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Use of cytomorphometry for classification of subcellular
patterns in 3D images

Uso da citomorfometria para classificacao de padroes subcelulares em imagens 3D

Eduardo H. Silva'?, Jefferson R. Souza', Bruno A. N. Travencolo'*

Abstract: This paper presents a methodology for the classification of subcellular patterns by the extraction
of cytomorphometric features in 3D isosurfaces. In order to validate the proposal, we used a database of 3D
images of HelLa cells with nine classes. For each cell, several morphological attributes were extracted based on
its isosurface. Using the Quadratic Discriminant Analysis (QDA) classifier with the hybrid attribute selector, we
achieved 97.59% of accuracy and F1-score of 0.9757 when classifying the subcellular patterns.
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Resumo: Neste trabalho é apresentada uma metodologia para a classificacdo de padroes subcelulares por
meio da extragdo de caracteristicas citomorfométricas a partir de isossuperficies 3D. Para validar a proposta, foi
utilizada uma base com imagens 3D de células HelLa contendo nove classes. Para cada célula, varios atributos
morfologicos foram extraidos com base na isossuperficie da célula. O classificador Andlise Discriminante
Quadratica (QDA), juntamente com um seletor de caracteristicas hibrido, foram utilizados para classificagao dos
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padroes subcelulares, alcangando 97,59% de acuracia e F1-score de 0,9757.
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1. Introduction

Proteomics is the study of a set of proteins of a subcellular
organelle, tissue or organism. They are responsible for the
control of almost all the biological processes [1]. The subcel-
lular localization of proteins is necessary for the construction
of models that capture and simulate the cellular behavior,
being beneficial for the early diagnosis of diseases.

The localization of a protein may help the scientists to
describe their function, for example, a protein located on the
plasma membrane may have a transporter role on the ion
channel; on the other hand, a cytoplasmic protein may have
the catalytic role [2].

In pathology, morphological alterations in cellular struc-
tures are essential elements in diagnostic methods. Cytologi-
cal morphometry or cytomorphometry is a set of morphometry
techniques used to describe features of the cellular compo-
nents [3]. Morphological features of subcellular proteins pro-
vide information to recognize subcellular patterns and assist
biologists in predicting cellular behavior.

Computational tools have a key role in recent advances in
several biological problems [4]. This has led to the emerging
area of bioimage informatics, which integrates areas such as
Image Processing, Scientific Visualization, Machine learning
and others in analysis of biological images [5].

Scientific Visualization consists in applying techniques
to transform abstract data from observations into models that
can be easily understood for scientific exploration [6]. March-
ing Cubes is a widely used scientific visualization method in
medical imaging for the reconstruction of isosurfaces (i.e., tri-
angular meshes) from 3D volumes [7]. The extracted meshes
serve as input in different routines to extract different features
from the data. Machine Learning (ML) routines can then be
used to identify patterns and perform classification tasks.

In this context, this paper proposes a methodology for
extraction of morphological features of subcellular patterns
obtained by reconstruction of isosurfaces from 3D images.
Machine Learning classifiers were used to learn the subcellu-
lar patterns and provide the ability to distinguish them. The
obtained accuracy of the proposed work was compared with
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previous approaches.

1.1 Related Works

Fluorescence microscopy is a common technique used to
detect the spatial distribution of proteins inside a cell. In many
cases, the visual inspection of this type of image is not enough
to characterize the location of a subcellular pattern. There is a
need for a variety of computational methods to perform the
localization of subcellular patterns, and several approaches
have been proposed in this sense [8].

Automated methods for subcellular location in 2D images
from Human Protein Atlas were analyzed in the work by New-
berg et al. [9]. The authors obtained an 83% accuracy when
considering 45 different tissues. The study proposed by Huh
et al. [10] was designed to improve both the computational ef-
ficiency and accuracy of the subcellular patterns classification.
Gabor filters were used on image patches. The results tested
on 20 classes of 2D images classified obtained an overall ac-
curacy of 87.8%, with 2330 images out of 2655 images in the
UCSF dataset being correctly classified.

