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Abstract: Model-based testing (MBT) studies how test cases are generated from
a model of the system under test (SUT). Many MBT methods rely on building an au-
tomaton from the model and then they generate test cases by covering the automaton
with different path coverage criteria. However, if a model of the SUT is a logical for-
mula over some complex mathematical theories (such as set theory) it may be more
natural or intuitive to apply coverage criteria directly over the formula. On the other
hand, domain partition, i.e. the partition of the input domain of model operations, is
one of the main techniques in MBT. Partitioning is conducted by applying different
rules or heuristics. Engineers may find it difficult to decide what, where and how these
rules should be applied. In this paper we propose a set of coverage criteria based on
domain partition for set-based specifications. We call them testing strategies. Testing
strategies play a similar role to path- or data-based coverage criteria in structural test-
ing. Furthermore, we show a partial order of testing strategies as is done in structural
testing. We also describe an implementation of testing strategies for the Test Template
Framework, which is a MBT method for the Z notation; and a scripting language that
allows users to implement testing strategies.
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Coverage Criteria for Set-Based Specifications

1 Introduction

Testing is the predominant verification technique used in the software industry. At the
same time, testing is a time-consuming activity that needs many resources to produce good
results. Since many years ago the testing community works on the automation of the testing
process as a means to reduce its costs and improve its efficiency. Model-based testing (MBT)
is a collection of testing methods that aim at generate test cases from the analysis of a model
of the system under test (SUT) [31]. MBT methods have achieved impressive theoretical and
practical results in recent years such as [20, 15, 30, 24, 32], to name just a few.

Some MBT methods generate test cases by first building an automaton from the model
of the SUT and then covering the automaton with different criteria. For example, ProTest
[26] is a test case generation tool based on B machines [1]. It first writes each given machine
operation into DNF and then it builds a finite state machine (FSM) “whose initial node is
the initial state of the B machine. Each node in the FSM represents a possible machine state
and each edge is labeled by an operation”. Finally, ProTest “traverses the FSM to generate
a set of operation sequences such that each operation in the FSM appears in the generated
sequences at least once”. As another example consider the method proposed by Hierons et al.
[19, 18]. In this case a Z specification [27] is accompanied by a Statechart [17] that represents
all the possible execution paths of the operations defined in the Z specification. Then, some
test sequence generation methods, based on FSM test techniques, are defined. These criteria
are based on covering the paths of the Statechart in different ways. Since the Statechart is
built from the Z specification then the test sequences will cover the Z specification. There are
other MBT methods that generate some kind of automaton from specifications described in
rich mathematical languages [13, 5].

As can be seen, even when the model of the SUT is (essentially) a logical formula
based on a complex mathematical theory (i.e. a B machine or a Z operation) test cases are
generated by covering the paths of an automaton derived from the model, and not by covering
the structure of the formula. In a sense, there is an assumption that the logical formula is
covered by covering the automaton generated from it. In this paper we would like to propose
an alternative method that generates test cases by applying criteria that cover directly the
specification when it is given as a state-based model written in first-order logic over a set
theory—e.g. Z [27], B [1], VDM [23], Alloy [22] and others4. We call these coverage
criteria testing strategies. Testing strategies are defined by conveniently assembling together
rules for domain partition. Domain partition is a technique that divides the input space of
the model operations into subsets from which test cases are generated [16, 29, 3, 21]. Our
criteria do not need an automaton because they analyze the structure, semantics and types of
the specification itself. Testing strategies can be organized in a partial order to help engineers

4For now on, we will refer to these languages as set-based languages and to their specifications as set-based specifi-
cations.
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to select the most appropriate for each project. Furthermore, given that it may not be easy
to apply rules for domain partition, the criteria presented in this paper relief engineers from
understanding the internals of domain partition.

Besides, the paper also shows how testing strategies have been implemented in FASTEST
[8], a tool that supports the Test Template Framework (TTF) [29] which, in turn, is a MBT
method for the Z notation. The implementation of these coverage criteria includes the defini-
tion of a scripting language with which engineers can implement new testing strategies.

The paper starts by introducing the concept of recursive domain partition in Section 2.
Recursive domain partition shows how partitioning rules can be applied together, so Section 3
describes some known partitioning rues. Testing strategies are introduced in Section 4 where
they are accommodated in a partial order. Section 5 presents a prototype implementation
of testing strategies in FASTEST, a MBT tool based on Z specifications. We discuss the
contribution of this paper in Section 6. Our conclusions are presented in Section 7.

