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Derivation of Mean Value Coordinates Using Interior
Distance and Their Application on Mesh Deformation
Derivação de coordenadas do valor médio usando distância interior e sua aplicação em
deformação de malhas

Lis Custódio1*, Sinesio Pesco2

Abstract: The deformation methods based on cage controls became a subject of considerable interest due
its simplicity and intuitive results. In this technique, the model is enclosed within a simpler mesh (the cage)
and its points are expressed as function of the cage elements. Then, by manipulating the cage, the respective
deformation is obtained on the model in its interior.
In this direction, in the last years, extensions of barycentric coordinates, such as Mean Value coordinates,
Positive Mean Value Coordinates, Harmonic coordinates and Green’s coordinates, have been proposed to write
the points of the model as a function of the cage elements.
The Mean Value coordinates, proposed by Floater in two dimensions and extended later to three dimensions by
Ju et al. and also by Floater, stands out from the other coordinates because of their simple derivation. However
the existence of negative coordinates in regions bounded by non-convex cage control results in a unexpected
behavior of the deformation in some regions of the model.
In this work, we propose a modification in the derivation of Mean Value Coordinates proposed by Floater. Our
derivation maintains the simplicity of the construction of the coordinates and eliminates the undesired behavior
in the deformation by diminishing the negative influence of a control vertex on regions of the model not related to
it. We also compare the deformation generated with our coordinates and the deformations obtained with the
original Mean Value coordinates and Harmonic coordinates.

Keywords: Mesh deformation — Barycentric coordinates — Mean value coordinates — Interior dis-
tance

Resumo: Os métodos de deformação baseados em poliedros de controle tornaram-se um assunto de con-
siderável interesse devido a sua simplicidade e resultados intuitivos. Nesta técnica, o modelo é envolto em
uma malha mais simples (o poliedro de controle) e seus pontos são escritos em função dos elementos desse
poliedro. Dessa forma, manipulando o poliedro de controle, a respectiva deformação é obtida no modelo em
seu interior.
Nessa direção, nos últimos anos, extensões de coordenadas baricêntricas, como as coordenadas de Valor
Médio, coordenadas de Valor Médio Positivas, coordenadas Harmônicas e coordenadas de Green, têm sido
propostas para escrever os pontos do modelo em função dos elementos do poliedro de controle.
As Coordenadas do Valor Médio, propostas por Floater em duas dimensões e estendidas posteriormente para
três dimensões por Ju et al. e também por Floater, destacam-se por sua simples derivação. No entanto, a
existência de coordenadas negativas em regiões delimitadas por poliedros de controle não-convexos resulta em
um comportamento inesperado da deformação em algumas regiões do modelo.
Neste trabalho, propomos uma modificação na derivação de coordenadas de Valor Médio proposta por
Floater. Nossa derivação mantém a simplicidade da construção das coordenadas e elimina o com-
portamento indesejado na deformação diminuindo a influência negativa de um vértice de controle em
regiões do modelo não relacionadas a ele. Também comparamos a deformação gerada com as nossas coor-
denadas e as deformações obtidas com as coordenadas do Valor Médio originais e as coordenadas Harmônicas.

Palavras-Chave: Deformação de malhas — Coordenadas baricêntricas — Coordenadas do valor médio —
Distância interior
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Deformations methods based on cage control stand out
from the others methods due their fast and intuitive interaction.
In these techniques the model is enclosed in a cage with a
considerably smaller number of vertices (compared with the
model), then the vertices of the model are defined as a function
of the vertices of the cage (the control vertices) ([1], [2],
[3]). Thus, the subsequents deformations of the cage control
uniquely define the deformations of the model in its interior.

Some deformation techniques use extensions of the barycen-
tric coordinates to achieve the reconstruction of the model in
function of the cage control. The barycentric coordinates λi
of a point v0 in the interior of a region P (polygons in R2 and
polyhedras in R3) satisfy the following criteria:

λi ≥ 0, positivity.
n

∑
i=1

λi = 1, partition o f unity.

n

∑
i=1

λivi = v0, linear precision.

(1)

Where, n is the number of vertices and vi are the coordi-
nates of the vertices in the boundary of P.

For simplexes (triangles in R2 and tetrahedra in R3), the
system of equations (1) has a single solution. However, if
we take a polygon with more than three vertices, the system
of equations (1) becomes consistent and indeterminate, and
there are infinite solutions that describe the point v0 in terms
of vertices vi, i = 1, · · · ,n. The same happen in R3 for a
polyhedra with more than four vertices.