Kheirkhah et al. [11] used a method that improved the
features set, which distinguishes subcellular patterns with
high accuracy and high speed. This method based on Modified
Threshold Adjacency Statistics (MTAS) that is fundamental
to threshold the images. The authors used a collection of 2D
images of HeLa cells with antibodies and molecular probes
against proteins. The Support Vector Machine and 5-fold
cross-validation was used and obtained accuracy of 97.06%
for MTAS.

The work of Pdrnamaa et al. [12] performs the study for
automatically detecting the cellular compartment where a
fluorescently-tagged protein resides. An 11-layer neural net-
work was used on data from a mapping of yeast proteins,
achieving per cell localization classification accuracy of 91%,
and per protein accuracy of 99%. The authors identified
that the low-level network features correspond to basic im-
age features, while deeper layers separate localization classes.
Results demonstrate the usefulness of deep learning for high-
throughput microscopy.

Some works in the literature use the HeLa cancer cell
database introduced by Velliste et al. [13]. The authors pro-
posed a method for localization of 10 different subcellular
patterns in HeLa cells obtained by confocal fluorescence mi-
croscopy. Using ML algorithms is possible to make the predic-
tions of the subcellular patterns. In their work, 28 morpholog-
ical and distance attributes were extracted for validation of the
model. The authors used the DNA as a reference in the cell to
generate distance-based characteristics, such as the distance
from protein center to DNA center. Using Back-Propagation
Neural Network (BPNN) classification algorithm, it was ob-
tained 91% of accuracy. In work by Huang et al. [14], using
the same 28 morphological attributes, nine were selected by
the Stepwise Discriminant Analysis (SDA) method. With the
classification algorithm, Majority Voting was obtained 96%
of accuracy in their model.

The distance attributes that use DNA as a reference can be
problematic because some images may not contain DNA. The
images were extracted by different experts in different labora-
tories, so not always an image contains the DNA [2]. In work
proposed by Huang et al. [15], it was used 14 morphological
and geometric attributes (the distance features using DNA
were eliminated). Using Support Vector Machines (SVM)
algorithm for the classification of the samples, the authors
obtained 89.1% of accuracy in their proposal.

In work developed by Chen et al. [2], 48 attributes were
extracted, consisting of Halarick texture, edge, and morpho-
logical attributes. The authors used SDA to select a set of
attributes that best discriminate the classes. From the 48 at-
tributes, seven attributes have been chosen, being one edge
characteristic, five texture attributes, and the standard devia-
tion of the volume as the only morphological related attribute.
With the BPNN algorithm for classification of the samples,
the authors obtained 98% of accuracy in their proposal.

The subcellular localization of proteins in 3D images pre-
sented promising results over 2D images [14]. One common
feature of the methods described in this section is that they
have been developed based on the pixel (2D) or voxels (3D),
from which several features were extracted, such as, texture,
distance, and morphological attributes. In our proposal, on
the other hand, we consider the isosurface reconstruction for
extraction of attributes and use only the morphological at-
tributes.

2. Materials and Methods

2.1 Dataset

To evaluate our proposal, it was used a database of 3D images
of HeLa cells proposed by Velliste et al. [13]. HeLa is cell
line derived from a cervical tumor, widely used in several
biomedical researches [16]. The database is composed of 454
three-dimensional images (approximately 50 images per class)
containing only one cellular component. Each 3D image has
about 14 to 24 slices, and the voxel dimensions on axes x,
y and z were 0.049 x 0.049 x 0.203 um [13]. The images
were captured using a confocal laser scanning microscope,
focused on locating the following subcellular proteins and
organelles: endoplasmic reticulum (ER); two Golgi proteins,
giantin (GIA) and gpp130 (GPP); LAMP2 (LAM); mitochon-
dria (MIT); nucleolin (NUC); F-Actin (FAC); tubulin (TUB);
and the DNA [13]. The proteins giantin e gpp130 were in-
cluded in the analysis to evaluate the recall (sensitivity) of
the extracted visual features, as these proteins are hard to be
distinguished by visual inspection [17].

