
A Graph Grammar to Transform a Dataflow Graph into a
Multithread Graph and its Application in Task Scheduling

Simone André da Costa Cavalheiro 1

Luciana Foss 1

Cícero Augusto de S. Camargo 1

Gerson Geraldo H. Cavalheiro 1

Abstract: The scheduling of tasks in a parallel program is a NP-complete
problem, where scheduling tasks over multiple processing units requires an effective
strategy to maximize the exploitation of the parallel hardware. Several studies focus
on the scheduling of parallel programs described as DAGs (Directed Acyclic Graphs).
However, many modern multithread environments can get high performance levels
using a lighter representation to describe the program, the DCG (Directed Cyclic
Graph). This paper shows the structure and semantics of a DCG, and proposes patterns
to map structures found in DAGs into segments of a DCG. A graph grammar has been
developed to perform the proposed transformation and case studies using DAGs found
in the literature validate the transformation process. Besides the automatic translation
and precise definition of the mapping, the use of a formal language also allowed the
verification of the existence and uniqueness of the outcoming model.

1 Introduction

Scheduling algorithms are used in parallel programming to allocate program tasks
over the available processors on a parallel architecture [1]. The main goal of scheduling is
assigning a starting time and a processor to each task generated by a parallel program. The
scheduler must also guarantee that the program will be completed in a finite time. Scheduling
techniques often include optimization goals, such as minimizing execution time or memory
usage of a program. Scheduling algorithms can also be applied at application level [2] so they
can consider characteristics of the program being executed for decision making.

In parallel programming, a well-known model used to express concurrency is the
dataflow model [3]. Programs that are modeled according to the dataflow model are
suitable to be described in a Directed Acyclic task Graph (DAG), where vertices represent
tasks and edges represent data dependencies between two tasks. In this model each task
describes a sequence of instructions to be computed and each data dependence describes a
communication of data between two tasks. Thus, the set of edges in a dataflow program
represent the precedence constraints to execute the tasks. At execution time, two tasks can

1Programa de Pós-Graduação em Computação (PPGC), Universidade Federal de Pelotas, Campus Porto
{simone.costa,lfoss,cadscamargo,gerson.cavalheiro}@inf.ufpel.edu.br

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

be executed in arbitrary order or at the same time on different processors only if there are
no precedence restrictions among them. Otherwise, the data communication requirements
impose a specific execution order between those two tasks.

Graham [4] presented the scheduling bounds for static DAGs. In that case the whole
graph is known a priori and the complete scheduling can be set before the program starts.
The scheduling of DAGs is based on the list scheduling technique where the basic idea is
to make a list of tasks by assigning them some priority [5]. Kwok and Ahamad [5] propose
a taxonomy for DAG scheduling algorithms as well as they present the basic techniques to
schedule DAGs. In general, scheduling a DAG is an NP-complete problem [6]. We can found
in [7] a solution that takes a polynomial-time for three case studies and in [8] a linear-time
algorithm to schedule DAGs. The Dominant Sequence Clustering (DSC) [9] also presents
optimal performance considering special classes of applications.

Most recently, we have found in the literature many execution environments, such
as Intel R© Cilk Plus [10], OpenMP [11], and Intel R©Threading Building Blocks [12], that
apply dynamic scheduling strategies based on list scheduling to support the execution of
multithreaded programs. These environments provide programming abstractions to describe
a concurrent program in terms of a DAG. They also include scheduling heuristics to assign
different priorities of execution for the tasks considering their relation to the Critical Path of
the DAG. Practical performance results indicate that we must minimize the overheads implied
by the environment’s operations, mainly for operations that manipulate tasks in the Critical
Path.

Many academic multithread programming tools, such as Anahy [13] and KAAPI [14],
also use strategies based on static DAG scheduling to schedule dynamic multithreaded
programs. In this scenario programs respect the multithread model [15], which represents
programs in a different way from the dataflow model: a multithreaded program can be
represented in a Directed Cyclic Graph (DCG), where vertices represent threads and edges
represent create and join operations. However, threads just encapsulate sequences of tasks in
a proper way, so that a DAG can be obtained apart from a DCG, even on dynamic scenarios.
The opposite way, obtaining a DCG from a DAG, is also possible, that is, we can get a
multithreaded program from a given task graph.

This work proposes a formal model to map a DAG into an equivalent DCG,
representing the same program written in a multithread programming interface using only
create and join primitives. The use of a formal language to define the translation avoids
possible ambiguities from a natural language description. Since the source and target of
the mapping are graphs, it is natural to consider that the translation from DAGs to DCGs
are based on rules that transform graphs. Graph grammars are a formal language that
follow such approach [16], and offer various results concerning different types of analysis
(like termination and confluence) that are suitable for model transformations. Besides,

RITA • Volume 20 • Número 1 • 2013 141

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

adopting graph grammars, it is possible to automate the translation process and to have
support for confluence analysis by using the Attributed Graph Grammar system (AGG tool)
[17, 18]. It would be possible to model the mapping with some programming language
or pseudocode, however in such case we would have to map graphs to a concrete data
structure. The adoption of the graph grammar language avoids this translation and simplifies
the specification. Moreover, the use of such language also allows, in the future, to apply
available techniques and tools for formal verification. This mapping allows measuring the
efficiency of scheduling techniques that consider different graph representations. The present
paper extends the results presented in [19]. With respect to the original version, we included
two relevant contributions:

1. The exemplification of the proposed transformation to several case studies found in
literature as well as its comparison with previous scheduling results: several tests were
run with DAGs as input parameters, all resulting in successful mappings to equivalent
DCGs;

2. The proofs of termination and confluence of the translation: the graph grammar
specification also allowed the formal analysis of the mapping. Termination ensures that
the transformation process finishes, while confluence ensures that the transformation
results in a unique target model.

The remaining of this paper is organized as follows. Section 2 reviews some concepts
on attributed graph grammars, used in the translation process of DAGs into DCGs, while
Section 3 details the semantics of DAGs and DCGs, and the translation process itself. Section
4 details the transformation analysis and Section 5 presents some case studies. Concluding
remarks are defined in Section 6.

2 Graph Grammar

In this section we review the main concepts about typed attributed graph grammars
with application condition and negative application conditions, based on the double pushout
approach (DPO-approach) [16]. Basically, a graph is composed by a set of vertices and edges
connecting them, but they can be enriched with other information, like labels and attributes.
Graphs in which vertices (and edges) can be assigned to attributes of some data type are often
called attributed graphs. Attributed graphs generally consist of two parts: a graph-part and
a data-part. The data-part includes an algebra which defines values and algebraic operations
over these values. An algebra is a semantical model of a signature [20]. As an analogy,
we can see a signature as the interface of a program and an algebra as the implementation
of this program. An algebra homomorphism relates two algebras over the same signature,
identifying their values and operations.

142 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Definition 1 [Signature] A signature Σ = (S,OP) consists of a set S of sorts and a family
OP = (OPw,s)(w,s)∈S∗×S of operation symbols. For an operation op ∈ OPw,s, we can
write op : w → s or op : s0, . . . , sn → s, where w = s0, . . . , sn. If w = ε, then the
operation op :→ s is called constant.

Definition 2 [Algebra and homomorphism] Given a signature Σ = (S,OP), a Σ−algebra
A = ({As|s ∈ S}, {opA|op ∈ OP}) is defined by:

• a carrier set As for each sort s ∈ S;

• a constant cA ∈ As for each constant c :→ s ∈ OP ;

• a function opA : As0 × · · · ×Asn → As for each operation op : s0, . . . , sn → s.

The set obtained by the disjoint union of all carrier sets of a Σ-algebra A is denoted by U(A),
i.e., U(A) =

⊎
s∈S As.

Given two algebras A and A′ of the same signature Σ = (S,OP) or specification Spec =
(S,OP,E), a (partial) homomorphism h : A → A′, also called Σ or Spec-homomorphism
is a family h = (hs)s∈S of functions hs : As → A′s such that:

• for each c :→ s ∈ OP , we have hs(cA) = cA′;

• for each op : s0, . . . , sn → s ∈ OP , we have hs(opA(x0, . . . , xn)) =
opA′(hs0(x0), . . . , hsn(xn)), for all xi ∈ Asi .

A homomorphism is total or injective if all functions are total or injective, respectively, and
if all functions are bijective, it is an isomorphism.

A graph is defined by sets of vertices and edges. The set of vertices are partitioned in
two sets: a set of graph vertices and the set of data vertices. And the set of edges are also
partitioned into two sets: the set of graph edges and node attribute edges. The graph vertices
and edges define the graphical part of a graph, while the data vertices and node attribute edges
define the data structure of this graph. In this approach the edges are directed, therefore the
source and target of each edge must be defined. There are two function determining the
source and target of graph edges and two functions defining the source and target of node
attribute edges. Graph edges have source and target in graph vertices and node attribute edges
associate graph vertices to data vertices. In order to relate two graphs, a graph morphism is
defined, mapping all elements of one graph into the corresponding elements of the other. This
mapping must preserve the source and target of each edge, i.e., if an edge e1 is mapped to an
edge e2, the source and target vertices of e1 must be accordingly mapped to the source and
target of e2.

