
Proof Tactics for Theorem Proving Graph Grammars
through Rodin 1

Luiz Carlos Lemos Jr. 2

Simone A. da Costa Cavalheiro 2

Luciana Foss 2

Data submissão: 20.09.2014
Data aceitação: 24.03.2015

Seção melhores artigos WEIT-2013, Rio Grande, Brasil, 2013.

Abstract: Graph grammar is a formal language suitable for the specification of
distributed and concurrent systems. Theorem proving is a technique that allows the
verification of systems with huge (and infinite) state space. One of the disadvantages
of theorem proving graph grammars (and theorem proving in general) is the specific
mathematical knowledge required from the user for concluding the proofs. Previous
works have proposed proof strategies to help the developer in the verification process
when adopting such approach, firstly establishing proof tactics for some properties
and after proposing a visual representation for them. This paper extends the set of
proposed tactics, with the aim of expanding the available strategies and encouraging
the use of such a technique.

1 Introduction

Graph grammars (GG) [13] are one of the specification languages used to precisely
describe a computer system. It is a visual language, based on simple operations of rewriting
rules. The states of the system are modelled by means of graphs (state graphs) and the state
changes are specified through graph rules.

Theorem proving [20] is a formal verification method that allows the developer to
guarantee some properties of a formal specified system. In this method both the system and
its properties are described using mathematical language and logic, and the proofs are carried
out through axioms and intermediate lemmas of the system. The adoption of such technique
allows the analysis of systems with huge (and even infinite) state space [10]. Proof assistants
(or interactive theorem provers) are tools that assist the developers when adopting the theorem

1This work is an extension of the paper published in WEIT 2013 indicated as one of the best articles of the event.
2Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico Rua Gomes Carneiro – 1 – 96010-610 –
Pelotas – RS – Brazil
{lclemos,simone.costa,lfoss@inf.ufpel.edu.br}

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archives of the Faculty of Veterinary Medicine UFRGS

https://core.ac.uk/display/303970497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proof Tactics for Theorem Proving Graph Grammars through Rodin 3

proving technique.

A previous translation [8] of GG into Event-B [11] structures has allowed the use of
provers available for the Rodin platform [3] for theorem proving GG systems. After mod-
elling a GG in Event-B, the tool makes a syntactic and dynamic verification, which generate
proof obligations. These obligations are stated to ensure that invariants are preserved, guard
conditions and actions are well defined, formulas are meaningful, among others. Some of
these obligations are discharged automatically or simply running an external prover (that can
be installed in the form of a plug-in), others need user interaction. Proof strategies have been
developed [15] to help the users to discharge proof obligations generated by a GG specifica-
tion in Rodin. Also, an alternative visual representation for the defined tactics was proposed
[14], turning the use of them even more intuitive and user friendly.

Besides, in previous work [9], it was proposed patterns for the presentation, codifica-
tion and reuse of property specifications over reachable states of graph grammars. Especially,
in [15], it was presented the proof obligations generated by a GG specification in Rodin and
proposed proof strategies to specific atomic properties defined in the previous patterns. In this
paper, we extend the results presented in [14] and [15]. With respect to the original versions,
we enlarge the set of proposed tactics, with the aim of expanding the available strategies
and encouraging the use of such a technique, including strategies to new types of properties
(which involve logical operators not used in previous specifications). We prioritise proper-
ties that describe typical characteristics of graphs (basic properties of the set of patterns),
maximising the possibility of reuse in case of more complex specifications.

Other authors have investigated the analysis of graph transformation systems (GTSs)
based on relational logic or set theory. Baresi and Spoletini [7] explore the formal language
Alloy to find instances and counterexamples for models and GTSs. With Alloy, they only
analyse a system for a finite scope, whose size is user-defined. Strecker [21, 22, 23] has
proposed a formalisation of graph transformations in a set-theoretic model using the Is-
abelle/HOL [16] proof assistant. In [21] he started to define a language for writing graph
transformation programs and reasoning about them. The language was defined with two
statements, one to apply a rule repeatedly to a graph, and another to apply several rules in a
specific order to a graph. In [22] and [23] he explores how to reason locally about global prop-
erties of graph transformations. In particular, he investigate under which conditions reasoning
about a graph transformation can be reduced to reasoning about the shape of the transforma-
tion rules. Tran and Percebois [24] has also used a relational and logical representation of
graph grammars in Isabelle to verify graph transformation systems. They statically verify if
a transformation preserves a particularly property of a state graph, that is, they investigate
general conditions for a graph grammar to preserve structural properties in a rule application.
However, they only argue about the preservation of a property in one derivation step.

The remaining of this paper is organised as follows. In Section 2 we present an

RITA • Volume 22 • Número 1 • 2015 191



Proof Tactics for Theorem Proving Graph Grammars through Rodin 4

overview on graph grammars and in Section 3 we briefly show the description of GG in
Event-B. Section 4 details the visual representation for the tactics proposed in [15]. Section 5
establishes proof tactics for discharging a new set of properties and Section 6 contains final
remarks.

2 Graph Grammars

Graph grammars are suitable for specifying complex situations, which present several
elements and many relations between them. The basic idea of a GG consists on specifying
the states of a system as graphs, called state graphs; and the possible state changes as graph
rewriting rules. Graph rules are used to capture the dynamical aspects of the systems, that is,
from the initial state, rule applications successively change the system state.

A graph grammar consists of a type graph, an initial graph and a set of rules. The
type graph characterises the types of vertices and edges allowed in the system. The initial
graph represents the initial state of the system and the set of rules describes the possible state
changes that can occur. A rule has a left-hand side (LHS) and a right-hand side (RHS), which
are both graphs, and a partial graph morphism that connects these graphs in a compatible way
and determines what should be modified by the rule applications.

A rule is applicable in a graph if there is a match, that is, an image of the LHS of the
rule in the graph. Roughly speaking, this means that all items (vertices and edges) belonging
to the LHS must be present at the current state. Each rule application transforms a state graph
in the following way: all items mapped from the LHS to the RHS (via a graph morphism)
must be preserved; all items not mapped must be deleted from the current state; and all items
present in the RHS that are not image of the LHS must be added to the current state to obtain
the next one.

We show the use of GG specifying a simple mobile system depicted in Figure 1. The
system consists of a network of interconnected antennas and mobile users. Each antenna
has a maximal capacity of simultaneous connections, which blocks new connections. The
type graph T describes two types of nodes: Ant (antenna) and Usr (user); and five types of
edges: Acn (connections between antennas), Ucn (connection between users and antennas),
Cal (connections between users), Cn (available user connections for antenna) and Main (main
antenna). The initial graph G0 specifies a system with two antennas and two users. Each
antenna has two more available connections, given by Cn edges. The system behavior is
described by the set of rules. Each user, connected to a single antenna, may start (rule r1) or
finish (rule r4) a call. New antennas (rule r2) and users (rule r5) can be added to the system
at any time. Also, a user may be switched to another antenna (rule r3) and new connections
between antennas can be established at any moment (rule r6).

192 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 5

Acn

Ant Usr
Ucn

Cal
CnMain

T

Usr1

G0
Ant2Usr2 Ant1

Ant1

Usr1 L1

Ant2

Usr2

Ant1

Usr1 R1

Ant2

Usr2

r1

Ant1

L2

Ant2

Ant2

R2Ant3

r2

Ant1

Ant1

L3

Ant2

Usr1

Ant1

Usr1 R3

Ant2
r3

L4

Usr1

R4

Usr2

r4

Usr1 Usr2

L5

Ant1

Ant1

Usr1 R5

r5

L6

Ant2

R6Ant3

r6

Ant1

Ant2

Ant3Ant1

Figure 1. Mobile System GG

3 Graph Grammars in Event-B

A translation of graph grammar structures in Event-B language [19, 8] has allowed
the use of Rodin platform [3] to prove properties of GG systems.

3.1 Mathematical Notation

In this section, we define the symbols and operations used in the remainder of the
paper. Table 1 shows these symbols and corresponding meanings.

3.2 Event-B

Event-B [4, 2] is a state-based formalism closely related to Classical B [1] and Action
Systems [5]. It is a method for system-level modelling and analysis that is intended for mod-
elling and reasoning about systems that may consist of physical components, electronics and
software. Moreover, it admits a notion of refinement, this means that complex interactions
between subcomponents may be abstracted from in early stage modelling and then introduced
through refinement in incremental stages.

RITA • Volume 22 • Número 1 • 2015 193



Proof Tactics for Theorem Proving Graph Grammars through Rodin 6

Table 1. Definition of symbols and operations

Symbol/Operation Meaning
7→ Partial functions
→ Total functions
� Total and injective functions
7→ Mapping relation
N Set of natural numbers
Z Set of integer numbers
P The set of all subsets (power set)
\ or − Set minus operator
:= Becomes equal to

rng(r) Range of a binary relation r
dom(r) Domain of a binary relation r
card(A) Number of elements of set A

C− AC− r
def
= {(a, b) ∈ r | a 6∈ A} (Domain subtraction)

B r BB
def
= {(a, b) ∈ r | b ∈ B} (Range restriction)

An Event-B specification contains two parts, a context, which represents the static part
of the model and a machine, that represents the dynamic part of the model. In the context
are defined sets, constants and axioms. While in the machine are defined variables, invariants
and events.

Definition 1 (Event-B Model, Event) An Event-B Model is defined by a tuple (c, s, P, v, I,
RI , E), where c are constants and s are sets of the model; P (c, s) is a collection of axioms
constraining c and s; v are the model variables; I(c, s, v) is a model invariant limiting the
possible states of v, s.t. ∃c, s, v ·P (c, s)∧I(c, s, v); and E is a set of model events. A context
defines the static part (c, s, P ) and a machine defines the other elements (v, I, RI , E) of an
Event-B model.

Given states v, v′ an event is a tuple e = (H,S) where H(c, s, v) is the guard and
S(c, s, v, v′) is the before-after predicate that defines a relation between current and next
states.

In order to demonstrate the correctness of the model, several proof obligations must
be discharged. The model consistency condition states that whenever an event or an initial-
isation action is attempted, there exists a suitable new state such that the model invariant is
maintained.

194 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 7

The behaviour of an Event-B model is the transition system defined as follows.

Definition 2 (Event-B Model Behaviour) Given an Event-B model M = (c, s, P, v, I, RI ,
E), its behaviour is given by a transition system T = (St, S0,⇒), where: St = {〈v〉|v is
a state} ∪ Undef , S0 = Undef , and⇒ ⊆ St × St is the transition relation given by the
rules:

start
RI(v

′) ∧ I(v′)
Undef ⇒ 〈v′〉

transition
∃(H,S) ∈ E · I(v) ∧H(v) ∧ S(v, v′) ∧ I(v′)

〈v〉 ⇒ 〈v′〉

According to start rule, the model is initialised to a state satisfying RI ∧ I and then,
as long as there is an enabled event (transition rule), the model may evolve by firing this
event and computing the next state according to the event’s before-after predicate. Events
are atomic. In case there is more than one enabled event at a certain state, the demonic
choice semantics applies. The semantics of an Event-B model is given in the form of proof
semantics, based on Dijkstra’s work on weakest preconditions [12].

3.3 Translation of Graph Grammars to Event-B Models

The behaviour of an Event-B model is similar to that of a GG: both have the concept
of state (given by variables in Event-B and by a graph in a GG) and both have state transitions
defined by atomic operations (defined by an event that updates variables in Event-B and by a
rule application in a GG). Each transition should preserve properties of the state. In Event-B,
these properties are stated as invariants and in a GG, they are related to the graph structure
(only well-formed graphs can be generated). In both, GG and Event-B, a graph is defined by
one set of vertices, one set of edges, and by four functions: source and target total functions,
mapping each edge into source and target vertices, respectively; and two typing functions,
mapping each vertex and edge to its type, respectively.

In order to specify a GG using Event-B, in the context are defined the type graph
and the rules. In the machine we specify the variables that define a state graph, together
with their types, the initial graph and the rule applications, the last two using events. In
the initialisation event is stated the initial values of the variables (describing the initial state).
Figure 2 illustrates the description of the state graph and the initial graph of the mobile system
presented in Figure 1, renaming vertices and edges to natural numbers. For more details, see
[19, 8].

Other events describe rule applications. The application of rule r1 of Figure 1 must be
specified as detailed in Figure 3. Whenever there are concrete values for variables mV , mE,

RITA • Volume 22 • Número 1 • 2015 195



Proof Tactics for Theorem Proving Graph Grammars through Rodin 8

VARIABLES
vertG // (Graph) Vertices
edgeG // (Graph) Edges
sourceG // (Graph) Source Function
targetG // (Graph) Target Function
tG_V // Typing of vertices
tG_E // Typing of edges

INVARIANTS
inv_vertG : vertG ∈ P(N)
inv_incG : edgeG ∈ P(N)
inv_sourceG : sourceG ∈ edgeG→ vertG

inv_targetG : targetG ∈ edgeG→ vertG

inv_tG_V : tG_V ∈ vertG→ vertT

inv_tG_E : tG_E ∈ edgeG→ edgeT

EVENTS
Initialisation

act_vertG : vertG := {1 , 2 , 3 , 4}
act_edgeG : edgeG := {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11}
act_srcG : sourceG := {1 7→ 1 , 2 7→ 2 , 3 7→ 2 , 4 7→ 3 , 5 7→ 3 , 6 7→ 4 , 7 7→ 3 , 8 7→ 3 , 9 7→

2 , 10 7→ 2 , 11 7→ 3}
act_tgtG : targetG := {1 7→ 2 , 2 7→ 2 , 3 7→ 3 , 4 7→ 2 , 5 7→ 3 , 6 7→ 3 , 7 7→ 3 , 8 7→ 3 , 9 7→

2 , 10 7→ 2 , 11 7→ 3}
act_tG_V : tG_V := {1 7→ Usr , 2 7→ Ant , 3 7→ Ant , 4 7→ Usr}
act_tG_E : tG_E := {1 7→ Ucn, 2 7→ Acn, 3 7→ Acn, 4 7→ Acn, 5 7→ Acn, 6 7→ Ucn, 7 7→

Cn, 8 7→ Cn, 9 7→ Cn, 10 7→ Cn, 11 7→ Main}

Figure 2. State graph and Initial graph G0 in Event-B

newEcal that satisfy the guard conditions, the event may occur. Guard conditions assure that
the pair mV and mE is actually a match from the LHS of the rule to the state graph. Guard
condition grd_newEcal guarantees that newEcal is a new fresh element in the graph. The
actions update the state graph according to the rule. In this case, one Cal edge is created.

Any change in the values of variables generates proof obligations to be demonstrated.
The proof obligations generated by a GG specification are directly demonstrated just by run-
ning the available provers in Rodin. Besides the GG specification, we can also establish
other properties to the model, stating them as invariants (considering that they are valid for
all reachable states of the system). In order to verify each invariant, a proof obligation is
generated for the initial state and for each rule of the grammar. However, in general, the
discharging of them requires user interaction and it is not a trivial task.

196 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 9

Event rule1
any

mV
mE
newEcal

where
grd_mV : mV ∈ vertL1 → vertG
grd_mE : mE ∈ edgeL1 � edgeG
grd_newEcal : newEcal ∈ N \ edgeG
grd_vertices : ∀v ·v ∈ vertL1 ⇒ tL1_V (v) = tG_V (mV (v))
grd_edges : ∀e ·e ∈ edgeL1 ⇒ tL1_E(e) = tG_E(mE(e))
grd_srctgt : ∀e ·e ∈ edgeL1 ⇒mV (sourceL1 (e)) = sourceG(mE(e)) ∧

∧mV (targetL1 (e)) = targetG(mE(e))
then

act_E : edgeG := edgeG ∪ {newEcal}
act_src : sourceG := sourceG ∪ {newEcal 7→ mV(Usr2)}
act_tgt : targetG := targetG ∪ {newEcal 7→ mV(Usr1)}
act_tG_E : tG_E := tG_E ∪ {newEcal 7→ Cal}

end

Figure 3. Rule application in Event-B

3.4 Rodin Platform

The Rodin Platform [3] is an Eclipse-based IDE that provides a core functionality
for syntactic analysis and proof-based verification of Event-B models. The platform is open
source, contributes to the Eclipse framework and is further extensible with plug-ins which
support features such as model checking, model animation, graphical front ends, additional
proof capabilities and code generation.

The main verification technique is theorem proving supported by a collection of the-
orem provers. The main provers available for Rodin are NewPP, PP and ML. The NewPP
prover has three forces. In the configuration restricted (nPP R), all selected hypotheses and
the goal are passed to New PP. In the configuration after lasso, nPP with a lasso, a lasso
operation is applied to the selected hypotheses and the goal and the result is passed to New
PP. The lasso operation selects any unselected hypothesis that have a common symbol with
the goal or a hypothesis that is currently selected. In the configuration unrestricted, nPP, all
the available hypotheses are passed to New PP. This prover is embedded in the tool and its
input language is first-order logic with the predicate ∈. First, all function and predicate sym-
bols that are different from ∈ and not related to arithmetic are translated away. Then New
PP translates the proof obligation to CNF (conjunctive normal form) and applies a combina-
tion of unit resolution and the Davis Putnam algorithm. The prover PP (predicate prover),
available in the Atelier-B as an external prover, also has three forces (P0, P1, PP). In the con-
figuration P0, all selected hypotheses and the goal are passed to PP. In the configuration P1,

RITA • Volume 22 • Número 1 • 2015 197



Proof Tactics for Theorem Proving Graph Grammars through Rodin 10

one lasso operation is applied to the selected hypotheses and the goal and the result is passed
to PP. In the configuration PP, all the available hypotheses are passed to PP. The input se-
quent is translated to classical B and fed to the PP prover of Atelier B. PP works in a manner
similar to newPP but with support for equational and arithmetic reasoning. The prover ML
(mono-lemma) is also available in the Atelier-B, but different from others (PP and NewPP).
ML applies a mix of forward, backward and rewriting rules in order to discharge the goal (or
detect a contradiction among hypotheses). For more details see [2, 11].