Figure 1 shows, for each protein and organelle, one image
(one slice of the 3D volume). Two channels are presented: the
green channel represents the DNA; and the red channel the
proteins or organelles. In these images, it is possible to locate
subcellular patterns with reference to the DNA.
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2.2 Proposed Methodology

The images were analyzed using the BioWebVis environ-
ment [18]. BioWebVis is a web application for cytomor-
phometric analysis using 3D data. Several algorithms and
techniques are available, involving image processing (e.g.,
pre-processing, segmentation, and feature extraction), com-
putational visualization (e.g., Direct Volume Rendering and
Isosurface reconstruction); and machine learning and pattern
recognition (e.g., K-Nearest Neighbors, SVM, and Neural
Networks) [18].

A general pipeline for the analysis of the data is shown
in Figure 2. First, raw data (a set of 2D images) was recon-
structed using the Marching Cubes algorithm. This algorithm
performs triangulations on volumetric data sets in order to
extract surfaces of constant density [7]. After reconstruction,
the subcellular proteins and organelles are delimited by an
external surface. The extracted surfaces are composed of a
polygonal mesh, from which is possible to obtain quantita-
tive information as, for example, the surface area [7]. For all
images, the isovalue chosen was 10 (the isovalue is a thresh-
old applied over the voxels intensity to define the location
of the surface inside the volume). This threshold value was
empirically chosen based on visual analysis.

After that, for each protein or organelle, a total of 17 fea-

Figure 1. Images samples from the analyzed database. (A) DNA, (B) ER, (C) Giantin, (D) GPP130, (E) F-Actin, (F) LAMP2,

(G) Mitochondria, (H) Nucleolin , (I) Tubulin. In all images, the green channel shows the DNA while the red channel shows the
proteins or organelles.

tures were computed: surface area, volume, volume on x axis,
volume y axis and volume on z axis [19], curvature — mean,
standard deviation and entropy [20], Normalized Shape In-
dex (NSI) [21], sphericity, convexity — area and volume [22],
coefficients ki, ky, and k; [19] and equivalent spherical diam-
eter [23]. These features were chosen because they describe
different morphological aspects of a 3D object and they can be
calculated from isosurfaces, avoiding pixel-based measures.

To measure the volume of an object, the use of techniques
named Maximum Unit Normal Component (MUNC) and Di-
vergence Theorem Algorithm (DTA) demonstrates superiority
over voxel counting [19]. The coefficients k,, k, and k, are
the weights factors of the DTA for the volume calculation.
These factors are measured as a fraction of the number total
of points, where MUNC of the gradients points were directed
by the coefficient index, the sum of these three attributes is
always equal to 1 [19].

All features computed for each protein or organelle has
different scales. A standardization process using Z-score was
used in BioWebVis to create a standard scale. Z-Score (z;)
uses the mean (X) and standard deviation (s) of the original
data (x) to compute the number of variations that the sample
is higher or lower than the average value [24], as shown in
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Figure 2. General pipeline used in this work, which can be divided in five main steps: (i) Confocal images are stacked to form
the 3D volume (raw images); (ii) Isosurface reconstruction is used to define the polygonal mesh that delimitates the subcellular
structure; (iii) Cytomorphometry is performed. In this stage, 17 measures are computed from the isosurface; (iv) Feature
selection algorithms are applied in order to reduce dimensionality; (v) Machine learning algorithms are used to classify the

subcellular components.
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After standardization, the data share a common scale,
which is essential for pattern recognition. The next step con-
sists in performing feature selection, a process to find the set
of features which best separates the classes. In BioWebVis
the following techniques are available: variance analysis, re-
gression analysis, Pearson Correlation, Decision Tree [25].
The Pearson coefficient can be computed from the slope of
the regression line of two standardized variables — values near
0 indicate low correlation and values near =1 mean strong
correlation [26].