RITA • Volume 20 • Número 1 • 2013 143

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Definition 3 [Graphs and graph morphisms] A graph G is a tuple (VG, VD, EG, ENA, srcG,
tgtG, srcNA, tgtNA) defined as follows:

• VG and VD are sets of graph and data vertices, respectively;

• EG is the set of graph edges, which connect graph vertices and ENA is the sets of node
attribute edges, which connect graph vertices to data vertices;

• srcG, tgtG : EG → VG are total functions, defining source and target of graph edges,
respectively;

• srcNA : ENA → VG and tgtNA : ENA → VD are total functions, defining source
and target of node attribute edges, respectively;

Given two graphs G = (V G
G , V G

D , EG
G , EG

NA, src
G
G, tgt

G
G, src

G
NA, tgt

G
NA) and H = (V H

G ,
V H
D , EH

G , EH
NA, src

H
G , tgtHG , srcHNA, tgt

H
NA), a (partial) graph morphism f : G → H is a

tuple (fVG
, fVD

, fEG
, fENA

) such that f commutes with all source and target functions, for
example fVG

◦ srcGG = srcHG ◦ fEG
. A graph morphism is said to be total or injective if all

its components are total or injective functions, respectively.

An attributed graph is a graph combined with a data algebra over a signature Σ. In the
signature, a set of attribute value sorts is established and the corresponding carrier sets are
used to define the data vertices. The relation between two attributed graphs are determined
by a graph morphism and an algebra homomorphism, which must preserves the mapping
between the data vertices.

Definition 4 [Attributed graphs and attributed graph morphisms] Given a signature Σ,
called data signature, an attributed graph is a pair AG = (G,A), where A is a Σ−algebra,
called data algebra and G is a graph, such that VD = U(A).

Given two attributed graphs AG1 = (G1, A1) and AG2 = (G2, A2), a (partial) attributed
graph morphism f : AG1 → AG2 is a pair (fG, fD), with a graph morphism fG : G1 → G2

and an algebra homomorphism fD : A1 → A2, such that the following diagram commutes
for all s ∈ S.

A1
s_�

��

fDs // A2
s_�

��
V 1
D fGVD

// V 2
D

144 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

An attributed graph morphism f is said to be total or injective if fG and fD are total or
injective, respectively. Moreover, f is a monomorphism if fG is injective and fD is an
isomorphism of Σ−algebras.

Attributed graphs combined with the concept of typing leads to the notion of typed
attributed graphs. For typing the attributed graphs, a type graph over the final Σ-algebra is
used. The typing is given by an attributed graph morphism associating each element of a
graph to elements of the type graph. Two attributed graphs typed over the same type graph
can be related by an attributed graph morphism, which must preserve the types of each graph
element.

Definition 5 [Typed attributed graphs and typed attributed graph morphisms] Given a
signature Σ = (S,OP), an attributed type graph is an attributed graph TG = (T,A), where
A is the final Σ−algebra (where all carrier sets of A are singletons). A typed attributed graph
(AG, t) over TG consists of an attributed graph AG and a total attributed graph morphism
t : AG→ TG, called typing morphism.

Given two typed attributed graphs (AG1, t1) and (AG2, t2), typed over TG, a (partial)
typed attributed graph morphism f : (AG1, t1) → (AG2, t2) is a (partial) attributed
graph morphism f : AG1 → AG2, such that t2 ◦ f = t1. A typed attributed graph
morphism f : (AG1, t1) → (AG2, t2) is said to be total, injective or a monomorphism if
f : AG1 → AG2 is total, injective or a monomorphism, respectively.

Typed attributed graphs over an attributed type graph TG and typed attributed graph
morphisms form the category AGraphsTG [20].

Example 1 [Typed attributed graphs] A typed attributed graph is shown in Figure 1.
Vertices are depicted as rectangles or circles, which are divided into two parts, and edges
are shaped as arrows connecting their source and target vertices. This graph is attributed
over an algebra of integer and boolean. The data vertices and the node attribute edges
associating them to graph vertices are inscribed in the bottom part of rectangles or circles.
For example, the vertex T (on top left of Figure 1(a)) has an attribute named eval, whose
value is false, that is, there is a node attribute edge eval connecting the graph vertex T to the
data vertex false. The type graph is depicted in Figure 1(b) and the typing information of G
is given by the labels (T, Count and G) in the top part of rectangles or circles and the labels
a on the arrows.

A production defines the transformation from a graph to another, identifying which
elements should be preserved, consumed or created. In this work we use the double pushout
approach (DPO), where a production is defined by two total typed attributed graph morphisms

RITA • Volume 20 • Número 1 • 2013 145

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

(a) Attributed graph G. (b) Type graph T .

Figure 1. Example of attributed graph typed over T .

l : Kp → Lp and r : Kp → Rp, one mapping elements from the interface (Kp) to the
left-hand side (Lp) and another mapping elements from the interface to the right-hand side
(Rp). Lp defines the elements that must be present in the graph for the production to be
applied; Rp defines the result of application of the production; and Kp defines the context
of the production application, i.e., elements that must be in the graph but are not deleted by
application of the production. Elements of Lp which are not in the co-domain of l must be
deleted, and elements in Rp which are not in the co-domain of r must be created. All graphs
of p are typed over the same type graph T , with respect to a signature Σ, and the algebra
associated to these graphs is the Σ-termalgebra [20] with the variables X used p.

Definition 6 [Typed attributed graph productions] Given an attributed type graph TG

with data signature Σ, a (typed attributed) graph production or rule (p : Lp
l← Kp

r→ Rp)
consists of three typed attributed graphs Lp (left-hand side), Kp (context) and Rp (right-
hand side), with a common Σ−algebra TΣ(X) (the Σ−termalgebra with variables X); a
typed attributed graph monomorphism l; and a typed attributed graph morphism r.

Example 2 [Graph production] An example of production is shown in Figure 2(a). The
morphisms l and r are defined by the numbers associated to each element of the graphs. The
required elements to apply this production are vertices T and Count and edge seq_cre in
graph Lp, where the attribute eval is false and the attributes value and id are associated the
same value v1. Among these elements, the vertices T and Count are preserved and the other

146 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

ones are deleted. The created elements are the node attribute edges associating new values
to the attributes in graph Rp, for example the attribute value is associated to a new value
v1 + 1 (that is, this attribute is incremented of 1). The AGG tool, which is used to support the
analysis of transformation, uses a more compact representation for a production. The AGG
representation for the production p is showed in Figure 2(b). The graph Kp is omitted, but
it is determined by the numbered elements. Elements in the left-hand side (LHS) or right-
hand side (RHS) that have no associated number are deleted or created by the production,
respectively.

(a) Morphisms l e r (b) Production in AGG tool

Figure 2. Production p.

The application of a production to a graph G is enabled if all elements in its left-hand
side can be found in G , i.e., the left-hand side matches with a part of G. A match is defined as
a total (typed attributed) graph morphism from the left-hand side of a production to a graph.
It is total to ensure the presence of all needed elements in G. In this approach, if there is
some edge connected to a deleted vertex or if there are two identified vertices, where one is
preserved and the other is deleted, the production cannot be applied.

Definition 7 [Match and gluing conditions] Given a typed attributed graph production (p :

L
l← K

r→ R), a typed attributed graph G and a total typed attributed graph morphism
m : L → G, with X = (V X

G , V X
D , EX

G , EX
NA, src

X
G , tgtXG , srcXNA, tgt

X
NA, D

X , tX) for all
X ∈ {L,K,R,G}, we can state the following definitions:

• the identification points IP = {v ∈ V L
G |∃v′ ∈ V L

G , v 6= v′,mVG
(v) = mVG

(v′)} ∪
{e ∈ EL

i |∃e′ ∈ EL
i , e 6= e′,mEi

(e) = mEi
(e′)}, for all i ∈ {G,NA} are graph

elements in L that are identified by m;

• the dangling points DP = {v ∈ V L
G |(∃e ∈ (EG

G −mEG
(EL

G)),mEG
(v) = srcGG(e)

or mEG
(v) = tgtGG(e)) ∨ (∃e ∈ (EG

NA −mENA
(EL

NA)),mENA
(v) = srcGNA(e)} are

graph vertices in L, whose image in G are source or target of an edge that are not in
image of m.

RITA • Volume 20 • Número 1 • 2013 147

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

p and m satisfy the gluing condition if all identification and dangling points are elements
preserved by p, i.e. they are in l(K). In this case, m is called match for p at G.

In this work we consider injective matches, i.e., a match cannot identify distinct
elements. Because of this, the identification condition is always satisfied, so it remains to
verify the dangling condition in order to apply a production.

The production application, or derivation, is defined as a double pushout in the
category AGraphsTG [20]. Intuitively, G can be transformed by removing the part matched
by the production’s left-hand side and adding its right-hand side.