2 Recursive Domain Partition

In this section we show how test cases can be systematically generated from a set-
based specification by applying recursive domain partition. This technique results from the
combination of some rules for domain partition that are already available. Recursive domain
partition is the basis on which coverage criteria for set-based specifications are defined.

Consider an operation that eliminates a symbol from a symbol table that associates
symbols with integer numbers. A possible formal specification of this operation is the fol-
lowing logical formula:

(s? ∈ dom st ∧ st′ = {s?} −C st) ∨ (s? /∈ dom st ∧ st′ = st) (1)

where st : SYM 7→ Z is a partial function5; SYM is a given or uninterpreted sort; s? : SYM
is an input variable; st is a state variable; st′ represents the value of st in the next state; and
−C is a relational operator called domain anti-restriction6. Therefore (1) can be interpreted
as follows: symbol s? is eliminated from symbol table st which associates elements of SYM
with integer numbers. In other words, (1) describes a state transition of some state machine.

If formula (1) is the specification of some implementation, then the MBT theory says
that engineers should analyze (1), instead of its implementation, to generate test cases to test
the implementation. Note that it would be difficult to generate test cases from an automaton
built from (1), as suggested by some MBT methods [26, 19, 18], because we have only one

5In this paper, partial functions are sets of ordered pairs as defined for instance in the Z and B notations.
6Formally, if R : X ↔ Y is a binary relation between X and Y and A : PX is a subset of X, then A C R = {(x, y) ∈
R | x /∈ A}.
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transition. On the other hand, the implementation of (1) is not trivial because, for instance,
it will seldom be based on sets and set operators (such as −C). Sets and set operators will
probably be implemented as arrays or linked lists and operations over them. Hence, the
implementation of (1) is worth to be tested.

Following the foundation of structural testing we may ask to ourselves, how (1) can be
covered? That is, how can we be sure that all aspects of (1) are going to be considered for test
case generation? An answer given by some MBT methods is to use domain partition [29, 3].
First, the input domain of the specification is defined, then it is recursively partitioned into
subsets called test conditions and finally one element of each test condition is taken as a test
case7. For example, the input space of (1) is defined as the set:

IS = {st : SYM 7→ Z; s? : SYM} (2)

that is, the set of all possible input values for the operation. We can partition it by taking the
precondition of each disjunct in (1):

IS1 = {IS | s? ∈ dom st} (3)
IS2 = {IS | s? /∈ dom st} (4)

From this partition we can generate, for example, the following two test cases:

TC1 = {IS1 | st = {(s1, 3)} ∧ s? = s1} (5)
TC2 = {IS2 | st = ∅ ∧ s? = s1} (6)

Note that test cases are bindings between variables and values—for example, {(s1, 3)} is
bound to st in TC1. Indeed, these values are such that satisfy the predicate of the correspond-
ing test condition. This can be seen, for instance, by expanding IS1 in TC1:

TC1 = {IS | s? ∈ dom st ∧ st = {(s1, 3)} ∧ s? = s1} (7)

However, are these test cases enough? Will they test the implementation of (1) thor-
oughly? Do they cover all the specification? Probably not because, for example, there is no
test case removing an ordered pair from st when it has more than one element. So, if st is
implemented as, say, a linked list TC1 and TC2 will not test whether the iteration over the
list is correctly implemented or not. Is there something in (1) that indicates to us that this
(and possibly others) test case is missing? Yes, it is. The iteration over the (possible) list
implementing st is specified by both the −C and dom operators, and we have not used them to
generate test cases.

7Test conditions are also called test templates, test specifications, test classes, etc.
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R = ∅
R 6= ∅ ∧ S = ∅
R 6= ∅ ∧ S = domR
R 6= ∅ ∧ S 6= ∅ ∧ S ⊂ domR
R 6= ∅ ∧ S 6= ∅ ∧ S ∩ domR = ∅
R 6= ∅ ∧ S 6= ∅ ∧ S ∩ domR 6= ∅ ∧ domR ⊂ S
R 6= ∅ ∧ S 6= ∅ ∧ S ∩ domR 6= ∅ ∧ ¬ (domR ⊆ S) ∧ ¬ (S ⊆ domR)

