertex
v € V(G). If x5, and xg, have values 0.5, for example, then
it means these colors contributes to 0.5 each in the fractional
chromatic number, and the vertex v has both S; and S, as-
signed to it.

The integrality gap between x;(G) and x(G) is O(logn)
[30], although finding x(G) is also an N'P-Hard problem.

4.2 Column Generation

Sometimes we cannot escape the fact that some formulations
have a large set of variables, such as the Formulation (3).
They are still used in literature because they may avoid the
problem of symmetry in solutions [31]. One of the problems
of this kind of formulation is that many variables may not be
in the optimal solution. A way around it is to start solving the
instance with a small set of the variables and add the others
as necessary.

The Column Generation method uses this approach to
solve linear programs with a large set of variables. The col-
umn in the method’s name refers to the Simplex algorithm in
tableau format, where each column is associated to a variable.

A Column Generation based algorithm decomposes the
linear program in two, named Master Problem and Pricing
Problem. The first one is a more restricted reformulation of
the original linear program, while the second one is the linear
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program that determines the variables that will be gradually
added to the Master Problem. Both of the problems can be
obtained by the Dantzig-Wolfe Linear Decomposition [28].
A description to this decomposition is given by Andrade,
Miyazawa and Xavier [32].

For a given linear program in the standard form, the main
idea of a Column Generation based algorithm is to find an
initial set of the variables such that the Master Problem has at
least one viable solution from this set. The Master Problem
is solved with this set using the Simplex Algorithm. This is
called the Restricted Master Problem (RMP).

Before showing a general description to a Column Gen-
eration algorithm, we review the pricing step of the Simplex
Algorithm, since the Pricing Problem comes from this stage.

The solution found by the Simplex Algorithm separates
the indices of the variables in two sets B and N. The set B has
dimension m and the variables associated to this set is called
the basic variables (or the basis B). The set N is the set of the
indices that are not in B, and the variables associated to it are
called the non-basic ones. We denote the set of the basic and
non-basic variables as xp and xy, respectively. We also denote
the sets of the costs of the basic and non-basic variables as cg
and cy, respectively. Each variable in xp has value greater or
equal than 0 and every variable in xy is equal to 0.

The matrix A can be rewritten as A = [Ag|Ay], where
Ap = {Ai};cp. Av = {Ai};cy and Ap is non-singular. We
obtain the following equivalence:

Ax=b <= Apxg+Anxy =b <—

— Ag'Apxp+AG Ayay = A b = xp=Ag'b—Ag Ayxy

Rewriting the objective function substituting xp for the ex-
pression found above, we have

z=chxp+choay = cE(Az'b— Az Anxy) + chay

= chglb +xN(c};, — chglAN)

The pricing step of the Simplex Algorithm, then, will find
the non-basic variable that has the minimum reduced cost
to enter the basis, that is, the minimum negative value of
¢l —chAz'Ay. Only the non-basic variables are examined
since the basic variables has its reduced cost equals to zero.
We denote Ag ' as A.

For a given linear program that has an optimal solution,
let n be its number of variables. The Column Generation is
generically described as follows (Algorithm 14).

A Branch-and-Bound algorithm that uses the Column
Generation method is called a Branch-and-Price algorithm,
and it is illustrated in the Figure 5. When a branching step
occurs, it means that constraints are added to a linear program
to force the value of a variable to be integer (details can be
checked in [27]). In the Figure 5, X is the set of the linear
programs that are in the state space search tree to be solved.
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[ Input: Integer Linear Program j

Formulate the Master Problem by the
Dantzig-Wolfe linear decomposition

Get the initial set of variables to con-
stitute the Restricted Master Problem
(RMP) by an heuristic, for example

Get the non-integer solution of the RMP }7

'S

Add
the new
variable to

[ Formulate and solve the pricing problem ]

the RMP
[ Is there a reduced cost variable? j
Yes L
No
Output:
A timal
n OP 1mg Is the solution viable? j
solution, if
possible.
Yes
Is the solution integer? J
No
Branch the current instance and add the new in-
Is X empty?
stances to the X
No

{ Select an instance of X ]7

Figure 5. Simplified flowchart of a Branch-and-Price algorithm
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Algorithm 14: COLUMN GENERATION

Data: The m x n matrix A and the arrays b and ¢ of dimensions m and n, respectively.
Result: The optimal solution of the linear program defined by A, b and ¢, such that Ax = b and ¢ x is minimum.

Let P be the linear program formulated from A, b and c.

