
Support Vector Machines and Kernel Functions for Text
Processing

Celso A.A. Kaestner 1

Abstract: This work presents kernel functions that can be used in conjunction with
the Support Vector Machine – SVM – learning algorithm to solve the automatic text
classification task. Initially the Vector Space Model for text processing is presented.
According to this model text is seen as a set of vectors in a high dimensional space;
then extensions and alternative models are derived, and some preprocessing proce-
dures are discussed. The SVM learning algorithm, largely employed for text classifi-
cation, is outlined: its decision procedure is obtained as a solution of an optimization
problem. The “kernel trick”, that allows the algorithm to be applied in non-linearly
separable cases, is presented, as well as some kernel functions that are currently used
in text applications. Finally some text classification experiments employing the SVM
classifier are conducted, in order to illustrate some text preprocessing techniques and
the presented kernel functions.

1 Introduction

Text classification, also known as text categorization or topic spotting, is the activity
of labeling natural language texts with thematic categories from a predefined set [26]. In
recent years, due to the large availability of texts in digital media, the task has gained strong
importance and the necessity of being executed by automatic procedures. Some applications
that can be formalized as automatic document classification are: (a) spam filtering – a process
which tries to discern spam email messages from legitimate emails; (b) email routing – the
task of routing an email sent to a general address to a specific address or mailbox depending
on its topic; (c) language identification – automatically determine the language of a text; (d)
genre classification – automatically determine the genre of a text; (e) readability assessment
– automatically determine the degree of readability of a text, either to find suitable materials
for different age groups or reader types or as part of a larger text simplification system; and
(f) the classical task of document indexing and filing – the task of filing documents according
to their content or other specific information.

Most of the work in automatic text classification employ automatic procedures gen-
erated by applying Machine Learning – ML – techniques [21]. This work aims to present
1Informatics Department
Federal University of Technology – Paraná
Avenida Sete de Setembro, 3165 – Rebouas
80.230–901, Curitiba – Paraná – Brazil
{celsokaestner@utfpr.edu.br}

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archives of the Faculty of Veterinary Medicine UFRGS

https://core.ac.uk/display/303970474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Support Vector Machines and Kernel Functions for Text Processing

several kernel functions that are currently employed for text classification. Such functions
must be used together with the SVM learning algorithm in order to allow the classifier to be
applied in cases where the separation between classes is non-linear.

The following structure is used in this text: Section 2 defines the text classification
problem and presents the Vector Space Model, largely employed in Information Retrieval
tasks, as well as some derived models; Section 3 presents in some detail the SVM learn-
ing algorithm and the underlying optimization problem; it also discusses the ‘kernel trick”,
which is used in order to allow the application of the SVM classifier to non-linearly separable
data; Section 4 presents some kernels that are currently used in text-processing applications;
Section 5 deals with a illustrative experiment: selected kernels in conjunction with the SVM
learning algorithm are applied to a restricted text database; and finally, Section 6 presents
some conclusions and discuss possible future works.

2 Text Classification and the Vector Space Model

Text classification deals with the assignment of classes to natural language texts. For-
mally, text classification can be defined as the assignmentA – normally made by some human
expert – of a Boolean value (True, False) to each pair (di, ci) ∈ D×C, whereD is a domain
of documents and C = {c1, . . . , c#C} is a finite set of predefined classes. The value True
is assigned to (di, ci) indicates the decision to assign the class ci to document di, while the
value of False indicates the opposite decision. Here only the restricted case where a docu-
ment di is assigned to one class – called hard classification – is considered. In this case an
oracle classifier is a function Φ : D → C that correctly computes the class of each document,
that is, Φ(di) = cj if and only if A(di, cj) = True.

In practical applications Φ is unknown, so it is necessary to find a suitable approxima-
tion Φ̃ so that the values of Φ and Φ̃ “coincide as much as possible” [26]. The function Φ̃ is
in general a decision procedure; according to the ML approach, its construction relies on the
availability of a previously classified database. Hence a labeled database is a collection of
documents where the set of True-assigned pairs DL = {(d1, c1), . . . , (dN , cN)} is known.
Here N stands for the size of DL (number of documents), and ck ∈ C for all k ∈ {1, . . . N}.
DL is usually split into two databases: (a) the training database DTR used to construct Φ̃
inductively by observing the characteristics of the documents; and (b) the test database DTS
used to evaluate the effectiveness of the obtained classifier: results obtained by Φ̃(dk) are
compared with the labels ck for all dk ∈ DTS in order to compute evaluation measures.

It is important to emphasize that in general it is not adequate for an automatic proce-
dure to coincide completely with Φ. In fact, as Φ̃ must be used to classify new instances –
which are not in DL – a decision structure that coincides exactly with Φ in DTR probably
will overfit the data and have poor predictive performance. This is a fundamental difficulty

RITA • Volume 20 • Número 3 • 2013 131

Support Vector Machines and Kernel Functions for Text Processing

in ML applications: the set of all possible data is in general too large to be included in the
set of observed examples. Hence the learning algorithm must generalize from the given ex-
amples in order to produce a useful output from new data input, and therefore an adequate
compromise between generalization and overfitting must be achieved [21].

2.1 The Vector Space Model and Extensions

The first issue in text classification is to find an adequate representation of the doc-
uments. The largely employed model in Information Retrieval is the Vector Space Model
– VSM – also known as a “bag-of-words” model, which was originally proposed in [25].
According to this model each document di ∈ D is composed by a set of index terms, or
simply terms. In the overall collection D the set of terms is represented as T = {t1, . . . tT },
where T is the number of different terms in the collection. If a linear order over T is con-
sidered, each document di naturally corresponds to a vector in a T -dimensional space, or
~di = [wi1, wi2 . . . wiT], where wij is the weight of the term tj in the document di. In order to
avoid a heavy notation, di will be used to refer to a document or to its correspondent vector
representation.

There are several ways to define the weight wij of a term tj in a document di [1].
The simplest one is the Boolean case: wij = 1 if tj appears on di and 0 otherwise. Another
possibility is to use wij = fij , the frequency of the term tj in di, called term frequency or
tf scheme. One of the most employed weighting schemes is called tfidf – term frequency
inverse document frequency. In this scheme wij is computed by:

wij = fij · log
N

dfj
(1)

where fij is the frequency of the term tj in the document di, dfj is the number of
documents in which the term tj appears, and N is the total number of documents in the
collection. The element dfj is employed to compensate elevate weights given to terms that
appear in a great number of documents, and are therefore non-discriminant [1]. According to
this model a document collection D corresponds to a (huge) N × T matrix D = [wij].

In the VSM a similarity measure between two documents d1 and d2 can be easily
computed using the inner product 〈d1, d2〉 of the corresponding vectors. The same procedure
can be used to find the documents related to a given user query, the basic Information Re-
trieval task. In this case, if the query q is formed by an assignment of weights to the terms in
T given by q = [wq1, . . . wqT], an ordered list of the relevant documents to the query can be
obtained sorting the document list according to the values of the similarity measure between
q and each di. The inner product is usually replaced by the cosine similarity measure, defined
in Equation 2, in order to produce values ranging in the [−1, 1] interval and to normalize ac-
cording to the document length. This is the basic metric employed in the current Information
Retrieval systems and web search engines.