Figure 1. Standard partition for S−C R

In this example we use −C to guide the partitioning process. In order to do that we
can define a so-called standard partition for −C as shown in Figure 1. Standard partitioning
(SP) is another rule for domain partition. It attaches a standard partition to each mathematical
operator that is seldom provided by programming languages. The standard partition is defined
by giving conditions on the operands of the operator. Then the standard partition is applied
to a particular expression in the specification where the operator appears. For example, we
can apply the standard partition of −C of Figure 1 to the expression {s?} −C st of formula
(1). Applying the standard partition means to substitute the names of the operands in the
standard partition by the operands in the expression and building the corresponding subsets.
For example, we substitute R by st and S by {s?} and use this to partition IS1 as follows:

IS1
1 ={IS1 | st = ∅} (8)

IS2
1 ={IS1 | st 6= ∅ ∧ {s?} = ∅} (9)

IS3
1 ={IS1 | st 6= ∅ ∧ {s?} = dom st} (10)

IS4
1 ={IS1 | st 6= ∅ ∧ {s?} 6= ∅ ∧ {s?} ⊂ dom st} (11)

IS5
1 ={IS1 | st 6= ∅ ∧ {s?} 6= ∅ ∧ {s?} ∩ dom st = ∅} (12)

IS6
1 ={IS1 | st 6= ∅ ∧ {s?} ∩ dom st 6= ∅ ∧ dom st ⊂ {s?}} (13)

IS7
1 ={IS1 | st 6= ∅ ∧ {s?} ∩ dom st 6= ∅ ∧ ¬ dom st ⊆ {s?} (14)
∧ ¬ {s?} ⊆ dom st}

This is an example of recursive domain partition. That is, the input space of an opera-
tion is partitioned with some partitioning rule, then one or more of the subsets thus obtained
is partitioned by another partitioning rule, and so forth. Note that test conditions generated
by recursive domain partition include all the previous conditions. For example, if we expand
IS1 inside IS4

1 we get:

IS4
1 ={IS | s? ∈ dom st ∧ st 6= ∅ ∧ {s?} 6= ∅ ∧ {s?} ⊂ dom st} (15)
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where the first conjunct corresponds to IS1. In other words, each partition rule adds more
conditions.

In particular, observe that now a test case derived from IS4
1 will test whether removing

an ordered pair from a symbol table containing more than one element is correct or not, which
is the missing test case analyzed above. Indeed, the predicate of IS4

1 can only be satisfied if
st contains more than one ordered pair because it demands {s?} to be a proper subset of the
domain of st. So, for example, the following test case belongs to IS4

1:

TC3 = {IS4
1 | st = {(s1, 3), (s2, 4)} ∧ s? = s1} (16)

Another observation that it is worth to be noticed regards the fact that some test con-
ditions generated by recursive domain partition are unsatisfiable. For example, IS2

1 and IS5
1

are some of the unsatisfiable test conditions generated after applying SP. Since it is impos-
sible to get a test case from an unsatisfiable test condition, they must be eliminated before
applying another partitioning rule. The automatic elimination of unsatisfiable test conditions
as well as the generation of test cases from (satisfiable) test conditions in the context of set-
based specifications and recursive domain partition have been extensively studied elsewhere
[8, 11].

Surely more test cases are needed to test the implementation of (1) but we think we
have make it clear that mathematical specifications contain enough information as to derive a
good test case set without necessarily resorting to an automaton. Furthermore, this technique
can be applied unit by unit8, and not necessarily to the whole interface of a component or
system.

3 Partitioning Rules

In this section we briefly describe the partitioning rules mentioned above as well as
other rules that are available for recursive domain partition. The set of partitioning rules
depends on the syntax and semantics of the set-based language being used. The rules shown
here can be applied to languages such as Z and B. There are more partitioning rules for
such notations but for the sake of brevity we do not mention them here [9]. Users of other
specification languages may adapt these rules and they may define others tailored to their
specific languages.

