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A Genetic Programming Model for Association Studies to
Detect Epistasis in Low Heritability Data
Um Modelo de Programação Genética para Estudos de Associação para Detectção de
Epistasia em Dados de Baixa Herdabilidade

Igor Magalhães Ribeiro1,Carlos Cristiano Hasenclever Borges2, Bruno Zonovelli da Silva1,
Wagner Arbex3*

Abstract: The genome-wide associations studies (GWAS) aims to identify the most influential markers in
relation to the phenotype values. One of the substantial challenges is to find a non-linear mapping between
genotype and phenotype, also known as epistasis, that usually becomes the process of searching and identifying
functional SNPs more complex. Some diseases such as cervical cancer, leukemia and type 2 diabetes have
low heritability. The heritability of the sample is directly related to the explanation defined by the genotype,
so the lower the heritability the greater the influence of the environmental factors and the less the genotypic
explanation. In this work, an algorithm capable of identifying epistatic associations at different levels of heritability
is proposed. The developing model is a aplication of genetic programming with a specialized initialization for the
initial population consisting of a random forest strategy. The initialization process aims to rank the most important
SNPs increasing the probability of their insertion in the initial population of the genetic programming model. The
expected behavior of the presented model for the obtainment of the causal markers intends to be robust in
relation to the heritability level. The simulated experiments are case-control type with heritability level of 0.4, 0.3,
0.2 and 0.1 considering scenarios with 100 and 1000 markers. Our approach was compared with the GPAS
software and a genetic programming algorithm without the initialization step. The results show that the use of
an efficient population initialization method based on ranking strategy is very promising compared to other models.

Keywords: Bioinformatics — GWAS — SNP — Genetic Programming — Random Forest — Computa-
tional Modeling — Mathematical Modeling

Resumo: Os estudos de associação genômica ampla (genome-wide associations studies - GWAS) visam
identificar os marcadores mais influentes em relação aos valores fenotı́picos. Um dos desafios substanciais
é encontrar um mapeamento não linear entre genótipo e fenótipo, também conhecido como epistasia, que
geralmente se torna o processo de busca e identificação de SNPs funcionais mais complexos. Algumas
doenças como o câncer do colo do útero, leucemia e diabetes tipo 2 têm baixa herdabilidade. A herdabilidade
da amostra está diretamente relacionada à explicação definida pelo genótipo, portanto, quanto menor a
herdabilidade, maior a influência dos fatores ambientais e menor a explicação genotı́pica. Neste trabalho, é
proposto um algoritmo capaz de identificar associações epistáticas em diferentes nı́veis de herdabilidade. O
modelo em desenvolvimento é uma aplicação de programação genética com uma inicialização especializada
para a população inicial, consistindo de uma estratégia de florestal aleatória. O processo de inicialização visa
classificar os SNPs mais importantes aumentando a probabilidade de sua inserção na população inicial do
modelo de programação genética. O comportamento esperado do modelo apresentado para a obtenção dos
marcadores causais pretende ser robusto em relação ao nı́vel de herdabilidade. Os experimentos simulados são
do tipo caso-controle, com nı́vel de herdabilidade de 0,4, 0,3, 0,2 e 0,1, considerando cenários com marcadores
de 100 e 1000. Nossa abordagem foi comparada com o software GPAS e um algoritmo de programação
genética sem a etapa de inicialização. Os resultados mostram que o uso de um método eficiente de inicialização
da população baseado na estratégia de ranking é muito promissor em comparação com outros modelos. .
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1. Introduction
Over the last decade, the studies about the human genome
has generated a large amount of information, largely due
to the emergence of density-based “chips” technology that
has facilitated the measurement of hundreds of thousands of
variations of DNA sequences throughout the human genome
[1] [2]. The most common form of genomic variation or
marker is known as single nucleotide polymorphisms (SNPs).
These variations correspond to the alternation (substitution,
deletion or insertion) of nucleotides A, T, C and G in a single
position of the genome.

The genome-wide association study (GWAS) allows the
finding out molecular markers that indicate the risk or predis-
pose to complex diseases. The identification of these markers
can help directly or indirectly understand the mechanisms of a
particular disease. Directly finding the marker and indirectly
indicating the gene, metabolic pathway among other biologi-
cal characteristics, and the biggest challenge is to interpret and
understand the large number of information obtained in the
genotyping process, when molecular markers are identified
[3][2].