Consider a region P with boundary ∂P defined by a poly-
gon with vertices v1,v2, ...,vn arranged in counter-clockwise
order and a point v0 in the interior of this region (see Figure
1(a)). One can interpret the coordinate λi of point the v0 in
related to the vertex vi as the influence of the vertex vi on the
point v0. When attempting to extend the barycentric coordi-
nates to non-simplex polyhedra, we are actually attempting to
smoothly propagate the influence of a vertices on the bound-
ary ∂P of region to its interior int(P). We define the function
f to be the identity function on ∂P, and we seek a smooth
function u defined in int(P) such that u is equal to f for every
point on ∂P. This smoothness is obtained once we require
that u be a harmonic function. In other words, we seek to
obtain a function u defined in P such that u is a solution to the
Dirichlet problem inside region P, with the identity function
as the boundary condition:

52u(v) = 0, v ∈ int(P) and u(v) = f (v), v ∈ ∂P.
(2)

In 2003, Floater [4] proposed a coordinate system based
on the mean value theorem [2] that yields smooth coordinates
in regions bounded by closed polygons. In 2005, Ju et al.
[5] and Floater et al. [6] extended the coordinate system ob-
tained by Floater to the three-dimensional space. The Mean
value coordinates (MVC) are distinct from other extensions
of barycentric coordinates because of their simple derivation,

with closed formula to derivate the coordinates in two and
three dimension, and local influence of control points, which
result in an intuitive deformation process. However, for non-
convex cage control, the presence of negative coordinates
results in an undesired behavior of the deformation (problem
illustrated in the Section 2). In this work, to eliminate these
undesired behavior, we propose a new approach in the deriva-
tion of the Mean Value Coordinates, in which a control vertex
do not has a significant influence on regions not related to it.

This work is organized as follows. In Section 1, we high-
light the main characteristics of the deformation methods that
use barycentric coordinates proposed in the last years. In Sec-
tion 2, we present the derivation of MVC proposed by Floater,
and point out the causes and consequences of negative co-
ordinates. In Section 3, we propose a modification on the
derivation proposed by Floater, where the Euclidean distance
is replaced by the interior distance, which better respect the
model geometry. In Section 4, we present the deformations
obtained with our coordinates and compare them with the
deformations obtained using MVC and harmonic coordinates.

1. Related work
Although barycentric coordinates have several applications in
computer graphics (some of them can bee seen in the works
proposed by Li et al. [7], Rustamov [8] and Farbman et al.
[9]), we opt to restrict the related works to their application in
mesh deformation.

In 2005, Ju et al [5] and Floater et al. [6] extended to three
dimensions the Mean Value Coordinates proposed by Floater
[4] in 2003. The derivation, based on the mean value theorem
for harmonic functions, has a closed formula and results in a
intuitive deformation process. However, the non-negativity
of the coordinates is guaranteed only on regions bounded by
convex cage control.

In 2007, Joshi et al. [10] proposed the Harmonic Co-
ordinates (HC), a generalization of barycentric coordinates
derived by the numerical solution of the Laplace’s equation
inside the cage control, which yielded strictly positive coordi-
nates. The cage control is filled by a regular grid, the solution
of the Laplace’s equation is obtained on its cells and then it is
interpolated to the vertices of the model. The necessity of the
domain discretization makes the derivation of the Harmonic
Coordinates a slow process, in which the linear precision is
guaranteed only on the grid cells.

Also in 2007, Lipman et al. [11] proposed the construc-
tion of strictly positive coordinates derived from the mean
value theorem, in which the visibility of a point within the
control polyhedron is considered, i.e., points within the cage
control are written only in terms of those (control) points that
are visible to it. In this way every interior point has a convex
cage control, which avoids the negative coordinates presented
in the method proposed by Ju et al. [5]. The visibility crite-
rion makes neighbors regions on the model be controlled by
different cage controls, which compromise the smoothness of
the coordinates.
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In 2008, Lipman et al. [12] proposed coordinates based
on the Green’s third identity, which describe points in the
interior of the cage control in terms of its vertices and faces.
Green’s Coordinates (GC) yield a conformal mapping in two
dimensions and a quasi-conformal one in three dimensions.
However, conformal mappings are restricted to rotations and
scalings, and the global influence generated by the method in
every control vertex results in a deformation process that is
difficult to control.