Recall that in this context, a partitioning rule is a systematic way of deriving test
conditions. A partitioning rule is always applied over a set of inputs which is subdivided in
two or more subsets by the rule. Each of these subsets is characterized by a predicate, called
characteristic predicate.
8In the sense of unit testing.
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The test conditions named IS1 and IS2 in the previous section were obtained by a triv-
ial application of a widely known partitioning rule called Disjunctive Normal Form (DNF).
DNF writes the operation in DNF and then generates a test condition for each disjunct in the
DNF. The characteristic predicate of each of these test conditions is the precondition of the
corresponding disjunct in the DNF. The rationale behind the DNF tactic is to generate a test
condition for each major logical alternative specified for an operation. For example, as was
shown in the example developed above, DNF generates a test condition for each important
precondition making it possible to test all the successful and error conditions.

However, a set-based specification is not only a logical formula but it also makes heavy
use of many complex mathematical operators, particularly those of the set theory. Usually,
the implementation of these operators is far from trivial. For example, developers prefer to
use lists as if they were finite sets rather than using a set data structure that might be provided
by the standard library of the programming language. In doing so, the implementation of
some set operators tends to be non-trivial. DNF cannot generate test conditions to thoroughly
exercise such implementations because it does not deal with mathematics but only with the
logical structure of the specification [29]. This is the rationale behind the standard partition
(SP) rule. By proposing a set of conditions with which the implementation of complex math-
ematical operators will be tested, the combination between DNF and SP provides a good
coverage.

Enumeration Types (ET) helps to partition an input domain when variables whose type
is enumerated are used. If x is a variable of an enumerated type, T , ET generates test condi-
tions whose characteristic predicates are of the form x = val for each val ∈ T . In this way, ET
guarantees that the implementation will be exercised on all these values, which are usually
part of conditional expressions and represent important states or operational conditions of the
system.

Numeric Ranges (NR) waits for an arithmetic expression, expr, and an ordered list
of numbers, n1, . . . nk, and generates the following partition: expr < n1, expr = n1, n1 <
expr < n2, . . . , expr = ni, ni < expr < ni+1, expr = ni+1, . . . , expr < nk, expr = nk

and nk < expr. NR is very useful, for instance, to test how programs behaves when numeric
variables reach or go beyond their implementation limits.

Example 1 In a C program a variable of type short can assume values in the range
[−32768, 32767]. So, it would be reasonable to test the program with values less than, equal
and greater than −32768 and 32767 for each input or state variable of type short. If one
of such variables is x, likely, it was abstracted at the specification level as an expression of
type Z. For instance, a potential C implementation of variable st introduced in (1) might be
as follows a singly-linked list whose nodes are as follows:

struct st_node {char* sym; short val; struct st_node* nxt}
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Therefore, if one wants to test the behavior of the program when a sym has a val in the limits
of the range for short, then the following list of values can be used [−32768, 32767] to test
the precondition s? ∈ dom st. In this case NR would generate, for example, s? < −32768 as
a test condition.

In Set Extension (ISE) applies to specifications including preconditions of the form
expr ∈ {expr1, . . . , exprn}. In this case, it generates n + 1 test conditions such that expr =
expri, for i in 1 . . n, and expr /∈ {expr1, . . . , exprn} are their characteristic predicates.

4 A Partial Order of Testing Strategies

Although domain partition is not a very complex activity, engineers need to analyze
the specification, to select some partitioning rules and to decide what expressions, operators,
variables, etc. are going to be used when these rules are applied. Besides, engineers working
with domain partition do not have criteria that tell them “how much” the SUT is going to
be tested. So far, they only have a set of partitioning rules only related through recursive
domain partition. Our proposal in this regard is to define so-called testing strategies. A
testing strategy uses one or more partitioning rules in such a way that some significant part of
the specification is covered. In this sense, testing strategies are specification-based covering
criteria.

As with coverage criteria of structural testing, each testing strategy aims at covering
some aspect of a set-based specification. Following with the analogy, some testing strategies
cover aspects already covered by others but add more aspects to be covered. For instance, in
structural testing the criterion known as condition coverage covers all the edges of the control
flow graph of the program and all the truth values of the conditions appearing in conditional
sentences [14]. This means that condition coverage includes edge coverage but adds some
more coverage. In set-based specifications there are three general aspects to be covered: a) the
logical structure of the specification; b) the mathematical operators; and c) the type system.