Definition 8 [Typed attributed graph transformation] Given a graph production
(p : Lp

l← Kp
r→ Rp), a typed attributed graph G and a match m : Lp → G for p at

G. A direct (typed attributed) graph transformation from G to the typed attributed graph H

(with p at m), denoted by G
p,m⇒ H , is given by the following double pushout (DPO) diagram

in the category AGraphsTG, where (1) and (2) are pushouts:

Lq

(1)m

��

Kqloo r //

k

��
(2)

Rq

n

��
G Dfoo g // H

A (typed attributed) graph transformation from G0 to Gk, denoted by G0 ⇒∗ Gk, is a
sequence of direct graph transformations G0

p1,m1⇒ · · · pk,mk⇒ Gk.

The following application conditions are presented as defined in [21]. An application
condition establishes structures that are required to apply a production, for example specific
conditions on attributes of graphical elements. An application condition for a production
consists of a set of constraints, which specifies graph and attribute conditions that have
to be fulfilled by a match in order to apply the production. The main constituent for
building constraints are equational constraints. An equational constraint is defined by a typed
attributed graph morphism which is injective on graph elements and maps each attribute
element into a class of equivalent terms. This morphism allow us to specify equations that
must be satisfied by a production application. For example, mapping a term x > 10 to the
quotient term [true] we are defining the equation x > 10 = true, or simply x > 10.

Definition 9 [Equational constraint] Given a typed attributed graph L = (G,A, t) and a
congruence relation Θ on A, an equational constraint over L is any typed attributed graph
morphism c : L → X , where cG is injective and cD is the natural homomorphism from
algebra A to the quotient algebra A/Θ.

148 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

An application condition (AC) over a graph L is a set of constraints over L. A
constraint is composed by an equational constraint c : L → X over L and a family of
equational constraints cXi : X → Xi over X . An application condition restricts the
application of a production with respect to a match, i.e., the match must satisfy all constrains
in the AC in order to apply the production. A match m for a production p : L← K → R in
G satisfies a constraint if for all morphism q from X to G, respecting m (that is, all elements
related by cL must be identified in G by q and m), there are a morphism from Xi to G,
respecting q. For the attribute part, the satisfaction of an AC means that all established
equations are satisfied by the assignment defined by m, for all variables in L.

Definition 10 [Application condition (AC)] Given an attributed type graph TG over a data
signature Σ = (S,OP) and a set of variables X = (Xs)s∈S . Let L = (G,TΣ(X), t) be
an attributed graph typed over TG, where TΣ(X) is the Σ−termalgebra with variables X .
A constraint cL = (c : L → X, (cXi : X → Xi)i∈I) over L is defined by an equational
constraint c over L and an I-indexed set of equational constraints (cXi)i∈I over X . I is finite
and possibly empty. A typed attributed graph morphism m : L→ G satisfies a constraint cL,
denoted by m �L cL, if for all typed attributed graph morphism q : X → G with m = q ◦ c,
there is an i ∈ I and a typed attributed graph morphism r : Xi → G, such that the diagram
(1) below commutes:

Xi

r

''

X
cAioo

q

��

(1)

L
coo

m

��
G

An application condition A over L is a finite set of constraints over L. A typed attributed
graph morphism m satisfies an application condition A if m �L cL for all cL ∈ A.

Example 3 [Application condition] Figure 3(a) shows a production and an application
condition having only one constraint cL : (idL, cA). idL is the identity morphism of L.
The morphism cA is identical on graph elements, and on attribute elements it corresponds to
equation id2 < id1 (depicted over graph A). This application condition defines an attribute
condition, that is, this production can only be applied if the equation id2 < id1 is satisfied
by the variable assignment defined by the match. If the application condition defines only
attribute conditions, we can write the corresponding equations over the production arrow
(see Figure 3(b)).

It is also possible to define negative application condition to restrict the production
applications. A negative application condition defines forbidden elements for a production
application. It is also defined by a set of morphisms (negative constraints) from the left-hand

RITA • Volume 20 • Número 1 • 2013 149

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

(a) Production and application condition

(b) Representation for attribute conditions

Figure 3. Example of application condition.

side of the production. In contrast to AC a match m : L → G satisfies a negative constraint
n : L→ N if there is no morphism from N → G respecting m.

Definition 11 [Negative application condition (NAC)] Given an attributed type graph TG,
a negative application condition over a typed (over TG) attributed graph L is a finite set N
of total typed attributed graph morphisms n : L → N , called negative constraints, where N
is an attributed graph typed over TG.

Given a total typed attributed graph morphism m : L → G, m satisfies a negative
constraint n : L→ N ∈ N if there is no total typed attributed graph morphism n′ : N → G,
such that m = n′◦n. m satisfies a negative application conditionN if it satisfies all negative
constraints n ∈ N .

A conditional production is defined by a production, an application condition and a
negative application condition. A typed attributed graph grammar GG consists of signature
Σ, which defines the data values and operations used in all graphs of GG; a type graph
T attributed over the final Σ-algebra; an initial attributed graph typed over T ; and a set of
conditional productions.

Definition 12 [Conditional productions and typed attributed graph grammar] A typed
attributed graph production with application and negative application conditions, or simply

150 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

conditional production or conditional rule, is a tuple (p,A(p),N (p)) consisting of a graph
production p, an application condition A(p) over Lp, and a negative application condition
N (p) over Lp.

A (typed attributed) graph grammar GG = (Σ, TG,G0, P) consists of a data signature Σ,
an attributed type graph TG with data signature Σ, an initial attributed graph G0 typed over
TG and a set of conditional productions P typed over TG.

Example 4 [Conditional production] A conditional production is depicted in Figure 4. It
is the same production of Example 2 adding an AC and a NAC. The equation t1! = 0 defined
by the AC is depicted over the production arrow. The NAC is defined by just one negative
constraint n : L → NAC1. The forbidden elements are those in NAC1 that do not have
any associated number, that is: the vertex T, which does not have an associated number; its
attribute thread, with value 0; and the edge connecting the vertex 2:T to T. This production
can be applied to a graph G if: all required elements can be found in G; no forbidden element
can be found in G; and the attribute thread of 2:T is not associated to 0 in G.

Figure 4. Conditional production p.

A direct graph transformation with ACs and NACs is a direct graph transformation
where the match satisfies the AC and NAC of the applied production.

Definition 13 [Typed attributed graph transformation with ACs and NACs] Given a
conditional production (p,A(p),N (p)) and a match m for p in a typed attributed graph
G, satisfying A(p) and N (p), a direct (typed attributed) graph transformation with AC and
NAC from G with p at m is the direct graph transformation G

p,m⇒ H . A (typed attributed)
graph transformation with ACs and NACs from G0 to Gk is a sequence of direct graph
transformation with AC and NAC G0

p1,m1⇒ · · · pk,mk⇒ Gk.

Example 5 [Direct graph transformation] Figure 5 shows a direct derivation from G to H
with the conditional production p (see Figure 4). There is a match m of LHS in G, which

RITA • Volume 20 • Número 1 • 2013 151

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

is highlighted in the figure. Beyond the existence of m, we can easily see that m satisfies the
AC and the NAC of p, i.e., the value of attribute thread of vertex 2:T is not 0, and there is no
vertex T, with attribute thread = 0, connected to 2:T by an edge a. In this case, G can be
transformed into H excluding the seq_cre edge and changing the values of attributes value
(of vertex Count) and eval (of vertex 2:T) to 3 (v1 + 1) and to true, respectively.

Figure 5. Direct graph transformation from G to H with production p in Figure 4.

3 Transforming DAGs into DCGs

Canonical scheduling algorithms found in literature [22, 23, 24] consider parallel
programs modeled as a DAG of tasks. List scheduling [4, 25] is a class of algorithms that
offer a proven efficiency when the reveive a static DAG as input. Scheduling algorithms
for multithread environments, in turn, deal with DCGs, cyclic graphs built at runtime,
whose scheduling unit is the thread. Nevertheless, we can adapt list algorithms to work
in multithread environments, like many current tools do [13, 26, 11]. In order to compare
directly the performance of scheduling algorithms that work in different scenarios, we
developed a translation process to transform DAGs into DCGs, both representing equivalent
programs.

3.1 Graphs used to express parallelism

DCGs (Directed Cyclic Graphs) are graphs used to describe multithreaded programs.
DAGs (Directed Acyclic Graphs), in turn, are graphs, frequently used to describe parallel

152 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

programs in the dataflow model. Both of them have weighted vertices and edges, but the
meaning of these elements differ from one to the other. Weights for vertices represent
processing cost and weights for edges describe data communication costs.

DAGs’ vertices represent computations that process input data and produce output
data that can serve as input for other vertices. In this context, an edge defines a dataflow
between two tasks. DCGs’ vertices, on the other hand, represent containers of tasks, that we
call here as threads, and the edges represent operations of creation and synchronization of
threads.

We noticed that certain arrangements of tasks show the same structure and semantics
as create and join operations in multithreaded programs. In this work these structures
have been mapped to segments of a DCG. The resulting DCGs represent valid multithread
programs that use only create and join primitives that can manipulate multiple threads at once
and generate unstructured graphs, like the ones found in the Anahy [13] environment.

Formally, a DAG is a graph without cycles. A DCG is a graph without loop edges that
can have cycles. Besides, the set of edges in a DCG is partitioned into two subsets, one to
model creates and the other one joins.