Since some proof obligations need user interaction, proof tactics have been developed
to help the users to discharge these obligations. A proof tactic, in the context of this work,
is defined by a sequence of inference rule applications that must be performed to discharge
proof obligations generated by specific properties defined for GG specifications in Rodin.
The inference rules can be applied by running Rodin provers or applying rewritten rules,
adding hypothesis, instantiating or eliminating quantifiers, and others. The complete list of
rules used in this work can be seen in Table 2.

True
2` >

True
4` >
3

A′
1

A

1 ∃ goal(inst 3, 2); 2 > goal; 3 simplification rewrites; 4 > goal

Figure 4. Proof Tree representation for tactics.

The proof tactics can be described by plain texts or tree-based representations. The use
of tree-based representations is more intuitive and favour the understanding the proof struc-
tures, since a goal can be partitioned in several sub-goals during the proof process. Moreover,
we can use two different tree-based representations to describe each tactic: proof trees and
use trees. A proof tree describes each step in detail, showing the sub-goals and the corre-
sponding rules applied to prove these sub-goals. On the other hand, a use tree give us a
more abstract description of a proof tactic, just indicating the actions that a user must take
to accomplish the proof. An example of proof tree can be seen in Figure 4, where the tree
is described by the inference rules and the goal (sequent to be demonstrated) is the tree root.
In this example, A is the goal. After to instantiate variables with 3 and 2 in the consequent
quantified by an existential (rule ∃ goal), two new sequents must be demonstrated: (i) ` >
and (ii)A′. The demonstration of (i) is completed by applying the > rule. While, in order to
demonstrate (ii) must be applied the rewrites simplification (3) and > goal (4) rules.

The corresponding use tree is shown in Figure 5. Each node in the use tree represents
a sequent and it is labelled with a comment explaining how it can be discharged. Black labels

198 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 11

∃ goal(inst 3, 2)

simplification rewrites

> goal

>goal

Figure 5. Use Tree representation for tactics.

are those that requires user intervention and gray labels are those discharged automatically
by the tool. The use tree must be followed in depth from left to right. In this example, one
can see that the proof obligation is discharged just applying the ∃ goal (inst 3, 2) rule and the
remaining of the nodes are automatically demonstrated.

4 Use Trees for Proof Tactics

In an Event-B model, properties stated as invariants are those that must be true for
all reachable states of the specified system. Proofs for such properties are developed by
induction: in the base case, a proof obligation is generated to guarantee that the initial graph
satisfies the property and, at the inductive step, a proof obligation is generated for the graph
resulting from the application of each rule of the grammar. In general, the discharging of such
proof obligations requires intervention from the user, that must have knowledge of both the
tool and the specification. Proof strategies to assist the developers at the time of discharging
semi-automatic proof obligations generated by the specification of some atomic properties
in the model were previously proposed [15]. Nonetheless, the description of such tactics
was given by proof trees and textual explanations. In this section, we present an alternative
representation for them, through use trees [14].

For each property, we first present the use tree for discharging the proof obligation for
the initial graph and then for the rules. Labels of kind ah(H) in a node indicates that H must
be added as hypothesis, while labels ∃ goal(inst I) means that I must be instantiated in an
existential goal. Remaining labels are proof tactics and rewriting rules available in the tool.

The propFin property stated as finite(tG_EB{t}) establishes that the set of edges
of type t of a reachable graph is finite. Finiteness property is required whenever a cardinality
property must be demonstrated. Figures 6(a) presents the proof tactic for discharging the
proof obligation generated by the initialisation event. Particularly, in order to discharge INI-
TIALISATION/propFin/INV, first tG_EB{t} = {x}must be added as hypothesis, replacing
tG_E by its value and considering x the result of tG_E restricted to the type t for the initial
graph. Then, we must execute the prover PP in force P1 and finally run the ML prover.

RITA • Volume 22 • Número 1 • 2015 199



Proof Tactics for Theorem Proving Graph Grammars through Rodin 12

ah (tG_E B {t} = {x})

simplification rewrites

ML

simplification rewrites

sl/ds

P1

>goal

(a) INITIALISATION/propFin/INV

rewrites range distribution left in goal

simplification rewrites

type rewrites

simplification rewrites

∧goal

Aah ({mE(e1), . . . ,mE(ej)} C− tG_E B {t} ⊆ tG_E B {t})

MLMLgeneralized MP

simplification rewrites

>goal

A

ah ({ed1 7→ t1, . . . , edk 7→ tk} B {t} ⊆ {ed1 7→ t1, . . . , edk 7→ tk}

MLML>goal
(b) rule_i/propFin/INV

Figure 6. Use Trees for propFin

In general, a rule can both delete and create new edges, then the obligation to be dis-
charged for this property will be of the form finite((({mE(e1), . . . ,mE(ej))}C− tG_E) ∪
{ed1 7→ t1, . . . , edk 7→ tk})B {t}), considering that j edges are deleted and a set of k edges
are included in tG_E. Figure 6(b) describes the tactic for each rule.

200 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 13

ah (tG_E B {t} = {e 7→ t})

simplification rewrites

sl/ds

PP

simplification rewrites

sl/ds

PP

>goal

(a) INITIALISA-
TION/propCard/INV

simplification rewrites

type rewrites

simplification rewrites

∃ hyp(∃x, x0 · tG_E B {t} = {x 7→ x0})

∃ goal (inst x, x0)

sl/ds

NewPP(lasso)

> goal

(b) rule_i/propCard/INV (preserving t edge)

Figure 7. Use Trees for propCard

RITA • Volume 22 • Número 1 • 2015 201



Proof Tactics for Theorem Proving Graph Grammars through Rodin 14
ah

(c
a
r
d
({
m
E
(e

1
),
..
.,
m
E
(e

j
)}
C−

tG
_E
B
{t
})

=
0

)

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

ty
pe

re
w

ri
te

s

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

∃
hy

p(
∃x

,x
0
·t
G

_E
B
{t
}
=
{x
7→

x
0
})

∃
go

al
(i

ns
te

d
i
,t

)

sl
/d

s

N
ew

PP
(l

as
so

)

>
go

al

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

ty
pe

re
w

ri
te

s

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

∃
hy

p(
∃x

,x
0
·t
G

_E
B
{t
}
=
{x
7→

x
0
})

ah
({
m
E
(e

i
)}
C−

tG
_E
B
{t
}
=

∅
) sl
/d

s

N
ew

PP
(l

as
so

)

sl
/d

s

N
ew

PP
(l

as
so

)

ge
ne

ra
lis

ed
M

P

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

>
g
o
a
l

ge
ne

ra
lis

ed
M

P

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

ty
pe

re
w

ri
te

s

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

∃
hy

p(
∃x

,x
0
·t
G

_E
B
{t
}
=
{x
7→

x
0
})

ah
({
m
E
(e

1
),
..
.,
m
E
(e

j
)}
C−

tG
_E
B
{t
}
⊆

tG
_E
B
{t
})

M
L

M
L

ge
ne

ra
lis

ed
M

P

si
m

pl
ifi

ca
tio

n
re

w
ri

te
s

>
g
o
a
l

Fi
gu

re
8.

U
se

tr
ee

ru
le

_i
/p

ro
pC

ar
d/

IN
V

(d
el

et
in

g
an

d
cr

ea
tin

g
t

ed
ge

)f
or
p
r
o
p
C
a
r
d

202 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 15

The propCard property, card(tG_E B {t}) = 1, states that any reachable graph
has exactly one edge of type t. Figures 7(a), 7(b) and 8 illustrate the proof tactics for the
initialisation event and for the rules, when a t edge is preserved and when a t edge is deleted
and another t edge is created, respectively. In the initialisation, tG_E must be replaced by its
initial value and e 7→ t is the pair resultant of tG_E restricted to the type t.

The general obligation to be discharged for each rule to propCard will be card(((
{mE(e1), . . . ,mE(ej))} C− tG_E) ∪ {ed1 7→ t1, . . . , edk 7→ tk} B {t}) = 1, considering
that j edges are deleted and k edges are created. In fact, if this property is valid, the t edge or
is preserved, or is deleted and created again by a rule application. Then, we divide our tactic
in two cases. In case that a t edge is preserved, the existential goal must be instantiated with
x and x0 (with the preserved edge and its type). In the other case, we consider that mE(ei)
is the deleted t edge and edi is the created one.

sl/ds

NewPP (lasso)

(a) rule_i/propExEdge/INV
(all t edges preserved)

∃ goal(inst edi 7→ t)

simplification rewrites

type rewrites

simplification rewrites

∃ hyp(∃x · x ∈ tG_E B {t})

ML

> goal

(b) rule_i/propExEdge/INV
(an t edge created)

∃ goal(inst mE(edi) 7→ t)

simplification rewrites

type rewrites

simplification rewrites

∃ hyp(∃x · x ∈ tG_E B {t})

sl/ds

NewPP (lasso)

> goal

(c) rule_i/propExEdge/INV
(an t edge deleted and an t
edge preserved)

Figure 9. Use Trees for propExEdge

The propExEdge property, ∃x · x ∈ tG_E B {t}, states that any reachable graph
has an edge of type t. To discharge the proof obligation for the initial graph just run NewPP.
Tactics for rules are depicted in Figure 9. Again, since a rule can preserve, delete and create
edges, then we divide our proof strategies in three cases: (a) all t edges are preserved (and
no edge t is created), (b) a t edge is created and (c) a t edge is deleted, no t edge is created
and a t edge is preserved. In (b) we consider that edi 7→ t is the created edge and in (c) we
assume that mE(edi) 7→ t is the preserved edge. The propExVertex property, ∃x · x ∈
tG_V B {t}, states that any reachable graph has a vertex of type t. In order to discharge the

RITA • Volume 22 • Número 1 • 2015 203



Proof Tactics for Theorem Proving Graph Grammars through Rodin 16

proof obligations for the initialisation and rules we must just run NewPP (lasso).

Properties in Figure 10 were stated for the mobile system in Rodin and all discharged
using the proposed tactics. For example, the propFin property can be discharged with the
assistance of the use trees depicted in Figure 6. In order to discharge the proof obligation
generated by the initialisation event (use tree showed in Figure 6(a)), tG_E B {Main} =
{11} must be added as hypothesis (see Figure 2 to definition of tG_E). Then, we must
execute the PP prover in force P1 and finally run the ML prover. One proof obligation is
generated to each rule, that can be discharged with the assistance of the use tree depicted in
Figure 6(b). Considering the rule1 event (see Figure 3), the obligation generated for this
property will be finite({newEcal 7→ Cal}B {Main}), since it do not delete anything and
create an edge named newEcal. In order to discharge this obligation the range distribution
to the left rewrites must be applied in the goal. Then, {newEcal 7→ Cal} B {Main} ⊆
{newEcal 7→ Cal} must be added as hypothesis. Finally, the ML prover must be run twice.
Note that, for rule1 event, only one branch is generated, since there is no deleted element.

INVARIANTS
propFin : finite(tG_E B {Main}) // The set of edges of type Main of a reachable graph is finite.
propCard : card(tG_E B {Main}) = 1 // Any reachable graph has exactly one edge of type Main.
propExEdge : ∃x · x ∈ tG_E B {Acn} // Any reachable graph has an edge of type Acn.
propExVert : ∃x · x ∈ tG_V B {Ant} // Any reachable graph has a vertex of type Ant.

Figure 10. Verified Properties for the Mobile System

5 Extending the Set of Proof Tactics

The focus of our research has been on properties about reachable states for (infinite)
state verification. Properties over states are properties over graphs, typically composed of
different kinds of edges and vertices. In previous work [9], we have proposed patterns for the
presentation, codification and reuse of property specifications and in [15] he have developed
proof strategies for the demonstration of specific atomic properties belonging to such patterns.
Here we extend the set of tactics describing proof strategies for discharging the properties
presented in Figure 11.

The previously proposed patterns are defined from a standard library of functions.
Although these functions are not used in the described properties, the tactics proposed here
prioritise properties that describe typical characteristics of graphs, predefined in this library
of functions. Furthermore, we choose to set tactics for simple properties that could be reused
in case of more complex specifications.

The proof obligations generated by a prop property stated as invariant are labelled

204 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 17

INVARIANTS
propLoopT : ∃x · x ∈ edgeG ∧ sourceG(x) = targetG(x) ∧ tG_E(x) = t

// Any reachable graph has a loop edge of type t.
propEdSpSrcT : ∃x , y · (x ∈ edgeG ∧ y ∈ vertG ∧ tG_V (y) = t ∧ sourceG(x) = y)

// Any reachable graph has an edge with source in a vertex of type t.
propEdSpTgtT : ∃x , y · (x ∈ edgeG ∧ y ∈ vertG ∧ tG_V (y) = t ∧ targetG(x) = y)

// Any reachable graph has an edge with target in a vertex of type t.
propNotIsoVT : ∀x · ((x ∈ vertG ∧ tG_V (x) = t) ⇒ (∃y · (y ∈ edgeG ∧ ((sourceG(y) = x ∧

¬targetG(y) = x) ∨ (targetG(y) = x ∧ ¬sourceG(y) = x)))))
// Any reachable graph has not an isolated vertex of type t.

propAllSVertSrcTEd : ∀x ·((x ∈ vertG ∧ tG_V (x) = s) ⇒ (∃y ·(y ∈ edgeG ∧ tG_E(y) = t ∧
sourceG(y) = x)))
// In any reachable graph, all vertex of type s is source of an edge of type t.

propAllSVertTgtTEd : ∀x ·((x ∈ vertG ∧ tG_V (x) = s) ⇒ (∃y ·(y ∈ edgeG ∧ tG_E(y) = t ∧
targetG(y) = x)))
// In any reachable graph, all vertex of type s is target of an edge of type t.

Figure 11. Properties as Invariants in Event-B

with INITIALISATION/prop/INV for the initialisation event and with rule_i/prop/INV for
each rule rule_i. For each property, we first present the steps for discharging the proof obli-
gation for the initial graph and then for the rules. In addition to a textual description of the
steps required to complete the proofs, we also detail the proof trees.

In a proof tree, each node represents a sequent and each number (from 1 to 82) rep-
resents the rule or the prover used to discharge the corresponding sequent. The symbol H in
the antecedents represents a set of hypotheses selected automatically by the tool. Generally,
when a tactic is applied, new hypotheses are selected, updating H. Aiming not to overload
the notation, we represent the set of automatically selected hypotheses always by H. A set of
proof tactics, rewriting rules and provers are available for the Rodin platform [3]. Those used
in this work are listed in Table 2. For details see [11, 2].

When opening a proof obligation, by default, the tool applies some auto- and post-
tactics, generating some nodes in the proof tree. In order to use the proposed strategies, it is
assumed that the user always starts a proof executing a prune in the proof tree (button at the
proof control), undoing any application of rule and starting the proof from the original goal.
We also assume that the rules applied in the auto- and post- tactics during the proof process
are those configured by default in the tool.