The fact that some structural testing coverage criteria include others has been formal-
ized as a partial order. In effect, Rapps and Weyuker [25] arrange coverage criteria according
to a partial order indicating when a given criterion, in general, covers more than others. Using
the work of as Rapps and Weyuker as an inspiration, we organized testing strategies accord-
ing to a partial order as is depicted in Figure 2. The strategies closer to the bottom of the
graph are those that produce a better coverage and those closer to the root produce a worse
coverage. Informally, the strategies are as follows:

• BASIC-FUNCTIONS applies only disjunctive normal form (DNF) so it covers the logical
structure of the specification. Since all the other strategies are stronger than this one
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basic-functions

some-arithmetic some-enumerationssets

all-arithmetic sets-with-integers

full-coverage

some-functions

integers

all-enumerations

all-functions

Figure 2. Testing strategies are partially ordered

we will not mention the logical coverage unless necessary.

• SOME-ENUMERATIONS covers all enumerated types. In this way it guarantees that
sensible values declared in enumerated types will all be exercised at least once.

• ALL-ENUMERATIONS is a stronger form of SOME-ENUMERATIONS since it not only
considers enumerated types but also all extensional sets defined in the specification.

• INTEGERS, instead of tackling enumerations, looks for integer overflows by covering
all the integer expressions of the specification. It requires at least five test cases for
each integer expression by applying NR.

• SOME-ARITHMETIC covers the arithmetic operators with the defined standard parti-
tions.

• ALL-ARITHMETIC puts together INTEGERS and SOME-ARITHMETIC.

• SETS covers all the set operators with the defined standard partitions.

• SETS-WITH-INTEGERS puts together INTEGERS and SETS.

• SOME-FUNCTIONS combines SETS and SOME-ENUMERATIONS, thus covering some
interesting values (i.e. constants of enumerations) and all the set operators.
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Table 1. Domain partition rules used in testing strategies

Strategy Rules

BASIC-FUNCTIONS DNF
SOME-ENUMERATIONS DNF, FT
ALL-ENUMERATIONS DNF, FT, ISE
INTEGERS DNF, NR
SOME-ARITHMETIC DNF, SP over arithmetic operators
ALL-ARITHMETIC DNF, NR, SP over arithmetic operators
SETS DNF, SP over set and relational operators
SETS-WITH-INTEGERS DNF, NR, SP over set and relational operators
SOME-FUNCTIONS DNF, FT, SP over set and relational operators
ALL-FUNCTIONS DNF, FT, SP
FULL-COVERAGE DNF, FT, SP, NR, ISE

• ALL-FUNCTIONS combines SETS, SOME-ARITHMETIC and SOME-ENUMERATIONS
covering in this way the essential elements appearing in the specification.

• FULL COVERAGE combines ALL-FUNCTIONS, INTEGERS and ALL-ENUMERATIONS.

Table 1 lists the set of partitioning rules that are applied for each strategy. Note that,
due to the way recursive domain partition is performed (i.e. by logical conjunction, see
Section 2), it is not relevant the order in which rules are applied. This also explains the partial
order used to build the graph of Figure 2. In effect, if S1 and S2 are two testing strategies such
that there is an arrow pointing from S1 to S2, then S2 will produce at least the same set of
test conditions than S1. This is so because all the partitioning rules that are applied by S1 are
also applied by S2 plus some more. In general, these extra partitioning rules not necessarily
produce new test conditions although they will produce them in many cases. For example,
ALL-FUNCTIONS will not produce different results than SETS if there are no variables of
enumerated types; but if there are, then it will produce more test conditions.

When we partitioned the input space declared in (2) we applied the standard partition
of −C only to IS1, and not to IS2. The reason to proceed in this way is that it is unlikely that
an error in the implementation of −C can be revealed when the symbol to be removed is not in
the symbol table (i.e. IS2). In effect, a possible pseudo-code implementation of (1) might be:

if (s? is an element of the symbol table)
then remove s? from the symbol table

where “s? is an element of the symbol table” is the implementation of s? ∈ dom st and
“remove s? from the symbol table” is the implementation of s? −C st. The inner block of the
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if− then sentence may entail several lines of code depending on the data structure defined to
hold the symbol table. Note that if s? /∈ dom st nothing is done—i.e., there is no else branch.
Therefore, the implementation of s? −C st will be tested only if s? ∈ dom st, so it makes no
sense to exercise the implementation in different ways when s? /∈ dom st. This is equivalent
to not further partition IS2.