In [4], the authors indicates that one of the types of gene
interaction that gives rise to complex diseases is called epis-
tasis. This type of interaction makes the mapping between
genotype and non-linear phenotype, that is, one marker can
mask or completely alter the behavior of the other generating
a completely new characteristic. In this way, the interaction
becomes more difficult to detect. Heritability can be estimated
by the ratio between the variances of the genotype and pheno-
type. This ratio measures the proportionality of how much the
genetic factor influences the phenotype [5]. The heritability
directly interferes with the ability to correctly select markers
of interest for the study. The lower the heritability, the less the
explanation obtained through the genotype, and the greater
the influence of environmental factors.

Several medical conditions or diseases have low heritabil-
ity, for instance: asthma (0.3) [6], bladder cancer (0.07-0.31)
[7], cervical cancer (0.22) [8], leukemia (0.01) [9]; type-2
diabetes (0.26) [10], and so on. Therefore, it is necessary
to develop algorithms capable of identifying risk factors at
different levels of heritability.

In addition to heritability, there is a complexity in the
genotype-phenotype relationship due to distinct gene actions.
The works [1] and [11] explain that the linear modeling (linear
regression) used in GWAS problems considers only one SNP
at a time, in this context, the gene-gene and environment-gene
interactions of each marker are ignored. For the identifica-
tion of more complex genetic actions such as epistasis and
dominance, machine learning models that consider multiple
markers in classification and regression problems have been
presented to identify non-linear interactions between SNPs.

Initialization approaches were used in related works [1,
12, 13], and according [14] the use of expert knowledge can
significantly improve the performance in detection SNP-SNP
interactions in genetic programming algorithms. These pro-

posed models used a feature selection algorithm called Relief
[15] and their variants. The idea of Relief is estimate the fea-
ture weight according to their ability to discriminate between
individuals and their neighbors . However these algorithms
can identify possible SNP interactions, they are susceptible
to noise. They may capture marginal effects (single SNP
interaction with phenotype) rather than epistatic interactions.

The objective of this work is to develop a model to iden-
tify non-linear interaction of functional SNPs, i.e., epistasis,
across different levels of heritability. The model proposed is
an algorithm of evolution of solutions based on genetic pro-
gramming (GP) with initialization through random forest. The
idea behind the random forest choice is to use a most informa-
tive and robust measure in this context. The increase in mean
square error (MSE) of predictions can rank SNPs with low
noise and more informative to be part of epistatic interactions
than Gini index for example, taking between 5%-25% of extra
computing time.

2. Proposed Model
We propose a model combining evolutionary computation and
machine learning techniques, more precisely, genetic program-
ming to analysis to genotype/phenotype and random forest as
expert knowledge guiding the search for SNPs interactions
that could lead to a complex disease risk. The expert knowl-
edge algorithm is used to measure of attribute quality and
allows SNPs of interest to be inserted into the initial popula-
tion of GP algorithm.

2.1 Individuals
The structure of individuals is based on a tree – or a tree
representation of solutions – was suggested by [16] , where
the authors proposed to use multi-valued logic expressions in
disjunctive normal form (DNF). A DNF logic expression is
disjunctive of one or more monomials, where one monomial
consists of a single or a set of literals. In Figure 1, an example
of generic tree with DNF logic expression representing a GP
individual is shown. The GP grammar adopted is simple and
the function set is given by “AND” and “OR” expressions.
The terminal set consists of SNPs and their respective alleles,
for instance ”SNP1 = 0”.

OR

SNP3 != 1 AND

SNP1 = 1 SNP3 = 1

Figure 1. Example of an individual used in GPi. The
individuals are expression trees that represents SNP-SNP
high order interactions.
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2.2 Fitness function
The evaluation of individuals is given by the fitness function
fi, shown in (1):

fi =
T

V P+V N
+

Ni

α
(1)

where i is an index for an individual, T represents the total
of case-control individuals. V P is the true-positives, V N is
the true-negatives correctly classified. Ni is the numbers of
nodes and α is a parsimony constant (introduced in [17]).

2.3 Operations to generate new individuals
To create a new generation, the genetic operators including
crossover and mutation are applied. An overview on the
crossover operator is given in Figure 2, where two individuals
are selected to crossing. A random node are selected in each
individual, then two offspring are created from their combina-
tion. The first offspring is a combination of the individual for
the cut-off point with the second individual after the cut-off,
respectively. The second individual is generated from the
inverse composition of the first offspring. In the end, these
two individuals are inserted into the new generation.