In 2010, Manson and Schaefer [13] constructed extensions
of barycentric coordinates based on least squares. These
moving least squares coordinates, similarly to the MVC, yield
negative coordinates for non-convex cage control. Moreover,
there is no closed formula to derivate the coordinates in three
dimensional space.

2. The Mean Value Coordinates
In this section we present the derivation of the Mean Value
Coordinates proposed by Floater [4]. For the simplicity of
the explanation we opt to present only the derivation in two
dimension, since the derivation in three dimension is based
on the same argument. For more details on the derivation and
analysis of MVC in three dimensions, see Custodio [14].

Let P be a region of the plane delimited by a convex poly-
gon with vertices v1,v2, ...,vn, arranged in counter-clockwise
order, and u be a harmonic function defined on its interior.
Given a point v0 inside P, we denote by B(v0,r) the circum-
ference centered at v0 with radius r (see Figure 1(a)).

In his work, Floater [4] use the Mean Value Theorem to
harmonic function to write the value of the function u at the
point v0 as a function of the a linear function defined on the
boundary of P.

Theorem 1 (Circumferential mean value theorem) Let P⊂
R2 be a convex region, u be a harmonic function in P and
B = B(v0,r)⊂ P with boundary Γ; then,

u(v0) =
1

2πr

∫
Γ

u(v)ds. (3)

Consider the triangle Ti = [v0,vi,vi+1] (see Figure 1) and
let Γi be the arc of Γ contained in Ti. We can now rewrite
equation (3) as

u(v0) =
1

2πr

n

∑
i=1

∫
Γi

u(v)ds. (4)

Lemma 1 If f : Γi → R is a linear function and αi is the
signed angle between vertices vi and vi+1, then

∫
Γi

f (v)ds= r2 tan
(

αi

2

)( f (vi)− f (v0)

‖vi− v0‖
+

f (vi+1)− f (v0)

‖vi+1− v0‖

)
+ rαi f (v0). (5)

v0 

vi + 1 

vi  

Γi 

(a) (b) 

αi v0 

vi + 1 

vi  

Γ 

Figure 1. (a) Circumference Γ centered at v0 inside region P.
(b) Triangulation of region P.

vi  

vi + 1 

v0 

vi --1 

Figure 2. Case leading to negative coordinates.

The Lemma 1 allows us to rewrite the Equation (4):

u(v0) =
n

∑
i=1

wi

∑
n
i=1 wi

u(vi), wi =

(
tan αi

2 + tan αi−1
2

‖vi− v0‖

)
.

(6)

Denoting

λi =
wi

∑
n
i=1 wi

, (7)

yields

u(v0) =
n

∑
i=1

λiu(vi). (8)

Note that Equations (6), (7) and (8) imply, respectively,
that the obtained coordinates are positive, their sum is equal to
1 and they have linear precision when representing a point in
the interior of region P, i.e., λi are the barycentric coordinates
for v0 relative to vertices vi.

2.1 The Negative Coordinates
Consider now a region P in the plane, bounded by a non-
convex polygon.

As showed in the Figure 2, the edge [vi,vi+1] is projected
on the circumference centered at v0 with its reverse orienta-
tion; therefore, the coordinate wi of the vertex vi relative to
the vertex v0 will, be given by

wi =

(
tan(−αi

2 )+ tan αi−1
2

‖vi− v0‖

)
, (9)

where tan(−αi
2 )< 0 and | tan(αi+1

2 )|< | tan(−αi
2 )|, which

imply wi < 0.
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(a) (b) 
Figure 3. (a) Positive (red) and negative (green) influence
regions of the orange-colored vertex. (b) Consequence of
negative weights and use of Euclidean distance in MVC.

2.2 Consequences of negative coordinates
The consequence of the generation of negative coordinates
is that in the deformation process some regions of the model
present an undesired behave. In Figure 3(a), we highlight the
regions where the control vertex in orange has the greatest
influence. In red the region where this influence is positive and
in green the region of negative influence. In the Figure 3(b) is
possible to observe that the movement of the control points
related to the model’s left leg causes an undesired deformation
in the right leg. The same effect can be observed on the left
leg, caused by the negative influence from the control vertices
of the right leg.