Definition 14 [Directed Acyclic Graph and Directed Cyclic Graph] A directed acyclic
graph (DAG) is a tuple G = (V,E, src, tgt) where V is a set of vertices, E is a set of
edges, src, tgt : E → V are total functions, defining source and target of edges, respectively,
such that for all e ∈ E, src(e) 6= tgt(e) and for each p = e1e2 · · · en ∈ E∗, if tgt(ei) =
src(ei+1), with i ∈ {1, . . . , n− 1}, then src(e1) 6= tgt(en).

A directed cyclic graph (DCG) is a tuple G = (V,Ec, Ej , src, tgt) where V is a set of
vertices, Ec is a set of create edges, Ej is a set of join edges, src, tgt : Ec]Ej → V are total
functions, defining source and target of edges, respectively, such that ∀e ∈ Ec]Ej , src(e) 6=
tgt(e). In what follows Ec] Ej is denoted by E.

Vertices and edges can have associated weights, denoted by |v| and |e|, respectively, where
v ∈ V and e ∈ E.

Example 6 [Directed Acyclic Graph and Directed Cyclic Graph] Tasks and dependencies
among them can be modeled by a DAG. Figure 1(a) shows an example of a DAG describing a
parallel program with seven tasks whose dependencies are represented by edges labeled with
a.

Threads and create-join relations can be represented by a DCG. Figure 20(b) illustrates an
example of a DCG modeling a multithreaded program with four threads whose create-join
relations are described by edges.

RITA • Volume 20 • Número 1 • 2013 153

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

The DCG represented in Figure 20(b) is the graph obtained from the DAG illustrated
in Figure 1(a) using the graph transformation rules presented in the next section.

3.2 Graph Grammar Specification

Roughly speaking, the creation of a DCG C = (V C , EC
c , EC

j , srcC , tgtC) represent-
ing a DAG G = (V G, EG, srcG, tgtG) preserves the original structure of G. The creation
process consists of encapsulating a sequence of n ≥ 1 tasks of the original G in the context
of C threads. The directed edges between tasks in G are preserved in C, but only the edges
representing dependencies between tasks of different threads are included in EC . Those
edges represent the creation or the synchronization of threads.

In order to translate a DAG into a DCG, a (typed attributed) graph transformation is
defined. The rules used in such graph transformation are those defined in Subsection 3.2.1.
The full process of transformation is performed in two phases. The first one distributes the
tasks in threads, and the second one constructs the DCG abstracting the internal tasks of each
thread.

In order to proceed a concrete translation an initial graph must be defined. Graph
transformation rules enriched with an initial graph defines a (typed attributed) graph grammar.
The initial graph changes according to the application, although the type graph remains the
same. According to the type graph T , depicted in Figure 1(b), a task is defined with 4 different
attributes, one evaluation attribute (eval) of type Bool to express if the task was fully evaluated
and three other attributes of type Int: an identifier (id), a weight (weight) corresponding to the
computational cost associated to the task and a thread attribute (thread) indicating the number
of the thread the task is included (this attribute is set to zero when the task is not included in
any thread).

Circles of type C, CM and CF are tasks called conforming tasks. A conforming task
can be considered as an auxiliary task with no computational cost, which serves to rearrange
a certain configuration of tasks only allowed in DAGs to fit DGCs’ rules. The adopted
notation C, CM and CF is used to differentiate the position of the conforming task, indicating,
respectively, if it is created in the beginning (as the first task), in the middle or in the end (as
the last task) of a thread.

Additionally, rectangles of type Count and G, both with an attribute value of type Int
initialized with 1, are used as global variables. Node G represents the number of the next
thread to be created and node Count is a counter used to control the number of the task to be
evaluated.

For instance, graph G illustrated in Figure 1(a) is a possible initial state. It contains
seven tasks, which are connected by edges of type a, describing the dependencies between

154 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

them. All tasks have attribute thread initialized with zero and the attribute eval initialized
with false. Each task has a different identifier and a specific weight. Both global variables
are setted to one. In this work, we consider that in all state graphs, any vertex of type C, CM
or CF has weight zero. For this reason, we omit the attribute weight for such vertices.

3.2.1 Graph Transformation Rules

Figures 6 to 15 present a set of graph transformation rules that specifies the creation of a
DCG from a DAG. Figures 6 to 12 describe the first phase of the transformation and Figures
13 to 15 the second one. Rules are specified with a priority order. This feature, though
not very common in graph grammar specifications, is available in the AGG tool set [17],
which was used to edit and simulate the proposed translation. Rule priorities provide a way
to schedule the application of rules: as long as a high-priority rule is enabled, no lower-
priority rules can be scheduled for application. In general, this strategy simplifies the rules
specification, avoiding the creation of extra components (flags) necessary to enforce the order
of rule applications.

The rule with the highest priority, named bunch, showed in Figure 6, determines the
junction of two tasks, 1:T and 2:T, when 1:T is an immediate predecessor of 2:T (that is, there
is an edge e of type a such that src(e) = 1:T and tgt(e) = 2:T), but neither 1:T is an immediate
predecessor of any other task (determined by NAC2 and NAC4) or 2:T has another immediate
predecessor (specified by NAC1 and NAC3). That is, there is no edge e of type a such that
src(e) = 1:T and tgt(e) 6= 2:T and there is no edge e of type a such that tgt(e) = 2:T and
src(e) 6= 1:T. The cost of the resulting task 1,2:T is |1:T | + |2:T | (specified by the weight
attribute).

Figure 6. Rule Bunch with Priority 1.

Rules beginC and beginT are depicted in Figure 7. These rules identify tasks in
G that have no predecessors. The result of the application of these rules is that each task
with no precedence constraints will represent the first task to be executed in the context of a
thread in C. Rule beginC creates a conforming task to represent the beginning of execution
with (possibly) multiple thread creation. Notice that a conforming task C is introduced just
once (according to NAC1), in the first created thread, including the task with the lowest

RITA • Volume 20 • Número 1 • 2013 155

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

identifier. Multiple applications of rule beginT specify a multiple creation of threads, each
one containing a beginning task (without predecessors) of the given DAG. The sequence
of threads creation is determined by the lowest identifier of the beginning tasks that are note
included in any thread. The node of type G represents a global variable containing the number
of the next thread to be created. Conversely, rule end (Figure 7) identifies tasks without
successors in G and sets them as evaluated.

Figure 7. Rules for thread beginnings and last tasks identification with Priority 2.

Next rules specify the following patterns: create, join, broadcast and spawn. The
general idea is to explore tasks from lower values (identifiers) until the greatest one,
respecting the priority order. That is, the task to be evaluated will be the task still not evaluated
(with attribute eval false) with id equals to the counter that matches with the rule of highest
priority. In case that there is no task with eval false with id equals to the counter, rule count
(depicted in Figure 12) is applied, incrementing the counter. In order to guarantee that this
rule will not be active after the evaluation of the last task, its application conditions also
require the existence of a task with id greater than the counter. The patterns create and join
correspond respectively to the creation and synchronization of threads.

The pattern create is defined by rules create and createSeq (Figure 8). Rule
create enrols a task (not included in any thread) in a thread. That is, when a task still not
evaluated (with eval = false) has no successor in the same thread, its immediate successor with

156 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

the lowest identifier (not included in any thread) is included in its thread context. If the task in
evaluation (the task with the lower identifier with eval = false) already has a successor in the
same thread, but has also one immediate successor that is not in any thread, rule createSeq
is applied, and a new thread is added to the DCG. At last, when all immediate successors of
the task in evaluation already be in the context of a thread, rule createEnd (Figure 8) is
applied, setting the task as evaluated.

Figure 8. Rules for the pattern create with Priority 3.

The pattern join identifies the termination of threads and the respective synchroniza-
tion. Particularly, rules join and joinCM, showed in Figure 9, are applied when a task
still not evaluated is included in a thread with an immediate successor in another thread,
identifying the termination of its thread and a synchronization point. The task in evaluation
is labeled with end, indicating that its thread must be closed, and the synchronization point is
labeled with tok. Rule join is applied when the antecedent task of the synchronization task
is a T task and joinCM is applied when it is a CM task.

Despite the end of a thread being identified, the last task executed by this thread
may have other dependencies matching broadcast and/or spawn patterns. A broadcast
corresponds to the synchronization of the end of the current thread with other threads. Rule
broadcast, depicted in Figure 10, identifies successors of the task labeled with end still

RITA • Volume 20 • Número 1 • 2013 157

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 9. Rules for pattern the join with Priority 3.

not evaluated which are in threads, and creates a conforming task CM preceding these tasks.
Rule broadcastSeq (Figure 10) adjusts the dependencies of these tasks to the created
conforming tasks. Rule broadcastCM and broadcastSeqCM have respectively the same
meaning of broadcast and broadcastSeq, but now considering that the successors of
the task labeled with end are conforming tasks CM. The latter two rules are also shown in
Figure 10.

