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Exact Algorithms for the Graph Coloring Problem
Algoritmos Exatos para o Problema da Coloração de Grafos

Alane Marie de Lima1*, Renato Carmo2

Abstract: The graph coloring problem is the problem of partitioning the vertices of a graph into the smallest
possible set of independent sets. Since it is a well-known NP-Hard problem, it is of great interest of the computer
science finding results over exact algorithms that solve it. The main algorithms of this kind, though, are scattered
through the literature. In this paper, we group and contextualize some of these algorithms, which are based in
Dynamic Programming, Branch-and-Bound and Integer Linear Programming. The algorithms for the first group
are based in the work of Lawler, which searches maximal independent sets on each subset of vertices of a
graph as the base of his algorithm. In the second group, the algorithms are based in the work of Brelaz, which
adapted the DSATUR procedure to an exact version, and in the work of Zykov, which introduced the definition of
Zykov trees. The third group contains the algorithms based in the work of Mehrotra and Trick, which uses the
Column Generation method.
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Resumo: O problema de coloração de grafos consiste em particionar os vértices de um grafo na menor
quantidade possível de conjuntos independentes. Por tratar-se de um problema NP-Difícil conhecido, é de
grande interesse da computação encontrar resultados sobre algoritmos exatos para sua solução. Entretanto, os
principais dentre estes algoritmos estão espalhados pela literatura. Neste artigo, agrupamos e contextualizamos
alguns destes algoritmos, a saber, soluções baseadas em Programação Dinâmica, Branch-and-Bound e
Programação Linear Inteira. Os algoritmos do primeiro grupo são baseados no trabalho de Lawler, que busca
conjuntos independentes maximais em cada subconjunto de vértices de um grafo como base de seu algoritmo.
No segundo grupo, os algoritmos são baseados no trabalho de Brelaz, que adaptou a heurística DSATUR para
uma versão exata, e no trabalho de Zykov, que introduziu o conceito de árvores de Zykov. O terceiro grupo
contém algoritmos baseados no trabalho de Mehrotra e Trick, que utilizaram o método Geração de Colunas.
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1. Introduction
Graph coloring is the problem of assigning colors to the ver-
tices of a graph in such a way that neighbor vertices are as-
signed with different colors. The problem of coloring a graph
with the minimum possible number of colors is a fundamental
NP-Hard problem with a number of applications of interest
such as timetabling, code optimization and seating plans [1].

Information on different approaches for this and related
computational problems are scattered throughout the literature.
We survey some of these approaches discussing their strengths
and weaknesses.

The algorithms we discuss are based on three main ap-
proaches, namely, Dynamic Programming, Branch-and-Bound

and Linear Programming. Besides these, we also discuss the
DSATUR algorithm for graph coloring.

The text is organized as follows. In Section 1.1 we briefly
state some definitions and the notation used. Section 2 dis-
cusses algorithms based in Dynamic Programming. Section 3
discusses algorithms based in Branch-and-Bound. Section 4
discusses algorithms based in Linear Programming. Finally,
Section 5 contains the conclusions.

1.1 Definitions and Notation
Given a set S and an integer k, we denote by

(S
k

)
the set of

subsets of S of size k.
A graph G is a pair (V (G),E(G)) where V (G) is a finite
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set (the vertices of G) and E(G) ⊆
(V (G)

2

)
(the edges of G).

Note that, according to these definitions, graphs in this text
are simple, that is, have no multiple edges or loops.

Two vertices u and v are neighbors in G if {u,v} ∈ E(G).
The degree of vertex v in G is the number of neighbors of v in
G and is denoted by dG(v).

The induced subgraph of G by a set S⊆V (G) is denoted
by G[S] and the graph G− S is the graph G[V (G)− S]. If
v ∈V (G), we write G− v instead of G−{v}.

The set S⊂V (G) is independent in G if no vertices in S
are neighbors in G and is a maximal independent set in G if it
is not properly contained in another independent set in G. We
denote by I(G) the set of all maximal independent sets in G.

Given an integer k ≤ |V (G)|, a k-coloring of G is a parti-
tion of V (G) into k independent sets in G. Each such set is
called a color in the coloring. A graph G is k-colorable if it
admits a k-coloring. The smallest k for which G is k-colorable
called the chromatic number of G and is denoted χ(G). An
optimal coloring of G is a χ(G)–coloring of G.

1.2 Graph Coloring Problems
We define the following NP-Hard problems:

Graph Coloring
Instance :a graph G
Answer :a χ(G)-coloring of G

Chromatic Number
Instance :a graph G
Answer :χ(G)

k-coloring
Instance :a graph G and k ∈ N
Answer :YES, if we can color G with no more than k

colors; NO, otherwise.

Graph coloring problems are polynomially solvable when
the given graph G is 2-colorable. The problems are also
efficiently solvable for some graph classes, where we highlight
here the perfect graphs [2].

2. Dynamic Programming Algorithms
In this section, we discuss dynamic programming algorithms
for the graph coloring problem. Dynamic Programming is the
approach of computing the answer to an instance of a problem
by computing and combining the answers to “sub-instances”
of that instance (see, for example, [3, chapter 15]).

We start with an algorithm from Lawler [4] (Section 2.1)
which has O∗(2.4423n) running time. Then we discuss an
algorithm from Eppstein [5] (Section 2.2) which, through

a modification of the idea of Lawler’s algorithm, improves
this bound to O(2.4150n). Next (Section 2.3), we discuss a
modification of Eppstein’s algorithm in Byskov [6] yielding
an O(2.4023n) algorithm.

All the above algorithms require exponential space. In
Section 2.4 we discuss an O(5.283n) running time algorithm
from Bodlaender and Kratsch [7] requiring polynomial space.

Unless otherwise stated, the proofs of the results in sec-
tions 2.1, 2.2 and 2.3 are based on those in [6].

2.1 Lawler’s Algorithm
Lawler[4] was the first to propose a dynamic programming
algorithm for the graph coloring problem, as described in
Algorithm 4. One may view his algorithm as based in the
following result.

Theorem 1 (Wang[8]). Every graph has an optimal coloring
in which (at least) one of the colors is a maximal independent
set.

Proof. Let C= {P1, . . . ,Pk} be an optimal coloring of G and
let I be a maximal independent set containing P1. Then
{I,P2 \ I, . . . ,Pk \ I} is an optimal coloring of G and one of its
colors is a maximal independent set.

It follows from Theorem 1 that if G is a graph and S ⊆
V (G), then χ(G[S]) is the minimum among 1+ χ(G[S \ I])
over all maximal independent sets I in G[S], that is,

χ(G[S])=

{
0, if S = /0,
1+min{χ(G[S\ I]) : I ∈ I(G[S])}, otherwise.

Algorithm 4: LAWLER(G)

Input: A graph G
Result: The chromatic number of G
n← |V (G)|
X ← array indexed from 0 to 2n−1
X [0]← 0
For S← 1 to 2n−1

s← f (S)
X [s]← ∞

For I ∈ I(G[S])
i← f (S\ I)
If X [i]+1 < X [s]

X [s]← X [i]+1
Return X [2n−1]

For each S⊆V (G), the chromatic number of G[S] is stored
in X [ f (S)]. The function f : 2|V (G)|→{0, . . . ,2n−1} indexes
the subsets of V (G) in such a way that f (X) < f (S) for all
X ⊂ S (for instance, by returning f (S) = ∑vi∈S 2i−1, where
V (G) = {v0, . . . ,vn−1} is an ordering of V (G)).