132 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

cos(q, d) =
〈q, d〉

(||q|| · ||d||)
(2)

Two measures are largely employed to evaluate retrieval results: precision and recall.
IfDcor is the set of correct documents that are relevant to a task, as defined by the assignment
A, and Drec are the set of documents recovered by an automatic procedure Φ̃, then:

Precision =
#(Drec ∩ Dcor)

#(Drec|)
and Recall =

#(Drec ∩ Dcor)
#(Dcor)

(3)

The harmonic mean between Precision and Recall, called F-Measure, is also widely
employed as a single evaluation metric in the area [1]. These measures are also employed in
the evaluation of text classification tasks.

The second issue to deal with is how to extract adequate terms of a document collec-
tion. In a typical approach, the documents will suffer several preprocessing steps, in order to
avoid redundancies, to aggregate elements with similar semantics and to reduce the dimen-
sionality of the vector space.

The most employed steps are [1]:

1. tokenization: the original text is separated according to a set of delimiters, usually
formed by the blank space, end-of-line and tabbing [28]; the characters enclosed by
these delimiters will become the text units to be treated in the subsequent steps;

2. case standardization: all the characters are converted to the same case;

3. tag filtering: if the document is an Internet page or a similar hyper document, the
corresponding tags are eliminated;

4. stop word removal: “stop words” are common natural language entities that do not
carry strong semantics; so, they are considered irrelevant for information retrieval and
for text classification purposes. In this category are included articles, prepositions, etc.;
a list of stop words for each language is usually available2.

5. stemming (or lemmatization): text elements with small variations in their lexicon but
with the same semantics must be associated in order to produce the same dimension
in the VSM; some examples are singular and plural variations of the same word and
person and time variations of a verb. Linguistic experts produce specific procedures
that convert a word into its “stem” (radix), which is the element employed to represent
the corresponding dimension3.

2See for example http://www.ranks.nl/resources/stopwords.html
3Some stemming algorithms are Porter’s http://tartarus.org/martin/PorterStemmer/ and Lovins’
http://snowball.tartarus.org/algorithms/lovins/stemmer.htm

RITA • Volume 20 • Número 3 • 2013 133

Support Vector Machines and Kernel Functions for Text Processing

6. other term associations: it is possible to associate terms of identical semantics using
external dictionaries such as the WordNet4, or by computing successive terms that
always occur together in the text like, for example, “triple heart bypass”, which is
considered a triple compound term.

In the the original VSM terms are treated as a set of orthogonal vectors, so they are
considered as semantically non-related to the other terms. The association of the terms that
correspond to the same dimension is made only in the preprocessing steps – specially by
stemming, or by a corrective procedure that takes into account existing correlations.

This is the main reason why Wong et al. [32, 33] propose the Generalized Vector
Space Model – GVSM. As previously explained, in the original VSM the similarity between
a query q and the set of documents {d1, . . . dN} can be computed, using matrix notation, by
q.D′, where D is the N × T [document x term] matrix and D′ is the transpose of D. In
the GVSM model this computation is replaced by q.G.D′, where G is the term correlation
matrix given by G = [〈ti, tj〉], that is, a matrix in which each element is the inner product
(the similarity) between the terms ti and tj .

In Wong et al. [33] the “term-to-term” similarity is deeply analyzed. Their work
indicates that:

1. the words can be analyzed from the linguistic (semantic) point-of-view, to obtain syn-
onyms, antonyms, hyponyms, hypernyms, meronyms, etc.; these relations nowadays
are included in large linguistic repositories such as the WordNet;

2. statistical term co-occurrence computation in a corpus is a practical way to compute
term similarity;

3. a more abstract element than the terms, called a “concept”, can be used to represent
document dimensions;

4. a concept is characterized by a set of documents, or, more specifically, corresponds to
the maximal subset of documents in the corpus that contains the concept;

5. two concepts are uncorrelated if the intersection between the corresponding sets of
relevant terms of each document is empty; the greater the overlap between the sets of
documents related to two concepts, the more related theses concepts are.

Perhaps the most important idea that can be extracted from this analysis is the relation
between concepts and vectors: (a) concepts are represented by vectors; (b) the determination
of a vector basis in the term-space involves the identification of the “fundamental concepts”
in the collection, whose corresponding representative vectors are orthogonal; (c) documents
and queries are linear combinations of the fundamental concepts.

4http://wordnet.princeton.edu/

134 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

Tsatsaronis et al. [30] propose a GVSM model where the semantic information is
derived from word thesauri like the WordNet. The authors claim that the use of the GVSM
is limited due to contradictory results obtained when the model obtained by statistical proce-
dures is applied. The challenging problem is to correctly incorporate the semantic informa-
tion according to a rigorous process and using a theoretically sound framework. They present
a GVSM model that exploits WordNet’s semantic information, based on a new measure of
semantic relatedness between terms. Experimental results show that their approach augment
text retrieval performance.

In Latent Semantic Indexing – LSI [9] the proposal is to model the relationships be-
tween terms and documents. LSI considers that a text is composed by some “latent” or
“hidden” concepts; these elements are obtained from the observed [document x term] matrix
D, which is used to estimate the underlying model. According to the authors the process is
expected to deal with synonymy and polysemy. Synonymy indicates that there are many ways
to refer to the same object, whereas polysemy indicates that one can refer to different con-
cepts using the sign – the same lexical element in the case of texts. The model also implicitly
considers that terms are not necessarily independent. In practical applications the D matrix
is submitted to the Singular Value Decomposition – SVD – process to derive the particular
latent semantic structure model of the text. In fact, if D is the [document x term] matrix,
the decomposition is D = U ′SV , where U and V are formed by the so-called left and right
singular vectors and S is the diagonal matrix of singular values. The matrices are related to
M “latent” concepts, where M is the rank of D. The SVD decomposition5 is unique up to
certain row, column and sign permutations, that can be avoided if we adopt the convention
that the diagonal elements of S are all positive and placed in decreasing ordered according to
its lines. Besides, the number of considered concepts can be reduced using only the L most
representative ones. To do that it is sufficient to use the computation Dr = U ′rSLVr, where
SL is the sub-matrix composed by the first L rows/columns of S – the ones associated to the
greatest eigenvalues, and Ur, Vr are the corresponding reductions of the matrices U and V to
(N ×L) and (L×T) dimensions, respectively. LSI has been successfully employed for term
comparison, document comparison and also for the basic information retrieval task, to select
documents from a collection that are associated to a given user query.

Dominich and Kiezer [10] also explore the GVSM. According to them Information
Retrieval may be conceived as an application of mathematical measure theory. The authors
argue that the classical VSM is characterized by a discrepancy between its formal framework
and implementable form: its mathematical foundations are sound, but in general the meanings
of the elements are not preserved. So, they propose a solution based on the mathematical
measure theory, using a particular fuzzy set theory: the retrieval function is conceived as

5SVD is closely related to the standard spectral decomposition of a square symmetric matrix, say Y , into Y =
V ′LV , where V is orthonormal and L is diagonal; in fact, matrices U and V in D = U ′SV are composed by the
eigenvectors of DD′ and D′D respectively, and S2 is the matrix of the eigenvalues.

RITA • Volume 20 • Número 3 • 2013 135

Support Vector Machines and Kernel Functions for Text Processing

the cardinality of the intersection of two fuzzy sets. They give a formal unified background
to consider the models VSM, GVSM and LSI. They argue that the inner product is not a
necessary ingredient of the VSM, introducing the “Principle of Object Invariance” to handle
the situation. Moreover, their view makes it possible to formulate new retrieval methods,
such as in linear space in a general basis, entropy-based, and probability-based.