Get the Master Problem of P from the Dantzig-Wolfe linear decomposition.

Get the Restricted Master Problem RMP.

Do
Solve the RMP by the Simplex Algorithm.

Define the set of non-basic variables as the set that has the non-basic variables found in the non-integer solution of
the RMP and the variables that are not in the RMP yet. Formulate the Pricing Problem (PP) from the pricing step of

the Simplex Algorithm, that is,
c= C]{/ - ATAN

C; € ¢ such that ¢; is minimum and i € N

Solve the PP. If ¢; < 0, then add the variable found in PP to the RMP. Otherwise, the solution of the RMP is also an

optimal solution to the linear program given as input.

while there is ¢c; < 0invc;
Return x

4.3 Mehrotra and Trick Algorithm

The first exact algorithm for the graph coloring that use the
Branch-and-Price method was proposed by Mehrotra and
Trick [26]. The Master Problem is composed by Formula-
tion (3) without the integrality constraints.

The Restricted Master Problem is described in Formula-
tion (4), which is defined by the equations (4a) and (4b). To
get the initial set of variables S € S for the Restricted Mas-
ter Problem, the authors use an heuristic procedure for the
Maximum Weighted Independent Set (MWIS) problem. We
describe this heuristic in Algorithm 15. We show that the
Pricing Problem of their algorithm is equivalent to solve the
Maximum Weighted Independent Set problem, in fact. We
finally describe the rule proposed by the authors in the branch-
ing step of the algorithm. The most recent adaptations of
Mehrotra and Trick [26] can be found in the work of Malaguti
and Toth [33] and Gualandi and Malucelli [34].

4.3.1 The Pricing Problem

As we mentioned before, Mehrotra and Trick [26] find the ini-
tial set of variables to the Restricted Master Problem, defined
as follows.

Minimize ng (4a)
ses

subjectto: Y xs>1, forallveV(G)  (4b)
{S:ves}
x5 >0, forall S €S

The authors use an heuristic to the Maximum Weighted

Independent Set problem (MWIS), that we define below. The
heuristic is described in Algorithm 15.

Maximum Weighted Independent Set (MWIS)
Input: a graph G and a function w : V(G) — Q such that
w(v) is named weight of the vertex v € V(G).

Answer: a maximum weighted independent set, that is, an

independent set I C V(G) such that Zw(v) is maximum.
vel

Algorithm 15: GREEDY HEURISTIC FOR THE
MWIS(G)

Data: A graph G

Result: A maximal weighted independent set

10

Do

Choose a vertex v € V(G) of maximum weight.
Addvtol.
Remove Ng(v) from V(G).

while V(G) # 0;

Return /

As we mentioned before, the Pricing Problem is obtained
by the pricing step of the Simplex Algorithm, that is,

min {c{, — XTAN}.

More details of the relation between the dual and the pricing
problems can be checked in [35].
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In the Master Problem defined in Formulation (3), each
coefficient in ¢, has value 1 and each variable is associated
to a column of Ay, which describes an independent set S
that is represented as an array z € {0,1}". Each row of the
Master Problem is associated to a vertex v € V(G), so we can
denote A, as the dual value obtained by v in the non-integer
solution of the RMP. Hence, we have that the Pricing Problem
corresponds to min { 1-— sz}, that is,

min{l — Z lvzv} =1 —max{ Z MZV}
veV(G) veV(G)

Formulation (5), defined by (5a) and (5b), describes the
Pricing Problem, which is in fact the Maximum Weighted
Independent Set problem. If the optimal solution of this for-
mulation is greater than 1, then the independent set S that
will be added to the RMP is constituted by each vertex v
where z, = 1, thatis, S = {v € V(G) such that z, = 1}. Other-
wise, there is no independent set that can improve the current
solution of the Master Problem.

Maximize Z Ay (5a)
veV(G)
wtzy <1, forall {u,v} € E(G) (5b)
7y €40,1}, forallveV(G)

4.3.2 The Branching Rule

The branching step follows the Zykov rule described in Sub-
section 3.2. For an instance of the state space search tree, let
S1 and S be two maximal independent sets and xg, and xs,
the variables associated to these sets, such that at least one of
them got a non-integer value. Since the non-integer optimal
solution of the Master Problem represents a fractional color-
ing, then there are two vertices u,v € V(G) such that, without
loss of generality, u € S| NS, and v € §1 \ S,. It means that
whether u can receive the same color as the vertices in S; (and
so does v) or it can receive the same color as the vertices of
S>. Then, one of the new instances to be added to the state
space search tree will have a constraint where u and v are
contracted in one vertex, while the other new instance will
have a constraint where u and v have an edge between them.
In fact, the constraint will be updated, so it is not necessary to
create new constraints to the new instances.