It should be noted that the inner loop in Algorithm 4
performs a non-trivial task, namely, enumerating all maximal
independent sets of a graph. As Lawler [4] itself notes, this
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can be done in time O(nmI) for a graph with n vertices, m
edges and I maximal independent subsets [9].

Theorem 2. Algorithm 4 runs in time O(2.4423nnm) and
space Θ(2n), if the input is a graph with n vertices and m
edges.

Proof. Let G be a graph with n vertices and m edges. For each
S ⊆ V (G), let T (S) denote the time spent in the execution
of the inner loop in Algorithm 4 using the algorithm from
Tsukiyama[9]. Then we know that there exist c > 0 and
n0 ∈ N such that, whenever |S| ≥ n0,

T (S)≤ c |S| |E(G[S])| |I(G(S))| ≤ cnm3|S|/3,

because a graph on k vertices can have at most 3k/3 maximal
independent sets [10].

Summing over all S⊆V (G) we get

∑
S⊆V (G)

T (S)≤ ∑
S⊆V (G)

cnm3|S|/3 = cnm ∑
S⊆V (G)

3|S|/3

= cnm
n

∑
i=0

∑
S∈(V (G)

i )

3|S|/3 = cnm
n

∑
i=0

∑
S∈(V (G)

i )

3i/3

= cnm
n

∑
i=0

(
n
i

)
3i/3 = cnm

n

∑
i=0

(
n
i

)(
31/3

)i

≤ cnm
(

1+31/3
)n
≤ cnm(2.4423)n .

Hence we can conclude that the execution time of Algo-
rithm 4 with G as input is O(nm(2.4423)n).

2.2 Eppstein’s Algorithm
Lawler’s algorithm (Algorithm 4) had the best upper bounds
for the graph coloring problem until Eppstein [5] proposed
two modifications. The first one is the preprocessing of the
3-colorable subgraphs of the input graph. The other one is
filling in vector X (the dynamic processing table) in a different
order which allows for skipping the processing of maximal
independent sets beyond a certain size.

Let us start with the following result.

Theorem 3 (Madsen, Nielsen and Skjernaa [11]). Let G be
a graph and let J′ ⊆ V (G) be such that G[J′] is a maximal
k-colorable subgraph of G. For every 0≤ k1 < k there is a set
J ⊆ J′ such that G[J] is a maximal k1-colorable subgraph of
G[J′] and G[J′ \ J] is a maximal (k− k1)-colorable subgraph
of G− J.

Proof. Let G be a graph and let J′ ⊆V (G) be such that G[J′]
is a maximal k-colorable subgraph of G. Given k1 ≤ k, let
{I1, . . . , Ik} be an optimal coloring of G[J′] in such a way
that |I1| ≥ |I2| ≥ . . .≥ |Ik| and J :=

⋃k1
i=1 Ii is the largest pos-

sible. Then G[J] is a maximal k1-colorable subgraph of
G[J′]. Because G[J′] is maximal, there can be no vertex
v ∈ V (G)\ J′ that can be added either to G[J] or to G[J′ \ J]
so that G[J′∪{v}] remains k-colorable. Hence, G[J′ \ J] is a
maximal (k− k1)-colorable subgraph in G− J.

It is possible to prove (see [12, sec. 3.2.2]) that if k1 =
k−1 then G[J′ \J] is a maximal independent set in G−J. The
proof is similar to the one of Theorem 3 with the chosen opti-
mal coloring being one in which Ik has the smallest possible
size.

From Theorem 3, we have that if G[J′] is a maximal
k-colorable subgraph of G, then it has an optimal coloring
{I1, . . . , Ik} such that Ik has the smallest size as possible. Then
we have a set J such that J = J′ \ Ik and G[J] is (k− 1)-
colorable. The same way as G[J′], the graph G[J] has a color
Ik−1 in one of its optimal colorings such that Ik−1 has the
smallest size as possible. Hence,

|J|=
χ(G[J])

∑
i=1
|Ii| ≥

χ(G[J])

∑
i=1
|Ik−1|= |Ik−1|χ(G[J])

Since |Ik| ≤ |Ik−1|, then |Ik| ≤ |J|/χ(G[J]). Hence, for
each S ⊆ V (G), the value of χ(G[S∪ I]) is the minimum
among 1+ χ(G[S]) over all maximal independent sets I ≤
|S|/χ(G[S]), that is,

χ(G[S∪ I]) : I ∈ I(G−S) =

{
0, if S∪ I = /0,
1+min{χ(G[S])}, otherwise.

The chromatic number of G[S] is stored in X [ f (S)], for
each S⊆V (G). The function f (S) is the one defined in Sec-
tion 2.1. The function c(S) associates each S to its correspond-
ing graph G[S].

Algorithm 5: EPPSTEIN(G)

Input: A graph G
Result: The chromatic number of G
n← |V (G)|
X ← array indexed from 0 to 2n−1
X [0]← 0
For S← 1 to 2n−1

i← f (S)
Run the algorithm of Beigel and Eppstein [13] in
G[S].

If χ(G[c(S)])≤ 3
X [i]← χ(G[c(S)])

Else
X [i]← ∞

For S← 1 to 2n−1
i← f (S)
If 3≤ X [i]< ∞

For I ∈ I(G−S) such that |I| ≤ |S|/X [S]
j← f (S∪ I)
If X [i]+1 < X [ j]

X [ j]← X [i]+1
Return X [2n−1]

Theorem 4. Algorithm 5 runs in time O(2.4150n) and space
O(2n).
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Proof. Let G be a graph with n vertices and m edges. For each
S⊆V (G), let T (S) denote the time spent in the preprocessing
of the 3-colorable subgraphs using the algorithm from Beigel
and Eppstein[13], which runs in O(1.3289n). Then we know
that there exist c > 0 and n0 ∈N such that, whenever |S| ≥ n0,

T (S)≤ c1.3289|S|

Summing over all S⊆V (G) we get

∑
S⊆V (G)

T (S)≤ ∑
S⊆V (G)

c1.3289|S| = c ∑
S⊆V (G)

1.3289|S|

= c
n

∑
i=0

∑
S∈(V (G)

i )

1.3289|S| = c
n

∑
i=0

∑
S∈(V (G)

i )

1.3289i

= c
n

∑
i=0

(
n
i

)
1.3289i≤ c(1+1.3289)n≤ c(2.3289n) .

Let T ′(S) be the time to process the maximal independent
sets of size at most k in G[S], for k ∈ N. Then, there exist
c′ > 0 and n1 ∈ N such that, whenever |S| ≥ n1,

∑
S⊆V (G)

T ′(S)≤ ∑
S⊆V (G)

c′3
4|S|

3 −(n−|S|)4(n−|S|)−3 |S|3

= c′
n

∑
i=0

∑
S∈(V (G)

i )

3
4|S|

3 −(n−|S|)4(n−|S|)−3 |S|3

= c′
n

∑
i=0

∑
S∈(V (G)

i )

3
4i
3 −(n−i)4(n−i)−3 i

3

= c′
n

∑
i=0

(
n
i

)
3

7i
3 −n4n−2i ≤ c′

(
4
3

)n
(

1+
3

7
3

42

)n

≤ c′
(

4
3
+

34/3

4

)n

≤ c′(2.4150n)

because the number of maximal independent sets of size
at most k, for k ∈ N, is

bn/kc(bn/kc+1)k−n(bn/kc+1)n−bn/kck

and Eppstein[5] proves that these maximal independent
sets can be found in O(34k−n4n−3k).