In the following we first discuss the development process of the proof tactics and after
we detail the strategies for discharging the proof obligations generated by the properties listed
in Figure 11. The strategies for discharging propEdSpTgtT and propAllVertTgtTEd
are respectively very similar to propEdSpSrcT and propAllVertSrcTEd. We have
just to replace source by target and consider the component target in the grd_vertices
hypothesis instead of source in the proof steps. In order to not extend the text, we omit their

RITA • Volume 22 • Número 1 • 2015 205



Proof Tactics for Theorem Proving Graph Grammars through Rodin 18

Table 2. Description of Rules

1 - ∃ goal (inst x) 2 -> goal
3 - simplification rewrites 4 - ∃ goal (inst edt)
5 - ∃ hyp (∃x · x ∈ edgeG ∧ sourceG(x) =
targetG(x) ∧ tG_E(x) = t

6 - type rewrites

7 - eh with tG_E(x) = t 8 - ah (¬x = mE(e1))
9 - generalised MP 10 - ∀ hyp (inst e1)

11 - sl/ds 12 - Partition rewrites in hyp (partition(tLi_E{e1 7→
t1}, . . . , {ek 7→ tk}))

13 - eh with tLi_E = {e1 7→ t1, . . . , ek 7→ tk} 14 - eh with t1 = tG_E(mE(e1))
15 - NewPP (with lasso) 16 - ah (¬x = mE(ej))
17 - ∀ hyp (inst ej ) 18 - eh with tk = tG_E(mE(ej))
19 - ∃ goal (inst mE(ep)) 20 - total function dom substitution in goal
21 - ah (¬mE(ep) = mE(e1)) 22 - ah (¬mE(ep) = mE(ei))
23 - ah (mE(ep) ∈ edgeG) 24 - functional image goal for mE(ej)
25 - hyp 26 - ML
27 - ah (sourceG(mE(ep)) = targetG(mE(ep))) 28 - ∧ goal
29 - functional goal 30 - ah (sourceLi(ep) = targetLi(ep))
31 - Partition rewrites in hyp (partition(sourceLi,
{e1 7→ v1}, . . . , {ek 7→ vl})) 32 - remove ¬ in ¬(e1 = ek ∧ v1 = vl)

33 - eh with sourceLi = {e1 7→ v1, . . . , ek 7→ vl}
34 - Partition rewrites in hyp partition(targetLi, {e1
7→ v1}, . . . , {ej 7→ vt}))

35 - eh with targetLi = {e1 7→ v1, . . . , ek 7→ vl} 36 - remove ¬ in ¬(e1 = ek ∧ e1 = tG_E(x))

37 - remove ¬ in ¬(e1 = ek ∧ ek = tG_E(x))
38 - tLi_E = {e1 7→ t1, ej 7→ tG_E(x), . . . , ek 7→
tk}

39 - ∃ goal (inst x, y) 40 - ∃ hyp (∃x, y · x ∈ edgeG ∧ y ∈ vertG ∧
tG_V (y) = t ∧ sourceG(x) = y)

41 - eh with tG_V (y) = t 42 - eh with sourceG(x) = y
43 - ∃ goal (inst edt, mV (vt)) 44 - eh with tG_V (sourceG(x)) = t)
45 - functional image goal for mV (vt) 46 - ∀ hyp (inst vt)
47 - Partition rewrites in hyp (partition(vertLi, {v1 7→
t1}, . . . , {vl 7→ tl}))

48 - eh with tLi_V = {v1 7→ t1, . . . , vt 7→
tG_V (sourceG(x)), . . . , vl 7→ tl}

49 - Functional image simplification in goal 50 - ah ¬x = m(e1)
51 - ∀ hyp (inst v1) 52 - ah ¬x = m(ej)
53 - ∀ hyp (inst vl) 54 - ∃ goal (inst mE(ep),mV (vt))
55 - Partition rewrites in hyp (partition(edgeLi, {e1},
. . . , {ek})) 56 - eh with edgeLi = {ed1, . . . , edk}

57 - Partition rewrites in hyp (partition(tLi_V, {v1 7→
t1}, . . . , {vk 7→ tk}))

58 - eh with tLi_V = {v1 7→ t1, . . . , vj 7→
tG_V (sourceG(x)), . . . , vk 7→ tk}

59 - remove ¬ in ¬(ej = e1 ∧ vt = v1) 60 - remove ¬ in ¬(ej = ek ∧ vt = vl)
61 - ∀ goal (free x) 62 -⇒ goal
63 - remove ∈ in x ∈ {v1, . . . , vn} 64 - ∀ hyp (x = v1 ∨ . . . ∨ x = vn)
65 - eh with x = vi 66 - eh with x = vj
67 - remove ∈ in x ∈ vertG ∪ {v1, . . . , vl} 68 - ∀ hyp (x ∈ vertG ∨ x = v1 ∨ . . . ∨ x = vl)

69 - ∀ hyp (inst x)
70 - ⇒ hyp mp (tG_V (x) = t ⇒ (∃y · y ∈
edgeG ∧ ((sourceG(y) = x∧¬targetG(y) = x) ∨
(targetG(y) = x ∧ ¬sourceG(y) = x))))

71 - ∃ hyp (∃y · y ∈ edgeG ∧ ((sourceG(y) =
x ∧ ¬targetG(y) = x) ∨ (targetG(y) = x ∧
¬sourceG(y) = x)))

72 - ∃ goal (inst y)

73 - eh with x = vt 74 - eh with tG_V (x) = t
75 - eh with (tG_V ∪{v1 7→ t1, . . . , vl 7→ tl})(x) = t) 76 - remove ∈ in x ∈ {v1, . . . , vn}
77 - eh with x = vs 78 - ∃ goal (inst ej )
79 - ah (tLi_E(e1) = tG_E(mE(e1))) 80 - functional image goal for mE(e1)
81 - ah (tLi_E(ej) = tG_E(mE(ej))) 82 - ∀ hyp (inst ep)

206 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 19

descriptions. Sometimes, we need to instantiate elements in hypotheses generated from a
guard condition (prefix grd_). Table 3 presents these identifiers along with their description.

5.1 Development Process of Proof Tactics

A tactic proposition requires knowledge of the specified system and the rewriting rules
and proof rules available for the Rodin tool. Similarly, it is crucial to understand the formal
proof methods (e.g. direct proof, proof by mathematical induction, proof by contradiction,
among others) and have experience in the demonstration of mathematical statements.

Since in our event-B model properties are declared as invariants, proofs are developed
by induction. The proof obligation generated for the initialisation event (which defines the
initial graph) is demonstrated by instantiating the variables with the elements that guarantee
the property. For instance, if a property states that any reachable graph has a loop edge of
type t, we must instantiate the goal with a loop edge of type t of the initial graph.

The proof obligations generated in the induction step depend on the changes that the
events held in the state. Particularly, these modifications in GG correspond to the rule appli-
cation effect: graph elements can be created, deleted or preserved. For each event (or rule
application), the goal to be demonstrated is generated replacing the variables specified in the
model by its new values updated by the event. If the event does not update any variable of a
property, no proof obligation is generated for such case.

The proof tactic is developed according to kind of property to be discharged. For
instance, if it is a universal quantification, usually, we eliminate the universal quantifier, re-
move the membership operator, dividing the proof in cases. The cases depend on the effect
of the rule application: vertices can be added or preserved, edges can be added, deleted or
preserved. If it is an existential quantification, we must instantiate the element that has the
property, and often the property is assured by the induction hypothesis.

Table 3. Guard Conditions
Identifier Description

grd_vertices ∀v · v ∈ vertLi⇒ tLi_V (v) = tG_V (mV (v))
grd_edges ∀e · e ∈ edgeLi⇒ tLi_E(e) = tG_E(mE(e))
grd_srctgt ∀e·e ∈ edgeLi⇒mV (sourceLi(e)) = sourceG(mE(e))∧

∀e · e ∈ edgeLi⇒mV (targetLi(e)) = targetG(mE(e))

RITA • Volume 22 • Número 1 • 2015 207



Proof Tactics for Theorem Proving Graph Grammars through Rodin 20

5.2 propLoopT property

The propLoopT property states that any reachable graph has a loop edge of type t.
When the variables edgeG, sourceG, targetG and tG_E are initialised by the initialisation
event, one proof obligation labelled with INITIALISATION/propLoopT/INV is generated.
In order to discharge this obligation we must simply instantiate in the goal the name of the
loop edge of type t contained in the initial graph. Figure 12 presents the generated proof tree.

True
2

` >

True
2

` >
3

` x ∈ edgeG ∧ sourceG(x) = targetG(x) ∧ tG_E(x) = t
1

` ∃x · x ∈ edgeG ∧ sourceG(x) = targetG(x) ∧ tG_E(x) = t

Figure 12. Proof Tree INITIALISATION/propLoopT/INV

Proof Tree Description: the goal to be demonstrated is ` ∃x · x ∈ edgeG ∧
sourceG(x) = targetG(x) ∧ tG_E(x) = t. In order to discharge this sequent, we must
instantiate in the goal the name of the loop edge x of type t (1) belonging to the initial graph.
Them, two new sub-goals are generated: (i) ` > that is automatically discharged (by 2) and
(ii) ` x ∈ edgeG ∧ sourceG(x) = targetG(x) ∧ tG_E(x) = t, which after the automatic
execution of simplification rewrites (3), generates the goal ` >, also automatically demon-
strated by the > goal rule (2). �

The corresponding use tree can be seen in Figure 13. By the use tree, one can abstract
each detail from the proof tree and realise that only the instantiation of the loop edge name
must be performed. From now on, the use trees will be omitted, but they can be constructed
from the presented proof trees, by following the numbering of each level of the proof trees.

∃ goal (inst x)

simplification rewrites

> goal

> goal

Figure 13. Use tree rule_i/propLoopT/INV

Considering that a rule can delete and create new edges, the proof obligations gen-
erated for rules are described as follows ∃x · x ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪
{ed1, . . . edk} ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→ mV (v1), . . . , edk 7→

208 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 21

vl})(x) = (({mE(e1), . . . ,mE(ej)}C− targetG)∪{ed1 7→ mV (v1), . . . , edk 7→ vl})(x)∧
(({mE(e1), . . . ,mE(ej)}C− tG_E)∪ {ed1 7→ t1, . . . , edk 7→ tk})(x) = t, considering that
j edges are deleted and k edges are created by the rule. In the case of this property, a rule
falls into one of the following cases: it creates loop edges of type t; it just preserves (it does
not delete and neither create) loop edges of type t; it preserves and deletes (but it does not
create) loop edges of type t; it does not involve loop edges of type t; it just deletes (it does
not preserve and neither create) loop edges of type t. Thus, the presentation of the tactics are
divided in these cases, excepting the last one that is not treated in this work. This is because
it is not possible to define a generic tactic for this property in such case. Its warranty would
depend on other system properties or relations between rules.

A - Rule creates a loop edge of type t

In order to demonstrate this kind of proof obligation we must instantiate, in the goal,
the name of the loop edge of type t that is created by the rule. Figure 14 presents the corre-
sponding proof tree.

A = edgeG \ {mE(e1), . . . ,mE(ej)}
B = {ed1, . . . , edk}
C = {mE(e1), . . . ,mE(ej)} C− sourceG

D = {ed1 7→ mV (v1), . . . , edk 7→ vl}
E = {mE(e1), . . . ,mE(ej)} C− targetG

F = {ed1 7→ mV (v1), . . . , edk 7→ vl}
G = {mE(e1), . . . ,mE(ej)} C− tG_E
H = {ed1 7→ t1, . . . , edk 7→ tk}

True
2

H ` >

True
2

H ` >
3

H ` edt ∈ ((A) ∪ B) ∧ ((C) ∪ D)(x) = ((E) ∪ F)(x) ∧ ((G) ∪ H)(x) = t
4

H ` ∃x · x ∈ ((A) ∪ B) ∧ ((C) ∪ D)(x) = ((E) ∪ F)(x) ∧ ((G) ∪ H)(x) = t

Figure 14. Proof Tree rule_i/propLoopT/INV - Rule Creates a Loop Edge of Type t

Proof Tree Description: The sequent to be proved is H ` ∃x · x ∈ ((edgeG
\{mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk}) ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪
{ed1 7→ mV (v1), . . . , edk 7→ vl})(x) = (({mE(e1), . . . ,mE(ej)} C− targetG) ∪ {ed1 7→
mV (v1), . . . , edk 7→ vl})(x)∧(({mE(e1), . . . ,mE(ej)}C−tG_E)∪{ed1 7→ t1, . . . , edk 7→
tk})(x) = t. In order to discharge this sequent, we must instantiate, in the goal, the name
of the loop edge edt, of type t, created by the rule application (4). Then, two new sub-
goals are generated: (i) H ` > and (ii) H ` edt ∈ ((edgeG \ {mE(e1), . . . ,mE(ej)}) ∪
{ed1, . . . , edk}) ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→ mV (v1), . . . , edk 7→
vl})(x) = (({mE(e1), . . . ,mE(ej)}C− targetG)∪{ed1 7→ mV (v1), . . . , edk 7→ vl})(x)∧

RITA • Volume 22 • Número 1 • 2015 209



Proof Tactics for Theorem Proving Graph Grammars through Rodin 22

(({mE(e1), . . . ,mE(ej)} C−tG_E) ∪ {ed1 7→ t1, . . . , edk 7→ tk})(x) = t. (i) is automati-
cally discharged by the > goal rule (2). In (ii), the simplification rewrites rule (3) is automat-
ically applied, resulting the sequent H ` >, which is also automatically demonstrated (by 2).
�

B - Rule just preserves or does not involve loop edges of type t

For cases that no other edge (different from type t) is deleted, we must just run the
NewPP with lasso prover. For cases in which other edges, different from type t, are deleted,
we must carry out the following steps to conclude the proof:

1. Apply the ∃ hyp rule in the induction hypothesis;

2. For each edge ei, which is deleted by the rule, the next sequence of steps must be
followed:

(a) Add ¬x = mE(ei) as hypothesis, where ei is an edge deleted by the rule , but
does not have type t;

(b) Instantiate the deleted edge ei in the grd_edges hypothesis;

(c) Apply the partition rewrites rule in the hypothesis that defines the typing of the
edges in the left-hand side of the rule and apply the NewPP with lasso prover, in
the generated sub-goals.

3. Run the NewPP with lasso prover.

Figure 15 presents the proof tree generated for this case.

Proof Tree Description: The goal to be demonstrated is H ` ∃x · x ∈ (edgeG
\{mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk} ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪
{ed1 7→ mV (v1), . . . , edk 7→ vl})(x) = (({mE(e1), . . . ,mE(ej)} C− targetG) ∪ {ed1 7→
mV (v1), . . . , edk 7→ vl})(x)∧(({mE(e1), . . . ,mE(ej)}C−tG_E)∪{ed1 7→ t1, . . . , edk 7→
tk})(x) = t. In order to discharge this sequent we must apply the ∃ hyp rule in the induc-
tion hypothesis (5). After this, some rules are automatically applied (rules 3, 6, 3 and 7),
remaining the following sub-goal H ` ∃x0 · x0 ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪
{ed1, . . . , edk} ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→ mV (v1), . . . , edk 7→
vl})(x0) = (({mE(e1), . . . ,mE(ej)} C− targetG) ∪ {ed1 7→ mV (v1), . . . , edk 7→ vl})
(x0)∧ (({mE(e1), . . . ,mE(ej)}C− tG_E)∪{ed1 7→ t1, . . . , edk 7→ tk})(x0) = tG_E(x).
In order to discharge such sub-goal, we must add ¬x = mE(ei) as hypothesis (8), for each
edge ei deleted by the rule application. We assume that {e1, . . . , ej} represents the set of

210 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 23

A
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

B
=
{
e
d
1
,
.
.
.
,
e
d
k
}

C
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

D
=
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

E
=
d
o
m

(
m

E
)
∧

m
E
∈

e
d
g
e
L
i
7→

Z

B

N
ew

PP
R

U
L

E
S

11
,1

5
H
`
∃
x
0
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
C
)
(
x
0
)
=

(
(
A

C−
t
a
r
g
e
t
G

)
∪
C
)
(
x
0
)
∧

(
(
A

C−
t
G

_E
)
∪
D

)
(
x
0
)
=

t
G

_E
(
x
)

A

Tr
ue

2
H
`
>

3
H
`
>
∧
>

9
H
`

e
j
∈
E

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

3,
9,

3,
13

,3
,1

8,
11

,1
5

H
`
¬
x

=
m

E
(
e
j
)

12
H

,
t
L
i

_E
(
e
j
)
=

t
G

_E
(
m

E
(
e
j
)
)
`
¬
x

=
m

E
(
e
j
)

11
H
`
¬
x

=
m

E
(
e
j
)

17
H
`
¬
x

=
m

E
(
e
j
)

B
16

H
`
∃
x
0
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
C
)
(
x
0
)
=

(
(
A

C−
t
a
r
g
e
t
G

)
∪
C
)
(
x
0
)
∧

(
(
A

C−
t
G

_E
)
∪
D

)
(
x
0
)
=

t
G

_E
(
x
)

Tr
ue

2
H
`
>

3
H
`
>
∧
>

9
H
`

e
1
∈
E

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

3,
9,

3,
13

,3
,1

4,
11

,1
5

H
`
¬
x

=
m

E
(
e
1
)

12
H

,
t
L
i

_E
(
e
1
)
=

t
G

_E
(
m

E
(
e
1
)
)
`
¬
x

=
m

E
(
e
1
)

11
H
`
¬
x

=
m

E
(
e
1
)

10
H
`
¬
x

=
m

E
(
e
1
)

A
8

H
`
∃
x
0
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
C
)
(
x
0
)
=

(
(
A

C−
t
a
r
g
e
t
G

)
∪
C
)
(
x
0
)
∧

(
(
A

C−
t
G

_E
)
∪
D

)
(
x
0
)
=

t
G

_E
(
x
)

5,
3,

6,
3,

7
H
`
∃
x
·
x
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
C
)
(
x
)
=

(
(
A

C−
t
a
r
g
e
t
G

)
∪
C
)
(
x
)
∧

(
(
A

C−
t
G

_E
)
∪
D

)
(
x
)
=

t

Fi
gu

re
15

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pL
oo

pT
/I

N
V

-R
ul

e
ju

st
pr

es
er

ve
s

or
do

es
no

ti
nv

ol
ve

lo
op

ed
ge

s
of

ty
pe

t

RITA • Volume 22 • Número 1 • 2015 211



Proof Tactics for Theorem Proving Graph Grammars through Rodin 24

deleted edges. In the proof tree is illustrated the sub-trees for e1 and ej , omitting the inter-
mediary ones. The addition of such hypothesis produces three new sub-goals: (I) H ` ei ∈
dom(mE)∧mE ∈ edgeLi 7→Z; (II) H ` ¬x = mE(ei) and (III) H ` ∃x0 ·x0 ∈ (edgeG\
{mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk} ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪
{ed1 7→ mV (v1), . . . , edk 7→ vl})(x0) = (({mE(e1), . . . , mE(ej)}C− targetG) ∪{ed1 7→
mV (v1), . . . , edk 7→ vl})(x0)∧ (({mE(e1), . . . ,mE(ej)}C− tG_E) ∪ {ed1 7→ t1, . . . , edk
7→ tk})(x0) = tG_E(x). (I) is automatically discharged by generalised MP rule (9),
the simplification rewrites rule (3) and the > goal rule (2). In order to demonstrate (II)
we must instantiate the name ei in the grd_edges hypothesis (17). As a result, two
new sub-goals must be demonstrated: (i) H ` >, automatically discharged (by 2) and (ii)
H ` ¬x = mE(ei). In order to conclude (ii), we must apply the partition rewrites rule (12)
in the hypothesis that defines the typing of edges in the left-hand side of the rule. After, some
automatic rules are applied (rules 3, 9, 3, 13, 3, 18, 11), and then the sequent is demonstrated
applying the NewPP with lasso prover (15). This process must be repeated for each deleted
edge (from e1 to ej). Finally, after some automatic selection/ deselection of hypothesis (11),
the sequent (III) is discharged by the NewPP with lasso prover (15). �

C - Rule preserves and deletes (but does not create) loop edges of type t

The steps to discharge the proof obligation in this case are the following:

1. Instantiate in the goal mE(ep), such that ep is the name of the preserved t edge;

2. For each deleted edge ei:

(a) Add¬mE(ep) = mE(ei) as hypothesis, such that ep is the name of the preserved
loop edge of type t and ei is a deleted edge by the rule. After, run the NewPP
with lasso prover.