In summary, testing strategies will produce good coverage with a minimum number
of test cases if recursive domain partition is applied only to some test specifications. Then,
every testing strategy defined above applies domain partition as follows:

• Consider that SP is applied to the expression α�β, where � is any mathematical
operator and α and β are two subexpressions. If α�β is part of the precondition of
the operation, then SP is applied to all test conditions where some variable in α or β is
present. If α�β is part of the postcondition, then SP is applied to all test conditions
whose predicates imply the precondition that leads to that postcondition.

• FT and NR are applied to all test conditions where the variable or expression being
considered is present.

• ISE is applied to all test conditions where any of expr, expr1, . . . , exprn is present.

Consider for a moment the testing strategy named SETS. SETS applies SP to all the
set operators appearing in the operation being considered. This definition, however, is a
little bit ambiguous because a set operator can be used in different expressions in the same
model operation. Will SETS apply SP to all the expressions or just to one of them (for each set
operator)? Would it worth to apply SP to the same operator several times because it appears in
several different expressions? The answer is it depends, as the following example illustrates.

Example 2 Consider that in a particular implementation sets are implemented as singly-
linked lists and there is a subroutine, called union, that takes two sets (i.e. singly-linked lists)
and returns their union. Now say that union is called several times with different real pa-
rameters from another subroutine, named caller. At specification level, these calls would be
represented as different set-union expressions. Should SETS apply SP over all these set-union
expressions? As concerns to the correctness of union it is a waste of resources to exercise this
subroutine with the same set of test cases generated from the set-union expressions appearing
in caller. In fact, testing union should be performed from its own specification and not from
the places where it is called.

However, as concerns to the correctness of caller, it should be tested whether these
set-union expressions are correctly implemented. In turn, this means to test whether the
implementation-level operands of these expressions correspond to the specification-level ones.
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Table 2. Expressions considered for testing intensity

Partitioning rule Expressions

FT variables of enumerated types
SP mathematical operators and the expressions where they appear
NR arithmetic expressions
ISE expressions of the form expr ∈ {expr1, . . . , exprn}

For instance, if at specification level we have C = A∪B it must be implemented as union([[A]], [[B]], [[C]])
where [[α]] means the implementation of α. It would be wrong to implement it as, for example,
any of the following: union([[D]], [[B]], [[C]]), union([[A]], [[B]], [[D]]), otherFunc([[A]], [[B]], [[C]]),
etc. So, in essence, all that should be tested is whether the set-union expressions are imple-
mented as calls to union with the right parameters. Applying SP for these expressions is too
much because it generates tests cases that test more than that.

Nevertheless, if each set-union expression in caller is implemented with its own code
(i.e. not calling a general subroutine like union), then a good set of test cases for each such
expression should be generated. Then, in this case, it would be advisable for SETS to apply
SP over all the set-union expressions in the specification of caller.

The same analysis done for SETS can be applied to all testing strategies. Hence, our
proposal for testing strategies includes a parameter that we call coverage level. Coverage
level is a positive natural number whose default value is 1. In general, the grater this value,
the greater the number of test conditions that will be generated, and the greater the coverage
produced. The number of test conditions that will be generated depends on the number of
expressions of a particular kind that are present in the operation whose input domain is be-
ing partitioned. Table 2 shows the kind of expressions considered for each partitioning rule.
Then, the greater the coverage level, the greater the number of such expressions that are con-
sidered during the partitioning process. If a strategy is defined by more than one partitioning
rule the product of the number of the corresponding expressions defines the coverage level
for the strategy.

Example 3 If A is an operation that has n different expressions with a mathematical operator
and m variables of enumerated types, then the maximum coverage level for ALL-FUNCTIONS
when applied to A is n ∗ m. Hence, if the user applies ALL-FUNCTIONS to A with a testing
intensity k (with 1 < k ≤ n ∗m), SP and FT will be applied k times each (to different expres-
sions and different enumerated variables) if that is possible (otherwise one of the partitioning
rules will be applied more times until summing up k). On the other hand, if ALL-FUNCTIONS
is invoked with a coverage level of 1 (default value), then SP and FT will be applied one time
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each to two expressions chosen from the available ones.

If the partitioning rules are not applied on all the possible expressions, then the specific
expressions over which they are applied should be chosen based on the empirical knowledge
about the effectiveness of partitioning rules to find errors. This knowledge suggests that
operators such as⊕ and−C should be favored over ∪ and ∩, that expressions involving longer
sub-expressions should be preferred over those with simpler ones, and that larger enumerated
types or set extensions should win over smaller ones.