Hence, the execution time of Algorithm 5 is O(2.4150n).

2.2.1 Eppstein’s Algorithm for an Optimal Coloring
Eppstein [5] proposed Algorithm 6 for finding an optimal
coloring of a graph G.

Let χ(G) = k. The algorithm searches for a maximal
k′-colorable graph G[T ] in G, for k′ ∈ {1,2, ..,k} and T ⊂
V (G). If k′ = k−1, then by Theorem 3, the vertices in G−T
constitute a maximal independent set I that can be removed
from the graph. This process is repeated for the remaining
vertices of G until an empty set be found.

Algorithm 6: EPPSTEINOPTCOLOR(G)

Input: A graph G
Result: An optimal coloring of G
X ← array calculated in Algorithm 5
S←V (G)
For T ← 2n−1 to 0

s← f (S)
t← f (T )
i← f (S\T )
If T ⊂ S and X [i] = 1 and X [t] = X [s]−1 then

Set the same color to every vertex of S\T .
S← T

The vertices subsets T and S are represented as binary
arrays as in previous algorithms. Function f (S) is the one
defined in Section 2.1.

Since the inner loop of the algorithm is O(2n) and each
instruction inside of it is constant in time, then Algorithm 6 is
O(2.4150n) (because of the processing of the array X).

2.2.2 Beigel and Eppstein Algorithm for the 3-coloring
The algorithm used in the stage of preprocessing is the one of
Beigel and Eppstein [13], which has complexity O(1.3289n).
The algorithm is based in a reduction from the Graph Col-
oring problem to a particular restriction of the Constraint
Satisfaction problem (CSP) named (3,2)–CSP.

Given positive integers a and b, we define the (a,b)-CSP
problem as follows.

(a,b)-CSP
Instance :
a triple (X ,D,R), of disjoint finite sets which are called,
respectively, the set of variables, the set of values and
the set of constraints. Each constraint in R a pair (t, f ),
where t is a b-tuple of variables and f is a relation of b
values from D.
Answer : a valuation of the variables that does not

violate any of the constraints..

Beigel and Eppstein [13] use backtracking and polynomial
time reductions of an instance to solve the CSP. Lemma 1
contains one of these reductions, which is the main one among
them. We describe Lemma 1, which was stated and proved
by the authors, and we give a brief idea of the 3-coloring
algorithm.

The value that will be assigned to each variable is limited
to at most a elements of D. The constraints describe the combi-
nations of values that each b-uple cannot have simultaneously.
In the case of the instances of the graph coloring problem, we
can describe them as (3,2)-CSP instances where each variable
represents a vertex and the set of values corresponds to the set
of colors that will be assigned to each vertex. Since we are
solving the 3-coloring problem, then each variable is limited
to at most 3 colors of D. Besides, each constraint will have
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two variables because it corresponds to an edge of the given
graph and the respective vertices that cannot have the same
color. Figure 1 shows an example of this reduction, where
X = {A,B,C,D}, the domain of the values is {0,1,2} and

R =

{(A = 1,B = 1),(A = 2,B = 2),(A = 3,B = 3),
(A = 1,C = 1),(A = 2,C = 2),(A = 3,C = 3),
(B = 1,C = 1),(B = 2,C = 2),(B = 3,C = 3),
(B = 1,D = 1),(B = 2,D = 2),(B = 3,D = 3),
(C = 1,D = 1),(C = 2,D = 2),(C = 3,D = 3)}

The colors 0,1 and 2 are represented by the “black”, “dots”
and “grid” patterns, respectively.

Figure 1. Example of a 3-coloring (adapted from Beigel and
Eppstein [13])

Lemma 1. Given a (X ,D,R) instance of the (a,2)-CSP prob-
lem, let v ∈ X be a variable such that only two colors of D are
allowed to v. We can get a (X ′,D′,R′) instance from (X ,D,R)
with one less variable, such that (X ′,D′,R′) does not contain
v and any optimal solution to this instance is also optimal for
(X ,D,R).

Proof. Let x,y ∈ X be two variables of (X ,D,R). Let v be
a variable limited to only two values h and i of D. Without loss
of generality, let {(y = w),(v = h)} and {(x = z),(v = i)}
be constraints of R such that w and z are values of D. If y and
x receive colors w and z at the same time, respectively, then
there will be no possible color to be assigned to v. Therefore,
we can avoid this adding the constraint {(y = w),(x = z)}.
Let (X ′,D′,R′) be the instance obtained from (X ,D,R) with
this new constraint and without the variable v. Hence, any
optimal solution to (X ′,D′,R′) is also an optimal solution for
(X ,D,R) setting h or i to v.

The algorithm of Beigel and Eppstein [13] for the 3-
coloring problem turns a graph G as input into a graph G′

(as represented in Figure 1), that corresponds to the reduction
of the original instance into a CSP instance. The main idea
of the algorithm consists on finding a subset T ⊂V (G′), such
that T is small in relation to |V (G′)| and it has a large set of
neighbors, that we denote by N. Besides, G[T ] must be a tree.
Supposing that the original graph G is 3-colorable, then we
can ensure that each neighbor of a vertex in T is limited to 1
or 2 values of the domain in G′.

We color all the vertices in T choosing one of its 3|T |

possible proper colorings. Each v ∈ N will be limited to at
most two possible colors of the domain, since each one of
these vertices has a colored neighbor in T . By Lemma 1, the

vertices in N can be removed from the CSP instance. The
resulting subgraph formed by V (G′)\{T ∪N} constitutes a
(3,2)-CSP instance that is solved by a backtracking algorithm
proposed by Beigel and Epsstein [13]. The valuation of the
variables in the optimal solution of this instance corresponds
to the color assignment of the vertices in the original graph.

This algorithm has complexity O(1.3289n).

2.3 Byskov’s Algorithm
Byskov’s algorithm [6] (Algorithm 8) is very similar to the
one of Eppstein [5]. It also searches for the 3- colorable sub-
graphs of G and for all the maximal independent sets I⊆G−S.
The improvement consists on searching for the 4-colorable
subgraphs of G after finding the 3-colorable ones. This modi-
fication leads to an algorithm of complexity O(2.4023n) (The-
orem 5), which has the best results for the worst case analysis
of dynamic programming algorithms for the graph coloring
problem.

Algorithm 8: BYSKOV(G)

Input: A graph G
Result: The chromatic number of G
n← |V (G)|
X ← an array indexed from 0 to 2n−1
X [0]← 0
For S← 1 to 2n−1

Run the algorithm of Beigel and Eppstein [13] in
G[S] to find the 3-colorable subgraphs of G like
Eppstein’s algorithm [5].