Next, ML algorithms available on BioWebVis were used
to classify the samples and find patterns in the data. K-fold
stratified cross-validation was used by dividing the dataset
into k mutually exclusive subsets of the same size. One of
the subsets is used as testing set, whereas the remaining k — 1
subsets are used as training set. This process repeats k times,
in which the test subset changes at each turn, to cover all
the subsets [27]. In the end, the accuracy and the F1-score
are computed. The accuracy expresses the number of correct
predictions of the classifier, i.e., the relation of the number
of correct predictions and the total number of predictions, as
shown in Eq. 2 [28].

correct
accuracy = —————— 2)
predictions
Accuracy is a measure widely used to measure the per-

formance of a classifier. However, if the probabilities of the

classes are too different, it can indicate misleading results.
In this case, it is better to use the F1-score, a measure that
represents a weighted mean between precision and recall, as
expressed in Eq. 3 [28].

Fleox precision x recall 3)

precision+ recall

Precision measures the potential of the classifier in not
predicting as positive the negative objects (Eq. 4).

. truepositive
precision = — — “)
truepositive + falsepositive

Recall indicates the potential of the classifier in finding
all positive samples (Eq. 5).

truepositive

®

recall = — -
truepositive + falsenegative

The classification was performed using several types of
algorithms: Naive Bayes [29] and the Quadratic Discriminant
Analysis (QDA) [30] as classifiers based on Bayes decision
theory; SVM [31] as a linear non-probabilistic classifier; K-
NN [32] as a classifier based on instances that use distances
between samples, and Multilayer Perceptron [33] as a classi-
fier based on Neural Networks.

QDA [30, 34] is a supervised machine learning technique
for classification problems, which models the likelihood of
each class as a Gaussian distribution, and after that uses the
posterior distributions to estimate the class for a given test
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Table 1. The result of classifiers using all 17 attributes.

Classifier Fl-score Accuracy
K-NN 0.9223 92.31%
Multilayer Perceptron ~ 0.9305 93.41%
Naive Bayes 0.9439 94.53%
QDA 0.9391 94.10%
SVM 0.9445 94.51%

point. Furthermore, the Gaussian distribution parameters
for each class can be estimated from training data with the
maximum likelihood estimation. Lastly, the Gaussian model
is satisfied to cases when one does not have much information
to characterize a determined class.

3. Results

Figure 3 shows one example of isosurface for each database
classes. The green channel represents the DNA and the red
channel the proteins or organelles, so it is possible to visualize
the location of the subcellular patterns surrounding the DNA.
The measurements were extracted from the surfaces of each
subcellular pattern and from the DNA.

For analysis, all data were normalized on Z-Score. The re-
sults were obtained using the k-fold stratified cross-validation
with k = 10. It was calculated the mean value of the accuracy
and F1-score for each classifier. For K-NN, the first nearest
neighbors were used because they presented the best result
and in the Multilayer Perceptron classifier 100 neurons in a
hidden layer were used. Table 1 shows the result with all 17
attributes extracted using cytomorphometry.

SVM classifier was used considering a linear kernel and
C =1 (penalty factor). This classifier obtained the best result,
with an accuracy of 94.51% and F1-score of 0.9445. In order
to reduce the dimensionality of the attributes and to optimize
the classification, we used the decision tree Extra-Trees. The
Extra-Trees algorithm [35] is focused on supervised learning
problems, which builds an ensemble of regression trees ac-
cording to the standard top-down procedure. When looking
for the best split to separate the samples of a node into two
groups, random divisions are drawn for each of the randomly
selected features (maxfeatures) and best split among those is
preferred. When maxfeatures is set 1, this amounts to building
a random decision tree. Extra-Trees applies several times
the learning sample to generate an ensemble model. Lastly,
the predictions of the trees are aggregated to create the final
prediction, by majority vote in the classification problems. It
was selected seven attributes: mean, standard deviation and
entropy of the curvature; sphericity; volume in the z axis;
and coefficients k, and k,. Table 2 shows the results of the
classification algorithms with seven attributes.