2.2 Alternative Models

In the VSM model the terms are obtained from the original text documents by prepro-
cessing, as previously explained in this section. So, as specific textual elements are used as
separators – blank spaces, tabs and newline characters [28], the terms are directly related to
the elements of the text that correspond to words and their variations. This is an attempt to
preserve, as much as possible, the text semantics given the underlying language.

It is possible, however, to adopt alternative models for text processing. In computa-
tional linguistics an n-gram is a contiguous sequence of n items from a given sequence of
text or speech, where n is a parameter [29]. In the case of text documents, an n-gram is
usually constituted by ASCII characters. Normally the n-grams are obtained from the lexical
tokens of the text – after the execution of the preprocessing steps 1 to 3, or 1 to 4 as described
previously. For example, the lexical element “processing” gives origin to the following set
of 5-grams: {$proc,proce,roces,ocess,cessi,essin,ssing,sing$}. The $ mark
is normally employed to indicate the beginning and the end of the lexical element. In the
n-gram model, a text document is simply a list – considered ordered or not – of the cor-
responding n-grams of the lexical elements of the text. So, the document can be directly
associated to a big n-grams string. Each n-gram can also be associated to a space dimension.
For a given text the obtained n-gram vector space is usually larger than the one obtained with
the classical VSM, since the number of n-grams is bigger than the number of VSM terms.

The n-gram model was successfully applied in text classification [5]. It must be ob-
served that this approach is linguistic independent, so it can be applied to documents in any
particular natural language.

Lodhi et al. [20] propose a different and more radical approach. The authors consider
documents simply as ASCII symbol sequences – or strings, which are directly treated by the
classification algorithm. In order to do so, they employ the SVM classifier and makes use
of specific kernels. The approach does not use any previous linguistic knowledge, but it is
capable of capturing topic information: the more substrings two documents have in common,
the more similar they are considered. Cancedda et al. [4] also use SVM and symbol kernels.
They propose a slightly different approach, that uses as basic symbols sequences of words
rather than sequences of characters. The SVM classifier is discussed in detail in the next
section, and kernels for text processing are discussed in Section 4.

136 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

One important note must be made in order to relate text documents with the almost
new applications that appear in the Internet era. Web pages, hyper-documents, tagged docu-
ments (HTML, XML) can also be treated by the same models employed for the ordinary text
documents, with minor modifications, as recently discussed in [11].

3 The SVM Classifier

This section presents the SVM, nowadays one of the most employed learning algo-
rithms. It was initially proposed by Vapnik; a detailed description of the current version can
be found in the references [2, 3, 8].

The following explanation is restricted to the two-class problem. Consider that exists
a training set {(x1, y1) . . . (xm, ym)}, where the labels are yi = +1 for one class and yi =
−1 for the other. All points are embedded in the n dimensional space Rn. Our aim is
to find a function f : Rn → R (within a given family of functions) that, when applied
to the points xi, evaluated positive on the first class and negative on the second class, i.e.:
f(xi) > 0 when yi = 1 and f(xi) < 0 when yi = −1. When these inequalities hold, f (or
its 0-level set {x|f(x) = 0}) classifies (or separates, discriminates) the two sets of points.

In SVM f is defined as an affine function f(x) = w′ · x − b. So we must have
yi(w

′ · xi − b) > 0 for all points. Since this inequality is homogeneous in w and b, it is
feasible if and only if the following non-strict inequality holds, for variables w and b:

yi(w
′ · xi − b) ≥ 1 (4)

If feasibility occurs, the points are linearly separable and there are infinite affine func-
tions that can be used in classification task. So, one idea is to fix f in a position that is
“equally” separated from the two sets. The situation is depicted in Figure 1 (a). For the first
class equation w′ · xi − b = 1 holds for points in the hyperplane H1, which has a normal
vector w and the distance to the origin m+ = |1 + b|/||w||. Similarly for the second class the
equation w′ · xi − b = −1 is satisfied by points in the hyperplane H2, with the same normal
vector and distance to the origin m− = | − 1 + b|/||w||. The desired optimum separation
hyperplane is the bisector of H1 and H2. The distance between H1 and H2 – or margin –
is given by |m+ −m−| = 2/||w||; so, if we minimize ||w|| we will maximize the margin.
Therefore the SVM decision function can be found as the solution of the following Quadratic
Optimization problem – QOP, with a convex function and linear restrictions:

min (1/2)||w||2
subject to:

{
yi(w

′ · xi − b) ≥ 1
(5)

In the previous development the feasibility condition yi(w′ ·xi− b) ≥ 1 for all xi was
assumed; this is usually called hard margin SVM. In practical applications this is rare: usually

RITA • Volume 20 • Número 3 • 2013 137

Support Vector Machines and Kernel Functions for Text Processing

data is not linearly separable. Even if a complex decision boundary could be obtained, a exact
function that separates training data is sometimes undesirable, due to the ML “overfitting”
problem: if the data has noise and outliers, a smooth decision boundary that ignores a few
data points is better than one that loops around the outliers [21]. A slightly modification in
the problem formulation can be done to solve this situation. Supplemental “slack variables”
si are introduced in the original inequalities, leading to the following formulation:

min (1/2)||w||+ C
∑
i si

subject to:
{
yi(w

′ · xi − b)− si ≥ 1
si ≥ 0

(6)

where C is a parameter that establish a trade-off between the margin size and the
error in training. When C is reduced more data can lie on the wrong side of the decision
hyperplane; this data is treated as outliers, producing a smoother decision boundary. This
formulation is usually called soft margin SVM, depicted in Figure 1 (b). Note that the point
x5 is between H2 and the linear decision function H , and x6 is even in “the wrong side” of
H; these situations are compensate by particular values of the problem variables.

Optimization problems sometimes are not directly solved. Instead it is useful to com-
pute the corresponding dual problem, obtained from the Lagrangian of original problem [2].
In the case of the hard margin SVM the obtained dual problem is given in Equation 7, where
the λi are the Lagrange multipliers which are associated to problem restrictions.

max
∑m
i=1 λi − (1/2)

∑m
i=1

∑m
j=1 λiλjyiyj(x

′
i · xj)

subject to:
{ ∑m

i=1 λiyi = 0
C ≥ λi ≥ 0

(7)

Remarkably, this dual problem depends only on dot products (x′i · xj) of the training
points, and neither the slack variables si nor their associated multipliers appear in the for-
mulation. Therefore, the decision function can be easily found as the solution of the dual
problem.

For a multi-class problem with m classes the generalization of the previous pre-
sentation is straightforward: to each one of classes a weight vector wi and a bias bi (for
i = 1, . . .m) are associated. So, the input space is split into m simply connected and convex
regions. The decision function is given by c(x) = argmax1≤i≤m(〈wi · x〉 + bi). Geomet-
rically this is equivalent to associate a hyperplane to each class, and assign to a new point x
the class whose hyperplane is furthest from it [6]. Learning algorithms that compute the m
hyperplanes simultaneously from the data exist and are extensions of the two-class algorithm
previously outlined. Another option is to employ several two-classes classifiers and combine
the results using the “one-against-all” approach [21].