For I ∈ I(G)
For all S⊆ (V (G)\ I)

i← f (S)
If X [i] = 3

j← f (S∪ I)
If X [ j]> 4

X [ j]← 4
For S← 1 to 2n−1

i← f (S)
If 4≤ X [i]< ∞

For I ∈ I(G−S) such that |I| ≤ |S|/X [S]
j← f (S∪ I)
If X [ j]> X [i]+1

X [ j]← X [i]+1
Return X [2n−1]

Theorem 5. Byskov’s algorithm [6] runs in time O(2.4023n)
and space O(2n), if the input is a graph G with n vertices and
m edges.

Proof. Let Ik(G) be the set of all maximal independent sets
of G that have size at most k. The time to find the 4-colorable
subgraphs G[S] of G corresponds to

∑
I⊆G

∑
S⊆(V (G)\I)

1 =
n

∑
k=1

∑
Ik∈Ik(G)

∑
S⊆(V (G)\Ik)

1 =
n

∑
k=1
|Ik(G)|2n−k
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According to Byskov [14], the maximum number of max-
imal independent sets that have size at most k in a graph is

d(d+1)k−n(d +1)n−dk, for any d ≥ 3 such that d ∈ N∗

This bound is tight when n/d ≤ k ≤ n(d +1). So, we have

n

∑
k=1
|Ik(G)|2n−k ≤

n

∑
k=1

d(d+1)k−n(d +1)n−dk2n−k.

We denote y(n,k) = d(d+1)k−n(d +1)n−dk2n−k. The maxi-
mum point of this function is attained when k = n/5, so we
can divide the function in this point:

y(n,k) =
bn/5c

∑
k=1

y(n,k)+
n

∑
k=bn/5c+1

y(n,k).

Setting k = n/5, we obtain d = 5 in the left part, since
n/d ≤ k ≤ n/5. In the other part, we obtain d = 4, since
n/5 < k ≤ n/(d +1). Hence, we have

bn/5c

∑
k=1

y(n,k) =
bn/5c

∑
k=1

56k−n6n−5k2n−k.

n

∑
k=bn/5c+1

y(n,k) =
n

∑
k=bn/5c+1

45k−n5n−4k2n−k.

Both of these sums are O(2.4023n). Then, the time to find
all the 4-colorable subgraphs of G is O(2.4023n).

The running time of the last loop of the algorithm corre-
sponds to O(2.3814n). The proof is similar to the second part
of Eppstein’s algorithm [5] (Theorem 4), but the bound of the
sum is 45k−n5n−4k and |I| ≤ |S|/4.

2.4 Bodlaender and Kratsch Algorithm
As we mentioned before, the difference from the algorithm
of Bodlaender and Kratsch [7] in relation to the other ones
is that although it is much less efficient in time, polynomial
memory is required in their algorithm (Algorithm 9). They
defined the Lemma 2 as the base of their work.

Lemma 2. Let G be a graph such that n = |V (G)| and let
0 < α < 1. For all S ⊆V (G), the chromatic number of G[S]
corresponds to

χ(G[S]) =



1+min{χ(G−S)}, for all S⊆V (G)

if |S| ≥ αn and S is a maximal independent set.

min{χ(G[S])+χ(G−S)}, for all S⊆V (G)

such that (n−αn)/2≤ |S| ≤ n/2

(1)

Proof. Let P = (P1,P2, . . . ,Pk) be an optimal coloring of G.
Let Pi be a color such that |Pi| ≥ αn for some i ∈ {1, . . . ,k}.
Either Pi is a maximal class (and then S=Pi) or it is a subset of
another maximal set P′i (and then S = P′i ). Then, the chromatic
number of G is equal to 1+min{χ(G−S)} (Theorem 1).

Otherwise, if all |Pi| < αn for i ∈ {1, . . . ,k}, then there
is a subset S⊆V (G) where every color of P is either in S or
in G− S. Then, the chromatic number of G corresponds to
min{χ(G[S])+ χ(G−S)} (Theorem 3).

Let |P1| ≤ |P2| ≤ · · · ≤ |Pk| be an ordering of the colors.
Choosing the first q colors of this ordering such that S =
P1 +P2 + · · ·+Pq and |S| ≤ n/2 for some q ∈ {1, . . . ,k}, we
have that either S and V (G) \ S have the same size (that is,
n/2) or |S|< |V (G)\S|. In this case, the difference between
S and its complement is αn. Hence, |S| = (n−αn)/2 and
|V (G)\S|= (n+α)/2. Then, n/2≥ |S| ≥ (n−α)/2.

Algorithm 9: χ(G,α)

Input: A graph G and 0 < α < 1
Result: The chromatic number k of G
n← |V (G)|
k← n
For all S⊆V (G)

If S is maximal independent set |S| ≥ αn
If k > 1+χ(G−S,α)

k← 1+χ(G−S,α)
If (n−αn)/2≤ |S| ≤ n/2

If k > χ(G[S],α)+χ(G−S,α)
k← χ(G[S],α)+χ(G−S,α)

Return k

The Algorithm 9 has time O(5.283n) and this value was
obtained for α = 0.19903.

3. Branch-and-Bound Algorithms
Branch-and-bound algorithms solve an optimization problem
by a systematic enumeration of its possible solutions. The
state space search constitutes a tree where each branch forms
a possible solution. A point of a solution, that is, a node of the
tree, is branched only if its value is less or equal than a global
upper bound1. Algorithms of this kind for the graph coloring
problem are based in the work of Brelaz [15] and Zykov [16],
described in subsections 3.1 and 3.2, respectively.

3.1 Brelaz’s Algorithm
The Branch-and-Bound algorithm of Brelaz [15] is based
on his DSATUR greedy procedure for determining an upper
bound to the chromatic number. The author defined the degree
of saturation of a vertex, which is the number of different
colors that are assigned to its neighbors in a coloring.

1We are dealing with minimization problems here. In maximization
problems, the point of the solution is branched only if its value is greater or
equal than a global lower bound.
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Each color has an index i∈N. At each step of the heuristic,
the vertex with the greatest degree of saturation is selected to
receive the color such that i is minimum. If more than one
vertex has the same degree of saturation, then the vertex with
the greatest number of neighbors is chosen as a tie breaker. If
a tie occurs in this case again, then one of the tied vertices is
chosen at random. A description to the heuristic is given in
Algorithm 10.

Algorithm 10: DSATUR(G)
Input: A graph G
Result: A coloring ζ of G

n = |V (G)|
ζ ← /0
Ii is color of G, for 1≤ i≤ n.
Get an ordering (v1,v2, . . . ,vn) for V (G), such that

dG(vi)≥ dG(vi+1), for i ∈ {1, . . . ,n}.
Add v1 to I1.
For all i← 1 to n

Ii← /0
While there are uncolored vertices

Select the uncolored vertex v that has the great-
est degree of saturation. If there are more than one
vertex with the greatest degree of saturation, then
choose the one that has the greatest dG(v). If a tie
occurs again, then choose one of these vertices at
random.

j← 1
While v is uncolored and k ≤ n

If NG(v)∩ I j = /0
Add v to I j.
Add I j to ζ .

Else
j← j+1

Return ζ

The exact version of the DSATUR routine is an adapta-
tion of Brown’s algorithm [17], which we describe in Algo-
rithm 11. Further modifications have been done by Sewell [18],
San Segundo [19] and Furini, Gabrel and Ternier [20].