QDA showed the best result, with an accuracy of 96.50%
and Fl1-score of 0.9649. QDA in combination with the at-
tribute selector improved the accuracy of the classifier over

Table 2. The result of the classifiers using the 7 attributes
selected with the Extra-Trees.

Classifier Fl-score  Accuracy
K-NN 0.9231 92.80%
Multilayer Perceptron  0.9318 93.46%
Naive Bayes 0.9419 94.34%
QDA 0.9649 96.50%
SVM 0.9377 94.12%

Table 3. The results of the classifiers using five attributes
(mean, standard deviation and entropy of the curvature;
volume in the z axis; and coefficient k) selected with
Extra-Trees and correlation analysis.

Classifier Fl-score  Accuracy
K-NN 0.9368 93.89%
Multilayer Perceptron ~ 0.9319 93.67%
Naive Bayes 0.9460 94.78%
QDA 0.9757 97.59%
SVM 0.9392 93.31%

the previous results (Table 1).

To improve the performance of the proposed model and
reduce the dimensionality of attributes, Pearson correlation
coefficient was calculated by combining in pairs the seven
features. The purpose was to eliminate the linearly correlated
attributes. For example, the correlation coefficient between
entropy and mean of the curvature is -0.079 and the line of
the linear regression graph shown in Figure 4 indicates a low
negative correlation between these attributes. Furthermore,
the distribution graph in Figure 4 shows that with only these
two attributes it is possible to distinguish several samples.

Highly correlated attributes may hinder the classification.
For example, the correlation coefficient between curvature
entropy and sphericity is -0.957 and the line of the linear re-
gression graph shown in Figure 5 indicates a high negative
correlation between these attributes. Also, from the distribu-
tion in Figure 5 we noticed the difficulty in distinguishing the
classes with only these two attributes.

Based on the correlation between attributes selected by
Extra-Trees, five features were selected: mean, standard devi-
ation and entropy of the curvature; volume in the z axis; and
coefficient k,. Table 3 presents the results of the classification
algorithms with the five attributes selected. It is worth to note
that the correlation analysis alone did not produce satisfac-
tory results when compared to the application of Extra-Trees
followed by correlation analysis.

QDA classifier with five attributes selected with a deci-
sion tree and statistical analysis presented the best result with
accuracy of 97.59% and F1-score of 0.9757. The number of
attributes was reduced from 17 to 5, projecting a model of
features that better discriminate the subcellular patterns. In
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this model, we noticed that the curvature features provide a
discriminatory capacity relevant to this problem.

Table 4 presents the confusion matrix resulting from the
classification with the QDA with five attributes. There is a
difficulty in distinguishing the giantin and gpp130 proteins
in a visual inspection. The proposed work separated well the
two proteins, misclassifying only three samples of these two
proteins.

Table 5 shows the result with four subcellular pattern clas-
sification approaches using the HeLLa 3D data. All approaches
have extracted the attributes of voxels from 3D volumes. The
works from [13] and [14] obtained the result using the DNA
reference for generating of distance-based attributes. In [15],
the authors did not use DNA as a reference to create attributes
and received a lower result. In [2], a better result was archived
when Halarick texture characteristics were included.

Our proposal obtained significant results based on cyto-
morphometry, without using DNA as a reference to generate
attributes. We also included the F1-score to show the weighted
average between the precision and recall of the classifier, as a
suitable learning algorithm should maximize precision and re-
call simultaneously. For comparison, we used accuracy (same
measure applied in the related works).