The problem caused by the negative coordinates is aggra-
vated by the use the Euclidean distance during the derivation
of the coordinates. When considering the Euclidean distance
between control vertices and points of the model, the visibil-
ity of a point inside the cage control is not respected. Thus,
the control vertices that are far from a point of the model,
considering path within the cage control, are by the euclidian
distance as close as the control vertices directly related to
this point (see Figure 4). Therefore, a region of the model
may suffer great influence from control vertices that are not
directly related to it, that will be negative influence, as showed
in Figure 3.

3. Derivation of Mean Value Coordinates
using Interior Distance

As presented in Section 2.1, MVC do not satisfy the assump-
tion of non-negativity for non-convex cage control. In the
Figure 5 we present some examples of this negative influence.

To solve the problem of the great influence of the control
vertices on regions not related to them we propose a mod-
ification on the derivation of the Mean Value Coordinates,
we replace the use of the euclidian distance by the interior
distance given by the length a path within the cage control
(see Figure 6), and we call the resulting coordinates by Mean
Value Coordinates with interior distance (MVC-ID).

Figure 4. Propagation of Euclidean distance from
orange-colored control vertices over the model.

We present a process of derivation that maintains the sim-
plicity of the MVC derivation by Floater [4]. In our derivation
it is not necessary to discretize the domain, and the smooth-
ness of the resulting coordinates is not compromised, which
are disadvantages of harmonic (Joshi et al. [10]) and positive
MVC (Lipman et al. [11]), respectively.

Figure 5. Influence regions of the orange-colored vertices.
Positive influence varies from red to yellow, and negative
influence varies from green to yellow.

3.1 The Interior Distance
Consider a distance d measured over the mesh of the cage
control and the distances di j = (vi,v j) between the vertices
in this mesh. Once we have a distance measure over the
mesh of the cage control, we define another distance measure
in its interior based on the article Interior Distance Using
Barycentric Coordinates (Rustamov et al. [15]), in which
extensions of barycentric coordinates are used to propagate
distances measured on a mesh to its interior.

To this end, the control vertices vi ∈ R3 are embedded in
a higher dimensional space Rm (for some m) by performing
a mapping vi 7→ vi

∗ ∈ Rm such that
∥∥vi
∗− v j

∗∥∥
2 = di j. Next,

using barycentric coordinates, we extend this mapping to the
interior of the mesh.

Given a point p inside the cage control and its barycentric
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v0 

vi 

(a) (b) 

Figure 6. (a) Illustrative example of a path inside the control
polygon. (b) Propagation of interior distance from control
vertices, highlighted in orange, over the model.

coordinates relative to the control vertices λi(p), i = 1, ...,n
(where n is the number of control vertices), we have:

p 7→ p∗ = ∑
i

λi(p)vi
∗ (10)

The distance between two points, p and q, taken inside
the cage control is given by the Euclidean distance of their
images, p∗ and q∗:

d̂(p,q) = ‖p∗−q∗‖2 (11)

The interior distance is therefore given as a function of the
barycentric coordinates of points p and q and of the images
vi
∗ of the control vertices.

Taking p∗ =∑i λi(p)vi
∗ e q∗ =∑i λi(q)vi

∗, from Equation
(11) we have:

d̂2(p,d) = 〈p∗−q∗, p∗−q∗〉
= 〈∑

i
(λi(p)−λi(q))vi

∗,∑
j
(λ j(p)−λ j(q))v j

∗〉

= ∑
i, j
(λi(p)−λi(q))(λ j(p)−λ j(q))〈vi

∗,v j
∗〉

= (
−→
λ (p)−

−→
λ (q))T A(

−→
λ (p)−

−→
λ (q)), (12)

where
−→
λ (p) = (λ1(p),λ2(p), ...,λn(p)) is the column

vector of the weights of the control vertices related to the
point p and matrix A is the Gram matrix of the vertices, where
each element is denoted by ai j = 〈vi

∗,v j
∗〉Rm . The interior

distance of a control polyhedron vertex to a point in its interior
is thus given by d̂(vi, p).

In our implementation, we opt do not to use an explicit
embedding. We computed the matrix A directly, using multi-
dimensional scaling (MDS) ((Ju et al. [16]).

Let D be the matrix with the square distances as measured
over the cage control, with Di j = d2(vi,v j) and I being the
identity matrix, then:

J = I− 1
n
−→
1
−→
1 T , (13)

where
−→
1 is a column vector of 1’s. Thus, A can be written

as:

A =−1
2

JDJ. (14)

For simplicity, we opt to define the distance between cage
control vertices as the shortest path between them, taken over
the edges of the mesh. In addition, to simplify the implemen-
tation, we used the original MVC to extend the embedding
performed at the control polyhedron vertices into its interior,
as suggested in the work of Rustamov et al. [15]. Despite
the negative coordinates, the original MVC guarantee the lin-
ear precision in the reconstruction of points within the cage
control.

