Shader Programming:
An Introduction Using the Effect Framework

Jorn Loviscach

Abstract: Current commodity graphics cards offer programmability through ver-
tex shaders and pixel shaders to create special effects by deformation, lighting, tex-
turing, etc. The Effect framework introduced by Microsoft allows to store shader
program code, settings, and a limited graphical user interface within a single .fx text
file. This supports a division of labor between programmers writing the code and de-
signers using the GUI elements to control settings. Furthermore, the Effect framework
proves to be ideal for experimenting with shader programming—~be it for learning pur-
poses or for rapid prototyping. In this tutorial, we employ the Effect framework for

an exploratory, hands-on approach, introducing first principles only as needed, not
in advance. Simple shader programs are used to review basic 3D techniques such
as homogeneous coordinates and the Phong shading model. Then we turn to basic
deformation effects employing vertex shaders and the use of texture maps as decals
or reflected environments inside pixel shaders. To create bump mapping and related
effects, tangent space coordinates and normal maps are introduced. Finally, we treat
more complex effects such as anisotropic specular highlights.
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1 AFirst Glance at Shader Programming

Vertex shaders and pixel shaders of current 3D graphics chips offer a wide programma-
bility to create stunning effects or simply to offload time-consuming tasks from the central
processing unit. The effects range from creating the “look” of, for instance, velvet, marble
or even human skin [1] to stylized outlines [2], genetically designed materials [3] or physical
simulations of clouds [4].

While current graphics chips are programmable to some extent, their programming
model remains restricted enough to allow parallel processing by a high number of functional
units on the graphics chip. This explains much of the rapid growth of the computing perfor-
mance of graphics chips in comparison to the—already impressive—performance growth of
general-purpose microprocessors.

For instance, both the ATI Radeon X800 XT [5] and the Nvidia GeForce 6800 [6]
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contain 16 pixel pipelines, so that 16 pixels can be processed at the same time. Each of
the pipelines contains two arithmetic logic units, which often work in parallel. These units
process four-component floating point vectors, so that in the optimumiéase2 x 4 =

128 floating point computations happen at the same time in the pixel pipelines.

This tremendous degree of parallel processing requires—and justifies—restrictions in
the programmability. Currently, attempts to cleverly circumvent these restrictions form a
major source for algorithmic inventions in the computer graphics arena. While the program-
ming model of the graphics hardware is steadily being extended, the need to allow parallel
processing will continue to place severe restrictions.

When they first appeared, shaders had to be programmed in assembler code, which not
only was difficult to read but also depended strongly on the specific hardware being used. In
the meantime, high level shading languages such as Microsoft's HLSL (“High Level Shading
Language”) [7], Nvidia’s Cg (“C for Graphics”) [8], and the OpenGL SLang (“Shading Lan-
guage”) [9] have been introduced. Corresponding compliers can address a range of graphics
hardware, using more complex instructions where available. This tutorial is based on HLSL,
which to a large extent is identical to Cg.

Typically, vertex and pixel shaders are employed in conjunction with each other, often
using several render passes with different settings for each pass. The Effect framework [7]
introduced by Microsoft allows to store shader program code, settings, and a basic graphical
user interface within a single .fx text file.

A programmer can develop the look of a class of materials as an .fx file, while a
designer can adjust the material using the sliders, color controls, etc. described in the .fx file
as user interface, see Fig. 1. Major 3D content creation software such as Alias Maya, discreet
3ds max, and Softimage XSI support a real-time preview of .fx shaders, mainly through
special plug-ins. The final result will typically be used in real-time settings such as games
equipped with .fx loaders. Microsoft has integrated an .fx loader into DirectX 9.0; Nvidia
provides a free library called CgFX [8] with support for both OpenGL and DirectX.