5 Testing Strategies in Practice

In this section we show a prototype implementation of testing strategies in FASTEST.
FASTEST [8] is a MBT tool providing support for the Test Template Framework (TTF)
[29]. The TTF is a MBT method that uses Z specifications as models from which test
cases are generated. In the TTF and FASTEST partitioning rules are called testing tactics.
FASTEST is freely available from http://www.fceia.unr.edu.ar/~mcristia/
fastest-1.6.tar.gz.

As a running example, consider the following Z operation over the symbol table:

Update == [st, st′ : SYM 7→ Z; s? : SYM; v? : VAL | st′ = st ⊕ {s? 7→ v?}]

Clearly, the specification uses a complex relational operator (⊕) but it also deals with integer
numbers. In Z the set of integer numbers is infinite. So when an integer Z variable is im-
plemented, some programming language type is usually chosen (such as int, short, etc.).
Therefore, it would be important to check whether⊕ and the refinement of Z to, say, short,
are correctly implemented.

In terms of testing tactics, checking the correct implementation of ⊕ and Z requires
to apply SP over st ⊕ {s? 7→ v?} and NR on v? with the range [−32768, 32767]. Before the
implementation of testing strategies, FASTEST’s users needed to:

1. Manually analyze the specification to see what testing tactics could be applied;

2. Decide to what test specifications the selected tactics must be applied;

3. Decide over what expressions the selected testing tactics must be applied; and

4. Indicate to FASTEST the corresponding commands with all their parameters

Example 4 The application of SP and NR as indicated above would require the following
commands:
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addtactic Update SP \oplus st \oplus \{s? \mapsto v?\}
addtactic Update NR v? \langle -32768, 32767 \rangle

With the introduction of testing strategies FASTEST’ users only need to have a broad
knowledge of the specification. For example, does the specification use set operators? Does
it use integer expressions? Does it use enumerated types? And, at the same time, users need
to know how much testing can be performed within the available time and budget. All this
information will indicate the best testing strategy based on the description of what it tests.
After choosing the strategy they just need to issue a command such as the following:

applystrategy set-with-integers Update

In this case the best tactic is SET-WITH-INTEGERS because it deals with the imple-
mentation of set operators and variables whose type is Z. If the implementation of Update
is available, then FASTEST can even find the right range for NR. In effect, FASTEST also
implements test case refinement [10], which requires from engineers to indicate what imple-
mentation variables refine each specification variable. Therefore, through this information,
FASTEST can find the implementation variable corresponding to v?, what is the type of this
variable in the implementation, what is the programming language, and, finally, what are the
limits for that type in that language.

The applystrategy command shown above would generate 20 tests specifica-
tions, two of which are the following:

UpdateNR
18 ==

[UpdateVIS |
st 6= ∅ ∧ dom st ∩ dom{s? 7→ v?} = ∅ ∧ v? > −32768 ∧ v? < 32767]

UpdateNR
20 ==

[UpdateVIS |
st 6= ∅ ∧ dom st ∩ dom{s? 7→ v?} = ∅ ∧ v? > 32767]

After issuing an applystrategy command FASTEST’s users need to call the test
case generation command (i.e. genalltca). In other words, applystrategy only gen-
erates test specifications.

Coverage level has been implemented as a parameter for the applystrategy com-
mand; if it is not set the default value (1) is taken.

FASTEST also features a scripting language that allows engineers to define new testing
strategies based on the available testing tactics. For example, the following script implements
a simple testing strategy that applies SP over all the operators of a given Z operation:
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STRATEGY FullSP
FOREACH( e : getSPExpressions(OP) )

addtactic OP SP e.op e
END
genalltt
prunett

END

where FullSP is the name of the strategy, OP is a built-in variable holding the name of the
operation passed to the applystrategy command, genalltt is a FASTEST command
that applies the testing tactics queued with addtactic, and prunett is another FASTEST
command that eliminates unsatisfiable test specifications [8]. FOREACH is simple looping
instruction of the scripting language which iterates over all the values given by the expres-
sion between parenthesis. In turn, these expressions can access internal data structures in
a rather abstract fashion. In this example, the getSPExpressions() function is used.
This function returns all the expressions where a mathematical operator is used. The returned
expressions are objects that can be easily accessed—for example, e.op returns the operator
used in e.