3. Add mE(ep) ∈ edgeG as hypothesis and run ML;

4. Add sourceG(mE(ep)) = targetG(mE(ep)) as hypothesis;

5. Add sourceLi(ep) = targetLi(ep) as hypothesis;

6. Apply the partition rewrites rule in the hypothesis that defines the source of the edges
in the left-hand side of the rule;

7. Apply partition rewrites rule in the hypothesis that defines the target of the edges in the
left-hand side of the rule;

8. Instantiate the name of the preserved loop edge ep of type t, in the grd_srctgt
hypothesis considering sourceG;

212 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 25

9. Instantiate the name of the preserved loop edge ep of type t, in the grd_srctgt
hypothesis considering targetG;

10. Run NewPP with lasso;

11. Run ML;

12. Instantiate the name of the preserved loop edge ep of type t, in the grd_edges hy-
pothesis;

13. Apply partition rewrites rule in the hypothesis that defines the typing of the edges in
the left-hand side of the rule;

14. Run ML.

Due to space limitations the generated proof tree was divided and presented in Fig-
ures 16, 17, and 18.

Proof Tree Description: Figure 16 corresponds to steps 1 to 3 of the proposed tac-
tic. The sequent to be demonstrated is H ` ∃x · x ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪
{ed1, . . . , edk} ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→ mV (v1), . . . , edk 7→
mV (vl)})(x) = (({mE(e1), . . . ,mE(ej)} C− targetG) ∪ {ed1 7→ mV (v1), . . . , edk 7→
mV (vl)})(x) ∧ (({mE(e1), . . . ,mE(ej)}C− tG_E) ∪ {ed1 7→ t1, . . . , edk 7→ tk})(x) = t.
With the aim of discharging it, we must first instantiate mE(ep) in the goal, such that ep
represents the name of the edge of type t preserved by the rule. Then two new sub-goals are
generated: (I) H ` ep ∈ dom(mE)∧mE ∈ edgeLi 7→Z; and (II) H ` mE(ep) ∈ (edgeG\
{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧(({mE(e1), . . . ,mE(ej)}C−sourceG)∪{ed1 7→
mV (v1), . . . , edk 7→ mV (vl)})(mE(ep)) = (({mE(e1), . . . ,mE(ej)}C− targetG)∪ {ed1
7→ mV (v1), . . . , edk 7→ mV (vl)})(mE(ep))∧(({mE(e1), . . . ,mE(ej)}C−tG_E)∪{ed1 7→
t1, . . . , edk 7→ tk})(mE(ep)) = t. In (I), after the instantiation, some rules (3, 9, 3, 20, 6,
respectively) are automatically applied, reaching the H ` > goal, which is automatically
discharged by (2). In the same way, in (II), some rules are automatically applied (9, 3, 6, 3,
5, 7 and 2, respectively), generating three new sequents to be discharged: (I) H ` mE(ep) ∈
(edgeG\{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}; (II) H ` (({mE(e1), . . . ,mE(ej)}C−
sourceG)∪{ed1 7→ mV (v1), . . . , edk 7→ mV (vl)})(mE(ep)) = (({mE(e1), . . . ,mE(ej)}
C−targetG)∪{ed1 7→ mV (v1), . . . , edk 7→ mV (vl)})(mE(ep)); and (III) H ` (({mE(e1),
. . . ,mE(ej)} C− tG_E) ∪ {ed1 7→ mV (v1), . . . , edk 7→ mV (vl)})(mE(ep)) = tG_E(x).
In order to proof (I) (sub-tree A ), we must add ¬mE(ep) = mE(ei) as hypothesis, for each
deleted edge ei, with i ∈ {1, . . . , j}. After, three new sub-goals must be demonstrated: (i)
H ` ep ∈ dom(mE) ∧ mE ∈ edgeLi 7→ Z ∧ ep ∈ dom(mE); (ii) H ` ¬mE(ep) =
mE(ei) and (iii) H ` mE(ep) ∈ (edgeG \ {mE(e1), . . . , mE(ej)}) ∪ {ed1, . . . , edk}.

RITA • Volume 22 • Número 1 • 2015 213



Proof Tactics for Theorem Proving Graph Grammars through Rodin 26

A
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

B
=
d
o
m

(
m

E
)
∧

m
E
∈

e
d
g
e
L
i
7→

Z
C

=
{
e
d
1
,
.
.
.
,
e
d
k
}

D
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

m
V

(
v
l
)
}

E
=
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

F
=
(
e
d
g
e
G
\
A

)
∪
C
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
D

)
(
m

E
(
e
p
)
)

a
Tr

ue
2

H
`
>

3
H
`
>
∧
>
∧
>

9
H
`

e
p
∈
B
∧

e
k
∈

d
o
m

(
m

E
)

Tr
ue

24
,2

4,
25

H
`

m
E

(
e
p
)
∈

e
d
g
e
G

M
L

R
U

L
E

S
26

H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A

)
∪
C

23
H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A

)
∪
C

A

Tr
ue

2
H
`
>

3
H
`
>
∧
>
∧
>

9
H
`

e
p
∈
B
∧

e
p
∈

d
o
m

(
m

E
)

N
ew

PP
R

U
L

E
S

11
,1

5
H
`
¬
m

E
(
e
p
)
=

m
E

(
e
1
)

Tr
ue

2
`
>

3
H
`
>
∧
>
∧
>

9
H
`

e
p
∈
B
∧

e
p
∈

d
o
m

(
m

E
)

N
ew

PP
R

U
L

E
S

11
,1

5
H
`
¬
m

E
(
e
p
)
=

m
E

(
e
i
)

a
22

H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A

)
∪
C

21
H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A

)
∪
C

Tr
ue

2
H
`
>

6
H
`

e
p
∈

e
d
g
e
L
i

20
H
`

e
p
∈

d
o
m

(
m

E
)

3
H
`

e
p
∈

d
o
m

(
m

E
)
∧
>

3,
9

H
`

e
p
∈
B

A
B

C
9,

3,
6,

3,
5,

7,
2

H
`

m
E

(
e
p
)
∈
F

=
(
(
A

C−
t
a
r
g
e
t
G

)
∪
D

)
(
m

E
(
e
p
)
)
∧

(
(
A

C−
t
G

_E
)
∪
E
)
(
m

E
(
e
p
)
)
=

t
19

H
`
∃
x
·
x
∈

(
e
d
g
e
G
\
A

)
∪
C
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
D

)
(
x
)
=

(
(
A

C−
t
a
r
g
e
t
G

)
∪
D

)
(
x
)
∧

(
(
A

C−
t
G

_E
)
∪
E
)
(
x
)
=

t

Fi
gu

re
16

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pL
oo

pT
/I

N
V

-R
ul

e
pr

es
er

ve
s

an
d

de
le

te
s

(b
ut

do
es

no
t

cr
ea

te
)l

oo
p

ed
ge

s
of

ty
pe

t
(1

/3
)

214 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 27

A
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

B
=
d
o
m

(
m

E
)
∧

m
E
∈

e
d
g
e
L
i
7→

Z
C

=
{
e
d
1
,
.
.
.
,
e
d
k
}

D
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

E
=
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

F
=
d
o
m

(
s
o
u
r
c
e
G

)
∧

s
o
u
r
c
e
G
∈

Z
7→

Z
G

=
d
o
m

(
t
a
r
g
e
t
G

)
∧

t
a
r
g
e
t
G
∈

Z
7→

Z
H

=
d
o
m

(
s
o
u
r
c
e
L
i
)
∧

s
o
u
r
c
e
L
i
∈

e
d
g
e
L
i
7→

v
e
r
t
L
i

I
=
d
o
m

(
t
a
r
g
e
t
L
i
)
∧

t
a
r
g
e
t
L
i
∈

e
d
g
e
L
i
7→

v
e
r
t
L
i

J
=
m

E
(
e
p
)
∈

d
o
m

(
s
o
u
r
c
e
G

)
K

=
m

E
(
e
p
)
∈

d
o
m

(
t
a
r
g
e
t
G

)
L

=
s
o
u
r
c
e
L
i
∈

e
d
g
e
L
i
7→

v
e
r
t
L
i

M
=
t
a
r
g
e
t
L
i
∈

e
d
g
e
L
i
7→

v
e
r
t
L
i

b

Tr
ue

2
H
`
>

6
H
`

e
p
∈

e
d
g
e
L
i

20
H
`

e
p
∈

d
o
m

(
s
o
u
r
c
e
L
i
)

Tr
ue

29
H
`
L

Tr
ue

2
H
`
>

6
H
`

e
p
∈

e
d
g
e
L
i

20
H
`

e
p
∈

d
o
m

(
t
a
r
g
e
t
L
i
)

Tr
ue

29
H
`
M

28
H
`

e
p
∈
H

d
e

9,
3,

30
H
`

s
o
u
r
c
e
G

(
m

E
(
e
p
)
)
=

t
a
r
g
e
t
G

(
m

E
(
e
p
)
)

B

Tr
ue

25
H
`

m
E

(
e
p
)
∈

e
d
g
e
G

24
,2

4,
20

H
`
J

Tr
ue

29
H
`

s
o
u
r
c
e
G
∈

Z
7→

Z

Tr
ue

25
H
`

m
E

(
e
p
)
∈

e
d
g
e
G

24
,2

4,
20

H
`
K

Tr
ue

29
H
`

t
a
r
g
e
t
G
∈

Z
7→

Z
28

H
`

m
E

(
e
p
)
∈
F
∧

m
E

(
e
p
)
∈
G

3
H
`
>
∧
>
∧

m
E

(
e
p
)
∈
F
∧

m
E

(
e
p
)
∈
G

9
H
`

e
p
∈
B
∧

m
E

(
e
p
)
∈
F
∧

m
E

(
e
p
)
∈
G

b
c

27
H
`

(
(
A

C−
s
o
u
r
c
e
G

)
∪
D

)
(
m

E
(
e
p
)
)
=

(
(
A

C−
t
a
r
g
e
t
G

)
∪
D

)
(
m

E
(
e
p
)
)

Fi
gu

re
17

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pL
oo

pT
/I

N
V

-R
ul

e
pr

es
er

ve
s

an
d

de
le

te
s

(b
ut

do
es

no
t

cr
ea

te
)l

oo
p

ed
ge

s
of

ty
pe

t
(2

/3
)

RITA • Volume 22 • Número 1 • 2015 215



Proof Tactics for Theorem Proving Graph Grammars through Rodin 28

In (i), some rules (9 and 3) are automatically applied, remaining the sequent H ` > that
is automatically discharged by (2). On the other hand, after some selection and deselec-
tion of hypothesis, the sequent (ii) is proved running NewPP with lasso (15). This last
sequence of steps must be repeated for each deleted edge. In order to demonstrate (iii)
(sub-tree a ), we must add mE(ep) ∈ edgeG as hypothesis, reaching three sub-goals: (i)
H ` ep ∈ dom(mE) ∧mE ∈ edgeLi 7→ Z ∧ ek ∈ dom(mE); (ii) H ` mE(ep) ∈ edgeG;
and (iii) H ` mE(ep) ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk}. In (i),
after some automatic simplifications, the H ` > sequent is automatically discharged by
(2). (ii) is automatically proved and (iii) is demonstrated running ML. Figure 17 corre-
sponds to steps 4 and 5 of the proposed tactic. In order to discharge (II) (sub-tree B ),
we must add sourceG(mE(ep)) = targetG(mE(ep)) (27) as hypothesis, which gener-
ates three new sub-goals: (I) H ` ep ∈ dom(mE) ∧ mE ∈ edgeLi 7→ Z ∧ mE(edt) ∈
dom(sourceG) ∧ sourceG ∈ Z 7→ Z ∧mE(edt) ∈ dom(targetG) ∧ targetG ∈ Z 7→ Z;
(II) H ` sourceG(mE(ep)) = targetG(mE(ep)); (III) H ` (({mE(e1), . . . ,mE(ej)}
C−sourceG) ∪ {ed1 7→ mV (v1), . . . , edk 7→ mV (vl)})(mE(ep)) = (({mE(e1), . . . , mE
(ej)} C− targetG) ∪ {ed1 7→ mV (v1), . . . , edk 7→ mV (vl)})(mE(ep)). (I) is automati-
cally discharged after the application of several rules. In (II) (sub-tree b ), rules (9) and (3)
are automatically applied. In order to complete the proof, we must add sourceLi(ep) =
targetLi(ep) (30) as hypothesis, which generates three new sub-goals: (i) H ` ep ∈
dom(sourceLi) ∧ sourceLi ∈ edgeLi 7→ vertLi; (ii) H ` sourceLi(ep) = targetLi(ep);
and (iii) H ` sourceG(mE(ep)) = targetG(mE(ep)). After the automatic application of
several rules, the sub-goal (i) is discharged. Figure 18 corresponds to the remaining steps
(6 - 14) of the proposed tactic. Sequent (ii) (sub-tree d ) is discharged applying the parti-
tion rewrites rule on the hypothesis that defines the source of the edges in the left-hand side
of the rule (31). Then, after the automatic application of some rules (3, 32, 33 and 3), we
must apply the partition rewrites rule on the hypothesis that defines the target of the edges
in the left-hand side of the rule (34). Then, automatic applied rules discharge the remaining
sub-goals. In order to discharge (iii) (sub-tree e ), we must instantiate the name of the pre-
served loop edge ep of type t (82) in the grd_srctgt hypothesis, considering sourceG.
Next, two new sub-goals must be proved: (i) H ` >, automatically discharged (2); and
(ii) H ` sourceG(mE(ep)) = targetG(mE(ep)), which is demonstrated instantiating the
name of the preserved edge ep of type t in grd_srctgt hypothesis, considering targetG
(82). Therewith, two new sequents must be demonstrated: H ` >, automatically discharged
(2) and H ` sourceG(mE(ep)) = targetG(mE(ep)), demonstrated running NewPP with
lasso (15). In (III) (sub-tree c ), H ` (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→
mV (v1), . . . , edk 7→ mV (vl)}) (mE(ep)) = (({mE(e1), . . . ,mE(ej)} C− targetG) ∪
{ed1 7→mV (v1), . . . , edk 7→mV (vl) })(mE(ep)), some rules are automatically applied (9
and 3) and the remaining sequent is proved running ML (26). With the aim of proving
(III) (sub-tree C ), we must instantiate the name of the loop edge ep of type t in grd_edges

216 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 29

A
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

B
=
d
o
m

(
m

E
)
∧

m
E
∈

e
d
g
e
L
i
7→

Z
C

=
{
e
d
1
,
.
.
.
,
e
d
k
}

D
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

E
=
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

F
=
d
o
m

(
s
o
u
r
c
e
G

)
∧

s
o
u
r
c
e
G
∈

Z
7→

Z
G

=
d
o
m

(
t
a
r
g
e
t
G

)
∧

t
a
r
g
e
t
G
∈

Z
7→

Z
H

=
d
o
m

(
s
o
u
r
c
e
L
i
)
∧

s
o
u
r
c
e
L
i
∈

e
d
g
e
L
i
7→

v
e
r
t
L
i

I
=
d
o
m

(
t
a
r
g
e
t
L
i
)
∧

t
a
r
g
e
t
L
i
∈

e
d
g
e
L
i
7→

v
e
r
t
L
i

e

Tr
ue

2
H
`
>

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

s
o
u
r
c
e
G

(
m

E
(
e
p
)
)
=

t
a
r
g
e
t
G

(
m

E
(
e
p
)
)