A spawn corresponds to creation of new threads. Rules spawn and spawnSeq,
illustrated in Figure 11, identify immediate successors of the task labeled with end (task in
evaluation) that are not in any thread, include them in new threads, and label them with spa.
Rule spawn also creates a conforming task CM in the same thread of the task in evaluation
to express already evaluated dependencies. Since this conforming task is created just once
(specified in the negative application condition of spawn), first rule spawn must be applied.
After the creation of the conforming task CM, just rule spawnSeq can be applied. The

158 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 10. Rules for the pattern broadcast with Priority 3.

current dependencies from the task in evaluation to tasks in other threads is adjusted to the
created conforming task in rules spawn and spawnAux (Figure 11).

Figure 11. Rules for the pattern spawn with Priority 4.

After identifying all broadcasts and/or spawns to the task in evaluation, rules
conclude or concludeCM (Figure 12) can be matched. Rule conclude is applied when
the task labeled with end has a successor task of type T and concludeCM is applied whether
it has a successor task of type CM . Both set the task labeled with end as evaluated and delete
the flags end and tok.

Finally, rules with lowest priority endC and endT of the first phase, depicted in

RITA • Volume 20 • Número 1 • 2013 159

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 12. Rules for conclusion with Priority 5, thread endings with Priority 6 and counter
evolution with Priority 3.

Figure 12, identify tasks without successors and links them to a final conforming task.
Particularly, rule endC is applied just once, creating the final conforming task in the end
of the main thread (thread containing the conforming task C). After that, rule endT can be
applied.

The graph obtained from the first phase is submitted to a new set of rules, which
composes the second phase of the transformation. In this phase, each rule has a different
priority level. This set of rules abstracts the internal tasks of a thread, gluing them in a unique
vertex. Besides, in this phase the create and join edges are identified (in the resulting graph
of first phase all edges are of type a or b).

Rules replaceC1, replaceC2 and replaceC3, depicted in Figure 13, replaces
the beginning conforming tasks by useless tasks of type T . This must be done just to allow the
gluing of tasks of different types into a unique vertex. Rules replaceCM1 to replaceCM6
(see Figure 14) and rules replaceCF1 to replaceCF3 (see Figure 13) are responsible for
replacing the medium and final conforming tasks by such useless tasks, respectively.

Rule identifyCreate, illustrated in Figure 15, identifies which are the edges of
type a representing threads creation, and replaces them by create edges. This edges are those

160 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 13. Second phase: rules to replace beginning and final conforming tasks.

between tasks in different threads whose target task does not have antecedent tasks in the
same thread. In its turn, rule identifyJoin (Figure 15) identifies which are the edges of
type a representing threads synchronization, and replaces them by join edges. This edges are
those between tasks in different threads whose target task has an antecedent task in the same
thread.

Rule glue, depicted in Figure 15, collapses all tasks that are in the same thread in a
unique vertex, deleting the a edges. The weight attributed to such vertex is given by the sum
of weights of each collapsed task.

3.3 Remarks on the transformation process

Once the first phase of the transformation process is finished, the corresponding graph
has all information contained in the original DAG, added to the new information about threads
and thread operations. In this representation the edges which connect vertices (tasks) with
the same thread identifier represent the execution order of tasks in that thread. Edges
connecting vertices with different thread identifiers represent either a create operation,
when the edge ends on the first task of a thread, or a join operation, when the edge begins
on the last task of a thread. The DGC obtained after the second phase is a higher level
abstraction that considers all tasks in a thread as a unique vertex. Only edges, which connect

RITA • Volume 20 • Número 1 • 2013 161

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 14. Second phase: rules to replace medium conforming tasks.

tasks in different threads, are considered in this higher level. This simplified abstraction of a
multithreaded program is, in fact, the structure manipulated by scheduling algorithms to take
decisions during execution time. Anahy [13] uses this light representation of the graph to
reduce the scheduling costs and achieves competitive performance levels.

After the transformation process, because of the way rules are applied, there is a
tendency of threads closer to root of the DCG to aggregate higher number of tasks. Based
on this tendency, a scheduling heuristic can be applied to prioritize the execution of these
threads assuming that they are part of the critical path of the application. This is actually
the strategy used in the Anahy environment. However, different identifiers distribution for
the same DAG structure can result in totally different DCGs, affecting the performance of
the scheduling algorithms that take these DCGs as input. Once the programmer knows how
the transformation process works, he or she can arrange task identifiers in order to fit the
scheduling strategy to be applied on the resulting DCG. In other words, the programmer has
to consider the runtime system policies to better arrange the order of creation of tasks. In
other hand, if the transformation process did not consider the task identifiers as a priority
criteria to apply the rules, the distribution of tasks in the context of threads could be affected.
As result, different multithread programs for a same input DAG could be generated resulting
in different execution behaviors.

162 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 15. Second phase: rules to identify create and join relations and rule to collapse tasks
in the same thread.

4 Transformation Analysis

Besides the automatic translation and precise definition of the mapping, the use of a
formal language also allowed the verification of some properties about the translation.

Important features that are required, when graph grammars are used to specify model
transformations, are termination and confluence. Only under these conditions the existence
and uniqueness of the outcoming model may be guaranteed. Now we discuss why our graph
grammar specification for the transformation of DAGs into DCGs satisfies such requirements.
The confluence verification was done using the AGG tool [17]. In spite of AGG tool be
based on the Single Pushout approach, it allows to simulate the DPO approach selecting the
identification and dangling conditions in the transformation settings. We could not use the
same tool for termination because it just support such kind of analysis for grammars defined
with layered rules. In our case, the grammar had to be defined with rule priorities, which
determine that the activated rules with higher priority must be executed first, and after the
execution of a rule of lower priority, a rule of a higher group of priority can be active. In case
of layered grammar, each group of rules is executed at most once.

Termination The transformation process finishes when there is no rule that can be applied
in the current state. For instance, a transformation does not finish when there is a rule
that creates new components and is always active (that is, it can always be applied
in the state graph). Another situation is when rules can be applied in cycle, that is,
components are created by rules that are deleted by others, in a situation where the
application of rules that consume the items activate rules that create them.

We assume that the initial state graph must respect the following characteristics: it is

RITA • Volume 20 • Número 1 • 2013 163

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

always finite; all tasks must be of type T, initialized with different ids and with attribute
eval false; and there is a vertex of type Count (counter) with value 1. In what follows,
we discuss the termination of the first phase. The finite applicability of each (group of)
rule(s) is presented by priorities.

• Rule bunch of higher priority collapses tasks of type T that are not in threads and
that are linked by an directed edge. The NAC of the rule requires that the source
task has no other successor and the target task has no other predecessor. Since
there is a finite number of tasks and there is no rule application that generates
a graph with the imposed restrictions, rule bunch will be applied from the
start graph a finite number of times and, after the application of any rule of
lower priority, it will never be applied again. This is because only rules that
create or delete edges between T tasks could generate a graph in which bunch
could be applied again. We do not have any rule in the grammar that creates
edges between tasks of type T. Rules join, joinCM and spawn delete edges
between T tasks that are already in threads (then these tasks cannot be collapsed).
Rule broadcastSeq that deletes an edge between T tasks, in fact, move the
respective edge keeping its source vertex. The target task of the original edge
could not be collapsed because it is already in thread. The new target vertex
of the moved edge is a CM task (and then cannot be collapsed). Similarly, rule
spawnAux move an edge between T tasks, keeping its target vertex. Also, the
source of the original edge is already in thread and the new source task of the
moved edge is a CM task.

• In the second level of priority we have rule beginC, which is applied just once
and rules beginT and end that are applied a finite number of times and, after
the application of any rule of lower priority, they will never be applied again.
Rule beginC creates a C component that is prohibited by its NAC. Since it is
not deleted by any other rule, after applied, beginC will never be applied again.
Rule beginT identifies tasks without predecessors that are not in threads and
include them in threads. Since there is a finite number of tasks and there is no rule
to remove tasks from threads, it will be applied a fixed number of times. Similarly,
end identifies tasks without successors and set them as evaluated. Since there is
a finite number of tasks and there is no rule to set attribute eval of a task as false
it will be applied a limited number of times.