138 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

-

6

ss
s
x1

c
c

c
cx2

x3

H1
��
��
��
��
��
��
��
��
��

H : w′∗.x− b∗ = 0

(a) hard margin SVM

�
�
�
�
�
�
�
�
�
��

H2
��
��
��
��
��
��
��
��
��

-

6

ss
s
x1

c
c

cx4

c
x5
c

cx6

cx2

x3

H1
��
��
��
��
��
��
��
��
��

H : w′∗.x− b∗ = 0

(b) soft margin SVM

�
�
�
�
�
�
�
�
�
��

H2
��
��
��
��
��
��
��
��
��

Figure 1. Support points, separating hyperplanes and optimal separation hyperplane

The SVM QOP can be solved in several ways [24]. The original proposal by Vapnik
uses a method know as “chunking”: the algorithm uses the fact that the value of the quadratic
form is the same if the rows and columns of the matrix that corresponds to zero Lagrange
multipliers are removed. Therefore, the original problem can be broken down into a series
of smaller optimization problems. Similar approach was proposed by Osuna, et al. [22]; the
authors prove that a large QOP can be broken down into a series of smaller sub-problems;
so, at each step the overall objective function is reduced and a set of feasible point is main-
tained, assuring the convergence of the method. More recently Platt et al. [24] propose the
Sequential Minimal Optimization – SMO, a simple algorithm that can quickly solve the SVM
QOP. SMO decomposes the overall QOP into sub-problems, using Osuna’s result to ensure
convergence. It starts from the smallest possible optimization problem at every step: for the
standard problem this means that it starts using only two Lagrange multipliers, because they
must obey a linear equality constraint. So, at every step, SMO chooses two Lagrange multi-
pliers to jointly optimize, finds the optimal and updates the partial solution to reflect the new
optimal values [6, 24].

There are some available implementations of the SVM learning algorithm. The WEKA
platform6 includes the SMO algorithm. Other implementations are LIBSVM7 and SVM-
Light8. It is also possible to apply a generic optimization algorithm, such as the ones that
appear in the R language and environment for statistical computing9. Using R it is possible
to solve the SVM QOP using a primal-dual method of the standard quadratic programming
6http://www.cs.waikato.ac.nz/ml/weka/
7http://www.csie.ntu.edu.tw/ cjlin/libsvm/
8http://svmlight.joachims.org/
9http://www.r-project.org/

RITA • Volume 20 • Número 3 • 2013 139

Support Vector Machines and Kernel Functions for Text Processing

solver quadprog of package quadprog or the interior point method ipop of package
kernlab [17].

3.1 The Kernel Trick

The “pure” SVM method is basically a linear separation classifier. To apply the algo-
rithm in more general contexts, where complex (non-linear) decision functions are required,
one possibility is to map the original data into high dimensional spaces, where data images
are expected to be “well-behaved” for classification purposes. However, the bigger is the
dimension of the considered space the bigger are the computational issues, and one must also
consider the generalization theory problem – the curse of dimensionality [13].

In order to avoid these problems the so-called “kernel trick” is employed [7, 15, 27].
This trick solves the computational problem of working with many dimensions – it is even
possible to work with infinite-dimensional spaces – and also presents other conceptual and
practical advantages. The learning process using nonlinear SVM consists of two steps: (a)
initially, the input vectors are transformed into high-dimensional feature vectors, where is ex-
pected that the data can be will gain meaningful linear structure and will be linearly separated;
(b) secondly, the SVM learning algorithm is applied to find optimum margin hyperplane in
the new feature space. This separating hyperplane is a linear function in the transformed
feature space, but its inverse mapping is a nonlinear structure in the original input space.

The situation is exemplified in Figure 2 for a two-class problem embedded in the
R2 input space. At left are shown points in the original input space, which are not linearly
separable. If the mapping ϕ : R2 → R3 defined by ϕ(x1, x2) = (x2

1, x1x2, x
2
2) is applied,

we obtain the situation depicted at right. Now data points are linearly separable, so the SVM
learning algorithm can be applied.

Let ϕ : Rn → Rp be a (nonlinear) mapping from the input space Rn to a higher-
dimensional feature space (or inner-space) Rp, usually with p >> n. If x is a vector in the
Rn, the hyperplane that corresponds to the decision boundary in the feature space is defined
as w′ · ϕ(x) − b = 0, where w denotes a weight vector that can map the training data in the
high dimensional feature space to the output space, and b is the bias. Using the mapping ϕ
this weight becomes w =

∑
i λiyiϕ(xi), and the decision function for the hard-margin SVM

can be computed by:

f(x) =

m∑
i=1

λiyiϕ(xi)
′ · ϕ(x)− b (8)

Similarly, in the case of the dual soft-margin SVM, the problem formulation corre-
sponds to the Equation 7 where the inner products (x′i ·xj) are replaced by ϕ(xi)

′ ·ϕ(xj). It is

140 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

-

6

-

6

�
�
�	

@
@
@

�
�
�

�
�
�

sss ss
s

s cc
c
c

c
c

c
c c

cc

c
s

s
ss ss
s

-
ϕ

(a) (b)
H

Figure 2. A geometric representation of the kernel trick: (a) original input space; (b) high
dimensional feature space, where points are linearly separated by the hyperplane H .

important to observe that the feature mapping function ϕ references both in the optimization
problem and in the decision function always appear in the scope of inner products of training
data. So, in fact it is not necessary to know explicitly the mapping ϕ : it is sufficient to know
the results of the dot product of the training data pairs in the feature space. This observation
leads to the “kernel trick”: the inner product of vectors in the feature space is replaced by a
kernel function K that computes K(xi, xj) = 〈ϕ(xi)

′ · ϕ(xj)〉 = ϕ(xi)
′ · ϕ(yj).

For a function K to be a valid kernel it is necessary and sufficient to satisfy the so-
called Mercer conditions [3, 6]. For any function g with finite norm

∫
g(x)2dx <∞we must

have:

∫
K(u, v)g(u)g(v)dudv ≥ 0 (9)

The Mercer’s theorem assures that the kernel function always computes an inner prod-
uct between pairs of input vectors in some high-dimensional space, using only input vectors
in the original space. The kernel matrix (also denoted as K) can be considered the central
structure in kernel machines, since it contains all necessary information for the learning algo-
rithm: it fuses information about the data and about the selected kernel. It is easy to see that
the K matrix is a Gram matrix and therefore is symmetric and positive definite; conversely,
any symmetric positive definite matrix can be regarded as a kernel matrix, that is, as repre-
senting an inner product in some (unknown) feature space. A very interesting property of the
kernels is that they are closed under certain linear operations. If K and K ′ are kernels, them
aK + bK ′ for constants a > 0, b > 0 are also kernels. So, it is possible to construct more

RITA • Volume 20 • Número 3 • 2013 141

Support Vector Machines and Kernel Functions for Text Processing

complex kernels from simple ones, according to modular compositions [6]. It is also possible
to consider a kernel simply as a Gram matrix whose elements are inner-products of pairs of
data, allowing the construction of kernels directly from features of the training points.

Cristianini et al. [6] also give some practical considerations regarding kernel matrices:
(a) a bad kernel is represented by a matrix which is mostly diagonal: all the points orthogonal
to each other, there are almost no clusters and no underlying structure; (b) if the mapping
ϕ ranges in a space with too many irrelevant features, the kernel matrix becomes almost
diagonal; (c) it is necessary to have some prior knowledge of the target application in order to
choose a good kernel, since the classification performance is highly sensitive to the kernel. In
the case of text processing, some appropriate options are discussed in the following section.

The most employed kernels for classification problems in general domains are: (a) the
polynomial kernel of degree d: Kd(u, v) = (u · v + 1)d for any positive integer d; (b) the
Radial Basis Function – RBF – kernel: K(u, v) = exp(−γ||u− v||2), for γ > 0; and (c) the
Sigmoid kernel: K(u, v) = tanh(κu+ v + c), where parameters c and κ defined the center
and the width of the sigmoid. A discussion on kernel construction and parameter selection for
several applications is available in http://www.kernel-machines.org/. However
up to now most of the work in kernel selection is empiric. The study of adequate functions ϕ
or of the manifold obtained by a kernel application is still an open issue. Besides SVM other
algorithms are capable of operating with kernels, such as Gaussian processes, kernel dis-
criminant analysis (an extension of Fisher’s linear discriminant analysis), kernel component
analysis (an extension of principal components analysis), and correlation analysis [7, 15, 27].