82
H
`

s
o
u
r
c
e
G

(
m

E
(
e
p
)
)
=

t
a
r
g
e
t
G

(
m

E
(
e
p
)
)

11
,8

2
H
`

s
o
u
r
c
e
G

(
m

E
(
e
p
)
)
=

t
a
r
g
e
t
G

(
m

E
(
e
p
)
)

d
Tr

ue
2

H
`
>

3
H
`

v
t

=
{
e
1
7→

v
1
,
.
.
.
,
e
k
7→

v
l
}
(
e
p
)

34
,3

,9
,3

,3
2,

35
H
`

v
t

=
t
a
r
g
e
t
L
i
(
e
p
)

3
H
`
{
e
1
7→

v
1
,
.
.
.
,
e
k
7→

v
l
}
(
e
p
)
=

t
a
r
g
e
t
L
i
(
e
p
)

11
,3

1,
3,

32
,3

3
H
`

s
o
u
r
c
e
L
i
(
e
p
)
=

t
a
r
g
e
t
L
i
(
e
p
)

C

Tr
ue

2
H
`
>

M
L

R
U

L
E

S
11

,7
,1

2,
3,

9,
3,

36
,3

7,
38

,3
,2

6
H
`

(
(
A

C−
t
G

_E
)
∪
D

)
(
m

E
(
e
p
)
)
=

t
G

_E
(
x
)

82
H
`

(
(
A

C−
t
G

_E
)
∪
D

)
(
m

E
(
e
p
)
)
=

t
G

_E
(
x
)

c
Tr

ue
9,

3,
26

H
`

(
(
A

C−
s
o
u
r
c
e
G

)
∪
D

)
(
m

E
(
e
p
)
)
=

(
(
A

C−
t
a
r
g
e
t
G

)
∪
D

)
(
m

E
(
e
p
)
)

Fi
gu

re
18

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pL
oo

pT
/I

N
V

-R
ul

e
pr

es
er

ve
s

an
d

de
le

te
s

(b
ut

do
es

no
t

cr
ea

te
)l

oo
p

ed
ge

s
of

ty
pe

t
(3

/3
)

RITA • Volume 22 • Número 1 • 2015 217



Proof Tactics for Theorem Proving Graph Grammars through Rodin 30

hypothesis. After, two new sub-goals must be demonstrated: (i) H ` >, which is auto-
matically discharged by (2); and (ii) H ` (({mE(ei), . . . ,mE(ej)} C− tG_E) ∪ {ed1 7→
mV (v1), . . . , edk 7→ mV (vl)})(mE(ep)) = tG_E(x), which is discharged applying parti-
tion rewrites rule in the hypothesis that define the typing of the edges in the left-hand side of
the rule (12). Next, some rules are automatically applied (3, 9, 3, 36, 37, 38 and 3, respec-
tively) and the remaining sequent is proved running ML (26).�

5.3 propEdSpSrcT property

The propEdSpSrcT property, ∃x, y · (x ∈ edgeG ∧ y ∈ vertG ∧ tG_V (y) =
t ∧ sourceG(x) = y), states that any reachable graph has an edge with source in a vertex
of type t. Any rule that updates the value of one of the variables edgeG, vertG, tG_V or
sourceG generates a proof obligation. In the initialisation event all variables are initialised,
so is generated a obligation labelled as INITIALISATION/propEdSpSrcT/INV. In order to
demonstrate this obligation, we must instantiate x and y in the goal, such that x is an edge
that has source in a vertex y of type t (x e y ∈ N). Figure 19 presents the proof tree generated
by the demonstration.

True
2

` >

True
2

` >
3

` x ∈ edgeG ∧ y ∈ vertG ∧ tG_V (y) = t ∧ sourceG(x) = y
39

` ∃x, y · x ∈ edgeG ∧ y ∈ vertG ∧ tG_V (y) = t ∧ sourceG(x) = y

Figure 19. Proof Tree INITIALISATION/propEdSpSrcT/INV

Proof Tree Description: The sequent to be stated is ` ∃x, y · x ∈ edgeG ∧ y ∈
vertG ∧ tG_V (y) = t ∧ sourceG(x) = y. In order to discharge such sequent we must
instantiate in the goal the name of the edge x and of the vertex y, such that x has y as source
vertex and y is of type t (39). Next, two new sub-goals are generated: (i) ` >, automatically
proved by> goal (2); and (ii) ` x ∈ edgeG∧y ∈ vertG∧ tG_V (y) = t∧sourceG(x) = y,
which is automatically discharged (by 3 and 2). �

Assuming that a rule can delete or create edges and that it can create vertices, the
proof obligations generated by propEdSpSrcT are stated as follows ∃x, y · x ∈ (edgeG \
{mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk} ∧ y ∈ vertG ∪ {v1, . . . , vl} ∧ (tG_V ∪ {v1 7→
t1, . . . , vl 7→ tl})(y) = t∧(({mE(e1), . . . ,mE(ej)})C−sourceG{ed1 7→ mV (v1), . . . , edk
7→ vl})(x) = y, considering that j edges are deleted, and k edges and l vertices are created.
Thus, the tactics for discharging this property were divided in the following cases: the rule
creates an edge with source in a vertex of type t; the rule does not involve edges with source
in a vertex of type t; the rule just preserves (it does not delete and neither create) edges with

218 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 31

source in a vertex of type t; and the rule preserves and deletes (but it does not create) edges
with source in a vertex of type t. Again, we do not consider the case in which the rule just,
deletes (it does not preserve and neither create) edges with source in vertices of type t.

A - Rule creates an edge with source in a vertex of type t

In this case, the source of the created edge can be preserved or created. If the source
vertex is also created the proof obligation is discharged instantiating the goal with the name
edi of the created edge and with the name vt of its source created vertex of type t. In the cases
in which a rule creates the edge, but preserves the source vertex of type t, we must follow the
next steps:

1. Apply ∃ hyp rule in the induction hypothesis;

2. Instantiate, in the goal, the name of the created edge edt together with its source vertex
mV (vt) of type t, which is preserved by the rule;

3. Instantiate the name of the preserved vertex vt of type t in the grd_vertices hy-
pothesis;

4. Apply partition rewrites rule in the hypothesis that defines the typing of vertices in the
left-hand side of the rule;

5. Run ML.

Figure 20 exhibits the resultant proof tree.

Proof Tree Description: The initial goal is ∃x, y · x ∈ (edgeG \ {mE(e1), . . . ,
mE(ej)}) ∪ {ed1, . . . , edk} ∧ y ∈ vertG ∪ {v1, . . . , vl} ∧ (tG_V ∪ {v1 7→ t1, . . . , vl 7→
tl})(y) = t∧(({mE(e1), . . . ,mE(ej)})C−sourceG{ed1 7→ mV (v1), . . . , edk 7→ vl})(x) =
y. In order to discharge this sequent we must apply the ∃ in rule the induction hypothesis
(40), and then some rules are automatically applied (rules 2, 6, 3, 41 and 42 respectively),
which results in the following sequent to be demonstrated: H ` ∃x0, y · x0 ∈ (edgeG \
{mE(e1), . . . ,mE(ej)) ∪ {ed1, . . . , edk} ∧ y ∈ vertG ∪ {v1, . . . , vl} ∧ (tG_V ∪ {v1 7→
t1, . . . , vl 7→ tl})(y) = tG_V (sourceG(x)) ∧ (({mE(e1), . . . ,mE(ej)}) C− sourceG ∪
{ed1 7→ mV (v1), . . . , edk 7→ vl})(x0) = y. In order to discharge it , we must instantiate
the name of the created edge edt together with its source vertex mV (vt). Then, two new
sub-goals must be demonstrated: (I) H ` > ∧ (vt ∈ dom(mV ) ∧ mV ∈ vertLi 7→ Z);
and (II) H ` edt ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk} ∧ mV (vt) ∈
vertG∪{v1, . . . , vl}∧(tG_V ∪{v1 7→ t1, . . . , vl 7→ tl})(mV (vt)) = tG_V (sourceG(x))∧

RITA • Volume 22 • Número 1 • 2015 219



Proof Tactics for Theorem Proving Graph Grammars through Rodin 32

A
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

B
=
{
e
d
1
,
.
.
.
,
e
d
k
}

C
=
{
v
1
,
.
.
.
,
v
l
}

D
=
{
v
1
7→

t
1
,
.
.
.
,
v
l
7→

t
l
}

E
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

F
=
d
o
m

(
m

V
)
∧

m
V
∈

v
e
r
t
L
i
7→

Z

A

Tr
ue

45
,4

5,
25

H
`

m
V

(
v
t
)
∈

v
e
r
t
G

Tr
ue

2
H
`
>

M
L

R
U

L
E

S
47

,3
,4

4,
48

,3
,2

6
H
`

t
G

_V
(
m

V
(
v
t
)
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)

46
H
`

t
G

_V
(
m

V
(
v
t
)
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)

9,
3,

44
,2

8
H
`

m
V

(
v
t
)
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
m

V
(
v
t
)
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)

3
H
`

e
d
t
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

m
V

(
v
t
)
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
m

V
(
v
t
)
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)
∧

(
(
A

)
C−

s
o
u
r
c
e
G
∪
E
)
(
e
d
t
)
=

m
V

(
v
t
)

Tr
ue

2
H
`
>

6
H
`

v
t
∈

v
e
r
t
L
i

20
H
`

v
t
∈

d
o
m

(
m

V
)

Tr
ue

29
H
`

m
V
∈

v
e
r
t
L
i
7→

Z
28

H
`

v
t
∈
F

3
H
`
>
∧

(
v
t
∈
F

)
A

43
H
`
∃
x
0
,
y
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)
∧

(
(
A

)
C−

s
o
u
r
c
e
G
∪
E
)
(
x
0
)
=

y
42

H
`
∃
x
,
y
0
·
x
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
0
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
0
)
=

t
G

_V
(
y
)
∧

(
(
A

)
C−

s
o
u
r
c
e
G
∪
E
)
(
x
)
=

y
0

40
,2

,6
,3

,4
1

H
`
∃
x
,
y
·
x
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
)
=

t
∧

(
(
A

)
C−

s
o
u
r
c
e
G
∪
E
)
(
x
)
=

y

Fi
gu

re
20

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pE
dS

pS
rc

T
/I

N
V

-R
ul

e
cr

ea
te

s
an

ed
ge

w
ith

so
ur

ce
in

a
ve

rt
ex

of
ty

pe
t

220 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 33

(({mE(e1), . . . ,mE(ej)})C−sourceG∪{ed1 7→ mV (v1), . . . , edk 7→ vl})(edt) = mV (vt).
Sequent (I) is automatically discharged by a sequence of rules (3, 28, 20, 6, 2, 29). In the
same way, in (II) some rules are automatically applied (9, 3, 44, 28, 45, 45, 25, respectively)
reaching the goal H ` tG_V (mV (vt)) = tG_V (sourceG(x)). In order to demonstrate
the last sequent, we must instantiate, in the grd_vertices hypothesis (46), the name of
the vertex vt, of type t, that is source of the created edge edt. Then, two new sequents
must be discharged: (i) H ` >, automatically proved (2); and (ii) H ` tG_V (mV (vt)) =
tG_V (sourceG(x)). For proving (ii) we must apply the partition rewrites rule in the hypoth-
esis that defines the typing of the vertices in the left-hand side of the rule (47) and then, after
the automatic application of some rules (3, 44, 48, 3), the final goal is discharged running
ML (26). �

B - Rule does not involve edges with source in vertices of type t

For this case, if the rule does not delete edges, the proof obligation is discharged just
running NewPP with lasso. If the considered rule deletes edges, the demonstration must
follow the next steps:

1. Apply ∃ hyp rule in induction hypothesis;

2. For each edge ei deleted by the rule, we must follow the next actions:

(a) Add ¬x = mE(ei) as hypothesis, such that ei is a deleted edge;

(b) Instantiate the name of the deleted edge ei in the grd_srctgt hypothesis con-
sidering source;

(c) Apply partition rewrites rule in the hypothesis that defines the source of edges in
the left-hand side of the rule;

(d) Instantiate the name of the vertex vi that is source of the deleted edge ei, in the
grd_vertices statement;

3. Run NewPP with lasso.

Once the rule does not involve edges with source in vertices of type t, the property
is ensured by induction hypothesis. We just have to differentiate the element x (edge that
satisfies the property by induction hypothesis) with each edge deleted by the rule, steps (a-d)
of the proposed tactic. Figure 21 presents the proof tree after the demonstration.

RITA • Volume 22 • Número 1 • 2015 221



Proof Tactics for Theorem Proving Graph Grammars through Rodin 34

A
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

B
=
{
e
d
1
,
.
.
.
,
e
d
k
}

C
=
{
v
1
,
.
.
.
,
v
l
}

D
=
{
v
1
7→

t
1
,
.
.
.
,
v
l
7→

t
l
}

E
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

B

N
ew

PP
R

U
L

E
S

11
,1

5
H
`
∃
x
0
,
y
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)
∧

s
o
u
r
c
e
G

(
x
0
)
=

y

A

Tr
ue

2
H
`
>

3
H
`
>
∧
>

9
H
`

e
j
∈

d
o
m

(
m

E
)
∧

m
E
∈

e
d
g
e
L
i
7→

Z

Tr
ue

2
H
`
>

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

11
,1

5
H
`
¬
x

=
m

E
(
e
j
)

31
,3

,3
3,

3,
53

H
`
¬
x

=
m

E
(
e
j
)

17
H
`
¬
x

=
m

E
(
e
j
)

B
52

H
`
∃
x
0
,
y
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)
∧

s
o
u
r
c
e
G

(
x
0
)
=

y

Tr
ue

2
H
`
>

3
H
`
>
∧
>

9
H
`

e
1
∈

d
o
m

(
m

E
)
∧

m
E
∈

e
d
g
e
L
i
7→

Z

Tr
ue

2
H
`
>

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

11
,1

5
H
`
¬
x

=
m

E
(
e
1
)

31
,3

,3
3,

3,
51

H
`
¬
x

=
m

E
(
e
1
)

10
H
`
¬
x

=
m

E
(
e
1
)

A
50

H
`
∃
x
0
,
y
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)
∧

s
o
u
r
c
e
G

(
x
0
)
=

y
49

H
`
∃
x
0
,
y
·
x
0
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)
∧

(
(
A

)
C−

s
o
u
r
c
e
G
∪
E
)
(
x
0
)
=

y
42

H
`
∃
x
,
y
0
·
x
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
0
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
0
)
=

t
G

_V
(
y
)
∧

(
(
A

)
C−

s
o
u
r
c
e
G
∪
E
)
(
x
)
=

y
0

40
,3

,6
,3

,4
1

H
`
∃
x
,
y
·
x
∈

(
e
d
g
e
G
\
A

)
∪
B
∧

y
∈

v
e
r
t
G
∪
C
∧

(
t
G

_V
∪
D

)
(
y
)
=

t
∧

(
(
A

)
C−

s
o
u
r
c
e
G
∪
E
)
(
x
)
=

y

Fi
gu

re
21

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pE
dS

pS
rc

T
/I

N
V

-R
ul

e
do

es
no

tI
nv

ol
ve

ed
ge

s
w

ith
so

ur
ce

in
ve

rt
ic

es
of

ty
pe

t

222 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 35

Proof Tree Description: The first sequent to be demonstrated is H ` ∃x, y · x ∈
(edgeG\{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧y ∈ vertG∪{v1, . . . , vl}∧ (tG_V ∪
{v1 7→ t1, . . . , vl 7→ tl})(y) = t ∧ (({mE(e1), . . . ,mE(ej)}) C− sourceG ∪ {ed1 7→
mV (v1), . . . , edk 7→ vl})(x) = y. First we must apply the ∃ hyp rule in the induction
hypothesis (40), and, after the automatic application of some rules (3, 6, 3, 41, 42, 49, re-
spectively), the resultant sequent is H ` ∃x0, y · x0 ∈ (edgeG \ {mE(e1), . . . ,mE(ej)) ∪
{ed1, . . . , edk} ∧ y ∈ vertG ∪ {v1, . . . , vl} ∧ (tG_V ∪ {v1 7→ t1, . . . , vl 7→ tl})(y) =
tG_V (sourceG(x))∧ sourceG(x0) = y. In order to discharge it, we must add ¬x = m(ei)
as hypothesis, such that ei is an edge deleted by the rule, which results in three sub-goals:
(I) H ` ei ∈ dom(mE) ∧ mE ∈ edgeLi 7→ Z; (II) H ` ¬x = mE(ei); and (III) H `
∃x0, y·x0 ∈ (edgeG\{mE(e1), . . . ,mE(ej))∪{ed1, . . . , edk}∧y ∈ vertG∪{v1, . . . , vl}∧
(tG_V ∪ {v1 7→ t1, . . . , vl 7→ tl})(y) = tG_V (sourceG(x)) ∧ sourceG(x0) = y. (I) is
automatically discharged after the automatic application of some rules (9, 3, 2). In order to
demonstrate (II), we must instantiate the name of the deleted edge ei in grd_srctgt hy-
pothesis, considering source. And this action results in two sequents to be discharged: (i)
H ` >, automatically discharged (2); and (ii) H ` ¬x = mE(ei). To discharge (ii) we
must apply the partition rewrites rule in the hypothesis that defines the source of the edges in
the left-hand side of the rule (31), and then, some rules are automatically applied (3, 33 and
3, respectively). Next, we must instantiate in grd_vertices hypothesis the name of the
vertex v, which is source of the deleted edge ei, generating two new sub-goals: (i) H ` >,
automatically discharged (2); and (ii) H ` ¬x = mE(ei), discharged running NewPP with
lasso. In the proof tree, the last sequence of steps is illustrated for e1 and ej , omitting the
sub-trees for the remaining deleted edges. After all differentiations, the sequent (in sub-
tree B ) H ` ∃x0, y · x0 ∈ (edgeG \ {mE(e1), . . . ,mE(ej)) ∪ {ed1, . . . , edk} ∧ y ∈
vertG ∪ {v1, . . . , vl} ∧ (tG_V ∪ {v1 7→ t1, . . . , vl 7→ tl})(y) = tG_V (sourceG(x)) ∧
sourceG(x0) = y is proved running the NewPP with lasso prover (15). �

C - Rule preserves and does not create edges with source in vertices of type t

We distinguish the proof obligation to be demonstrated in two cases. First considering
that the rule does not delete edges. For such case, the goal is demonstrated just running
NewPP with lasso. In the second case, edges (possibly with source in vertices of type t) are
deleted by the rule. The tactic to discharge the goal in this case is described next:

1. Instantiate mE(ep) and mV (vt) in the goal, such that ep is the preserved edge that has
source in a vertex vt of type t;

2. Apply partition rewrites rule in the hypothesis that defines the set of edges in the left-
hand side of the rule and run ML;

RITA • Volume 22 • Número 1 • 2015 223



Proof Tactics for Theorem Proving Graph Grammars through Rodin 36

3. Instantiate the name of the vertex vt that is source of the preserved edge ep in grd_
vertices hypothesis;

4. Apply partition rewrites rule in the hypothesis that defines the typing of vertices in the
left-hand side of the rule and run ML;

5. Instantiate the name of the preserved edge ep in the grd_srctgt hypothesis, consid-
ering source;

6. Apply partition rewrites rule in the hypothesis that defines the source of the edges in
the left-hand side of the rule;

7. Run ML.

The generated proof tree is presented in Figure 22.