• After the application of rules in the first two group of priorities, just three rules
of the next three group of priorities can be active: create, join or count.
This is because the remaining rules require components to be applied that are just
created after the first application of these rules. In general, the transformation
process consists in evaluate the task with id equals to the counter value that
has not been evaluated (which has eval false). After evaluated, the task is set

164 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

as evaluated (eval is set to true). There is no rule which change attribute eval
from true to false. Rule count is applied when there is no task that has not
been evaluated (with eval false) with id equals to the counter. In this case, the
counter is incremented. In order to guarantee that this rule could not be applied
an illimitable number of times, its application conditions also require a task with
id greater than the counter so that the rule could be activated. If there is a task
with id equals to the counter still not evaluated, create or join can be active.
Both rules will never be activated simultaneously because they have mutually
exclusive application conditions: create has a NAC forbidding that the task
in evaluation (task with id equals to the counter) has a successor task in thread -
application condition of join. Rule create identifies its successor task with
lower identifier that is not in thread and include it in its thread. Once applied,
this rule will never be applied to the same task in evaluation (since it create
conditions that are forbidden by its NAC). The application of create can turn
createSeq active (it creates a seq_cre edge that is in the application condition
of createSeq). Rule createSeq includes successor tasks of the evaluation
task that are not in threads in new threads. Since we have a finite number of
successor tasks, this rule is applied a limited number of times (important to notice
again that no rule removes tasks from threads). Rule createEnd identifies
when there is no successor task of the task in evaluation that is not in thread, sets
the evaluation task as evaluated (changing the attribute eval from false to true),
deletes the seq_cre edge and increments the counter. Because of that, the task set
as evaluated will never be evaluated again.
Rules join and joinCM are applied at most once for each task in evaluation
(task with eval false with id equals to the counter value). When applied, the rules
create an end edge that is prohibited by its NAC. When such edge is deleted,
the task is set as evaluated (and then, the rules could no be applied again for
the same task). After the application of one of these rules, broadcasts (rules
broadcast or broadcastCM) or spawns (rule spawn) can be identified for
the task in evaluation. Rules broadcast or broadcastCM identify successor
tasks of the task labeled with end that are already in thread, creating a predecessor
CM task to them. Their NAC forbids the existence of such CM task, assuring
the limited number of applications (important to observe that no rule delete CM
tasks). The creation of these CM tasks can turn rules broadcastSeq and
broadcastSeqCM active. They move the edges with target in the successor
task of the task labeled with end to the CM task created by broadcast or
broadcastCM. Since they delete edges which are required by their application
conditions, the number of applications of them is also finite. According to the
priorities, spawns are identified after all broadcasts.

• Rule spawn identify a successor task of the task labeled with end that is not

RITA • Volume 20 • Número 1 • 2013 165

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

in thread, put the task in a new thread and creates a successor CM task to the
task labeled with end. Since the created components are prohibited by its NAC,
the rule is applied at most once for each task in evaluation. After the spawn
application, rule spawnSeq can be applied (this rule requires components
created by spawn), recognizing other successor tasks of the task labeled with end
that are not in threads and putting them in new threads. The finite number of tasks
determines its finite number of applications (note that no rule remove tasks from
threads). Rule spawnAux move edges with source in the task labeled with end
to the CM task created by spawn. As spawnAux deletes edges that are required
for its application, its number of applications is limited. After an spawn no
broadcast can be accomplished for the same task in evaluation because an spawn
application deletes the edge with source in the task labeled with end and target in
the task labeled with tok (edge required for a broadcast operation). When no more
broadcasts or spawns can be identified rules conclude or concludeCM are
applied, setting the task in evaluation as evaluated and incrementing the counter.

• Finally, we have two rules of lowest priority. Rule endC that creates a CF task,
which is forbidden by its NAC (and not deleted by any rule), and thus, applied
just once. Rule endT which is activated by endC and creates an edge to the CF
task from each task that has no CM or T successors. Due to finite number of tasks
and its NAC that prohibit the existence of such edge, the rule is applied a limited
number of times.

The termination of the second phase is direct. Rules replaceC1, replaceCM1 and
replaceCF1 are just applied once for each conforming task: they create components
that are forbidden by its NACs and when the forbidden elements are deleted, the
corresponding conforming task considered in the match is also deleted (and then, they
never will be applied for the same conforming task). Since the number of conforming
tasks are finite, the application of such group of rules is also finite. Rules replaceC3,
replaceCM6 and replaceCF3 are also just applied once for each conforming task
because they delete the corresponding conforming task and there is no rule creating
such type of vertex. Rules replaceC2 and replaceCF2 delete edges of type b and
create edges of type create and join, respectively. Since the number of b edges is finite
and there is no rule creating this type of edge, the sequence of these rule applications
is finite. Rules replaceCM2 to replaceCM5 move a edges with source (or target)
in a medium conforming task to a corresponding useless task. Since the number of
medium conforming tasks are finite, their incident edges are also finite and there is
no rule creating such kind of edges, the applications of these rules terminate. Rule
identifyJoin (identifyCreate) deletes a edges between tasks in different
threads whose target task has (does not have, respectively) antecedent tasks in the same
thread and creates join (create) edges. Considering that the amount of edges that fits

166 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

on this situation is finite and rules that create a edges will not be applied again, the
number of applications of these rules is also finite. The applications of rule glue
terminate whereas this rule collapse tasks in the same thread and the number of these
tasks is finite. Moreover, there is no rule creating T vertex after the application of the
rule glue.

Confluence A model transformation is confluent if for each source model the process of
transformation results in a unique target model. Critical pair analysis [18] is generally
used to check if a transformation is confluent. A critical pair is a pair of transformations
both starting at a common graph G such that both transformations are in conflict, and
graph G is minimal according to the rules applied (that is, G only contains elements
that are in the image of the matches of both rules). There exists a critical pair like
above if, and only if, one rule may disable the other one. There are three reasons why
rule applications can be conflicting: (i) one rule application deletes a graph component
which is in the match of another rule application; (ii) one rule application generates
graph components in a way that a graph structure would occur which is prohibited by
a NAC of another rule application; (iii) one rule application changes attributes being
in the match of another rule application. A graph grammar system is confluent if it is
locally confluent and terminates. A system is locally confluent if all critical pairs are
confluent, that is, all critical pairs can be derived by a sequence of transformations that
leads them to a common successor graph.

We have used the AGG tool [17] to proceed with the critical pair analysis. After
computation, the set of critical pairs precisely represents all potential conflicts in the
grammar. In order to detect all potential conflicts of type (i) or (iii) described above,
for each pair of rules p1 : L1 → R1 and p2 : L2 → R2, AGG computes graph G by
overlapping L1 and L2 in all possible ways, such that the intersection of L1 and L2
contains at least one item that is deleted or changed by one of the rules and both rules
are applicable to G at their respective occurrences. Potential conflicts of type (ii) are
found by gluing the right-hand side of the first rule and the left-hand side together with
NAC elements of the second rule.

Figure 16 shows the number of potential conflicts between each pair of rules computed
by AGG. It is possible to observe that the potential conflicts are generated just to pairs
of rules with the same priority. The reason for this is that we never can apply in the
same graph rules with different priorities. This is because rule bunch and all rules of
the second phase were not considered.

Although the tool has generated a large number of potential conflicts, in fact, none
of the critical pairs represents a real conflict. This is a consequence of one of two
possibilities: or the generated graphs are not reachable from the start state, since they
do not respect one of the imposed restrictions to the initial graph; or the match of one
of the rules does not satisfy one of its attribute conditions or one of its NACs. Figures

RITA • Volume 20 • Número 1 • 2013 167

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 16. AGG Minimal Conflicts

17 to 19 exemplify different types of conflicting situations. Each figure illustrates a
critical pair, where in the left-hand side is represented the graph G and in the right-
hand side are detailed the conflicting rules. The matches of both rules in graph G is
determined by vertices and edges numbering.

Figure 17 shows a potential conflict of type (i) between rules conclude and
concludeCM: rule conclude deletes a tok edge which is in the match of
concludeCM. This is a case where the generated graph G is not reachable from the
start state, since it has two different tasks with the same id. In Figure 18 is found
a potential conflict of type (ii) between create and join: rule create creates a
seq_cre edge which is forbidden by NAC3 of rule join. However, the generated graph
G does not respect the attribute conditions: task T of number 2 must be in a thread in
order to rule join could be applied (attribute condition t2!=0 of join) and cannot be
in a thread to rule create be applied (application condition thread=0 of create). In
its turn, Figure 19 exhibits a potential conflict of type (iii) between rules createEnd
and create: rule createEnd change the attribute value of vertex Count which is
in the match of create. Nonetheless, the NAC1 of createEnd, which establishes
that the task in evaluation could not have a successor task that is not in thread, is not
satisfied by G.

In fact, all potential conflicts detected by AGG does not generate a graph G that is
reachable and that satisfies all application conditions of both considered rules. Then,
after the generation of all critical pairs by AGG and its individual analysis, we can

168 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 17. Potential Conflict Between conclude and concludeCM

assure the confluence of the graph grammar defined to transform DAGS in DCGs.
We omit the individual analysis of each pair because it would be long and repetitive.
Even if we consider an informal analysis, it is possible to deduce the confluence of the
proposed transformation system. Follow a brief discussion by priorities groups.

• Rule beginC and beginT can never be applied to the same state graph (a
NAC of beginC forbid the existence of a C task in the state graph and beginT
requires it). Rule end just change an attribute that is not in the match of any other
rule in the group. And rules beginC and beginT do not generate components
that are in NAC of end nor delete elements, which would be in its match.