In the adaptation of Algorithm 11 as the exact DSATUR,
the greedy DSATUR routine is executed at first to find an
initial coloring and an upper bound k. If G is a graph, then
v∈V (G) is the vertex that was assigned with the color that has
index k in this initial solution. The algorithm tries to improve
the upper bound coming back to a vertex u that was colored
before v in the previous solution and that can be assigned
with a different color l, such that l < k. The algorithm then
selects the other vertices according to the DSATUR criteria
to recolor.

Every time the algorithm finds a complete coloring that
uses less than k colors, the upper bound is updated and the
algorithm tries to improve the current solution again. Other-
wise, if some vertex in a partial solution cannot be colored

with a color that have index less than k, then it is not necessary
to continue this coloring. The algorithm comes back to other
point of the solution tree to recolor the vertices. If this point
is the root node of the tree, then the execution stops.

Figure 3 is an example of the Branch-and-Bound DSATUR
on the graph of the Figure 2. Each node of the tree and its
predecessors forms a partial solution. For example: the nodes
where the vertices A, F and B were assigned with colors 1,2
and 2, respectively, forms a 2-coloring. The value q is a
lower bound for a partial solution and Ui is the set of col-
ors that can be assigned to the vertex i, that is, the colors in
{1,2, . . . ,q+1} that was not used by a colored neighbor of i
and that are not scratched in the Figure 3.

In Figure 3, for instance, an initial upper bound k = 4
and a 4-coloring was found in the steps 1 to 8. Since the
vertex E was the one that got the color 4 in the step 6, then
the algorithm verifies if there is another color that could be
assigned to the vertex D. Since there is no other possible color,
then the algorithm checks if there is another color for vertex
C. In this case, the color 3 is a feasible one. The algorithm
recolor the other vertices from this point.

AG B

F

C E

DH

Figure 2. Example graph for the branch-and-bound
DSATUR algorithm

The most recent adaptation of Brelaz’s algorithm [15] can
be found in the work of Sewell [21] and San Segundo [19].
They proposed new tie breakers in the step of choosing the
vertex with the greatest degree of saturation.

The algorithm of Sewell [21] chooses the vertex that
shares the greatest amount of available colors with its neigh-
bors in the uncolored subgraph, while the algorithm of San Se-
gundo [19] chooses the vertex that shares the greatest amount
of colors with the vertices that have the same greatest degree
of saturation. Furini, Gabrel and Ternier[20] also made an
adaptation of Brelaz’s algorithm, although their modification
was done in the updating step of the global upper bound for
the chromatic number.

Tests of the algorithms of Brelaz [15] and Sewell [21]
have been done by San Segundo [19]. The algorithms were
executed in random graphs with at most 80 vertices and in
some DIMACS [22] instances. The author concluded that
the three algorithms have similar results, except in graphs of
densities up to 0.7, which [19] is more efficient. In almost
all DIMACS instances, San Segundo’s algorithm [19] had
the best performance. Results in [20] are similar to the ones
in [19]. For the random graphs instances, the algorithm of
Furini, Gabrel and Ternier [20] had better results to graphs
from 75 to 80 vertices, but the computational costs in relation
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UA = /0
q = 1

c(A) = 1

(1)

UF = {�1,2}
q = 2

c(F) = 2

(2)
UB = {�1,2,3}

q = 2
c(B) = 2

(3)

UC = {1, �2,3}
q = 2

c(C) = 1

(4)

UD = {�1, �2,3}
q = 3

c(D) = 3

(5)

UE = {�1, �2, �3,4}
q = 4

c(E) = 4(6)

UG = {�1,2,3,4,5}
q = 4

c(G) = 2(7)

UH = {1, �2,3,4,5}
q = 4

c(G) = 1(8)

Solution 1
k = 4

UC = {�1, �2,3}
q = 3

c(C) = 3(9)

UD = {1, �2, �3,4}
q = 3

c(D) = 1(10)

UE = {�1, �2, �3,4}
q = 4

c(E) = 4(11)

Partial solution
discarded.

UD = {�1, �2, �3,4}
q = 4

c(D) = 4

(12)

Partial solution
discarded.

UB = {�1, �2,3}
q = 3

c(B) = 3

(13)

UC = {1,2, �3,4}
q = 3

c(C) = 1 (14)

UD = {�1, �2,3,4}
q = 3

c(D) = 3 (15)

UE = {�1,2, �3,4}
q = 3

c(E) = 2 (16)

UG = {�1,2,3,4}
q = 3

c(G) = 2 (17)

UH = {1, �2,3,4}
q = 3

c(G) = 1 (18)

Solution 2
k = 3

Figure 3. State space search tree of the branch-and-bound DSATUR on the graph of Figure 2

to [19] is small.

3.2 Zykov’s Algorithm
The algorithm of Zykov [16] (Algorithms 12 and 13 [23]) is
based in his recurrence which states that, if G is a graph and
for any pair of vertices x,y ∈V (G) that do not share an edge,
an optimal coloring of G can either assign the same color to x
and y or not (Theorem 6).

In this section, we first show the basis of Zykov’s algo-
rithm, which he called a Zykov tree. Then, we discuss about
the analysis of the worst case of the algorithm (Theorem 7),
based in [23], and some of the results found in the literature.

3.2.1 Zykov Trees
Zykov [16] has stated we can obtain two new graphs from G,
for a given pair of vertices x,y ∈V (G) that are not neighbors.
One of these graphs will contract x and y into a single vertex,
while the other will create an edge between x and y. The chro-
matic number of G corresponds to the minimum chromatic
number of one of these graphs. In other words, an optimal
coloring of the first graph assign the same color to x and y,
while an optimal coloring of the second graph assign different
colors to x and y.

Definition 1. For two vertices x,y ∈V (G) that do not share
and edge, a contraction in G produces a new graph G′xy given

by

V (G′xy) =V (G)\{x,y}∪{z}

E(G′xy) =


{u,v} ∈ E(G) such that x /∈ {u,v} and y /∈ {u,v}
∪
{u,z} such that {u,x} ∈ E(G) or {u,y} ∈ E(G)


For two vertices x,y ∈V (G) that do not share and edge, an
addition in G produces a new graph G′′xy given by

V (G′′xy) =V (G)

E(G′′xy) = E(G)∪{{x,y}}

Theorem 6. The chromatic number of G is given by the re-
currence

χ(G) = min
{

χ(G′xy),χ(G
′′
xy)
}

such that x,y ∈V (G) and {x,y} /∈ E(G)

The recurrence of Theorem 6 builds a binary tree called
Zykov tree where its leaf nodes are cliques and the chromatic
number of the graph is given by the smallest clique of the tree.

Zykov trees have exactly one branch formed only by con-
traction operations, where the size of the clique of this branch
is an upper bound q for the chromatic number. This bound
is updated each time a better coloring than the current one is
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Algorithm 11: BROWN(G)
Input: A graph G
Result: The optimal coloring c of G

n← |V (G)|.
Get an ordering (v1,v2, . . . ,vn) to V (G), such that

dG(vi)≥ dG(vi+1) for all i ∈ {1, . . . ,n}.
Set color 1 to v1.
i← 2
k← n
q← 1
U1← /0
l1← 1
updateU ← T RUE
While i > 1

//Solutions are generated while the root of the
solution tree is not reached.