Proof Tree Description: The sequent to be demonstrated is H ` ∃x, y · x ∈
(edgeG \ {mE(e1), . . . ,mE(ej)} ∪ {ed1, . . . , edk}) ∧ y ∈ vertG ∧ tG_V (y) = t ∧
(({mE(e1), . . . ,mE(ej)}C−sourceG)∪{ed1 7→ mV (v1), . . . , edk 7→ vl})(x) = y. In order
to discharge it, we must first instantiate mE(ep) and mV (vt) in the goal, such that ep is the
preserved edge with source in a vertex vt of type t (54). Then, two new sub-goals are gener-
ated: (I) H ` (vt ∈ dom(mV )∧mV ∈ vertLi 7→Z)∧(ep ∈ dom(mE)∧mE ∈ edgeLi 7→Z)
and (II) H ` ∃x, y ·x ∈ (edgeG\{mE(e1), . . . ,mE(ej)}∪{ed1, . . . , edk})∧y ∈ vertG∧
tG_V (mV (vt)) = t ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→ v1, . . . , edk 7→
vl})(x) = y. (I) is automatically discharged after the automatic application of some rules
(respectively, 3, 9, 3, 6, 3, 40, 42, 2, 20, 6, 2, 29, 20, 6 and 2). To discharge (II) (sub-tree A ),
some rules (3, 9, 3, 6, 3, 40, 41, 42 and 28, respectively) are automatically applied generating
four sub-goals: (i) H ` mE(ep) ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk};
(ii) H ` mV (vt) ∈ vertG; (iii) H ` tG_V (mV (vt)) = tG_V (sourceG(x)); and (iv)
H ` (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→ v1, . . . , edk 7→ vl})(mE(ep))
= mV (vt). With the aim of discharging (i), we must apply the partition rewrites rule (55)
in the hypothesis that defines the set of edges in the left-hand side of the rule. Next, the
use equality hypothesis - eh rule (56) is automatically applied and the remaining sub-goal
is proved by running ML (26). Sequent (ii) is automatically discharged (by rules 45 and
25). In order to demonstrate (iii) (sub-tree B ), we must instantiate in grd_vertices
hypothesis the name of the vertex vt, which is source of edge ep (46). Next, two new sub-
goals must be discharged: (i) H ` >, automatically discharged by > goal (2) and (ii)
H ` tG_V (mV (vt)) = tG_V (sourceG(x)), which is discharged applying the partition
rewrites rule (57) in the hypothesis that defines the typing of the vertices in the left-hand
side of the rule. Then, after the automatic application of some rules (57, 9, 3, 44, 58 and 3,
respectively), the proof is concluded running ML (26). In order to demonstrate (iv) (sub-tree

224 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 37
A

=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

B
=
d
o
m

(
m

E
)
∧

m
E
∈

e
d
g
e
L
i
7→

Z
C

=
{
e
d
1
,
.
.
.
,
e
d
k
}

D
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

m
V

(
v
l
)
}

E
=
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

F
=
d
o
m

(
m

V
)
∧

m
V
∈

v
e
r
t
L
i
7→

Z

C

Tr
ue

2
H
`
>

M
L

R
U

L
E

S
31

,3
,5

9,
60

,3
2,

33
,3

,2
6

H
`

(
(
A

C−
s
o
u
r
c
e
G

)
∪
E
)
(
m

E
(
e
p
)
)
=

m
V

(
v
t
)

82
H
`

(
(
A

C−
s
o
u
r
c
e
G

)
∪
E
)
(
m

E
(
e
p
)
)
=

m
V

(
v
t
)

B

Tr
ue

2
H
`
>

M
L

R
U

L
E

S
57

,9
,3

,4
4,

58
,3

,2
6

H
`

t
G

_V
(
m

V
(
v
t
)
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)

46
H
`

t
G

_V
(
m

V
(
v
t
)
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)

A

M
L

R
U

L
E

S
55

,5
6,

26
H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A

)
∪
C

Tr
ue

45
,4

5,
25

H
`

m
V

(
v
t
)
∈

v
e
r
t
G

B
C

28
H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A
∪
C
)
∧

m
V

(
v
t
)
∈

v
e
r
t
G
∧

t
G

_V
(
m

V
(
v
t
)
)
=

t
G

_V
(
s
o
u
r
c
e
G

(
x
)
)
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
E
)
(
m

E
(
e
p
)
)
=

m
V

(
v
t
)

42
H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A
∪
C
)
∧

m
V

(
v
t
)
∈

v
e
r
t
G
∧

t
G

_V
(
m

V
(
v
t
)
)
=

t
G

_V
(
y
)
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
E
)
(
m

E
(
e
p
)
)
=

m
V

(
v
t
)

3,
9,

3,
6,

3,
40

,4
1

H
`

m
E

(
e
p
)
∈

(
e
d
g
e
G
\
A
∪
C
)
∧

m
V

(
v
t
)
∈

v
e
r
t
G
∧

t
G

_V
(
m

V
(
v
t
)
)
=

t
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
E
)
(
m

E
(
e
p
)
)
=

m
V

(
v
t
)

Tr
ue

2
H
`
>

6
H
`

v
t
∈

v
e
r
t
L
i

20
H
`

v
t
∈

d
o
m

(
m

V
)

Tr
ue

29
H
`

m
V
∈

v
e
r
t
L
i
7→

Z

Tr
ue

2
H
`
>

6
H
`

e
p
∈

e
d
g
e
L
i

20
H
`

e
p
∈

d
o
m

(
m

E
)

6,
3,

40
,4

2,
2

H
`

v
t
∈
F
∧

e
p
∈

d
o
m

(
m

E
)

3
H
`

v
t
∈
F
∧

e
p
∈

d
o
m

(
m

E
)
∧
>

9
H
`

v
t
∈
F
∧

e
p
∈
B

3
H
`

(
v
t
∈
F

)
∧

(
e
p
∈
B
)

A
54

H
`
∃
x
,
y
·
x
∈

(
e
d
g
e
G
\
A
∪
C
)
∧

y
∈

v
e
r
t
G
∧

t
G

_V
(
y
)
=

t
∧

(
(
A

C−
s
o
u
r
c
e
G

)
∪
E
)
(
x
)
=

y

Fi
gu

re
22

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pE
dS

pS
rc

T
/I

N
V

-R
ul

e
pr

es
er

ve
s

an
d

do
es

no
tc

re
at

e
ed

ge
s

w
ith

so
ur

ce
in

ve
rt

ic
es

of
ty

pe
t

RITA • Volume 22 • Número 1 • 2015 225



Proof Tactics for Theorem Proving Graph Grammars through Rodin 38

C ), we must instantiate the name of the preserved edge ep in grd_srctgt hypothesis,
considering source (82). Then, two new sub-goals are generated: (i) H ` >, automatically
discharged (2) and (ii) H ` (({mE(e1), . . . ,mE(ej)}C−sourceG)∪{ed1 7→ v1, . . . , edk 7→
vl})(mE(ep)) = mV (vt), which is demonstrated following the next steps: first, applying the
partition rewrites rule in the hypothesis that defines the source of the edges in the left-hand
side of the rule (31); then some rules are automatically applied (3, 59, 60, 32, 33 and 3,
respectively); and finally, we must run ML (26). �

5.4 propNotIsoVT property

The propNotIsoVT property, ∀x · ((x ∈ vertG ∧ tG_V (x) = t) ⇒ (∃y · (y ∈
edgeG ∧ ((sourceG(y) = x ∧ ¬targetG(y) = x) ∨ (targetG(y) = x ∧ ¬sourceG(y) =
x))))), states that any reachable graph does not have an isolated vertex of type t. The proof
obligation INITIALISATION/propNotIsoVT/INV generated by the initialisation event is dis-
charged following the next steps. The corresponding proof tree is represented in Figure 23.

1. Eliminate the universal quantifier in the goal;

2. Remove the ∈ operator in the hypothesis x ∈ vertG;

3. Start the proof by cases in the hypothesis x = v1 ∨ . . . ∨ x = vn;

4. For each case, apply the following actions:

(a) For each vertex vi, i ∈ {1, . . . , n} of type t, we must instantiate in the goal the
name of its (no loop) incident edge;

(b) For each vertex vj , j ∈ {1, . . . , n} of type different from t, run ML.

Proof Tree Description: The goal to be demonstrated is ` ∀x · x ∈ vertG ∧
tG_V (x) = t⇒ (∃y·y ∈ edgeG∧((sourceG(y) = x∧¬targetG(y) = x)∨(targetG(y) =
x ∧ ¬sourceG(y) = x))). In order to discharge it, we must eliminate de universal quanti-
fier in the goal (61). This action together with the automatic application of rule (62) results
in the sub-goal tG_V (x) = t, x ∈ {v1, . . . , vn} ` ∃y · y ∈ edgeG ∧ ((sourceG(y) =
x∧¬targetG(y) = x)∨ (targetG(y) = x∧¬sourceG(y) = x)). With the aim of demon-
strating this sequent, first we must remove the ∈ operator in x ∈ vertG (63) hypothesis.
Then, we must select proof by cases in x = v1 ∨ . . . ∨ x = vn hypothesis. Therewith, after
the automatic application of some rules (9, 3, 65 or 66 and 3), remains some sub-goals: (i)
x = vi ` ∃y · y ∈ edgeG ∧ ((sourceG(y) = vi ∧ ¬targetG(y) = vi) ∨ (targetG(y) =
vi ∧ ¬sourceG(y) = vi)); and (ii) x = vj , t = tk ` ∃y · y ∈ edgeG ∧ ((sourceG(y) =
vj ∧¬targetG(y) = vj)∨(targetG(y) = vj ∧¬sourceG(y) = vj)). Sequent (i) represents
the case in that the considered vertex vi is of type t. To discharge it, we must instantiate in the
goal the name of the edge edt incident in this vertex and the proof is automatically concluded

226 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 39

B

M
L

R
U

L
E

S
26

x
=

v
j
,
t
=

t
k
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

v
j
∧
¬
t
a
r
g
e
t
G

(
y
)
=

v
j
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

v
j
∧
¬
s
o
u
r
c
e
G

(
y
)
=

v
j
)
)

3
x

=
v
j
,
t
G

_V
(
v
j
)
=

t
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

v
j
∧
¬
t
a
r
g
e
t
G

(
y
)
=

v
j
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

v
j
∧
¬
s
o
u
r
c
e
G

(
y
)
=

v
j
)
)

9,
3,

66
t
G

_V
(
x
)
=

t
,
x

=
v
j
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

x
∧
¬
t
a
r
g
e
t
G

(
y
)
=

x
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

x
∧
¬
s
o
u
r
c
e
G

(
y
)
=

x
)
)

A

Tr
ue

2
x

=
v
i
`
>

Tr
ue

2
x

=
v
i
`
>

3
x

=
v
i
`

e
d
t
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
e
d
t
)
=

v
i
∧
¬
t
a
r
g
e
t
G

(
e
d
t
)
=

v
i
)
∨

(
t
a
r
g
e
t
G

(
e
d
t
)
=

v
i
∧
¬
s
o
u
r
c
e
G

(
e
d
t
)
=

v
i
)
)

4
x

=
v
i
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

v
i
∧
¬
t
a
r
g
e
t
G

(
y
)
=

v
i
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

v
i
∧
¬
s
o
u
r
c
e
G

(
y
)
=

v
i
)
)

3
x

=
v
t
,
t
G

_V
(
v
i
)
=

t
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

v
t
∧
¬
t
a
r
g
e
t
G

(
y
)
=

v
t
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

v
t
∧
¬
s
o
u
r
c
e
G

(
y
)
=

v
t
)
)

9,
3,

65
t
G

_V
(
x
)
=

t
,
x

=
v
i
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

x
∧
¬
t
a
r
g
e
t
G

(
y
)
=

x
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

x
∧
¬
s
o
u
r
c
e
G

(
y
)
=

x
)
)

A
B

64
t
G

_V
(
x
)
=

t
,
x

=
v
1
∨

.
.
.
∨

x
=

v
n
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

x
∧
¬
t
a
r
g
e
t
G

(
y
)
=

x
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

x
∧
¬
s
o
u
r
c
e
G

(
y
)
=

x
)
)

63
t
G

_V
(
x
)
=

t
,
x
∈
{
v
1
,
.
.
.
,
v
n
}
`
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

x
∧
¬
t
a
r
g
e
t
G

(
y
)
=

x
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

x
∧
¬
s
o
u
r
c
e
G

(
y
)
=

x
)
)

62
`

x
∈

v
e
r
t
G
∧

t
G

_V
(
x
)
=

t
⇒

(
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

x
∧
¬
t
a
r
g
e
t
G

(
y
)
=

x
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

x
∧
¬
s
o
u
r
c
e
G

(
y
)
=

x
)
)
)

61
`
∀
x
·
x
∈

v
e
r
t
G
∧

t
G

_V
(
x
)
=

t
⇒

(
∃
y
·
y
∈

e
d
g
e
G
∧

(
(
s
o
u
r
c
e
G

(
y
)
=

x
∧
¬
t
a
r
g
e
t
G

(
y
)
=

x
)
∨

(
t
a
r
g
e
t
G

(
y
)
=

x
∧
¬
s
o
u
r
c
e
G

(
y
)
=

x
)
)
)

Fi
gu

re
23

.P
ro

of
Tr

ee
fo

rI
N

IT
IA

L
IS

A
T

IO
N

/p
ro

pN
ot

Is
oV

T
/I

N
V

RITA • Volume 22 • Número 1 • 2015 227



Proof Tactics for Theorem Proving Graph Grammars through Rodin 40

with> goal and simplification rewrites rules (2 and 3). In turn, sequent (ii) represents the case
that vertex vj is not of type t, which is discharged running ML (26). It should be noted that
similar sequents to (i) and (ii) can be generated for each different vertex of type t or of type
different from t, respectively. All of them (conforming the case) are discharged following the
described steps. �

Considering the propNotIsoVT property, a rule can delete and create edges and/or
create vertices. Then, proof obligations follows the following pattern ∀x · x ∈ vertG ∪
{v1, . . . , vl}∧(tG_V ∪{v1 7→ t1, . . . , vl 7→ tl})(x) = t⇒ (∃y·y ∈ (edgeG\{mE(e1), . . . ,
mE(ej)}) ∪ {ed1, . . . , edk} ∧ (((({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . ,
edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→
tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)}C− targetG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) =
x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x))),
considering that j edges are deleted, k edges and l vertices are created by a rule application.
Thus, we consider the next cases: the rule creates and does not preserve vertices of type t; the
rule creates and preserves vertices of type t; the rule preserves and does not create vertices
of type t; and rule does not involve vertices of type t. We do not consider cases that the rule
deletes edges with source or target in vertices of type t.

A - Rule creates, preserving or not, vertices of type t

For rules that do not delete edges, the proof obligation is discharged running NewPP with
lasso. For rules that delete edges (which have no source or target in vertices of type t), the
demonstration of the corresponding proof obligation follows the next steps. The generated
proof tree is illustrated in Figure 24.