3.2 Properties of interior distance
• Interpolation The distance d̂ obtained inside the mesh

interpolates the distance d measured on the mesh.

• Metric: If the Gram matrix A is a positive definite
matrix, then the distance d̂ is a metric.

• Same topology as Euclidean distance: If the Gram
matrix A is a positive definite matrix and the barycentric
coordinates are continuous, then the distance d̂ induces
the same topology of isolines in the interior of the mesh
as the Euclidean distance.

3.3 The Use of Interior Distance in the Derivation of
Mean Value Coordinates

The nature of the method presented in the Section 3.1 to the
computation of the interior distance makes it inherit the char-
acteristic of the distance measured on the mesh. Thus, chose
of distance as the shortest path (choose due its simple com-
putation) as the distance to be propagate to the interior of
the cage control will result in an interior distance unable to
guarantee the linear precision of our coordinates and, conse-
quently, there will be an error in the reconstruction of a given
model point p:

p =
n

∑
i=1

γivi + ε, i = 1 · · ·n. (15)

Where n is the number of control vertices, γi is the MVC-
ID of the point p related to the control vertex vi and ε ∈ R3

is a vector which coordinates are the errors obtained in the
reconstruction of the point p in the axis x, y and z .

To solve the reconstruction problem and achieve the lin-
ear precision in our coordinates we introduce the following
interactive method.

• For each point of the model, we write the reconstruction
ε (Equation 15) as function of the control points and its
MVC-ID.

ε =
n

∑
i=1

γ
ε

ivi + ε, i = 1 · · ·n. (16)
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Where γε
i is the MVC-ID of the error vector ε . Thus,

the Equation 15 can be written as:

p =
n

∑
i=1

(γi + γ
ε

i)vi + ε, i = 1 · · ·n. (17)

• If, in the Equation 17, the error ‖ε‖> 10−5, we repete
the above step, otherwise the process finish and we
have:

µi = γi + γ
1

i + γ
2

i + · · ·+ γ
k

i, i = 1 · · ·n, (18)

the MVC-ID of the point p. Where k is the number of
interaction necessary.

The influence of a control vertex on a region of the model
is inversely proportional to its distance from it. Although our
approach does not completely eliminate the negative influence
of a control vertice, by replacing the Euclidean distance ri by
a interior distance r̂i taken inside the cage control, we increase
the distance of a given control vertex to regions of the model
not related to it, consequently, diminishing its influence on
this regions.

One potential disadvantage of MVC-ID compared to the
original Mean Value Coordinates is the computational cost of
the coordinates derivation. The interactive method, applied to
solve the reconstruction problem, increases k times the com-
putational cost of the coordinates derivation, where k is the
number of interaction necessary. However, as the coordinates
are computed only once and stored, the cost of evaluating
the deformations with the MVC-ID is identical to that of
deformations based on the original Mean Value Coordinates.

4. Results and Comparisons
Replacing the Euclidean distance by an interior distance dur-
ing the derivation of the coordinates results in a significant
reduction of the influence of a control vertex on regions of
the model not related to it. In the Figure 7 we highlight the
regions of greatest influence of the orange control vertex on
the model with the original MVC and our coordinates. The
red region indicates a positive influence and the green region
the negative influence.

The Table 1 presents the comparison between the coordi-
nates of the point in blue on the model, related to the orange
control vertex, using both original MVC and MVC-ID. In
both case, the reduction of the negative influence is greater
than 73%.

Table 1. Influence of selected points in Figure 7.
Method Figure (a) Figure (b)

MVC -0.26326 -0.12624
MVC-ID -0.07039 -0.02052
Reduction 73.26% 83.74%

In the Figures 9 and 8 we compare the deformation ob-
tained by the original MVC, the Harmonic coordinates and

(a) (b) 
Figure 7. (a) Comparison of the effect of the control vertex
highlighted in the hand between original MVC, on the left,
and our MVC-ID, on the right. (b) Analogous comparison for
a control vertex of the foot.

our coordinates. For a comparison of the global behavior of
both deformation methods, we opt for to analyze the change
in model volume and surface area before and after the under-
going deformation. The Tables 2 and 3 indicate that, even
without changing the position of the cage control vertex, the
surface area of the model obtained by the deformation with
HC is the one that undergoes the greatest change. This occur
because the solution of Laplace’s equation, which is used to
construct the coordinates, is initially computed only on the
vertices of the grid. Thus, the linear precision of the method
is guaranteed only on cells of this grid. The value of the func-
tion on points of the model is given by trilinear interpolation,
which makes the deformation results directly dependent of
the grid density. The results obtained using our coordinates
yield a non-significant reduction of 0.2% in surface area.