2 Review of Basic 3D Techniques Using .fx

In addition to offering an improved work flow, the Effect framework allows effortless
hands-on experiments. In this section we use the Effect framework to explore and review
basic 3D techniques [10]. For the experiments, open a standard .fx file with Microsoft Ef-
fectEdit, which is contained in the DirectX SDK [7], or with Nvida FX Composer [11].
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Figure 1. The Effect framework addresses the collaboration of programmers and designers.

2.1 Four-Component Vectors

A major part of all 3D computations can be unified in a scheme employing four-
component vectors. In this tutorial, we follow Microsoft’'s programming model, which treats
vectors as rows, not—as is typical in mathematics and in OpenGL—as columns. Thus, the
product of a vectok and a matrixA4 is formedx A instead ofAx.

A four-component vector can be built both from a point in space, z, 1) and from

a direction(n,,n,, n,0). The value of 1 or 0 in the last component (calleylis not only a
formal distinction, but later also serves to keep directions from being transformed by trans-
lations, see subsection 2.2: Under a translation, points should move, but not directions. In
the context of perspective transformations (see subsection 2.2); toenponent will play

a more fundamental role. Note that in the context of DirectX, 4taxis points inside the
screen, so that its coordinate frame is left-handed, in contrast to the behavior of OpenGL
before projection is applied.

RGB color triplets are cast into four-component vectorsy, b, a) by augmenting
them with a fourth value, where denotes alpha, the opacity. The value= 0 denotes full
transparency; = 1 denotes complete opacity. In many computatiensignored or simply
set to 1. The values of, g, b, too, range from 0 to 1, so that for instance the RGB triplet for
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green(0, 255,0) is represented &9, 1, 0, 1). Since we are using floating point values, we no
longer need to hardwire the resolution such as 256 steps into the range of the representation.

The basic data types of shaders are four-component vectors of either 16 or 32 bit float-
ing point precision per component, calledlf4 andfloat4 , respectively. Pixel shaders
on current ATI graphics chips will use 24 bits instead of 32. In addition, there are scalar or
smaller vector types such flsat or half2 . Single components of vectors can be ad-
dressed via an expression likeo.x = 4 * bar.g . The suffixe, y, z, wandr, g,
b, a can be used interchangeably. The components of a vector may be “swizzled” on read:
float3 foo = bar.xzz . When writing into a vector, some components may be left
unchanged, such &0.z infoo.xyw = 3 * bar

2.2 Transformations, Homogeneous Coordinates

A linear transformation such as a rotation, a scaling, or a reflection can easily be cast
into the four-component framework by appending 0’s and a 1 @ #s3 matrix:

— o O o

0 0 O
However, we have to use the transposed form of the usuaB matrices, because vectors
will be multiplied with the above matrix as rows, i. e., from the left, not from the right.

In contrast to rotations etc., perspective projections cannot be written using matrices
in the usual sense: Otherwise, they would be linear transformations, which would imply
that they leave parallel lines parallel. But under a perspective projection parallel lines are
transformed to rays aiming at a vanishing point. Only parallel lines that also are parallel to
the projection plane will stay parallel, see Fig. 2.

The main reason to introduce four-component vectors is that also perspective trans-
formations can be written as matrices—if one adopts the rule that as a final step the vector
(z,y, z,w) has the to be converted back to 3D by divisidn/w, y/w, z/w). This step jus-
tifies calling(«, y, z, w) homogeneous coordinates because a common non-zero factor will
cancel. Not going into mathematical details let us remark how the division allows perspec-
tive foreshorteningw will grow with the distance from the viewer, thus reducing the size of
distant objects through the division.

On the graphics card, the division lyyhappens outside the program code of vertex
shaders and pixel shaders, see section 2.4. We can see that by using one of the example .fx
files and multiplying the incoming 4D vertex position with a non-zero constant: Nothing is
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Figure 2. Linear perspective maps parallel lines that are not parallel to the projection plane
to rays aiming at a vanishing point.

changed, because the division will cancel the common fact@t of, z) andw. To change
the size of a 3D object, one has to multigly, v, z) alone or to dividew.