4 Kernels for Text Processing

The use of the SVM classifier in text applications was initially proposed by Joachims
[16], which used the classical vector space model. In his work the author gives several rea-
sons why SVM should perform well in text applications: they have high dimensional input
space, but few irrelevant features; on the other hand, the document vectors are sparse, and
most text categorization problems are linearly separable. Experiments were made using the
“ModApte” split of the Reuters-21578 dataset10 for the 10 most frequent classes of the “top-
ics” classification; the obtained average values of precision/recall-breakeven point for these
10 classes (the point where precision = recall) were 0.860 and 0.864 for polynomial and RBF
kernels respectively. Subsequently it was shown that the choice of the kernel has a great im-
pact in the classification performance; since then several specific text kernels were proposed.

Haussler [14] propose a new method of constructing kernels for elements with dis-
crete structures, like strings, trees and graphs. The obtained kernels – called convolution

10http://www.daviddlewis.com/resources/testcollections/reuters21578/

142 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

kernels – generalize the family of RBF kernels, and can also be built from different dis-
tributions, such as regular expressions, Hidden Markov Models and ANOVA (analysis of
variance) decompositions. Normally features must be extracted from discrete structures. If
S is a class of discrete structures and a finite number d of features is extracted, the pro-
cess can be represented as a mapping S → Rd; if infinitely many features are extracted,
the mapping is from S into the Hilbert space of all square-summable sequences, denoted `2.
In the last case, given two sequences s = [s1s2 . . .] and t = [t1t2 . . .], the inner-product
in `2 defined by K(s, t) = 〈s, t〉 =

∑
i si · ti is a kernel. Indeed, for all s1 . . . sn ∈ S,

and for constants c1, . . . cn ∈ R, we have
∑n
i,j=1 cicjK(si, sj) =

∑n
i,j=1 cicj 〈si, sj〉 =〈∑n

i=1 cisi,
∑n
j=1 cj .sj

〉
= 〈

∑n
i=1 cisi,

∑n
i=1 ci.si〉 ≥ 0. As mentioned, an element si

of the sequence s can be thought as the result of a feature extraction function φi. There-
fore under reasonable assumptions on S and K every kernel can be represented as K(s, t) =∑
i si · ti =

∑
i φi(s) ·φi(t) for some choice of extraction functions φi. Thus, in some sense

to choose a kernel is the same of choosing a series φi of extraction functions to represent
each s ∈ S. The main conclusion is that to deal with sequentially-structured data an ade-
quate inner-product defined over the extracted features can be employed directly as a kernel
function.

Lehmann and Shawe-Taylor [19] discuss kernels in the context of text classification
using a probabilistic framework. They introduce a novel view of how documents in a set
D might have been created: the key concept is to think in a document as a realization of
some abstract or prototypical topic-dependent element or templates in a set τ , and to think
about words w that appear in the documents as observed features of these documents and
templates. Then kernels can be derived from likelihoods p(w|D) and p(w|τ), and probabil-
ities that take into account the similarity of documents. They show how the popular tfidf
weighting scheme can be derived as a natural consequence of their framework. They evaluate
the proposal using a subpart of the Reuters corpus, the Corpus Vol.1 Newswire database. F-
measure obtained values range from 0.65 to 0.95, according to several kernel and parameters
options.

Lodhi et al. [20] propose a radically different approach to generate a text kernel. The
proposal, called string subsequence kernel – SSK, is an inner-product in the feature space
formed by all the subsequences of length k of the strings that compose the texts. Considered
subsequences are not necessarily contiguous: they are weighted by an exponentially decaying
factor λ ∈ [0, 1] in order to emphasize the symbol occurrences that are close to contiguous.
When comparing two sequences, the more substrings in they have in common, the more
similar they are. For example, consider the words cat, car, bat and bar [20]. If we use as
parameters k = 2 as subsequence length and a decay factor λ, an 8-dimensional vector space
is obtained, as shown in Table 1.

So, the un-normalised kernel value between car and cat is K(car,cat) = λ4,

RITA • Volume 20 • Número 3 • 2013 143

Support Vector Machines and Kernel Functions for Text Processing

c-a c-t a-t b-a b-t c-r a-r b-r
ψ(cat) λ2 λ3 λ2 0 0 0 0 0
ψ(car) λ2 0 0 0 0 λ3 λ2 0
ψ(bat) 0 0 λ2 λ2 λ3 0 0 0
ψ(bar) 0 0 0 λ2 0 0 λ2 λ3

Table 1. An example of mapping strings into the SSK feature space

whereas the normalised value is obtained by K(car,car) = K(cat,cat) = 2λ4 + λ6,
and thereforeK(car,cat) = λ4/(2λ4 +λ6) = 1/(2+λ2). In general a document contains
several words, but the mapping for the whole document is into one feature space: the catena-
tion of all the words and spaces (ignoring the punctuation), considered as unique sequences.

A formal definition of the SSK kernel is as follows. Let s = [s1, s2 . . . s|s|] be a
sequence over a finite alphabet ∆ (i.e. si ∈ ∆ for all i). Let i = [i1, i2 . . . ik] with 1 ≤
i1 < i2 . . . < ik ≤ |s| be a subset of the indexes (not necessarily contiguous) in s, and let
s[i] ∈ ∆k denote the subsequence of s given by [si1 , si2 . . . sik]. If l(i) is the length spanned
by s[i], that is l(i) = ik − i1 + 1, then the SSK kernel value between two strings s and t is
defined as:

Kk(s, t) =
∑
u∈∆k

∑
u=i:s[i]

∑
j:u=t[j]

λl(i)+l(j) (10)

The direct computation of the features would involve O(|∆|n) time and space for an
alphabet ∆, since this is the number of features involved. So, in order to allow the use of the
technique, the authors propose an algorithm based on a dynamic programming to compute
the inner products recursively as required by the SSK kernel11.

Experimental evaluations were conducted in the “ModApte” split of the Reuters database
for the top 10 most frequent classes, in order to compare with the results of the standard word
feature space kernel [16]. Several variations were tested, including modifications in the pa-
rameters k and λ and kernel combinations. Also, documents were considered as composed
by the original text words sequences, and also by sequences formed by n-grams obtained
from the words of the text. In summary, experiments show positive results on modestly sized
datasets; for the ten most frequent classes, obtained F-measures range from 0.691 to 0.982
depending on the considered class. These results are somewhat surprising, since in string
kernels only consider the low-level information provided by the string sequences.

11For more details of the SSK formal definition and its dynamic programming implementation see [20].

144 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

Cancedda et al. [4] extend the idea of sequence kernels to process documents as se-
quences of words. The authors claim that their approach, called “word sequence kernel”
(WSK), has the following advantages: (a) it is more efficient computationally, because less
features are considered; and (b) it ties in closely with standard linguistic preprocessing tech-
niques. The authors argue that the high performance obtained by the SSK kernel is due to
the fact that the most relevant subsequences for classification correspond to noisy versions of
word stems. So, sequence kernels operating at the word level might be more effective than
those operating at the character level. They present the WSK kernel method as an extension
of SSK method that deals with symbol-dependent and match-dependent decay factors, also
using n-grams to pick parts of stems of words or even parts of stems of consecutive words.
Experiments were conducted in the “ModApte” split of the Reuters database, using some
preprocessing techniques, such as stop word removal, stemming and ambiguity resolution
with the aid of a part-of-speech tagger. Several variations of the WSK were tested, including
ones where the words obtained by preprocessing were the primitive text elements, and others
where n-grams were used as primitive text elements. Also, several parameter sets (substring
length k, decay factor λ) and different kernels were tested. In the results the F-measure values
range from 0.828 to 0.911.