All of the testing strategies defined so far in FASTEST have been implemented using
this scripting language.

6 Discussion

There are several MBT methods that use specification languages whose models are
complex formulas over some logic and mathematical theories [3, 16, 18, 19, 21, 6, 28]. Some
of these methods also rely on domain partition. None of them show how coverage criteria
can be defined directly over set-based specifications. These methods may be benefited by
the ideas proposed in this paper. Ammann et al. define coverage criteria for logic and state-
based specifications but they do not take into account complex mathematical theories such
as set theory [4, 2]. As we have said in the introduction, some MBT methods [18, 19] think
of test cases as sequences of operations that execute the implementation. In these cases,
users can extract these sequences by traversing an automaton, which is derived from the
specification. In turn, they can apply different testing criteria that traverse the automaton
in different ways, thus generating different sets of sequences. This concept is somewhat
similar to testing strategies as proposed in this paper, although perhaps strategies provide
more intuitive coverage criteria for mathematical specifications, such as those written in Z or
B.

The concept of testing strategy came form the realization that domain partition rules
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provide only local or partial coverage over the specification. Strategies are applicable to the
whole specification like path- or data-based coverage criteria from structural testing.

Besides, testing strategies embody the experience and knowledge gained after apply-
ing MBT to several projects and case studies [12, 7]. In this sense, the concept of testing strat-
egy is not the mere assembly of partitioning rules nor their blind application to each statement
of the specification. Strategies really relieve testers from some non-trivial analysis by, as we
have said, implementing known testing heuristics. For example, SOME-ARITHMETIC applies
SP only over arithmetic operators because its focus is on the correct implementation of arith-
metics. Similarly, a structural criterion like condition-coverage [14] tests conditions not in
its most general way. As another example, BASIC-FUNCTIONS, SOME-ENUMERATIONS and
ALL-ENUMERATIONS provide a minimal coverage like statement or branch coverage.

Observe that testing strategies do not change the underlying theory nor the basic tech-
niques of MBT. This implies that engineers can combine strategies and domain partition to
produce test sets as they wish. The partial order that organizes strategies can be extended
or modified as new partitioning rules are created or more insight about the existing ones is
gained.

The presentation made in Section 2 is essentially that of the TTF. However, in this
paper we go one step further by defining some criteria that generate test cases by covering the
set-based specification in different ways. Also note that the presentation made in this paper is
more general than that made by Stocks and Carrington since we do not rely on any particular
notation.

Although Figure 2 should help users to select the right strategy for each operation,
testing strategies should be accompanied by descriptive cards listing their main features in
terms of the coverage they provide, the kind of test cases they generate or the aspects they
exercise. The vocabulary of these cards should be that of test engineers rather than that of the
formal methods or academic testing communities. More technical (formal) information can
be provided for advanced users.

Coverage level is the most abstract and general way we could think of to allow for
different levels of coverage. Indeed, if engineers want that some testing strategy applies all
its partitioning rules to all the possible expressions, then they can set the coverage level to
its maximum. This would be the case for the second implementation described in Example
2. On the contrary, if they want less test cases they can set coverage level to one, which will
force the testing strategy to apply its partitioning rules just once. Another possible approach
could be to define variants of the testing strategies concerning more fine grained coverage
levels. For example, SETS can be defined as to apply SP only once to each set operator and a
new strategy, say ALL-SETS, can be defined as applying SP to to all the different expressions
where a set operator is present.
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7 Conclusions

The main conclusion we can draw from this paper is that it is possible to define cover-
age criteria for MBT methods based on logic and mathematics that play a similar role to path-
or data-based coverage criteria in structural testing. This gives a very abstract and testing-
oriented view of MBT methods based on this kind of specifications. Furthermore, the partial
order that can be defined among testing strategies allows testers to choose the right strategy
by what will be tested at the implementation level rather than by how an input domain is
partitioned. The partial order of testing strategies can be modified and extended with new
strategies as they are defined or improved.

Therefore, testing strategies can help test engineers in two regards: a) they simplify,
automate and hide domain partition; and b) they provide a more intuitive and abstract way
for test case generation from set-based specifications.

In the future we plan to finish the implementation of all the testing strategies described
here; to write descriptive cards that help testers to informally understand what each strategy
will test and the relation between them; and to explore whether some partitioning rules that
have not be considered so far [9], can be used to define new testing strategies.

8 *
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