Figure 3. Visualization of the isosurfaces using BioWebVis. The green isosurfaces represent the DNA and the red represent the

proteins or organelles. (A) DNA, (B) ER, (C) Giantin, (D) GPP130, (E) F-Actin, (F) LAMP2, (G) Mitochondria, (H) Nucleolin,
(I) Tubulin.

4. Conclusions

This paper proposes a methodology for classification of sub-
cellular proteins using cytomorphometric measurements. We
present a complete pipeline for analysis 3D images for cell
biology, which can be used by cell biology community in their
analysis [18]. Due to the recent high availability of 3D images,
this type of analysis would become even a more common pro-
cedure. The features extraction on 3D isosurfaces may reveal
subcellular patterns that are often not seen in a 2D model or
in a 3D volume (using voxels instead of surfaces). The cur-
vature features, for example, have been shown to have a high
discriminatory capacity of the subcellular patterns, probably
due to high variability of the surface shape between the nine
analyzed classes.

Our findings reinforce the viability of the construction of
biological databases based on polygonal mesh instead of 3D
images (voxels), which implies in a considerable reduction
in storage and processing. From the polygonal mesh we can
extract relevant parameters from the objects. This kind of
reduction is extremely important for ML algorithms, reducing
the training time. For example, in neural networks the use of
pixels/voxels as data input is highly costly.

The reduction of dimensionality allowed the definition of
a reduced set of attributes that better discriminate the classes
of the model. Using a hybrid selector with a decision tree
and statistical analysis, it was possible to achieve the result
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Figure 4. Regression analysis between curvature entropy and mean curvature. (A) Scatter plot between curvature entropy and
curvature mean for each class. It is clear from this figure the class separability when considering these two features. (B)
Correlation line between the same features, showing a weak correlation (the slope is -0.079).
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Figure 5. Regression analysis between curvature entropy and sphericity. (A) Scatter plot between curvature entropy and
sphericity for each class. The class separation is harder to be identified. (B) Correlation line between the same features,
showing a strong negative correlation (the slope is -0.957).
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Table 4. Confusion Matrix resulting from the classification using QDA with five attributes.

DNA | ER | FAC | GIA | GPP | LAM | MIT | NUC | TUB

DNA 52 0 0 0 0 0 0 0 0

ER 1 49 0 0 0 0 0 0 0
FAC 0 0 49 1 0 0 0 0 0
GIA 0 0 0 49 1 0 0 0 0
GPP 0 0 0 2 46 2 0 0 0
LAM 0 0 0 0 3 47 0 0 0
MIT 0 0 0 1 0 0 49 0 0
NUC 0 0 0 0 0 0 0 50 0
TUB 0 0 0 0 0 0 0 0 52
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Table 5. Comparison of results with other related works.

Ref. Classification =~ Number of Number of Accuracy Fl-score
algorithm attributes  morphological
attributes

[13] BPNN 28 5 91%
[14] Majority Voting 9 5 96%
[15] SVM 17 5 89%

[2] BPNN 7 1 98%

Our proposal QDA 5 5 97.59% 0.9757

of 97.59% accuracy and F1-score of 0.9757 with the QDA
classifier. The result demonstrates the ability of this method-
ology to recognize the subcellular patterns and predicting the
classification of a new sample. In our proposal is not nec-
essary the prior knowledge of the DNA for the calculation
of new attributes. The importance of this finding is that it
can reduce the costs of the laboratory analysis, as no DNA
staining is necessary. In addition, some databases may not
contain the DNA. Therefore, we believe that it can be used in
other problems, for example, in analysis of cell deformation
in tumors.

The accuracy obtained from our proposal was inferior only
to the work by Chen et al. [2], but their work used several
types of attributes, not just the morphological ones. For future
work, we intend to perform the cytomorphometric analysis in
other real databases, as well as to use other measures (visual
features) to provide more information to the ML classifiers
for learning the cellular patterns successfully.
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