If updateU = T RUE
Calculate the set Ui, such that Ui has the

colors in {1,2, . . . ,q+1} minus the ones that
are not used by the neighbors of vi.

If Ui = /0
i← i−1
q← li
updateU ← FALSE

Else
Choose j ∈Ui, such that j has the minimum

value as possible, and set color j to the vertex
vi.

Delete the color j of the set Ui.
If the color j is smaller than the upper

bound k
If the color j is greater than the lower

bound q
q← q+1

If i = n
Store the current solution and set

k← q.
Find the smallest index j such that

the color of v j is equals to k.
i← j−1
q← k−1
updateU ← FALSE

Else
li← q
i← i+1 //a new vertex is selected

to be colored
updateU ← T RUE

Else
i← i−1
q← li
updateU ← FALSE

Return A function c : V (G)→{1, . . . ,k}

found. In a Branch-and-Bound version of Zykov’s algorithm,
operations of contractions and additions will happen only in
graphs that do not have a q-clique on its structure. Figure 4
shows an example of the Algorithms 12 and 13 on the graph
represented in the tree’s root.

Algorithm 12: COLOR(G)
Data: A graph G
Result: The minimum value q
n← |V (G)|
If G is a complete graph

q←min{n,q}
else if G does not have a q-clique then

Choose x,y ∈V (G) such that {x,y} /∈ E(G).
Color(G′xy) //vertex contraction
Color(G′′xy) //edge addition

Return q

Algorithm 13: ZYKOV(G)
Data: A graph G
Result: The chromatic number of G
n← |V (G)|
χ(G)← Color(G)
Return χ(G)

(1)

(2)

(3)
(4)

(5)

Figure 4. Pruned Zykov tree

Theorem 7. An algorithm based on Zykov trees has complex-
ity O(2n2

) and space O(n2(n+m)), if the input is a graph
with n vertices and m edges.

Proof. The height of a Zykov tree is at most m, which is the
number of complementary edges so that the graph be complete.
Each level i of the tree has 2i nodes, so the size of the tree is
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m

∑
i=0

2i =
2m+1−1

2−1
= 2m̄+1−1 = 2

n(n−1)
2 +1−1

The amount of memory necessary in algorithms of this
kind is O(n2(n+m)), since the whole graph is stored on each
level of the recursion.

Corneil and Graham [24] adapted Zykov’s algorithm to
find the pair of vertices that are not neighbors in a q-cluster,
which is a dense subgraph of G. Their algorithm uses an
amount O(n3) of memory.

McDiarmid [25], on the other hand, focused on doing
a more detailed worst case analysis of Zykov’s algorithms,
concluding that this algorithms are not more efficient than the
ones that are based on generating the maximal independent
sets of a graph. He concluded that for almost all graphs, a
Zykov tree has size O(ecn

√
logn), where c is a constant c > 1.

4. Integer Linear Programming Algo-
rithms

In this section, we present the algorithms that solve graph
coloring instances as integer linear programs, which are based
in the previous work of Mehrotra and Trick [26]. We first show
some definitions of Linear Programming and formulations of
the graph coloring problem as integer linear programs (ILP).

Mehrotra and Trick [26] use the Branch-and-Price method,
which combines the methods of Branch-and-Bound and Col-
umn Generation. We describe their algorithm and discuss
about its most recent adaptations.

4.1 Integer Linear Programming
When we have an optimization problem where a linear func-
tion subject to a set of linear constraints is given, then we have
a linear program. When the objective is to find the smallest
value for the function, then we have a linear minimization
program.

Let n,m ∈ N∗, A ∈ Qn×m and the arrays c ∈ Qn, x ∈ Qn
+

and b ∈ Qm represented as columns. cT denotes the array c
transposed. The canonical and the standard formulations of a
linear program are defined below.

Definition 2. The canonical formulation of a linear program,
defined by A, b and c, is given by

Minimize z = cT x

subject to Ax≥ b

x≥ 0

Definition 3. The standard formulation of a linear program,
defined by A, b and c, is given by

Minimize z = cT x

subject to Ax = b

x≥ 0

A canonical formulation can be converted into a standard
one with the addition of slack variables. More details about it
can be checked in [27].

When we have a linear program where the values of x
are integer, then we have an integer linear program. The
value of the non-integer optimal solution of a linear program
is a lower bound for its integer optimal solution value, and
the difference between these two values is called integrality
gap. Solving a linear program is a polynomial problem, and
the most known algorithm that solves a linear program is the
Simplex Algorithm [28]. On the other hand, solving an integer
linear program is a NP-Hard problem, since a Branch-and-
Bound algorithm combined to the Simplex is necessary to
solve it optimally [29].

4.1.1 ILP formulations for the graph coloring problem
For a graph G where n = |V (G)| and m = |E(G)|, a first for-
mulation for the graph coloring problem as an ILP is given by
Formulation (2), defined by the equations (2a), (2b), (2c), (2d)
and (2e).

Minimize
n

∑
j=1

x j (2a)

subject to:
n

∑
j=1

yv j = 1, for all v ∈V (G)

and j ∈ {1, . . . ,n} (2b)
yv j + yu j ≤ x j, for all {v,u} ∈ E(G)

and j ∈ {1, . . . ,n} (2c)
yv j ∈ {0,1}, for all v ∈V (G)

and j ∈ {1, . . . ,n} (2d)
x j ∈ {0,1}, for all j ∈ {1, . . . ,n}

(2e)

In this formulation, there is one binary variable x j for each
color j indicating if that color is part of a solution or not. Each
variable yv j indicates if the color j is assigned to the vertex v.
The objective function describes a minimization integer linear
program, since an optimal solution has the minimum number
of colors assigned to the vertices. The set of constraints in (2b)
describes that a vertex can only have one color assigned to it.
Each constraint in (2c) describes that vertices that share an
edge cannot have the same color.

Formulation (2) has a polynomial amount of constraints
and variables, but it generates a factorial set of symmetric
solutions. That is, a solution is symmetric when it can be
represented as a combination of different valuations. It turns
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the state space search tree of the Branch-and-Bound algorithm
too large, as Lewis [1] exposes.

Let the equations (3a), (3b) and (3c) be the Formula-
tion (3), proposed by Mehrotra and Trick [26].

Minimize ∑
S∈S

xS (3a)

subject to: ∑
{S:v∈S}

xS ≥ 1, for all v ∈V (G) (3b)

xS ∈ {0,1}, for all S ∈ S (3c)

In Formulation (3), S is the set of the maximal independent
sets of a graph and the binary variable xS indicates whether a
set S ∈ S is part of a solution or not. The objective function
in (3a) indicates that the chromatic number of a graph cor-
responds to the minimum set cover. Each constraint in (3b)
indicates that each vertex v must be contained in at least one
maximal independent set S. Although this formulation has an
exponential number of variables, the problem of symmetry is
avoided.

Fractional coloring A non-integer optimal solution of the
Formulation (3) gives a fractional coloring of G. That is, since
each maximal independent set represents a color, then each
vertex will receive a set of colors instead of just one in a
fractional coloring. Besides, the sets of vertices that share
and edge will be disjoint. The value of an optimal fractional
coloring is called fractional chromatic number, denoted by
χ f (G).