Katrenko and Adriaans [18] discuss local alignment kernels – LAK – in the context
of the relation extraction from natural language. Local alignment kernels are based on the
Smith-Waterman measure between strings, which was initially employed in the biological
domain. According to this measure two sequences s and t are considered similar if they have
many local alignments A(s, t) with high scores. Given the sequences s = [s1, s2 . . . sn] and
t = [t1, t2 . . . tm] the Smith-Waterman distance – SW – is defined as the local alignment
score of their best alignment SW (s, t), computed by:

SW (i, j) = max :

0
SW (i− 1, j − 1) + d(si, tj)
SW (i− 1, j)− g
SW (i, j − 1)− g

(11)

where d(si, tj) is the substitution score, which describes the rate at which the element
si in the sequence changes to the element tj , and g is a gap penalty. The direct application
of the SW score is not a valid kernel, but a valid one can be obtained by summing up the
contribution of all possible local alignments, or KLA(s, t) =

∑
a∈A(s,t) exp(βσ(s, t, a)). In

the equation σ(x, y, a) is a score of a local alignment a of sequences s and t, and A denotes
the set of all possible alignments. It is also shown that in the limit the LAK approaches the
SW score: limβ 7→∞ log(1

βKLA(s, t)) = SW (s, t) for a parameter β. The substitution score
must be computed from the similarity between elements of sequences; the authors employ
the Cosine, Dice and Euclidean norms to compute such scores. Experiments were conducted

RITA • Volume 20 • Número 3 • 2013 145

Support Vector Machines and Kernel Functions for Text Processing

in some biomedical corpora and the TREC 2006 Genomics collection12, and obtained results
suggest that the LAK kernel provides promising results,largely outperforming a baseline in
some cases. Obtained F-measures range from 0.773 to 0.805 in the effective experiments.

Halawi et al. [12] recently proposed a new approach for compute word relatedness
in a text collection. The authors argue that prior work on computing semantic relatedness of
words focused on representing their meaning in isolation, effectively disregarding inter-word
affinities. Conventional approaches – such as the ones that use the VSM model – compute
semantic relatedness by representing the meaning of individual words as dimensions in a mul-
tidimensional space, and by computing the distance between the resultant word vectors. So,
they propose a large-scale data mining approach for learning word-word relatedness, where
known pairs of related words impose constraints on the learning process. The authors also
argue that if the word relatedness of the text terms is known, applications such as information
retrieval or text clustering can be done by using GVSM (see Section 2.1).

In the proposed process initially sequences of size k composed by words are extracted
from the sentences of the text. Then the words – and indirectly the sequences – are mapped
into a joint dimensional space of dimension l, referred as the latent factor representation13. If
w is a word, its latent representation is qw ∈ Rl, and sequences s are mapped to the mean of
their word vectors. Latent space dimension typically varies from l = 100 to 200, which gives
a good trade-off between time and accuracy. The latent space representation strives to capture
the semantics of the words, such that affinities in the latent space reflect semantic relations. To
relax computations, additional biases bw are associated to words; common words generally
have high bias values, reflecting that they frequently co-occur with many other words; on the
other hand words that “strongly explain” their context have low bias values.

The set of parameters Θ of the model is composed by the latent factors qw and biases
bw. They are computed as a solution of an optimization problem, the maximization of the
log-likelihood L of the training set. The likelihood of observing the word w within sequence
s can be modeled by the multinomial distribution, where j ranges for all words: p(w|s,Θ) =
exp(rsw)/

∑
j exp(rsj). So, the optimization problem is:

maxL(DTR,Θ) =
∑

s∈DTR

log p(ws|s,Θ) (12)

This modeling is similar to a multinomial logistic regression [23], where the input is
formed by Θ and the output are the words w that appear in the sequences s. Due to compu-
tational issues the employed likelihood computation is not exact, but obtained by sampling
according to a “proposal distribution”, where each word has a probability proportional to its

12http://trec.nist.gov/
13This idea is similar to the consideration that texts are related to hidden topics, as explained in Section 2.1.

146 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

empirical frequency in the training dataset. The optimization problem is solved using the
stochastic gradient ascent algorithm [31].

The authors report the results of applying the method for detect word relatedness using
three datasets: (a) the Yahoo! Answers, available through the Yahoo! Webscope program;
(b) the UKWaC database, a corpus built by crawling of the .uk Web domain; and (c) by
using the subtitles of several movies and television series (see [12] for details). Experiments
employ parsing, tokenization, stop word removal and stemming; word relatedness results –
showing the obtained accuracy – are also presented.

This approach can be used for text classification when using the SVM learning algo-
rithm. As previously explained in this algorithm the kernel matrix can be represented by the
inner-products of pair of vectors in the training database. So, a term relatedness matrix can
be considered as a suitable kernel matrix. There are some options when deciding what is the
basic text element to consider as a word, such as: (a) the use of the original text terms ob-
tained by text preprocessing; or (b) the use of n-grams of a parameter n. The steps previously
described can be directly followed: latent factors and biases will be the problem variables in
the optimization problem whose objective function to be maximized is the log-likelihood of
the training set, exactly as indicated in the Halawi et al. paper.

5 Illustrative Experiments

In order to illustrate this exposition some experiments of text classification in a limited
database were conducted, using tools from the Python Natural Language Tool Kit (NLTK)14

and the classification algorithms of the Machine Learning Tool WEKA15.

Text files were extracted from the classical “Reuters Corpus”, that contains stories
from Reuters news agency compiled by David Lewis and publicly available16. The employed
version is directly available in the NLTK Toolkit; it contains 10,788 news documents totaling
1.3 million words. The documents have been classified into 90 topics, but the class assign-
ment is not injective. To work in a reduced hard classification problem the set of documents
that are assigned exclusively to the two most frequent classes of the database were selected.
The resulting dataset contains 6,215 documents, assigned to earn (3,923 docs with 398,706
words) and to acq (2,292 docs with 334,554 words). The third most frequent class (crude)
has only 374 documents. Several preprocessing options and kernels were tested. Some pre-
processing procedures were applied in all the experiments: (a) all the words were transformed
to lower case; (b) words whose length is less than 3 were eliminated; (c) strings that corre-
spond to numbers (such as “1985”) were eliminated. In all experiments a standard hold-out

14http://nltk.org/
15http://www.cs.waikato.ac.nz/ml/weka/
16See http://www.research.att.com/lewis.

RITA • Volume 20 • Número 3 • 2013 147

Support Vector Machines and Kernel Functions for Text Processing

Classifier Accuracy F-Measure Processing time
(%) (sec)

1-NN 86.37 0.856 0.02
Naı̈ve-Bayes 95.31 0.953 2.98

J4.8 94.65 0.947 34.37
MLP 62.75 0.484 8, 516.64

SMO-linear 98.25 0.982 2.96
SMO-poly2 97.77 0.978 21.98
SMO-RBF 97.02 0.970 36.96

Table 2. Machine Learning algorithm performance in a two-class text classification task

evaluation procedure was used, splitting the dataset in 2
3 for training and 1

3 for testing.