• Rules create, join and joinCM are specified to evaluate the task with lower
id that was still not evaluated. Since they have mutually exclusive application
conditions (for instance, rule create forbid that a successor task of the task in
evaluation be in thread and rules join and joinCM require it), they will never
be applied to the same state graph. Although join and joinCM have similar
application conditions, both consider the successor task of the task in evaluation
as the task of lower id, so just one of them can be matched. Rule count is just
enabled when there is no task with id equals to the counter still not evaluated,
then never conflicting with create, join or joinCM. Important to notice that
when create is applied, rules join, joinCM and count will not be activated
until the task in evaluation by create be set as evaluated and the counter
incremented. This is because in order to a join be matched, the task in evaluation
must have the id equals to the counter (and, as explained above, if a create was
matched a join could not be matched). And to count be enabled, there should be

RITA • Volume 20 • Número 1 • 2013 169

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 18. Potential Conflict Between create and join

no task with id equals to the counter still not evaluated (and this is the case if the
task in evaluation was matched with create). In the same way, if a join is matched,
rules create and count could not be matched until the task in evaluation be
set as evaluated and the counter incremented. Remaining rules in the same group
are just activated after the application of one of these rules. Rules createSeq
and createEnd are just enabled after the execution of create and no other
rule is activated together with them (because the others are just enabled after the
execution of join or joinCM). They also have mutually exclusive application
conditions (rule createSeq requires a successor task of the task in evaluation
that not be in thread, and createEnd forbid it) and then could not be enabled
simultaneously. Rule broadcast and broadcastCM are just active after
a join application and rules broadcastSeq and broadcastSeqCM after
broadcast or broadcastCM application. The reason is that broadcast/
broadcastCM requires a task with an end edge, created by join and
broadcastSeq/broadcastSeqCM supposes the existence of a CM task cre-
ated by broadcast/broadcastCM. Rules broadcast and broadcastCM
do not delete any graph element and do not change any attribute. Besides,
the elements created by each rule are not forbidden for the other. Rules
broadcastSeq and broadcastSeqCM do not change any attribute and do
not have any NAC. Both rules delete edges, but they have different types. So, the
edge deleted by one of these rules never will be in the match of the other one.

• Rule spawn is just enabled after the execution of a join (its match supposes the
existence of end and tok edges, created by join). Since it is in a lower priority

170 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Figure 19. Potential Conflict Between createEnd and create

group it is applied after all broadcasts. Rules in this group also can never be active
simultaneously. Rule spawnSeq and spawnAux require a CM task created by
spawn. Rule spawn is applied just once, since it forbid the existence of a CM
task created by its application. Rule spawnAux forbid that the successor of the
task with end edge does not be in thread, while rule spawnSeq requires it.

• Rules conclude and concludeCM in the next group of priority are the rules
that set the task in evaluation by a join as evaluated, incrementing the counter.
Just one of them can be active, conclude in case of a spawn had not been
applied to the task in evaluation and concludeCM in case of a spawn had been
applied to the task in evaluation (conclude requires that the successor task of
task with end edge be a T task and concludeCM requires that the successor task
of task with end edge be a CM task).

• Rules endC and endT can never be applied to the same state graph, since a NAC
of endC forbid the existence of a CF task in the state graph and endT requires it.

RITA • Volume 20 • Número 1 • 2013 171

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

5 Case Studies

To exemplify the application of the transformation rules we are going to show along
this section several examples using the transformation rules to obtain DCGs apart from DAGs
found in literature.

We applied the transformation rules to examples 1, 2, 3, 4, 5, 6, 7, 9, and 10
from Graham’s work [4]. Here we named these graphs by G1, G2, . . . G9. Figure 20(a)
shows the graph obtained after applying the first phase transformation rules to DAG G2

depicted in Figure 1(a). G2 is an interesting DAG for the transformation rules because the
process uses the most grammar rules presented (except for broadcast rules – broadcast,
broadcastCM, BroadcastSeq, and BroadcastSeqCM) to generate the final graph.
Figure 20(a) presents the final typed attributed graph containing all the information about
tasks and threads, whereas Figure 20(b) (obtained as the result of the second phase) shows
a higher level abstraction of the same graph, the DCG, with thread information only. In
this DCG, solid edges represent create operations, and dotted ones represent join operations.
We can note that the DCG representation has less information (vertices and edges) than the
original DAG, since threads encapsulate sequences of tasks. This is an important property for
scheduling algorithms because a leaner graph represents fewer management in data structures
involved in the scheduling, e.g. lists of threads.

Figure 21 presents Ci, i.e., the resulting graphs obtained by applying the first
phase transformation rules for each graph Gi. The number inside each task represents its
computational cost (weight). This cost can be presented in terms of the number m of available
processors or in terms of ε, representing a very small cost; if no value is annotated, the
cost is 1. Conforming tasks have no processing cost. Dashed rectangles are representing
threads and dashed circles are describing conforming tasks. Note that graph C2 is the same
represented in Figure 20(a), except for some conforming tasks in thread 1. These conforming
tasks were just added to simplify the transformation rules. Since they have only one incoming
edge and one outcoming edge, just adding post-processing rules, they can be easily deleted.

5.1 Anahy’s Scheduling Algorithm

Anahy’s algorithm, which we are going to use to schedule the DGCs, manipulates five
pools of threads: the ready pool, which stores references to threads that are able to run, and
running, finished, blocked, and unblocked pools. The first three pools are global whereas
the last two are local to the processors.

To better understand the scheduling algorithm, let’s consider a machine with only one
processor and an initial state where the DCG has only the vertex Γ1, representing the main
thread, and this thread is also in the ready pool. When the execution starts the processor is

172 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

(a) Final typed attributed graph.

Γ1

Γ2 Γ3

Γ4

(b) DCG abstraction.

Figure 20. Resulting graph from DAG G2

idle, so the scheduler removes Γ1 from the ready pool, schedules it over the processor, and
inserts Γ1 in the running pool. When a create is executed a new thread Γ2 is inserted in the
DCG and also in the ready pool. The processor continues Γ1 until it executes a join over Γ2.
That is, at this point of Γ1’s execution, the processor needs Γ2 to be completely executed so
that it can resume Γ1’s execution. As Γ2 is not in the finished pool, the processor inserts Γ1

on its blocked pool (Γ1 continues in the global ready pool) and asks the scheduler for work.
Then the scheduler transfers Γ2 from the ready pool to the running pool and schedules Γ2

over the processor, which in turn starts Γ2’s execution. This scenario can repeat recursively,
until Γ2 is finished and the processor can safely take Γ1 from the local blocked pool and
resume its execution.

When we have multiple processors, they all execute simultaneously the algorithm
described in the previous paragraph, so two or more threads can be running in parallel. So
when a processor wants to execute a task in Γi that requires Γj to be finished that is, the
processor reached a join scheduling point in thread Γi, two situations can occur: (i) Γj is
on the finished pool, so the processor can read the data produced by Γj and resume the
execution of Γi; (ii) Γj is not in the finished pool (it can be ready or already running on

RITA • Volume 20 • Número 1 • 2013 173

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

C
1

12

2 2 2

4 4 44

C
2

4 4

5

5

10

10

. . .

C
5

ɛ m

. . .

.

C
9

ɛ

m-1-ɛ

ɛ ɛ

m-1-ɛ

. . .

C
7

m

. . .

. . .

C
6

ɛ+m

ɛ ɛ ɛ

C
4

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

2ɛ

2ɛ 2ɛ 2ɛ

m-1

m-1

.

C
8

m m m 2

mɛ

ɛ

m-1

C
3

. . . m

m-1

. . .

Figure 21. Resulting DCGs using Graham’s DAGs as input for the grammar.

another processor), so the processor inserts Γi on its blocked pool and asks the scheduler
for a job; Once this job is finished the processor can check if Γj is already finished and,
eventually, transfer Γi to the unblocked pool and resume its execution.

Anahy’s scheduler handles work requests differently when a processor gets idle
because it has no work to do and when a processor gets idle because it has threads on its
blocked pool and they can’t be resumed. In the first case, the scheduler searches for a work
in a breadth-first order from the root of the DCG, that is, the search prioritizes those threads
that are closer to Γ1, expecting the critical path to be as close to Γ1 as possible. In the
second case the scheduler searches the DCG the same way, but it considers the last blocked
thread on the processor asking for a job as the root of the subgraph. If this search doesn’t
return results, the scheduler restarts the search from Γ1, as in the first case, but ignoring
the subgraph searched before. These two graph searches, however, consider only the edges
inserted by create operations.

5.2 Schedule lengths

Using the transformation rules to obtain DCGs we can have a fair comparison among
static DAG scheduling algorithms and multithread scheduling algorithms. So once we have
the resulting DCGs we are going to schedule them using Anahy’s [13] multithread scheduling
algorithm.

The performance of this case study is presented in terms of the schedule length, i.e.,

174 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

Table 1. Scheduling results for Gi and Ci.
DCG/DAG # m |Anahy(Ci)| |Opt(Gi)| |S(Gi)| |Anahy(C ′i)|
C1/G1 3 12 12 14 –
C2/G2 2 19 19 – –
C3/G3 m 2m− 1 m 2m− 1 m
C4/G4 m 2m− 1 + 2ε m + 2ε – m + 2ε
C5/G5 m m + ε m + ε – –
C6/G6 m m′ + 2ε m′ + 2ε – –
C7/G7 m 2m− 1 m 2m− 1 m
C8/G8 m 2m + ε (m + 1)(1 + ε) 2m + ε –
C9/G9 m 2m− 1− 2ε m 2m− 1− 2ε –

the amount of time units required to execute the corresponding application, using a given
scheduling algorithm. Table 1 presents the execution times for graphs from Figure 21 and the
original ones. The first column indicates the corresponding graph (Ci/Gi) received as input
by the Anahy and Graham scheduling algorithms, respectively. The second column shows the
number m of processors considered for the schedule. The third column presents the execution
time |Anahy(Ci)| achieved by applying Anahy’s scheduling strategy to the resulting DCGs.
The fourth column presents the optimal schedule |Opt(Gi)| for a given DAG whereas the
fifth column |S(Gi)| shows the schedule length obtained for the same DAG Gi changing the
priority list in the algorithm. The last column presents execution times for Anahy scheduling
algorithm after rearranging some callings of thread operations. The changes in the graphs
and the algorithms will be later explained.