For example, let S1 and S2 be two maximal indepen-
dent sets and let xS1 + xS2 ≥ 1 be the constraint for a vertex
v ∈ V (G). If xS1 and xS2 have values 0.5, for example, then
it means these colors contributes to 0.5 each in the fractional
chromatic number, and the vertex v has both S1 and S2 as-
signed to it.

The integrality gap between χ f (G) and χ(G) is O(logn)
[30], although finding χ f (G) is also an NP-Hard problem.

4.2 Column Generation
Sometimes we cannot escape the fact that some formulations
have a large set of variables, such as the Formulation (3).
They are still used in literature because they may avoid the
problem of symmetry in solutions [31]. One of the problems
of this kind of formulation is that many variables may not be
in the optimal solution. A way around it is to start solving the
instance with a small set of the variables and add the others
as necessary.

The Column Generation method uses this approach to
solve linear programs with a large set of variables. The col-
umn in the method’s name refers to the Simplex algorithm in
tableau format, where each column is associated to a variable.

A Column Generation based algorithm decomposes the
linear program in two, named Master Problem and Pricing
Problem. The first one is a more restricted reformulation of
the original linear program, while the second one is the linear

program that determines the variables that will be gradually
added to the Master Problem. Both of the problems can be
obtained by the Dantzig-Wolfe Linear Decomposition [28].
A description to this decomposition is given by Andrade,
Miyazawa and Xavier [32].

For a given linear program in the standard form, the main
idea of a Column Generation based algorithm is to find an
initial set of the variables such that the Master Problem has at
least one viable solution from this set. The Master Problem
is solved with this set using the Simplex Algorithm. This is
called the Restricted Master Problem (RMP).

Before showing a general description to a Column Gen-
eration algorithm, we review the pricing step of the Simplex
Algorithm, since the Pricing Problem comes from this stage.

The solution found by the Simplex Algorithm separates
the indices of the variables in two sets B and N. The set B has
dimension m and the variables associated to this set is called
the basic variables (or the basis B). The set N is the set of the
indices that are not in B, and the variables associated to it are
called the non-basic ones. We denote the set of the basic and
non-basic variables as xB and xN , respectively. We also denote
the sets of the costs of the basic and non-basic variables as cB
and cN , respectively. Each variable in xB has value greater or
equal than 0 and every variable in xN is equal to 0.

The matrix A can be rewritten as A = [AB|AN ], where
AB = {Ai}i∈B, AN = {Ai}i∈N and AB is non-singular. We
obtain the following equivalence:

Ax = b ⇐⇒ ABxB +ANxN = b ⇐⇒

⇐⇒ A−1
B ABxB+A−1

B ANxN =A−1
B b ⇐⇒ xB =A−1

B b−A−1
B ANxN

Rewriting the objective function substituting xB for the ex-
pression found above, we have

z = cT
BxB + cT

NxN = cT
B(A

−1
B b−A−1

B ANxN)+ cT
NxN

= cT
BA−1

B b+ xN(cT
N − cT

BA−1
B AN)

The pricing step of the Simplex Algorithm, then, will find
the non-basic variable that has the minimum reduced cost
to enter the basis, that is, the minimum negative value of
cT

N − cT
BA−1

B AN . Only the non-basic variables are examined
since the basic variables has its reduced cost equals to zero.
We denote A−1

B as λ .
For a given linear program that has an optimal solution,

let n be its number of variables. The Column Generation is
generically described as follows (Algorithm 14).

A Branch-and-Bound algorithm that uses the Column
Generation method is called a Branch-and-Price algorithm,
and it is illustrated in the Figure 5. When a branching step
occurs, it means that constraints are added to a linear program
to force the value of a variable to be integer (details can be
checked in [27]). In the Figure 5, X is the set of the linear
programs that are in the state space search tree to be solved.
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Input: Integer Linear Program

Formulate the Master Problem by the
Dantzig-Wolfe linear decomposition

Get the initial set of variables to con-
stitute the Restricted Master Problem
(RMP) by an heuristic, for example

Get the non-integer solution of the RMP

Formulate and solve the pricing problem

Is there a reduced cost variable?

Add
the new

variable to
the RMP

Is the solution viable?

Is the solution integer?

Branch the current instance and add the new in-
stances to the X

Is X empty?

Output:
An optimal
solution, if

possible.

Select an instance of X

Yes
No

Yes

Yes
Yes

No

No

No

Figure 5. Simplified flowchart of a Branch-and-Price algorithm
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Algorithm 14: COLUMN GENERATION

Data: The m×n matrix A and the arrays b and c of dimensions m and n, respectively.
Result: The optimal solution of the linear program defined by A, b and c, such that Ax = b and cT x is minimum.
Let P be the linear program formulated from A, b and c.

Get the Master Problem of P from the Dantzig-Wolfe linear decomposition.

Get the Restricted Master Problem RMP.

Do
Solve the RMP by the Simplex Algorithm.

Define the set of non-basic variables as the set that has the non-basic variables found in the non-integer solution of
the RMP and the variables that are not in the RMP yet. Formulate the Pricing Problem (PP) from the pricing step of
the Simplex Algorithm, that is,

c = cT
N−λ

T AN

ci ∈ c such that ci is minimum and i ∈ N

Solve the PP. If ci < 0, then add the variable found in PP to the RMP. Otherwise, the solution of the RMP is also an
optimal solution to the linear program given as input.

while there is ci < 0 in c;
Return x

4.3 Mehrotra and Trick Algorithm
The first exact algorithm for the graph coloring that use the
Branch-and-Price method was proposed by Mehrotra and
Trick [26]. The Master Problem is composed by Formula-
tion (3) without the integrality constraints.

The Restricted Master Problem is described in Formula-
tion (4), which is defined by the equations (4a) and (4b). To
get the initial set of variables S ∈ S for the Restricted Mas-
ter Problem, the authors use an heuristic procedure for the
Maximum Weighted Independent Set (MWIS) problem. We
describe this heuristic in Algorithm 15. We show that the
Pricing Problem of their algorithm is equivalent to solve the
Maximum Weighted Independent Set problem, in fact. We
finally describe the rule proposed by the authors in the branch-
ing step of the algorithm. The most recent adaptations of
Mehrotra and Trick [26] can be found in the work of Malaguti
and Toth [33] and Gualandi and Malucelli [34].

4.3.1 The Pricing Problem
As we mentioned before, Mehrotra and Trick [26] find the ini-
tial set of variables to the Restricted Master Problem, defined
as follows.

Minimize ∑
s∈S

xS (4a)

subject to: ∑
{S:v∈S}

xS ≥ 1, for all v ∈V (G) (4b)

xS ≥ 0, for all S ∈ S

The authors use an heuristic to the Maximum Weighted

Independent Set problem (MWIS), that we define below. The
heuristic is described in Algorithm 15.

Maximum Weighted Independent Set (MWIS)
Input: a graph G and a function w : V (G)→Q such that
w(v) is named weight of the vertex v ∈V (G).
Answer: a maximum weighted independent set, that is, an
independent set I ⊆V (G) such that ∑

v∈I
w(v) is maximum.