4.3.3 Further Work

Mehrotra and Trick [26] observe that improvements in their
method can be done in the algorithm that solves the MWIS
problem. In their work, they propose a recurrence where
given a graph G and a vertex v € V(G), the MWIS can either
exclude v or have v and the vertices that are not neighbors of
v, that is,

MWIS(G) =max {MWIS(G —v), MWIS(G[{v} UNG(v)]) }

The most recent adaptations of their algorithm can be found
in the works of Malaguti and Toth [33] and Gualandi and
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Malucelli [34]. The first one uses a tabu search based heuristic
to find the MWIS in the pricing step. This heuristic is executed
for a fixed number of iterations. If this number is attained and
a column were not found, then the instance of the MWIS is
solved as a linear program. Gualandi and Malucelli [34], on
the other hand, use Constraint Programming in the pricing
step.

San Segundo [19] and Furini, Gabrel and Ternier [20]
compare their algorithms with the implementation of Malaguti
and Toth [33], and they conclude that the Branch-and-Price
based algorithms are currently the most efficient ones for hard
DIMACS instances, while the algorithms based on the exact
version of the DSATUR are the best ones for random graphs
with 60 to 80 vertices and densities between 0.1 and 0.9.

5. Conclusion

In this work, we presented the most recent exact algorithms
for the graph coloring problem, which are the ones based in
Dynamic Programming, Branch-and-Bound and Integer Lin-
ear Programming. The algorithms of the first group have an
worst case analysis, while the other ones have only an experi-
mental analysis. We briefly introduce the information required
to the comprehension of the exact algorithms that solve graph
coloring instances. We also observe that the algorithms based
in Branch-and-Price and Branch-and-Bound DSATUR are
the most promising for the graph coloring problem, where the
most recent are based in the previous work of Mehrotra and
Trick [26] for the first group and Brelaz [15] for the second
group. Tables 1 and 2 show an overview of the algorithms
presented in this work.

We observe that besides the differences between the exact
approaches, they show similarities that are not always clear
to the researcher. The algorithm proposed by Eppstein [5]
for the optimal coloring problem, for example, can be actu-
ally extended to the algorithms of Lawler [4] and Byskov [6],
without affecting the result of the respective analyses. Simi-
larities between different paradigms also can be found. The
Zykov’s recurrence, for example, is much less efficient than
other approaches, but it is useful in the branching step of
Branch-and-Price algorithms, since this kind of rule does not
change the original structure of the problem. Besides, we can
cite the DSATUR procedure either as a simple heuristic for
finding an initial upper bound for the chromatic number of a
graph, or as a good exact algorithm for random graphs.

Table 1. Overview of the Dynamic Programming based

algorithms
‘ Algorithm ‘ Problem | Results | Space |
‘ Lawler (1976) | Chromatic number | 0(2.4423") | ©(2") |
Eppstein (2003) Chromatic number | 41 51)
Optimal coloring 0"
. Chromatic number n
‘ Byskov (2004) Optimal coloring 0(2.4023")
| Bodlaender & Kratsch (2006) | Chromatic number | 0(5.283") | O(nlogn) |
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Table 2. Overview of the Branch-and-Bound and ILP based algorithms

Design Method Algorithm Results Type of
Paradigm instance
Backtracking | Brown (1972) Random
graphs
Sewell (1998) | Sewell’s algorithm is | Random
more efficient than | graphs and
Brown’s for graphs with | DIMACS
more than 60 vertices. instances
Branch-and- Exact More efficient than | Random
Bound DSATUR Sewell’s in dense graphs | graphs
(Brélaz (density up to 0.7).
(1979))
San Segundo | San Segundo’s algorithm | DIMACS
(2012) is more efficient than | instances
Sewell’s in almost all in-
stances.
Their algorithm is more | Random
efficient than San Se- | graphs
gundo’s for dense graphs
(density from 0.7 to 0.9)
and number of vertices
from 75 to 80, but the
computational cost differ-
ence is small. Their al-
gorithm is also more ef-
ficient than the ILP algo-
rithms in this type of in-
stance.
Furini, Gabrel | Similar results to San Se- | DIMACS
and Ternier | gundo’s algorithm. instances
(2017)
Zykov trees Corneil e Gra- | Storage bounded in | Random
ham (1973) On?). graphs
McDiarmid Analytical results. For | —
(1979) almost all graphs, a
Zykov tree has size
O(e‘n+/Togn).
Branch-and- Mehrotra and
Price Trick (1995)
Integer Linear | Branch-and- Malaguti and | More efficient results for | DIMACS
Programming | Price and | Toth (2011) these instances in relation | instances
Tabu Search to the Branch-and-Bound
algorithms.
Branch-and- Gualandi and
Price and | Malucelli
Constraint (2012)
Programming
Acknowledgements Author contributions