1. Eliminate the universal quantifier in the goal;

2. Remove the ∈ operator in x ∈ vertG ∪ {v1, . . . , vl} hypothesis;

3. Start the proof by cases from x ∈ vertG ∨ x = v1 ∨ . . . ∨ x = vl hypothesis and for
case x ∈ vertG we must first follow the next steps:

(a) Instantiate element x in the induction hypothesis ∀x · x ∈ vertG ∧ tG_V (x) =
t⇒ (∃y ·y ∈ edgeG∧((sourceG(y) = x∧¬targetG(y) = x)∨(targetG(y) =
x ∧ ¬sourceG(y) = x)));

(b) Apply Modus Ponens from⇒ in tG_V (x) = t⇒(∃y·y ∈ edgeG∧((sourceG(y)
= x∧¬targetG(y) = x)∨(targetG(y) = x∧¬sourceG(y) = x))) hypothesis
and run ML;

(c) Instantiate in the goal the element y (representing the edge that is incident in the
vertex of type t) and in the next two sub-goals run NewPP with lasso;

4. Run NewPP with lasso;

228 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 41

A
=
{
v
1
,
.
.
.
,
v
l
}

B
=
{
v
1
7→

t
1
,
.
.
.
,
v
l
7→

t
l
}

C
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

D
=
{
e
d
1
,
.
.
.
,
e
d
k
}

E
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
s
o
u
r
c
e
G
∪
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

F
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
t
a
r
g
e
t
G
∪
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

G
=
t
G

_V
(
x
)
=

t
k

B

N
ew

PP
R

U
L

E
S

3,
11

,1
5

H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

v
t
∧
¬
(
(
F

)
(
y
)
=

v
t
)
∨

(
(
(
F

)
(
y
)
=

v
t
∧
¬
(
(
E
)
(
y
)
=

v
t
)
)

9,
3,

73
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

A

Tr
ue

2
H
`
>

M
L

R
U

L
E

S
26

H
`
G

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

y
∈

(
e
d
g
e
G
\
C
)

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)

28
H
`

y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

71
,7

2
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

9,
3,

70
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

9,
3,

69
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

A
B

67
,3

,6
8

H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

6,
3,

62
H
`

x
∈

v
e
r
t
G
∪
A
∧

(
t
G

_V
∪
B
)
(
x
)
=

t
⇒

(
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)
)

61
H
`
∀
x
·
x
∈

v
e
r
t
G
∪
A
∧

(
t
G

_V
∪
B
)
(
x
)
=

t
⇒

(
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)
)

Fi
gu

re
24

.P
ro

of
Tr

ee
ru

le
_i

/p
ro

pN
ot

Is
oV

T
/I

N
V

-R
ul

e
cr

ea
te

s,
pr

es
er

vi
ng

or
no

t,
ve

rt
ic

es
of

ty
pe

t

RITA • Volume 22 • Número 1 • 2015 229



Proof Tactics for Theorem Proving Graph Grammars through Rodin 42

Proof Tree Description: The sequent to be discharged is H ` ∀x · x ∈ vertG ∪
{v1, . . . , vl}∧(tG_V ∪{v1 7→ t1, . . . , vl 7→ tl})(x) = t⇒ (∃y·y ∈ (edgeG\{mE(e1), . . . ,
mE(ej)})∪{ed1, . . . , edk}∧(((({mE(e1), . . . ,mE(ej)}C−sourceG∪{ed1 7→ t1, . . . , edk 7→
tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)}C− targetG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) =
x) ∨ ((({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧
¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x))). With
the aim of demonstrating it, we must eliminate the universal quantifier in the goal (61).
Next, some rules are automatically applied (6, 3 and 62, respectively) generating the sub-
goal H ` ∃y ·y ∈ (edgeG\{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧ (((({mE(e1), . . . ,
mE(ej)}C−sourceG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)}C−
targetG∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x)∨ ((({mE(e1), . . . ,mE(ej)}C− targetG∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = x)). After, it is necessary to remove the ∈ operator in x ∈ vertG∪
{v1, . . . , vl} hypothesis (67). Then, after a simplification (3), we must select proof by cases in
the x ∈ vertG∨x = v1∨. . .∨x = vl hypothesis (68). In what follows, we consider two kinds
of generated sub-goals, first considering a vertex x belonging to vertG and second consider-
ing a created vertex: (I) H ` ∃y · y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk}

∧(((({mE(e1), . . . ,mE(ej)}C− sourceG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE
(e1), . . . ,mE(ej)}C−targetG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x)∨((({mE(e1), . . . ,mE
(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C−
sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x)) and (II) H ` ∃y · y ∈ (edgeG \
{mE(e1), . . . , mE(ej)}) ∪ {ed1, . . . , edk} ∧ (((({mE(e1), . . . ,mE(ej)} C− sourceG ∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = vt ∧ ¬(({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = vt)∨((({mE(e1), . . . ,mE(ej)}C−targetG∪{ed1 7→ t1, . . . , edk
7→ tk})(y) = vt ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→
tk})(y) = vt)). In (I) (sub-tree A ), some rules are automatically applied (9 and 3), then
we must instantiate the element x in induction hypothesis (69). Such instantiation generates
the sub-goals H ` >, which is automatically discharged (2) and H ` ∃y · y ∈ (edgeG \
{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧(((({mE(e1), . . . ,mE(ej)}C−sourceG∪{ed1
7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)}C− targetG ∪ {ed1 7→ t1, . . . ,
edk 7→ tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→
tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)}C− sourceG∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) =
x)). In the last sequent, after some automatic rule applications (9 and 3, respectively), we
must apply Modus Ponens in the generated hypothesis (70). After this action two new se-
quents must be demonstrated: (i) H ` tG_V (x) = tk and (ii) H ` ∃y · y ∈ (edgeG \
{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧(((({mE(e1), . . . ,mE(ej)}C−sourceG∪{ed1
7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)}C− targetG ∪ {ed1 7→ t1, . . . ,
edk 7→ tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→
tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)}C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) =

230 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 43

x)). In order to demonstrate (i), we must run ML (26). In (ii) the ∃ hyp rule (71) is automati-
cally applied. Then, we must instantiate in the goal the element y (that represents the created
edge that is incident in the created vertex of type t, from induction hypothesis (72)), generat-
ing various sub-goals, which are discharged by the > goal rule (2) and running NewPP with
lasso (15). In sequent (II) (sub-tree B ), after the automatic application of some rules (9, 3,
73, 3 and 11, respectively), the final goal is discharged running NewPP with lasso (15). �

B - Rule preserves and does not create vertices of type t

In case that no edge is deleted by the rule, the proof obligation is demonstrated running
NewPP with lasso. When a rule deletes an edge (with no source or target in a vertex of type
t) the proof must follow the next steps:

1. Eliminate the universal quantifier in the goal;

2. Instantiate the element x in the induction hypothesis;

3. Instantiate the element y in the goal;

4. Apply one lasso operation in the goal;

5. Run NewPP with lasso;

6. Run ML.

Figure 25 presents the corresponding proof tree.

Proof Tree Description: The sequent to be demonstrated is H ` ∀x · x ∈ vertG ∧
tG_V (x) = t⇒ (∃y · y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧ (((({mE
(e1), . . . ,mE(ej)}C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,
mE(ej)}C− targetG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x)∨((({mE(e1), . . . ,mE(ej)}C−
targetG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)}C− sourceG∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x))). In order to discharge it, we must first elim-
inate the universal quantifier in the goal (61). Then, after the automatic application of
some rules (6, 3, 62 and 74, respectively), the following sequent must be discharged H `
∃y·y ∈ (edgeG\{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧(((({mE(e1), . . . ,mE(ej)}C−
sourceG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)}C− targetG∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)}C− sourceG ∪ {ed1 7→ t1, . . . ,

RITA • Volume 22 • Número 1 • 2015 231



Proof Tactics for Theorem Proving Graph Grammars through Rodin 44

A
=
{
v
1
,
.
.
.
,
v
l
}

B
=
{
v
1
7→

t
1
,
.
.
.
,
v
l
7→

t
l
}

C
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

D
=
{
e
d
1
,
.
.
.
,
e
d
k
}

E
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
s
o
u
r
c
e
G
∪
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

F
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
t
a
r
g
e
t
G
∪
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

Tr
ue

2
H
`
>

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

11
,7

4,
11

,1
5

H
`

y
∈

(
e
d
g
e
G
\
C
)
∪
D

M
L

R
U

L
E

S
26

H
`

(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)

28
H
`

y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

9,
3,

71
,7

2
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

74
,6

9
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

6,
3,

62
H
`

x
∈

v
e
r
t
G
∧

t
G

_V
(
x
)
=

t
⇒

(
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)
)

61
H
`
∀
x
·
x
∈

v
e
r
t
G
∧

t
G

_V
(
x
)
=

t
⇒

(
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)
)

Fi
gu

re
25

.P
ro

of
Tr

ee
fo

rr
ul

e_
i/p

ro
pN

ot
Is

oV
T

/I
N

V
-R

ul
e

pr
es

er
ve

s
an

d
do

es
no

tc
re

at
e

ve
rt

ic
es

of
ty

pe
t

232 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 45

edk 7→ tk})(y) = x)). Aiming to proof it, we must instantiate x in the induction hypoth-
esis (69), remaining two sub-goals: (I) H ` > automatically discharged by > goal (2) and
(II) H ` ∃y · y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧ (((({mE(e1), . . . ,
mE(ej)}C−sourceG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)}C−
targetG∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x)∨ ((({mE(e1), . . . ,mE(ej)}C− targetG∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = x)). In (II) some rules are automatically applied (9, 3 and
71, respectively), and next we must instantiate y in the remaining goal (72). Such in-
stantiation takes to two sub-goals: (i) H ` >, automatically discharged (2) and (ii) H `
y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk} ∧ (((({mE(e1), . . . ,mE(ej)}C−
sourceG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)}C− targetG∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . ,
edk 7→ tk})(y) = x)). In (ii), the ∧ goal rule is automatically applied (28), generating
the following sequents: (i) H ` y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk};
and (ii) H ` ((({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) =
x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x) ∨
((({mE(e1), . . . ,mE(ej)}C−targetG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1),
. . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x). In (i) we must execute
a lasso operation, automatically discharging some rules (11, 74 and 11, respectively) and the
last sub-goal is demonstrated running NewPP with lasso (15). Sequent (ii) is demonstrated
running ML. �

C - Rule does not involve vertices of type t

If no edge is deleted by the rule, the generated proof obligation is discharged running
NewPP with lasso. If the rule delete edges (with no source or target in vertices of type t), the
proof can be executed as follows. Figure 26 presents the proof tree.

1. Eliminate the universal quantifier in the goal;

2. Remove the ∈ in operator in the x ∈ vertG ∪ {v1, . . . , vl} hypothesis;

3. Select proof by cases in the x ∈ vertG ∨ x = v1 ∨ . . . ∨ x = vl hypothesis;

4. Instantiate x in the induction hypothesis;

5. Apply Modus Ponens in tG_V (x) = t ⇒ (∃y · y ∈ edgeG ∧ ((sourceG(y) =
x∧¬targetG(y) = x)∨ (targetG(y) = x∧¬sourceG(y) = x))) hypothesis and in
the next sub-goals run NewPP with lasso;

6. Instantiate y in the goal and run NewPP with lasso in the remaining sub-goals.

RITA • Volume 22 • Número 1 • 2015 233



Proof Tactics for Theorem Proving Graph Grammars through Rodin 46

A
=
{
v
1
,
.
.
.
,
v
l
}

B
=
{
v
1
7→

t
1
,
.
.
.
,
v
l
7→

t
l
}

C
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

D
=
{
e
d
1
,
.
.
.
,
e
d
k
}

E
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
s
o
u
r
c
e
G
∪
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

F
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
t
a
r
g
e
t
G
∪
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

A

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

y
∈

(
e
d
g
e
G
\
C
)

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)

28
H
`

y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

71
,7

2
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

Tr
ue

2
H
`
>

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

x
∈

v
e
r
t
G

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

x
∈

v
e
r
t
G
∧

t
G

_V
(
x
)
=

(
t
G

_V
∪
B
)
(
x
)

28
H
`

x
∈

v
e
r
t
G
∧

t
G

_V
(
x
)
=

(
t
G

_V
∪
B
)
(
x
)

A
70

H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

75
,6

9
H
`
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)

6,
3,

62
H
`

x
∈

v
e
r
t
G
∪
A
∧

(
t
G

_V
∪
B
)
(
x
)
=

t
⇒

(
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)
)

61
H
`
∀
x
·
x
∈

v
e
r
t
G
∪
A
∧

(
t
G

_V
∪
B
)
(
x
)
=

t
⇒

(
∃
y
·
y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
(
(
(
E
)
(
y
)
=

x
∧
¬
(
(
F

)
(
y
)
=

x
)
∨

(
(
(
F

)
(
y
)
=

x
∧
¬
(
(
E
)
(
y
)
=

x
)
)
)

Fi
gu

re
26

.P
ro

of
Tr

ee
fo

rr
ul

e_
i/p

ro
pN

ot
Is

oV
T

/I
N

V
-R

ul
e

do
es

no
ti

nv
ol

ve
ve

rt
ic

es
of

ty
pe

t

234 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 47

Proof Tree Description: The goal to be demonstrated is H ` ∀x · x ∈ (vertG ∪
{v1, . . . , vl}) ∧ (tG_V ∪ {v1 7→ t1, . . . , vl 7→ tl})(x) = t ⇒ (∃y · y ∈ (edgeG \
{mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk} ∧ (((({mE(e1), . . . ,mE(ej)} C−sourceG ∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C−targetG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . ,
edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→
tk})(y) = x))). First, we must eliminate the universal quantifier in the goal (61). Next,
some rules are automatically applied (6, 3, 62 and 75 respectively), generating the H `
∃y·y ∈ (edgeG\{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧(((({mE(e1), . . . ,mE(ej)}C−
sourceG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)} C−targetG∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)} C−targetG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . ,
edk 7→ tk})(y) = x)) sub-goal. Then, x must be instantiated in the induction hypothe-
sis (69). The first remaining sub-goal H ` > is automatically discharged (2). Next we
must apply Modus Ponens in the tG_V (x) = t ⇒ (∃y · y ∈ edgeG ∧ ((sourceG(y) =
x ∧ ¬targetG(y) = x) ∨ (targetG(y) = x ∧ ¬sourceG(y) = x))) hypothesis, which gen-
erates two sub-goals to be discharged: (I) H ` x ∈ vertG∧ tG_V (x) = (tG_V ∪{v1 7→ t1,
. . . , vl 7→ tl})(x); and (II) H ` ∃y · y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . ,
edk} ∧ (((({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧
¬(({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x) ∨ ((({mE
(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,
mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = x)). In (I), the ∧ goal rule
is automatically applied (28), resulting in two sequents: (i) H ` x ∈ vertG and (ii)
H ` x ∈ vertG ∧ tG_V (x) = (tG_V ∪ {v1 7→ t1, . . . , vl 7→ tl})(x), both demon-
strated with NewPP with lasso (15). In (II), the ∃ hyp rule is automatically applied (71).
After, we must instantiate y in the goal, generating H ` >, which is automatically dis-
charged (2). Then, the ∧ goal rule (28) is automatically applied, remaining the sub-goals: (i)
H ` y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}); and (ii) H ` ((({mE(e1), . . . ,mE(ej)} C−
sourceG∪{ed1 7→ t1, . . . , edk 7→ tk})(y) = x∧¬(({mE(e1), . . . ,mE(ej)}C− targetG∪
{ed1 7→ t1, . . . , edk 7→ tk})(y) = x) ∨ ((({mE(e1), . . . ,mE(ej)} C− targetG ∪ {ed1 7→
t1, . . . , edk 7→ tk})(y) = x ∧ ¬(({mE(e1), . . . ,mE(ej)} C− sourceG ∪ {ed1 7→ t1, . . . ,
edk 7→ tk})(y) = x), which, after some automatic selection and deselection of hypothesis,
are discharged running NewPP with lasso (15). �

5.5 propAllSVertSrcTEd property

The propAllSVertSrcTEd property, ∀x·((x ∈ vertG ∧ tG_V (x) = s) ⇒
(∃y ·(y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x))), states that in any reachable graph
all vertices of type s is source of an edge of type t.

RITA • Volume 22 • Número 1 • 2015 235



Proof Tactics for Theorem Proving Graph Grammars through Rodin 48

In order to demonstrate the obligation generated by the initialisation event, labelled
with INITIALISATION/propAllSVertSrcTEd/INV, we must follow the next steps:

1. Eliminate the universal quantifier of the goal;

2. Remove the operator ∈ in the x ∈ vertG hypothesis;

3. Select the proof by cases in the x = v1 ∨ . . . ∨ x = vn hypothesis, considering vertG
initialised with n vertices;

4. For each case, we must apply the following actions:

(a) For vertices vs (of type s), we must instantiate the edge ej (of type t) that has
source in vs;

(b) For vertices vi (not of type s) we must run ML;

Figure 27 presents the proof tree after the demonstration.