2.4 Expert knowledge to generate initial population
The initialization mechanism that generate the initial popula-
tion is based on the importance of the variables according to
the random forest algorithm. It is used to capture an isolated
effect or a possible genotype-phenotype attribute interaction,
generating a ranking of SNPs that predict the phenotype. The
measure adopted is most informative than Gini index in this
context. The measure represents the increase in MSE of pre-
dictions from a sample estimated with an out-of-bag cross
validation method.

Usually in GWAS, the parameters are optimized, so, the
number of variables to choose from the decision tree nodes
and the number of trees that make up the forest need to be
defined. The values were defined from empirical tests that
presented significant or satisfactory results for the problem in
question.

Thereby, the number of variables used in each training
subset was the same number of markers used in the simulation
and the amount of trees defined by the forest was 1500 for the
experiments with 100 markers and 3000 for the experiments
with 1000 markers.

To generate the initial population, each terminal node of
each individual is submitted to a tournament process in which
a marker is selected from among the markers present in the
population at random. A comparison of the value assigned to
each marker by the random forest algorithm is performed, the
one with the highest value is selected to generate the terminal
node. Each individual can only have one copy of marker, so if
a terminal is populated by a given SNP, it can no longer appear
in the solution tree and another tournament is performed until
a previously uninserted SNP is found.

2.5 Parameter setting
Table 1 shows the parameter setting used by the algorithms
that are part of the model proposed in this work. The pa-
rameters such as Population size, Generations, Crossover and
Mutation frequency was based on [12] and the functions and
terminal sets on [16]. The GP algorithm proposed here has
been implement in ECJ [18], and R [19] [20].

Table 1. Parameter setting
Item Parameter
Population size 4096
Generations 50
Crossover Single-point
Mutation frequency 0.05
Selection Tournament

3. Experiments and Results

The following experiments and analyses are conducted on
Intel®Core™i7-4770K CPU with 3.50GHz × 8 and 32 GB
of RAM. A simulation study was performed to evaluate our
model in a GWAS problem. The objective of this simula-
tion is to generate artificial databases capable of capturing the
epistatic effects that give rise to phenotypes in cases of low her-
itability commonly found in genetics. Using GAMETES [21],
we could selected heritabilities ranges and created penetrance
functions that defines a relationship between the genotype and
phenotype. Table 2 exemplifies a penetrance function used to
generate a template with epistasis.

Table 2. Example of a penetrance function for a model
presenting epistasis.

AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0.451 0.214 0.190
Bb (0.50) 0.192 0.164 0.065
bb (0.25) 0.139 0.350 0.463

To the experiments, we developed four penetrance func-
tions where each model has two functional SNPs represents
an epistatic interaction and a heritability range between 0.1,
0.2, 0.3, 0.4 respectively. In all scenarios, the minor allele fre-
quency (MAF) was 0.2 and the SNPs represents three alleles
(0, 1 or 2).

For each database, functional SNPs were added to other
randomly generated markers, defining bases of 100 and 1000
attributes. Each algorithm was run 30 times and counted the
number of times that the functional SNPs were correctly se-
lected as the best model of the genetic programming algorithm
– we call ”power” the percentage of each algorithm identifies
the functional SNPs.

This value represents the predictive power estimation of
the proposed method for the phenotype, that is, which frequent
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ORIGINAL IND. 1 AND ORIGINAL IND. 2 OR

SNP1 = 0 OR

��

SNP3 != 1 AND

ss

SNP2 = 1 SNP2 != 1 SNP1 = 1 SNP2 = 0

OFFSPRING 1 AND OFFSPRING 2 OR

SNP1 = 0 AND SNP3 != 1 OR

SNP1 = 1 SNP2 = 0 SNP2 = 1 SNP2 != 1

Figure 2. Examples for the crossover used in GPi

the method is able to find the expected solution. The parameter
settings used in the simulations were based on [12].

We compared the power GPi algorithm, developed within
the scope of this work, against GPi algorithm without initial-
ization step – referred to as GP – and GPAS [16] on estimation
of power. We consider the output of each run of GPAS as
correct if the best 5 individuals contain the two functional
SNPs. This evaluation criterion was used in [12].

As written previously, the simulation data was generated
by GAMETES, with all the parameter settings are shown in
Table 3:

Table 3. Parameters of the GAMETES simulator
Item Parameter
MAF 0.2
Population size 2000
SNPs 100 and 1000
Heritability 0.1,0.2,0.3,0.4

For each experiment, a different penetrance function was
automatically generated. For example, a possible solution is
given by the syntactic tree in Figure 3 for 100 markers and
heritability equal to 0.4. The solution tree is generated from
the penetrance function given by Table 4.