The initial experiment uses the VSM in its classical form. To do so, the original
text was transformed according to the VSM model, using a built-in WEKA method. We
use the term-frequency (tf) of a word in the document with doc length normalization as its
feature value; additional preprocessing steps include the use of the Lovins stemmer and the
restriction to the 300 most frequent words per class. After that a [term x document] matrix D
of dimension (427× 6, 215) was obtained.

In the first experiment the SVM performance is compared with some ML learning
algorithms, using their WEKA implementation and standard parameters: (a) the instance-
based 1-NN (nearest neighbor); (b) the probabilistic Naı̈ve-Bayes classifier; (c) the decision
tree classifier J4.8; (d) a multi-layer perceptron (MLP) network with back-propagation algo-
rithm for training. A detailed description of these learning algorithms can be found in [21].
For the SVM the employed implementation uses the SMO algorithm [24] with the follow-
ing options: (a) the linear kernel (the inner-product is directly used); (b) the second degree
polynomial kernel; and (c) the RBF kernel.

Table 2 presents the accuracy (percentage of correctly classified instances), the F-
measure and the processing time to built the corresponding model for this experiment. The
last value is provided only for reference17. As we can see in this table the SVM classifier
provides the high scores at low computational costs, confirming the claim that it is a good
classifier for text applications. Simpler classifiers (1-NN, Naı̈ve-Bayes, J4.8) have the lower
classification performance; the MLP spends a lot of time to built the classification model, and
surprisingly presents very bad results (possibly due to some particular execution issue). So,
the following experiments employ only the SVM classifier, using the SMO WEKA imple-
mentation.

17Experiments were conducted in a PC computer with i5− 2410M@2.3GHz processor and 6 GB of memory.

148 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

In the main experiment the SVM learning algorithm was employed in conjunction with
some preprocessing options. The VSM model was extended from tf to use the tfidf metric,
with the same additional restrictions of the first experiment. A set of n-grams (for n = 3, 4)
was also employed. They were obtained directly from the words that compose the text, using
specific Python functions. 399 3-grams and 449 4-grams features were obtained for the same
6,215 documents. In the conversion from string text to vector space, the frequency of the
n-gram was used as feature value, and also doc length normalization.

Finally the SSK kernel as presented by Lodhi et al. [20], which is also available
in the WEKA platform, was employed. Due to computational issues of this algorithm an
additional preprocessing step was applied: each document was considered as a string formed
by the 300 most frequent words that appear on it; in order to avoid the case of an “empty
string” to be associated to a document, the first word of each document was added to its
string representation. The number of considered characters in the string that is associated
to each document were also limited to to 50. The final preprocessed database is formed by
6, 215 strings of length 50, each one corresponding to a document associated to a class. Due
to the elevated computational time an instance filter that selects 20 % of the training and test
datasets was applied, so about 1, 200 instances were employed. A similar experiment was
conducted using 3-grams and 4-grams in conjunction with the SSK kernel, with the same
preprocessing steps and instance restrictions of the previous experiment.

In Table 3 the obtained results for the main experiment are presented (results for SVM
Linear tf are repeated from previous table). The number of support vectors and kernel eval-
uations are also presented in each case; they are associated to the execution time.

Obtained results are consistent and stable. Some preliminary conclusions can be ob-
tained:
• The original Vector Space Model performs very well when the “basic” SVM classifier

(linear kernel) is employed; as the vectors that represent documents are very sparse, so
linear separability can be easily obtained in the feature space; in fact, the F-Measure
result is the better one obtained in our tests.
• Polynomial kernel (second degree) has a slightly superior performance in some cases,

whereas the RBF kernel results are inferior in all cases.
• Results using tf and tfidf for the several kernel options are very similar; it seems

that in this collection the inverse document frequency does not influence the results;
possibly this is because words appear well-distributed in the collection.
• The use of n-grams does not contribute to augment significantly the classification per-

formance in this collection.
• The use of the SSK kernel does not improve the performance; however, as we em-

ployed limited-length string to represent the documents – obtained from additional
preprocessing steps to limit computational time – one can consider that the results are

RITA • Volume 20 • Número 3 • 2013 149

Support Vector Machines and Kernel Functions for Text Processing

Kernel/ Accuracy F-Measure Processing time # of support # of kernel
Preprocessing (%) (sec) vectors evaluations

Linear tf 98.25 0.982 2.96 − 3, 805, 735
Poly2 tf 97.77 0.978 21.98 1, 574 48, 393, 866
RBF tf 97.02 0.970 36.96 2, 079 83, 553, 985

Linear tfidf 98.25 0.982 2.72 − 3, 805, 735
Poly2 tfidf 97.78 0.978 20.48 1, 574 48, 393, 866
RBF tfidf 97.02 0.970 38.94 2, 079 83, 558, 985

Linear 3-gram 97.25 0.973 13.04 − 4, 674, 567
Poly2 3-gram 97.68 0.977 62.68 1, 088 30, 275, 175
RBF 3-gram 97.11 0.971 113.25 1, 395 47, 977, 886

Linear 4-gram 97.96 0.980 10.61 − 5, 288, 339
Poly2 4-gram 98.11 0.981 45.58 1, 026 29, 159, 140
RBF 4-gram 97.49 0.975 81.82 1, 212 49, 725, 538

SSK doc string 96.88 0.969 8, 873.72 844 41, 312, 294
SSK doc string 20% 96.05 0.960 208.35 290 1, 163, 734

SSK 3-gram string 20 % 95.72 0.957 3, 924.41 257 1, 728, 382
SSK 4-gram string 20 % 96.20 0.962 4, 867.17 231 1, 172, 674

Table 3. SVM performance with different preprocessing steps and kernels

somewhat unexpected. Possibly using a sophisticated computational environment su-
perior results can be achieved. One important conclusion is that the execution time
is a serious drawback for the effective use of string direct kernel approaches in real
applications.

• The same conclusions can be made in the case of n-grams associated with SSK: we
have to limit the size of the considered n-gram strings, prejudicing the algorithm per-
formance; very high execution times were recorded.

The experiments in this work are intended to be illustrative, that is, to provide compar-
ative basis for the described text processing options and employed kernel functions. Most of
the related works employ the “ModApte” partition of the Reuters collection and documents
from the ten top ranked classes; however, the work of Joachims [16] present results of similar
magnitude for the classes earn and acq. A point to be emphasized in Table 3 is the number
of kernel evaluations: as we can see for sophisticated kernels this number is very high; so, a
kernel function with fast computation can be useful to reduce required computational time.
The use of a direct kernel matrix, where results are obtained directly from pairs of training
data is an alternative approach in this direction.

150 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

6 Conclusions

This work discuss how kernel functions that can be applied in conjunction with the
Support Vector Machines classifier in the automatic text classification task. Several models
for text representation (VSM, GVSM, n-grams, strings) are discussed; in most of them text
is represented by a set of vectors in a high dimensional space.

The Support Vector Machine learning algorithm is presented as a result of an opti-
mization procedure. Afterward the kernel trick is presented; it allows the SVM to be applied
in more general situations, where linear classifiers do not apply. Some options to consider as
kernel functions in the case of text processing are also presented. The use of the SVM classi-
fier in conjunction with some text preprocessing techniques and kernel function selection is
illustrated by some experiments, conducted in a limited database obtained from the two most
frequent classes of the classical Reuters text corpus.