Proof Tree Description: The sequent to be demonstrated is ` ∀x·x ∈ vertG ∧
tG_V (x) = s ⇒ (∃y ·(y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x)). In order to
discharge it, we must eliminate the universal quantifier of the goal (61), and then⇒ goal rule
(62) is automatically applied. Next, we must remove the ∈ operator from the x ∈ vertG
hypothesis (73) and select proof by cases in the x = v1 ∨ . . . ∨ x = vn hypothesis (64).
For each vertex of the initial graph, some rules are automatically applied (9, 3, 65 or 77,
and 3, respectively), and then one sub-goal of one of the following cases is generated : (I)
tG_V (x) = s, x = vs ` ∃y ·y ∈ edgeG∧tG_E(y) = t∧sourceG(y) = x; (II) tG_V (x) =
s, x = vi ` ∃y ·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x. The sequent (I) represents
the goal generated by a vertex of type s. In such case, we must instantiate in the goal the
name of the edge ej of type t that has source in this vertex of type s, generating two new
sub-goals that must be proved: (i) x = vs ` > and (ii) x = vs ` ej ∈ edgeG ∧ tG_E(ej) =
t ∧ sourceG(ej) = x, both automatically discharged (by rules 2 and 3). The sequent (II)
details the goal generated by a vertex that is not of type s. For discharging it, we must just
run ML (26). These last actions must be repeated for each vertex of the initial graph. �

For rules, proof obligations follow the next format ∀x·x ∈ vertG ∪ {v1, . . . , vl} ∧
(tG_V ∪{v1 7→ t1, . . . , vl 7→ tl})(x) = s⇒ (∃y ·y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)})∪
{ed1, . . . , edk} ∧ (({mE(e1), . . . ,mE(ej)} C− tG_E) ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) =
t ∧ (({mE(e1), . . . ,mE(ej)} C− sourceG) ∪ {ed1 7→ mV (v1), . . . , edk 7→ vl})(y) = x),
considering that j edges are deleted, k edges and l vertices are created by a rule application.
Thus, a rule could match in one of the following situations: it creates and does not preserve a
vertex of type s that is source of an edge of type t; it preserves and does not create a vertex of

236 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 49

B

ML RULES
26

x = vi, s = sk ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x
3

x = vn, tG_V (vi) = s ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x
65

tG_V (x) = s, x = vi ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x
3

tG_V (x) = s, x = vi,> ∨ x = vn ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x
9

tG_V (x) = s, x = vi ` ∃y·y ∈ edgeG ∧ tG_E(y) = s ∧ sourceG(y) = x

A

True
2

x = vs ` >

True
2

x = vs ` >
3

x = vs ` ej ∈ edgeG ∧ tG_E(ej) = t ∧ sourceG(ej) = x

78
x = vs ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x

3
x = vs, tG_V (vs) = s ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x

77
tG_V (x) = s, x = vs ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x

3
tG_V (x) = s, x = vs,> ∨ x = vn ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x

9
tG_V (x) = s, x = vs ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x

A B
73,64

H ` ∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x
62

` x ∈ vertG ∧ tG_V (x) = s⇒ (∃y·y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x)
61

` ∀x·x ∈ vertG ∧ tG_V (x) = s⇒ (∃y·(y ∈ edgeG ∧ tG_E(y) = t ∧ sourceG(y) = x))

Figure 27. Proof Tree INITIALISATION/propAllSVertSrcTEd/INV

type s that is source of an edge of type t; it preserves a vertex of type s, deletes and creates
an edge of type t that has such vertex as source vertex; it does not involves vertices of type
s and edges of type t. The case that a rule preserves or creates vertices of type s and deletes
edges of type t is not treated in this work.

For all the other cases, the tactic to be applied is the same. If the rule does not delete
edges, the obligation is discharged just running NewPP with lasso. If the rule deletes edges,
all different from type t, the demonstration is concluded with the next actions:

1. Eliminate the universal quantifier of the goal;

2. For each deleted edge ei, follow the next steps:

(a) Select from the list of hypothesis the guard tLi_E(ei) = tG_E(mE(ei));
(b) Run NewPP with lasso.

3. Run NewPP with lasso.

RITA • Volume 22 • Número 1 • 2015 237



Proof Tactics for Theorem Proving Graph Grammars through Rodin 50

A
=
{
v
1
,
.
.
.
,
v
l
}

B
=
{
v
1
7→

t
1
,
.
.
.
,
v
l
7→

t
l
}

C
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

D
=
{
e
d
1
,
.
.
.
,
e
d
k
}

E
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
s
o
u
r
c
e
G
∪
{
e
d
1
7→

m
V

(
v
1
)
,
.
.
.
,
e
d
k
7→

v
l
}

F
=
{
m

E
(
e
1
)
,
.
.
.
,
m

E
(
e
j
)
}

C−
t
G

_E
∪
{
e
d
1
7→

t
1
,
.
.
.
,
e
d
k
7→

t
k
}

G
=
t
L
i

_E
∈

e
d
g
e
L
i
7→

e
d
g
e
T

H
=
m

E
∈

e
d
g
e
L
i
7→

Z

C

N
ew

PP
R

U
L

E
S

11
,1

5
H
`
∃
y
·y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
F

)
(
y
)
=

t
∧

(
E
)
(
y
)
=

x

B
Tr

ue
2

H
`
>

6
H
`

e
j
∈

e
d
g
e
L
i

20
H
`

e
j
∈

d
o
m

(
t
L
i

_E
)

Tr
ue

2
H
`
>

6
H
`

e
j
∈

e
d
g
e
L
i

20
H
`

e
j
∈

d
o
m

(
m

E
)

Tr
ue

25
H
`

m
E

(
e
j
)
∈

e
d
g
e
G

24
,2

4,
20

H
`

m
E

(
e
j
)
∈

d
o
m

(
t
G

_E
)

28
H
`

e
j
∈

d
o
m

(
t
L
i

_E
)
∧

e
j
∈

d
o
m

(
m

E
)
∧

m
E

(
e
j
)
∈

d
o
m

(
t
G

_E
)

3
H
`

e
j
∈

d
o
m

(
t
L
i

_E
)
∧
>
∧

e
j
∈

d
o
m

(
m

E
)
∧
>
∧

m
E

(
e
j
)
∈

d
o
m

(
t
G

_E
)
∧
>

9
H
`

e
j
∈

d
o
m

(
t
L
i

_E
)
∧
G
∧

e
j
∈

d
o
m

(
m

E
)
∧
H
∧

m
E

(
e
j
)
∈

d
o
m

(
t
G

_E
)
∧

t
G

_E
∈

Z
7→

e
d
g
e
T

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

t
L
i

_E
(
e
j
)
=

t
G

_E
(
m

E
(
e
j
)
)

C
81

H
`
∃
y
·y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
F

)
(
y
)
=

t
∧

(
E
)
(
y
)
=

x

A
Tr

ue
2

H
`
>

6
H
`

e
1
∈

e
d
g
e
L
i

20
H
`

e
1
∈

d
o
m

(
t
L
i

_E
)

Tr
ue

29
H
`
G

Tr
ue

2
H
`
>

6
H
`

e
1
∈

e
d
g
e
L
i

20
H
`

e
1
∈

d
o
m

(
m

E
)

Tr
ue

29
H
`

X

Tr
ue

25
H
`

m
E

(
e
1
)
∈

e
d
g
e
G

80
,2

0
H
`

m
E

(
e
1
)
∈

d
o
m

(
t
G

_E
)

Tr
ue

29
H
`

t
G

_E
∈

Z
7→

e
d
g
e
T

28
H
`

e
1
∈

d
o
m

(
t
L
i

_E
)
∧
G
∧

e
1
∈

d
o
m

(
m

E
)
∧
H
∧

m
E

(
e
1
)
∈

d
o
m

(
t
G

_E
)
∧

t
G

_E
∈

Z
7→

e
d
g
e
T

A

N
ew

PP
R

U
L

E
S

11
,1

5
H
`

t
L
i

_E
(
e
1
)
=

t
G

_E
(
m

E
(
e
1
)
)

B
79

H
`
∃
y
·y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
F

)
(
y
)
=

t
∧

(
E
)
(
y
)
=

x
6,

3,
62

H
`

x
∈

v
e
r
t
G
∪
A
∧

(
t
G

_V
∪
B
)
(
x
)
=

s
⇒

(
∃
y
·y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
F

)
(
y
)
=

t
∧

(
E
)
(
y
)
=

x
)

61
H
`
∀
x
·x
∈

v
e
r
t
G
∪
A
∧

(
t
G

_V
∪
B
)
(
x
)
=

s
⇒

(
∃
y
·y
∈

(
e
d
g
e
G
\
C
)
∪
D
∧

(
F

)
(
y
)
=

t
∧

(
E
)
(
y
)
=

x
)

Fi
gu

re
28

.P
ro

of
Tr

ee
fo

rr
ul

e_
i/p

ro
pA

llS
V

er
tS

rc
T

E
d/

IN
V

238 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 51

The generated proof tree is presented in Figure 28.

Proof Tree Description: The initial goal to be demonstrated is H ` ∀x·x ∈ vertG∪
{v1, . . . , vl}∧(tG_V ∪{v1 7→ t1, . . . , vl 7→ tl})(x) = s⇒(∃y ·y ∈ (edgeG\{ed1, . . . , edk})
∪{ed1, . . . , edk} ∧ ({mE(e1), . . . ,mE(ej)} C− tG_E ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) =
t∧({mE(e1), . . . ,mE(ej)}C−sourceG∪{ed1 7→ mV (v1), . . . , edk 7→ vl})(y) = x). With
the aim of demonstrating it, first we must eliminate the universal quantifier of the goal (61),
and then, some rules are automatically applied (6, 3 and 62, respectively), generating the se-
quent H ` ∃y ·y ∈ (edgeG \ {mE(e1), . . . ,mE(ej)}) ∪ {ed1, . . . , edk} ∧ ({mE(e1), . . . ,
mE(ej)} C− tG_E ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = t ∧ ({mE(e1), . . . ,mE(ej)} C−
sourceG ∪ {ed1 7→ mV (v1), . . . , edk 7→ vl})(y) = x. Then, it is necessary to guarantee
that the deleted edges are not of type t. Considering that ei is a deleted edge, we must apply
the following steps: add as hypothesis the guard tLi_E(ei) = tG_E(mE(ei)), and after run
NewPP with lasso. This must be repeated for each deleted edge (in the proof tree is being
considered that j edges are deleted, from e1 to ej , omitting the intermediary ones). Finally, a
last sequent is generated H ` ∃y ·y ∈ (edgeG\{mE(e1), . . . ,mE(ej)})∪{ed1, . . . , edk}∧
({mE(e1), . . . ,mE(ej)}C− tG_E ∪ {ed1 7→ t1, . . . , edk 7→ tk})(y) = t ∧ ({mE(e1), . . . ,
mE(ej)}C− sourceG∪ {ed1 7→ mV (v1), . . . , edk 7→ vl})(y) = x, which is proved running
NewPP with lasso (15). �

6 Final Remarks

Theorem proving as verification technique requires user interaction during the devel-
opment of the proofs, but on the other hand, it allows the verification of systems with huge or
infinite state spaces. The use of theorem provers is not simple, requires knowledge of the tool
and the system to be checked. This work constitutes one more step towards the reduction of
expertise required from the user when adopting such an approach for graph grammars speci-
fications. Particularly, we proposed proof tactics (strategies) for discharging a specific set of
invariants. The proposed tactics are a roadmap to demonstrate structural properties of graphs,
which usually are of interest for systems specified in GG. These tactics are presented by proof
trees, which describe in detail the proof process. The application of tactics by non-specialists
is quite simple, it is enough to follow the steps in the use trees. Besides these tactics can be
directly applied to instances of the considered properties, its use may show sub-tactics that
can be reused in sub-properties, which may appear in other verifications. This work not only
extends the previously proposed set of tactics [15], but also includes properties that involve
new logic operators.

Currently, various approaches allow the verification of graph grammars models through
model checking [17, 18, 6]. Although model checking is an established way of verification, it

RITA • Volume 22 • Número 1 • 2015 239



Proof Tactics for Theorem Proving Graph Grammars through Rodin 52

has as disadvantage the need to build the complete state space (or at least large portions of it),
which may lead to the state explosion problem. This problem may occur even if the system
is finite state, when the notion of state is complex. One of the strengths of graph grammars
is their ability to model complex states (as graphs), and therefore it is to expect that even
small specifications may lead to a large number of complex reachable graphs, restricting the
possibilities to use model checking techniques. There are few works [21, 22, 23] that are
using theorem provers or proof assistants for graph grammars, but as far we know, none of
them are actually performing verification.

Strategies for discharging other kind of properties are under development, particularly,
tactics for all patterns proposed in [9]. Concerning the kind of properties to be proven, in
this work we only considered invariants, but it would also be possible to use the proposed
translation to prove properties using variants (like termination, for example). This is also
supported by event-B and corresponding tools.

Acknowledgement

The authors gratefully acknowledge financial support received from FAPERGS (PRO-
NEM 11/2016-2).

References

[1] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 2005.
[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, New York, NY, USA, 1st edition, 2010.
[3] J.-R. Abrial et al. Rodin: An open toolset for modelling and reasoning in Event-B. International

Journal on Software Tools for Technology Transfer (STTT), 12(6):447–466, April 2010.
[4] J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of discrete models:

Application to event-b. Fundam. Inform., 77(1-2):1–28, 2007.
[5] R.-J. Back and K. Sere. Stepwise Refinement of Action Systems. In J. L. A. van de Snepscheut,

editor, Proceedings of the International Conference on Mathematics of Program Construction,
375th Anniversary of the Groningen University, pages 115–138, London, UK, 1989. Springer.

[6] P. Baldan, A. Corradini, and B. König. A framework for the verification of infinite-state graph
transformation systems. Inf. and Comp., 206:869–907, 2008.

[7] L. Baresi and P. Spoletini. On the use of Alloy to analyze graph transformation systems. In
A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors, ICGT, volume 4178
of LNCS, pages 306–320. Springer, 2006.

[8] S. A. da Costa. Relational approach of graph grammars. PhD thesis, UFRGS, Brazil, 2010.
[9] S. A. da Costa Cavalheiro, L. Foss, and L. Ribeiro. Specification patterns for properties over

reachable states of graph grammars. In Proceedings of the 15th Brazilian conference on Formal
Methods: foundations and applications, SBMF’12, pages 83–98, Berlin, 2012. Springer.

240 RITA • Volume 22 • Número 1 • 2015



Proof Tactics for Theorem Proving Graph Grammars through Rodin 53

[10] A. M. de Mello, L. C. L. Junior, L. Foss, and S. A. da Costa Cavalheiro. Graph grammars: A
comparison between verification methods. WEIT, pages 88–94, 2011.

[11] DEPLOY. Event-B and the Rodin platform, Aug 2013. http://www.event-b.org/ (last acc. Sept
2014).

[12] E. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
[13] H. Ehrig et al. Algebraic approaches to graph transformation. Handbook of graph grammars and

computing by graph transformation: volume I. foundations, pages 247–312, 1997.
[14] L. Lemos, S. Da Costa Cavalheiro, and L. Foss. Towards the use and description of proof tactics

for theorem proving graph grammars through rodin. In Theoretical Computer Science (WEIT),
2013 2nd Workshop-School on, pages 51–58, Oct 2013.

[15] L. C. Lemos Junior, S. A. da Costa Cavalheiro, and L. Foss. Theorem proving graph grammars:
Strategies for discharging proof obligations. In J. Iyoda and L. de Moura, editors, Formal Meth-
ods: Foundations and Applications, volume 8195 of Lecture Notes in Computer Science, pages
147–162. Springer Berlin Heidelberg, 2013.

[16] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[17] A. Rensink. The GROOVE simulator: A tool for state space generation. In J. Pfalz, M. Nagl, and
B. Böhlen, editors, Applications of Graph Transformations with Industrial Relevance (AGTIVE),
volume 3062 of LNCS, pages 479–485. Springer, 2004.

[18] L. Ribeiro, F. L. Dotti, and R. Bardohl. A formal framework for the development of concurrent
object-based systems. In H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg, and G. Taentzer,
editors, Formal Methods in Software and Systems Modeling, volume 3393 of Lecture Notes in
Computer Science, pages 385–401. Springer, 2005.

[19] L. Ribeiro, F. L. Dotti, S. A. da Costa, and F. C. Dillenburg. Towards theorem proving graph
grammars using Event-B. ECEASST, 30, 2010.

[20] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001.

[21] M. Strecker. Modeling and verifying graph transformations in proof assistants. Electronic Notes
in Theoretical Computer Science, 203(1):135–148, 2008.

[22] M. Strecker. Locality in reasoning about graph transformations. In Proceedings of the 4th Inter-
national Conference on Applications of Graph Transformations with Industrial Relevance, AG-
TIVE’11, pages 169–181, Berlin, Heidelberg, 2012. Springer-Verlag.

[23] M. Strecker. Interactive and automated proofs for graph transformations. Mathematical Structures
in Computer Science (MSCS), page 31 pages, 2014. accepted to appear in special issue on Term
and Graph Rewriting.

[24] H. N. Tran and C. Percebois. Towards a rule-level verification framework for property-preserving
graph transformations. In G. Antoniol, A. Bertolino, and Y. Labiche, editors, 2012 IEEE Fifth In-
ternational Conference on Software Testing, Verification and Validation, Montreal, QC, Canada,
April 17-21, 2012, pages 946–953. IEEE, 2012.

RITA • Volume 22 • Número 1 • 2015 241