Table 2. Surface area of deformations obtained in Figure 8.
Method Surface area

Original model 347.176
Mean Value Coord. 347.176

Mean Value Coord. -ID 346.448
Harmonic Coord. 360.053

Table 3. Volume and surface area of deformations shown in
Figure 9.

Method Surface area Volume
Original Model 243.349 248.004

MVC 239.913 243.172
MVC-ID 242.102 246.523

HC 254.355 259.433

It is possible to observe also in the Figure 9(b), where we
present a deformation process using the original Mean Value
coordinates, the undesired deformation on the model’s foot.
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(a) (b) (c) (d) 

Figure 8. (a) Original model. (b) Result obtained using
MVC. (c) Result obtained using MVC-ID. (d) Result
obtained with HC.

(a) (b) (c) (d) 

Figure 9. (a) Original Model. (b) Deformation generated by
the original MVC. The red circle indicates the consequences
of the strong negative influence of some control vertices on
the model. (c) Deformation generated by MVC-ID. (d)
Deformation generated by Harmonic Coordinates.

In the Figure 9(c) we perform the same deformation, now
using our coordinates.

The Figure 8 illustrates the female robot model defor-
mation obtained using each method, with the cage control
vertices in their original positions. We opt for to present first
the result obtained by the recovering of the model with the
cage control vertices in their original position.

The Figures 10 and 11 illustrate the deformations of the
arms and legs of the female robot model and compare the
results obtained using both our coordinates and the original
MVC. Tables 4 and 5 present the numerical results obtained
from the analyze of the variation in the female robot model’s
volume and surface area. In both cases it is possible to observe
that the deformations using MVC-ID yield better results in
terms of the volume and surface area of the model.

Table 4. Volume and surface area of deformations shown in
Figure 10.

Method Surface area A f /Ai Volume Vf /Vi

Original Model 347.176 - 231.149 -
MVC 331.279 0.954 210.492 0.910

MVC-ID 342.702 0.9987 226.821 0.981

As observed in Figure 12 and Table 6, in cases where the
negative coordinates of the original method do not lead to un-
desirable changes, the deformations given by our coordinates

Table 5. Volume and surface area of deformations shown in
Figure 11.

Method Surface area A f /Ai Volume Vf /Vi

Original Model 347.176 - 231.149 -
MVC 336.158 0.968 217.562 0.941

MVC-ID 340.207 0.979 223.813 0.968

Table 6. Volume and surface area of deformations shown in
Figure 12.

Method Surface area Volume
Original Model 219.915 273.465

MVC 257.953 334.390
MVC-ID 259.623 336.109

display the same behavior as those deformations obtained
using MVC.

(b) (a) (c) 

Figure 10. (a) Original Model. (b) Deformation obtained
using original MVC. The red circles highlight the
consequences of the strong negative influence of some
control vertices on the model. (a) Deformation generated by
MVC-ID.

5. Conclusions
In this work we propose a modification on the derivation of
MVC, the Euclidean distance used in the original derivation is
replaced by a distance taken inside the cage control, which re-
spect the shape of the model and cage control. The use of the
interior distance is effective in reducing the influence of con-
trol points in regions not related to them. Consequently, the
deformations generated using our coordinates do not present
the undesirable behavior observed in deformations generated
using the original MVC. For future work we should include
the investigation of the use of MVC-ID in the application of
volumetric textures, as suggested by Ju et al. [5], and compare
it with the results obtained with the MVC.
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(b) (a) (c) 

Figure 11. (a) Original Model. (b) Deformation obtained
using original MVC. The red circle indicates the
consequences of the strong negative influence of some
control vertices on the model. (c) Deformation generated by
MVC-ID.

(a) 

(b) 

(c) 

Figure 12. (a) Original Model. (b) Deformation generated by
the original MVC. (c) Deformation generated by MVC-ID.
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