In order to demonstrate Anahy’s algorithm efficiency scheduling the resulting DCGs,
we compare our results with the best ones in Graham’s work. Anahy’s scheduling provides
graphs C1, C2, C5 and C6 the same performance as the best possible performance achieved
by scheduling the corresponding DAG. On the other hand, performance of our strategy is
worse for the graphs C3, C4, C7, C8 and C9.

The mechanism matches the patterns in a breadth-first order, so the generated DCG
does not always take advantage of the scheduling technique used by Anahy’s execution
environment, as in G3, G4 and G7. However, if the programmer knows the behavior of the
algorithm that will schedule the DCG, (s)he can carefully describe the relationship between
tasks to better explore the scheduling strategy. Based on this we can rewrite graphs C3, C4

and C7 adding some precedence constraints to the original graph, and transform them into
the graphs on Figure 22, with execution times |Anahy(C ′i)| shown in Table 1.

For graphs C8 and C9, since the scheduler S (on the fifth column) implements

RITA • Volume 20 • Número 1 • 2013 175

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

a critical path heuristic for these examples, we have |Anahy(C8)| = |S(G8)| and
|Anahy(C9)| = |S(G9)|. That means that Anahy’s algorithm produces the same result
as expected by a typical greedy list scheduling algorithm that takes into account the critical
path.

. . .

C'
7

m

C'
4

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . .

2ɛ

2ɛ 2ɛ 2ɛ

m-1

m-1C'
3

. . .m

m-1

. . .

Figure 22. Result of transformation process over graphs G3, G4 e G7 rewritten.

5.3 Grammar applications

The immediate use of the graph grammar is, by translating parallel programs’
representations, to allow the analysis on several scheduling heuristics working on different
program structures. Extending this analysis, if the programmer can also annotate the
computational cost of each vertex, you can use the transformation mechanism proposed to
convert a program written in a programming interface dataflow in a multithreaded program.

6 Conclusion

List scheduling algorithms are well-known strategies used to schedule parallel
applications described in a DAG. Precursor works like Graham’s [4] are the basis of many
present works, even in scenarios where the program is not described as a DAG. In these
scenarios, however, a DAG structure can be obtained from the interactions between the

176 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

programming interface, creating and destroying concurrent activities, and the scheduling
environment.

This work presents an approach to transform a DAG into a DCG, which describes
an equivalent program developed in a multithreaded fashion. To do so, we have designed a
graph grammar that has been validated through practical tests, using DAGs found in literature
and many other generated by an auxiliary tool (AKSSIM [27]). Such approach allows us to
compare fairly scheduling algorithms that use the different graph representations (DAG or
DCG). Case studies showed that multithread scheduling algorithms applied to DCGs obtained
from our graph transformation process can be competitive with basic list strategies applied
to the input DAGs. Furthermore a DCG is a leaner graph than a DAG describing the same
program; hence multithread scheduling algorithms will have less complexity in comparison
to list scheduling strategies applied to DAGs. The use of graph grammars also allowed the
verification of some properties about the translation. Particularly, existence and uniqueness
of the out coming model can be assured.

In future works, we intend to extend DCG’s representation towards the description of
the data sets transferred among threads. This will help us to specify and evaluate scheduling
strategies that explore data locality, to schedule multithread applications on non-uniform
memory access architectures. Moreover, we plan to analyze another kind of properties, which
allow establishing relations between the source and the target graphs of the mapping.

Acknowledgement

The authors gratefully acknowledge financial support received from CNPq and
FAPERGS (ARD-10/0348-8, ARD-11/0764-9, PRONEX-“Green Grid”). The author Cícero
Augusto de S. Camargo is supported by grant CAPES (Coordenadoria de Aperfeiçoamento
de Pessoal de Nível Superior).

References

[1] T. L. Casavant, Jon, and G. Kuhl, “A taxonomy of scheduling in general-purpose
distributed computing systems,” IEEE Transactions on Software Engineering, vol. 14,
pp. 141–154, 1988.

[2] D. Feitelson, “Job scheduling in multiprogrammed parallel systems,” IBM Research
Report, vol. 19790, 1997.

[3] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow programming
languages,” ACM Comput. Surv., vol. 36, no. 1, pp. 1–34, 2004.

RITA • Volume 20 • Número 1 • 2013 177

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

[4] R. L. Graham, Bounds on the Performance of Scheduling Algorithms, ch. 5. John Wiley
& Sons, 1976.

[5] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task
graphs to multiprocessors,” ACM Comput. Surv., vol. 31, pp. 406–471, Dec. 1999.

[6] M. JIS, “Computers and intractability a guide to the theory of np completeness,” 1979.

[7] E. G. Coffman, Computer and Job Shop Scheduling Theory. New York: John Wiley &
Sons Inc, 1976.

[8] T. Hu, “Parallel sequencing and assembly line problems,” Operations research, vol. 9,
no. 6, pp. 841–848, 1961.

[9] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on an unbounded number
of processors,” IEEE Transactions on Parallel and Distributed Systems, vol. 5, pp. 951–
967, 1994.

[10] C. Intel, “Using intel(r) cilk(tm) plus.” http://software.intel.com/sites/products/documentation/hpc/
composerxe/en-us/cpp/mac/cref_cls/common/cilk_bk_using_cilk.htm, 2012. Acessado
em Janeiro/2012.

[11] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, Parallel
Programming in OpenMP. San Francisco: Morgan Kaufmann, 2001.

[12] J. Reinders, Intel threading building blocks. Sebastopol, CA, USA: O’Reilly &
Associates, Inc., first ed., 2007.

[13] G. G. H. Cavalheiro, L. P. Gaspary, M. A. Cardozo, and O. C. Cordeiro, “Anahy:
A programming environment for cluster computing,” in V II High Performance
Computing for Computational Science, (Berlin), Springer-Verlag, 2007. (LNCS 4395).

[14] T. Gautier, X. Besseron, and L. Pigeon, “Kaapi: A thread scheduling runtime system
for data flow computations on cluster of multi-processors,” in Proceedings of the 2007
international workshop on Parallel symbolic computation, pp. 15–23, ACM, 2007.

[15] L. G. Valiant, “A bridging model for parallel computation,” Communications of ACM,
vol. 33, no. 8, 1990.

[16] G. Rozenberg, ed., Handbook of graph grammars and computing by graph
transformation: volume I. foundations. River Edge, USA: World Scientific Publishing
Co., 1997.

[17] “AGG: The homebase..” http://user.cs.tu-berlin.de/ gragra/agg/. last access: November,
2011.

178 RITA • Volume 20 • Número 1 • 2013

A Graph Grammar to Transform a Dataflow Graph into a Multithread Graph and its
Application in Task Scheduling

[18] C. Ermel, M. Rudolf, and G. Taentzer, The AGG approach: language and environment,
pp. 551–603. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 1999.

[19] C. A. S. Camargo, G. G. H. Cavalheiro, L. Foss, and S. A. C. Cavalheiro,
“Uma gramática para a transformação de DAGs em grafos descrevendo programas
multithreaded,” in WEIT 2011 - I Workshop-Escola de Informatica Teorica - Anais,
pp. 164–176, 2011.

[20] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph
Transformation (An EATCS Series). NJ, USA: Springer-Verlag, Inc., 2006.

[21] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, eds., Handbook of
graph grammars and computing by graph transformation: volume III. Concurrency,
parallelism, and distribution. River Edge, USA: World Scientific Publishing Co., 1999.

[22] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel machines on-line,”
SIAM J. Comput., vol. 24, no. 6, pp. 1313–1331, 1995.

[23] R. Fleischer and M. Wahl, “On-line scheduling revisited,” Journal of Scheduling,
p. 343–353, 2000.

[24] S. Albers, “Better bounds for on-line scheduling,” SIAM Journal on Computing,
p. 459–473, 1999.

[25] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks onto arbitrary target
machines,” J. Parallel Distrib. Comput., vol. 9, no. 2, pp. 138–153, 1990.

[26] R. D. Blumofe and et al., “Cilk: An efficient multithreaded runtime system,” ACM
SIGPLAN Not., vol. 30, Aug. 1995.

[27] C. A. S. Camargo, A. S. Araújo, and C. G. G. H., “Akssim: Uma ferramenta para a
análise de algoritmos de lista em ambientes multithreaded dinâmicos,” in ERAD 2011 -
XI Escola Regional de Alto Desempenho, (Porto Alegre), SBC, 2011.

RITA • Volume 20 • Número 1 • 2013 179