Algorithm 15: GREEDY HEURISTIC FOR THE
MWIS(G)

Data: A graph G
Result: A maximal weighted independent set
I← /0
Do

Choose a vertex v ∈V (G) of maximum weight.
Add v to I.
Remove NG(v) from V (G).

while V (G) 6= /0;
Return I

As we mentioned before, the Pricing Problem is obtained
by the pricing step of the Simplex Algorithm, that is,

min
{

cT
N−λ

T AN
}

.

More details of the relation between the dual and the pricing
problems can be checked in [35].
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In the Master Problem defined in Formulation (3), each
coefficient in cT

N has value 1 and each variable is associated
to a column of AN , which describes an independent set S
that is represented as an array z ∈ {0,1}n. Each row of the
Master Problem is associated to a vertex v ∈V (G), so we can
denote λv as the dual value obtained by v in the non-integer
solution of the RMP. Hence, we have that the Pricing Problem
corresponds to min

{
1−λ T z

}
, that is,

min

{
1− ∑

v∈V (G)

λvzv

}
≡ 1−max

{
∑

v∈V (G)

λvzv

}
Formulation (5), defined by (5a) and (5b), describes the

Pricing Problem, which is in fact the Maximum Weighted
Independent Set problem. If the optimal solution of this for-
mulation is greater than 1, then the independent set S that
will be added to the RMP is constituted by each vertex v
where zv = 1, that is, S = {v ∈V (G) such that zv = 1}. Other-
wise, there is no independent set that can improve the current
solution of the Master Problem.

Maximize ∑
v∈V (G)

λvzv (5a)

zu + zv ≤ 1, for all {u,v} ∈ E(G) (5b)
zv ∈ {0,1}, for all v ∈V (G)

4.3.2 The Branching Rule
The branching step follows the Zykov rule described in Sub-
section 3.2. For an instance of the state space search tree, let
S1 and S2 be two maximal independent sets and xS1 and xS2
the variables associated to these sets, such that at least one of
them got a non-integer value. Since the non-integer optimal
solution of the Master Problem represents a fractional color-
ing, then there are two vertices u,v ∈V (G) such that, without
loss of generality, u ∈ S1 ∩S2 and v ∈ S1 \ S2. It means that
whether u can receive the same color as the vertices in S1 (and
so does v) or it can receive the same color as the vertices of
S2. Then, one of the new instances to be added to the state
space search tree will have a constraint where u and v are
contracted in one vertex, while the other new instance will
have a constraint where u and v have an edge between them.
In fact, the constraint will be updated, so it is not necessary to
create new constraints to the new instances.

4.3.3 Further Work
Mehrotra and Trick [26] observe that improvements in their
method can be done in the algorithm that solves the MWIS
problem. In their work, they propose a recurrence where
given a graph G and a vertex v ∈V (G), the MWIS can either
exclude v or have v and the vertices that are not neighbors of
v, that is,

MWIS(G)=max
{

MWIS(G− v),MWIS(G[{v}∪NG(v)])
}

The most recent adaptations of their algorithm can be found
in the works of Malaguti and Toth [33] and Gualandi and

Malucelli [34]. The first one uses a tabu search based heuristic
to find the MWIS in the pricing step. This heuristic is executed
for a fixed number of iterations. If this number is attained and
a column were not found, then the instance of the MWIS is
solved as a linear program. Gualandi and Malucelli [34], on
the other hand, use Constraint Programming in the pricing
step.

San Segundo [19] and Furini, Gabrel and Ternier [20]
compare their algorithms with the implementation of Malaguti
and Toth [33], and they conclude that the Branch-and-Price
based algorithms are currently the most efficient ones for hard
DIMACS instances, while the algorithms based on the exact
version of the DSATUR are the best ones for random graphs
with 60 to 80 vertices and densities between 0.1 and 0.9.

5. Conclusion
In this work, we presented the most recent exact algorithms
for the graph coloring problem, which are the ones based in
Dynamic Programming, Branch-and-Bound and Integer Lin-
ear Programming. The algorithms of the first group have an
worst case analysis, while the other ones have only an experi-
mental analysis. We briefly introduce the information required
to the comprehension of the exact algorithms that solve graph
coloring instances. We also observe that the algorithms based
in Branch-and-Price and Branch-and-Bound DSATUR are
the most promising for the graph coloring problem, where the
most recent are based in the previous work of Mehrotra and
Trick [26] for the first group and Brelaz [15] for the second
group. Tables 1 and 2 show an overview of the algorithms
presented in this work.

We observe that besides the differences between the exact
approaches, they show similarities that are not always clear
to the researcher. The algorithm proposed by Eppstein [5]
for the optimal coloring problem, for example, can be actu-
ally extended to the algorithms of Lawler [4] and Byskov [6],
without affecting the result of the respective analyses. Simi-
larities between different paradigms also can be found. The
Zykov’s recurrence, for example, is much less efficient than
other approaches, but it is useful in the branching step of
Branch-and-Price algorithms, since this kind of rule does not
change the original structure of the problem. Besides, we can
cite the DSATUR procedure either as a simple heuristic for
finding an initial upper bound for the chromatic number of a
graph, or as a good exact algorithm for random graphs.

Table 1. Overview of the Dynamic Programming based
algorithms

Algorithm Problem Results Space

Lawler (1976) Chromatic number O(2.4423n) Θ(2n)

Eppstein (2003) Chromatic number
O(2.4150n)

O(2n)
Optimal coloring

Byskov (2004) Chromatic number
O(2.4023n)Optimal coloring

Bodlaender & Kratsch (2006) Chromatic number O(5.283n) O(n logn)
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Table 2. Overview of the Branch-and-Bound and ILP based algorithms

Design
Paradigm

Method Algorithm Results Type of
instance

Backtracking Brown (1972) Random
graphs

Sewell (1998) Sewell’s algorithm is
more efficient than
Brown’s for graphs with
more than 60 vertices.

Random
graphs and
DIMACS
instances

Branch-and-
Bound

Exact
DSATUR
(Brélaz
(1979))

More efficient than
Sewell’s in dense graphs
(density up to 0.7).

Random
graphs

San Segundo
(2012)

San Segundo’s algorithm
is more efficient than
Sewell’s in almost all in-
stances.

DIMACS
instances

Their algorithm is more
efficient than San Se-
gundo’s for dense graphs
(density from 0.7 to 0.9)
and number of vertices
from 75 to 80, but the
computational cost differ-
ence is small. Their al-
gorithm is also more ef-
ficient than the ILP algo-
rithms in this type of in-
stance.

Random
graphs

Furini, Gabrel
and Ternier
(2017)

Similar results to San Se-
gundo’s algorithm.

DIMACS
instances

Zykov trees Corneil e Gra-
ham (1973)

Storage bounded in
O(n3).

Random
graphs

McDiarmid
(1979)

Analytical results. For
almost all graphs, a
Zykov tree has size
O(ecn

√
logn).

—

Branch-and-
Price

Mehrotra and
Trick (1995)

Integer Linear
Programming

Branch-and-
Price and
Tabu Search

Malaguti and
Toth (2011)

More efficient results for
these instances in relation
to the Branch-and-Bound
algorithms.

DIMACS
instances

Branch-and-
Price and
Constraint
Programming

Gualandi and
Malucelli
(2012)
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