One particular point of this work can be highlighted: as explained, a recent work by
Halawi et al. [12] is dedicated to the computation of word relatedness in text databases.
Such goal is achieved by using an optimization procedure; in their proposal it is necessary
to optimize the log-likelihood function of the model parameters, according to frequencies
estimated based on training data. This approach can be used to obtain new kernel functions
for text classification: word relatedness will directly constitute the elements of the kernel
matrix (a symmetric positive-definite matrix), since it represents the inner-products of pairs
of elements of the training data.

Acknowledgements: This work was developed in the Data Mining Lab. – Computer Science
and Engineering Dept. – York University, Toronto, Canada, thanks to Prof. Aijun An. Also
thanks to Prof. Andranyk Mirzaian by his Combinatorial Optimization explanations.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press (1999).

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press (2009).

[3] C.J.C. Burges. “A Tutorial on Support Vector Machines for Pattern Recognition”. Data
Mining and Knowledge Discovery, N. 2 (1998) 121–167.

[4] N. Cancedda, E. Gaussier, C. Goutte and J-M. Renders. “Word-Sequence Kernels”. Jour-
nal of Machine Learning Research, N. 3 (2003) 1059–1082.

RITA • Volume 20 • Número 3 • 2013 151

Support Vector Machines and Kernel Functions for Text Processing

[5] W.B. Cavnar and J.M. Trenkle. “N-Gram-Based Text Categorization”. Proceedings of the
3rd Annual Symposium on Document Analysis and Information Retrieval (1994) 161–
175.

[6] N. Cristianini, J. Shawe-Taylor. An Introduction to support vector machines and other
kernel-based learning methods. Cambridge University Press (2000).

[7] N. Cristianini. “Support Vector and Kernel Machines”. International Con-
ference in Machine Learning (ICML) 2001 presentation, available in
http://www.support-vector.net/icml-tutorial.pdf, accessed in
November 12th, 2012.

[8] C. Cortes and V.N. Vapnik. “Support-Vector Networks”. Machine Learning, N. 20 (1995)
273–297.

[9] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer and R. Harshman. “Indexing
by Latent Semantic Analysis”. Journal of the American Society for Information Science,
Vol. 41 (1990) 391–407.

[10] S. Dominich and T. Kiezer. “A Measure Theoretic Approach to Information Retrieval”.
Journal of the American Society for Information Science and Technology, Vol. 58, N.8
(2007) 1108–1122.

[11] G. Giannakopoulos, P. Mavridi, G. Paliouras, G. Papadakis and K. Tserpes. “Represen-
tation Models for Text Classification: a comparative analysis over three Web document
types”. Proceedings of the ACM International Conference on Web Intelligence, Mining
and Semantics (WIMS’12), Craiova, Romania (2012) 1–12.

[12] G. Halawi, G. Drory, E. Gabrilovichz and Y. Koren. “Large-Scale Learning of Word Re-
latedness with Constraints”. Proceedings of the Knowledge Discovery in Databases’12,
Beijing, China, (2012) 1406–1414.

[13] T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2nd. Edition (2009)

[14] D. Haussler. “Convolution Kernels on Discrete Structures”. Technical Report UCSC-
CRL-99-10, Department of Computer Science, University of California at Santa Cruz
(1999).

[15] T. Hofmann, Bernhard Schölkopf and Alexander J. Smola. “Kernel Methods in Machine
Learning”. The Annals of Statistics, Vol. 36, No. 3, (2008) 1171–1220.

[16] T. Joachims. Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. Springer (1997).

[17] A. Karatzoglou, D. Meyer and K. Hornik. “Support Vector Machines in R”. Journal of
Statistical Software, Vol. 15, No. 9 (2006) 1–28.

[18] S. Katrenko and P. Adriaans. “A Local Alignment Kernel in the Context of NLP”. Pro-
ceedings of the 22nd International Conference on Computational Linguistics (Coling
2008), Manchester, UK (2008) 417–424.

152 RITA • Volume 20 • Número 3 • 2013

Support Vector Machines and Kernel Functions for Text Processing

[19] A. Lehmann and J. Shawe-Taylor. “A Probabilistic Model for Text Kernels”. Proceed-
ings of the 23rd International Conference on Machine Learning, Pittsburgh, PA (2006)
537–544.

[20] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini and C. Watkins. “Text Classifica-
tion using String Kernels”. Journal of Machine Learning Research, N. 2 (2002) 419–444.

[21] T. Mitchell. Machine Learning. McGraw Hill (1997).
[22] E. Osuna, R. Freund and F. Girosi. “Training Support Vector Machines: An Application

to Face Detection”. Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, Puerto Rico, PR (1997) 130-136.

[23] C-Y.J. Peng, K.L. Lee and G.M. Ingersoll. “An Introduction to Logistic Regression
Analysis and Reporting”. The Journal of Educational Research, Vol. 96, N. 1 (2002)
1–14.

[24] J. Platt. “Fast Training of Support Vector Machines using Sequential Minimal Opti-
mization”. In B. Schoelkopf and C. Burges and A. Smola (Editors), Advances in Kernel
Methods - Support Vector Learning. MIT Press (1998).

[25] G. Salton, A. Wong and C. S. Yang. “A Vector Space Model for Automatic Indexing”.
Communications of the ACM, Vol. 18, N. 11 (1975) 613–620.

[26] F. Sebastiani. “Machine Learning in Automated Text Categorization”. ACM Computing
Surveys, Vol. 34, N. 1 (2002) 1–47.

[27] M. Sewell. “Kernel Methods”. Available in http://www.svms.org/kernels/kernel-methods.pdf,
accessed in November 12th, 2012.

[28] J. Strunk, C.N. Silla-Jr and C.A.A. Kaestner. “A Comparative Evaluation of a New Un-
supervised Sentence Boundary Detection Approach on Documents in English and Por-
tuguese”. Computational Linguistics and Intelligent Text Processing – Lecture Notes in
Computer Science, Vol. 3878 (2006) 132–143.

[29] C.Y. Suen. “n-Gram Statistics for Natural Language Understanding and Text Process-
ing”. In IEEE Transactions on Pattern Analysis and Machine, Vol. 1, N. 2 (1979) 164–
172 .

[30] G. Tsatsaronis and V. Panagiotopoulou. “A Generalized Vector Space Model for Text
Retrieval Based on Semantic Relatedness”. Proceedings of the European Association for
Computational Linguistics, Athens, Greece (2009) 70–78.

[31] R. Wijnhoven, P.H.N. de With. “Fast Training of Object Detection using Stochastic Gra-
dient Descent”. IEEE International Conference on Pattern Recognition, Istanbul, Turkey
(2010) 424–427.

[32] S.K.M. Wong, W. Ziarko and P.C.N. Wong. “Generalized vector spaces model in in-
formation retrieval”. Proceedings of the ACM SIGIR 85, Montreal, CA (1985) 18–25.

RITA • Volume 20 • Número 3 • 2013 153

Support Vector Machines and Kernel Functions for Text Processing

[33] S.K.M. Wong, W. Ziarko, V.V. Raghavan and P.C.N. Wong. “On Modeling of Informa-
tion Retrieval Concepts in Vector Spaces”. ACM Transactions on Database Systems, Vol.
12, N. 2 (1987) 299–321.

154 RITA • Volume 20 • Número 3 • 2013

	Introduction
	Text Classification and the Vector Space Model
	The Vector Space Model and Extensions
	Alternative Models

	The SVM Classifier
	The Kernel Trick

	Kernels for Text Processing
	Illustrative Experiments
	Conclusions