This paper is an abridged version of the first author’s Master

This work was partially funded by CNPq (Proc. 428941/2016-  Dissertation [12] which was advised by the second author.

8) and CAPES.

R. Inform. Teér. Apl. (Online) e Porto Alegre ¢ V. 25 ¢ N. 4 ¢ p.71/73 ¢ 2018



References

[1] LEWIS, R. A Guide to Graph Colouring: Algorithms
and Applications. 1. ed. Berlin: Springer, 2016. v. 1.

[2] GROTSCHEL, M.; LOVASZ, L.; SCHRIJVER, A.
Polynomial algorithms for perfect graphs. In: BERGE,
C.; CHVATAL, V. (Ed.). Topics on Perfect Graphs. 1.
ed. North-Holland, Holland: North-Holland Publishing

Company, 1984, (North-Holland Mathematics Studies, v. 88).

p. 325-356.

[3] CORMEN, T. H. et al. Introduction to Algorithms. 3.
ed. Massachusetts, USA: MIT Press, 2009. v. 1. I-XIX,
1-1292 p.

[4] LAWLER, E. A note on the complexity of the chromatic
number problem. Inform. Process. Lett., v. 5, n. 3, p. 66—67,
1976.

[5]1 EPPSTEIN, D. Small maximal independent sets and
faster exact graph coloring. J. Graph Algorithms Appl., v. 7,
n. 2, p. 131-140, 2003.

[6] BYSKOV, J. M. Chromatic number in time O(2.4023")
using maximal independent sets. BRICS Rep. Ser., v. 9, n. 45,
p- 1-9, 2002.

[7] BODLAENDER, H. L.; KRATSCH, D. An exact
algorithm for graph coloring with polynomial memory.
UU-CS, v. 2006, n. 15, p. 1-5, 2006.

[8] WANG, C. C. An algorithm for the chromatic number of
a graph. J. ACM, v. 21, n. 3, p. 385-391, 1974.

[9] TSUKIYAMA, S. et al. A new algorithm for generating
all the maximal independent sets. SIAM J. Comput., v. 6, n. 3,
p. 505-517, 1977.

[10] MOON, J.; MOSER, L. On cliques in graphs. Israel J.
Math.,v.3,n. 1, p. 23-28, 1965.

[11] MADSEN, B. A.; BYSKOV, J. M.; SKJERNAA, B. On
the number of maximal bipartite subgraphs of a graph. BRICS
Rep. Ser.,v.9,n. 17, p. 1-10, 2002.

[12] LIMA, A. M. de. Algoritmos Exatos para o Problema
da Coloracdo de Grafos. Dissertacdo (Mestrado) —
Universidade Federal do Parand, Parana, Brazil, 2017.

[13] BEIGEL, R.; EPPSTEIN, D. 3-coloring in time
0(1.3289"). J. Algorithm., v. 54, n. 2, p. 168 — 204, 2005.

[14] BYSKOV, J. Enumerating maximal independent sets
with applications to graph colouring. Oper. Res. Lett., v. 32,
n. 6, p. 547-556, 2004.

[15] BRELAZ, D. New methods to color the vertices of a
graph. Commun, ACM, v. 22, n. 4, p. 251-256, 1979.

[16] ZYKOV, A. On some properties of linear complexes.
Mat. Sb. (N.S.), v. 24(66), n. 2, p. 418-419, 1962.

[17] BROWN, J. R. Chromatic scheduling and the chromatic
number problem. Manage. Sci., v. 19, n. 4-part-1, p. 456-463,
1972.

Exact Algorithms for the Graph Coloring Problem

[18] SEWELL, E. C. A branch and bound algorithm for
the stability number of a sparse graph. INFORMS J. ON
COMPUT, v. 10, n. 4, p. 438-447, 1998.

[19] SEGUNDO, P. S. A new DSATUR-based algorithm
for exact vertex coloring. Comput. Oper. Res., v. 39, n. 7, p.
1724-1733, 2012.