The results obtained for 100 and 1000 SNPs can be seen
respectively in Figures 4 and 5. For the datasets with 100
SNPs, we can observe that GPi – actually, the proposed model
– found the correct rules for all heritabilities – even when the
heritability dropped to 0.1. The GP algorithm, i.e., without the

Table 4. Penetrance function simulating epistasis effect
(database with 100 markers, heritability = 0.4).

AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0.535 0.991 0.930
Bb (0.50) 0.998 0.140 0.315
bb (0.25) 0.871 0.433 0.003

initialization step, presented satisfactory results. The results
achieved by the power of GPAS showed that the algorithm is
still satisfactory, presenting a variation in the results only for
the case of heritability is equal to 0.1.

Experiments with 100 SNPs indicate that regardless of the
methods, functional SNPs can be found. The proposed model
obtained a small advantage than the other methods. However,
in the databases with 1000 SNPs , the results obtained by
each algorithm differ greatly between them. In this scenario,
the complexity in finding the functional SNPs has increased.
The proposed method obtained significant results even when
heritability drops to 0.1. Figure 6 shows the ranking of the
SNPs performed by the random forest algorithm. We can note
the functional SNPs appear at the top of the all ranking list.

4. Discussion
The identification of SNPs involved directly or indirectly in
the gene interactions in scenarios that present low heritability
is a fundamental step for the understanding of several com-
plex diseases. The discovery of the biological mechanisms
involved in the process can help research directed to the de-
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AND

OR OR

SNP100 = 1 SNP99 = 0 SNP99 != 0 SNP100 != 1

Figure 3. Individual representing a solutions for Table 4.

Figure 4. Graphic representing the power of each algorithm (GPAS, GP, GPi) across heritability of 0.4,0.3,0.2,0.1 with a
dataset containing 100 SNPs. The power is the number of times that the algorithm identifies the correct two functional SNPs.

velopment of prevention and cure methods.

Non-random initialization methods of the initial popu-
lation in evolutionary algorithms have been shown to be a
strategy to aid in the search for causal SNPs in these scenar-
ios, producing more significant results than algorithms that
do not use this strategy. However, we can observe that in
cases where heritability is considerable (≥ 40%), initializa-

tion strategies may not be the best choice, since the other
methods present significant results in this context and do not
depend on this step which can be computationally expensive.
To provide more conclusive basis for these analyzes, in the
future, real datasets could be used, such as GWAS data from
different types of complex diseases.

In addition, in order to ratify the results obtained by ana-
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Figure 5. Graphic representing the power of each algorithm (GPAS, GP, GPi) across heritability of 0.4,0.3,0.2,0.1 with a
dataset containing 1000 SNPs. The power is the number of times that the algorithm identifies the correct two functional SNPs.

lyzing the algorithm errors in the identification of the markers,
other evolutionary algorithms can be used, as well as more
efficient GP proficiency functions. The question of the objec-
tive function should be better investigated actually since the
GP without initialization has generally presented the worst
results.

Another two points to take into consideration is the ini-
tialization method and size of the databases. In the experi-
ments present, we used databases of 100 and 1000 markers,
following the experiments of similar algorithms in the litera-
ture. However, a real GWAS database has thousands or even
hundreds of thousands of SNPs. This condition implies the
need for efficient dimensionality reduction algorithms and /
or filters. Furthermore, other classification methods can be
combined to improve initialization mechanisms in cases of
extremely low heritability (≤ 0.1).

5. Conclusion
A GP algorithm aims to explore all search space. How-
ever, due to the large number of possible combinations, this
search may be computationally feasible. Expert knowledge
approaches are recommended in these cases. in cases.

The results of the methods compared in this work showed
that the use of an expert knowledge makes it possible to reduce
the search space of the GP algorithm, proving to be effective,
even in low heritability dataset. SNPs with higher quality of
information are selected and inserted into the initial population
of GP using the measure of increase in MSE of the random
forest algorithm.

We show that random forest is an option among the algo-
rithms used in other studies as expert knowledge methods and
it has shown to be able to capture possible candidate markers
for epistatic interactions and to be less sensitive to noises and
marginal effects.
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Figure 6. Ranking of the SNPs performed by the random forest algorithm. The results show the initialization step of the initial
population in each scenario. The arrows indicate the positions of SNP999 and SNP1000 (the two functional SNPs).
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