[20] FURINI, F.; GABREL, V.; TERNIER, L.-C. An
improved dsatur-based branch-and-bound algorithm for the
vertex coloring problem. Networks, v. 69, n. 1, p. 124-141,
2017.

[21] SEWELL, E. C. An improved algorithm for exact graph
coloring. DIMACS ser. discrete math. theor. comput. sci.,
v. 26, n. 1, p. 359-373, 1996.

[22] MATHEMATICS, C. for D.; SCIENCE,

T. C. DIMACS Implementation Challenges. 1994.
Online; accessed 04 July 2018. Disponivel em:
<http://dimacs.rutgers.edu/archive/Challenges/>.

[23] NETO, A. S. A.; GOMES, M. J. N. Problema e
algoritmos de coloracdo em grafos - exatos e heuristicos. Rev.
Sist. Comput., v. 4,n. 2, p. 201-115, 2014.

[24] CORNEIL, D. G.; GRAHAM, B. An algorithm for
determining the chromatic number of a graph. SIAM J.
Comput.,v.2,n. 4, p. 311-318, 1973.

[25] MCDIARMID, C. Determining the chromatic number
of a graph. SIAM J. Comput., v. 8, n. 1, p. 1-14, 1979.

[26] MEHROTRA, A.; TRICK, M. A. A column generation
approach for graph coloring. INFORMS J. Comput., v. §, n. 4,
p. 344-354, 1995.

[27] MATOUgEK, J.; GARTNER. Understanding and using
linear programming. 1. ed. Berlin, Germany: Springer, 2007.
v. 1. (Universitext, v. 1).

[28] DANTZIG, G. Linear programming and extensions. 1.
ed. Princeton, NJ: Princeton Univ. Press, 1963. v. 1. (Rand
Corporation Research Study, v. 1).

[29] PAPADIMITRIOU, C. H.; STEIGLITZ, K.
Combinatorial Optimization: Algorithms and Complexity. 1.
ed. New Jersey, USA: Prentice-Hall, Inc., 1998. v. 1.

[30] LUND, C.; YANNAKAKIS, M. On the hardness of
approximating minimization problems. J. ACM, v. 41, n. 5, p.
960-981, 1994.

[31] BARNHART, C. et al. Branch-and-price: Column
generation for solving huge integer programs. Oper. Res.,
v. 46, n. 3, p. 316-329, 1998.

[32] ANDRADE, C. E. d.; MIYAZAWA, F. K
XAVIER, E. C. Um algoritmo exato para o Problema de
Empacotamento Bidimensional em Faixas. Dissertacao
(Mestrado) — Instituto de Computacao Universidade
Estadual de Campinas, Sdo Paulo, Brazil, 2006.

[33] MALAGUTIL, E.; MONACI, M.; TOTH, P. An exact
approach for the vertex coloring problem. Discrete Optim.,
v. 8,n. 2, p. 174-190, 2011.

R. Inform. Teér. Apl. (Online) ¢ Porto Alegre e V. 25 ¢ N. 4 ¢ p.72/73 ¢ 2018


http://dimacs.rutgers.edu/archive/Challenges/

Exact Algorithms for the Graph Coloring Problem

[35] DESAULNIERS, G.; DESROSIERS, J.; SOLOMON,
M. Column Generation. 1. ed. Springer US: Springer US,
2006. v. 1. (GERAD 25th anniversary series, v. 1).

[34] GUALANDI, S.; MALUCELLI, F. Exact solution of
graph coloring problems via constraint programming and
column generation. INFORMS J. Comput., v. 24, n. 1, p.
81-100, 2012.

R. Inform. Teér. Apl. (Online) e Porto Alegre e V. 25 ¢ N. 4 ¢ p.73/73 ¢ 2018



	Introduction
	Introduction
	Definitions and Notation
	Graph Coloring Problems

	Dynamic Programming Algorithms
	Lawler's Algorithm
	Eppstein's Algorithm
	Eppstein's Algorithm for an Optimal Coloring
	Beigel and Eppstein Algorithm for the 3-coloring

	Byskov's Algorithm
	Bodlaender and Kratsch Algorithm


	Branch-and-Bound Algorithms
	Brelaz's Algorithm
	Zykov's Algorithm
	Zykov Trees


	Integer Linear Programming Algorithms
	Integer Linear Programming
	ILP formulations for the graph coloring problem

	Column Generation
	Mehrotra and Trick Algorithm
	The Pricing Problem
	The Branching Rule
	Further Work


	Conclusion
	References