Using homogeneous coordinates, also translations can be writtenusihmatrices:

10 0 0

01 00
(377y72a1) 00 1 0 —($+a7y+b7Z+C,1).
C

a b 1

Adirection(n,, ny, n., 0), however, will be left unchanged by this matrix—which is excatly
the behavior one expects of a translation.

Thus, transformations such as rotations, scalings, translations, and perspective projec-
tions, may now be written simply through matrices. Applying several transformations one
after the other just requires multiplication with the product of the single matrices: Instead of
computing the left hand side of

((xA)B)C = x(ABC),

for each pointk, one uses the right hand side of this equation, compdife€’ once and thus
saves two products of the type vector times matrix per point. The matrices are applied in the
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written order: firstA, then B, thenC'. Note that when using column vectors, the order of
computation is reversed, becauswill have to occur on the rightt ABC)x = A(B(Cx)).

DirectX uses three matrices to control how object are transformed to the screen:

e World converts object coordinates to world coordinates: How is an object placed in
the world? How is it oriented and scaled?

e View converts world coordinates to camera coordinates: How do we look at the world?

e Projection converts camera coordinates to normalized screen coordinates: Which
kind of lens do we use?

Each point is subjected to all three matrices in series. In contrast, OpenGL uses only two
matrices, combiningVorld andView into MODELVIEW

2.3 Back Face Culling, z-Buffer

Current graphics cards receive 3D objects as a soup of polygons—or in the case of
DirectX even only triangles. These are painted into the frame buffer one after the other in
the order given. This requires specific precautions such that for instance the back side of a
box is not drawn over the front side. We can easily show what would happen by loading a
simple .fx file, locating the relevanechniqgue and the relevanpass (more on that in
subsection 2.4), and changing its render settingddoable = false; CullMode =
None; . On rotating the 3D object in the view, back faces will appear over front faces.

One idea to stop this is to draw no back faces at all by se@uigMode = CCW; .
This “back face culling” uses the winding direction of the polygons to decide if we look at a
polygon from its front (counterclockwise winding) or from its back (clockwise winding). Of
course the 3D model has to be built accordingly. You may als@€séiMode = CW,; in
order to draw only the back faces, which can be helpful for complex shader techniques.

Depending on the 3D objects to be displayed, back face culling may or may not fully
solve the visibility problem: Typical objects are non-convex, so that several front-facing
polygons appear behind each other. The typical real-time solution that can cope with every
kind of geometry is the z-buffer, invoked E@Enable = true; . One may call it the most
important functional unit of virtually any 3D graphics card built up to now. The main idea
behind the z-buffer is to paint polygon after polygon, writing the depth per pixel into a non-
displayed buffer (the z-buffer) having the same dimensions as the window on the screen. If
the graphics card finds it will draw a pixel behind the depth current stored for it, this pixel
will be left unchanged, see Figure 3. On typical hardware, the z-buffer will contain not the
actual depth data, but values in the rafi@d] corresponding monotonously to the depth.
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Clear the Buffer: Draw a Triangle:

1.0 1.0

1.0 1.0 1.0

Draw a Disk:

1.0
No pixels of the disk drawn

0.3 here, because they have
0.7 larger z values than those
currently stored in the buffer

Figure 3. The z-buffer stores information about the depth of each pixel (values given in the
drawing). This can be used to supress the drawing of geometry hidden beneath.

2.4 Real-Time Render Pipeline

To allow parallel processing like on an assembly line, the tasks of the 3D chip are
broken down into several stages supported by corresponding subunits. The input typically
consists of vertices that determine polygons; the output are colored pixels on the screen (i. e.,
in the frame buffer) and possibly values in additional buffers such as the z-buffer. Speaking
very broadly, one can give the following sequence of tasks in the graphics chip:

1. Transform and Lighting: Transform the vertices from their object space into normal-
ized screen and depth coordinates. Compute the lighting per vertex.

2. Perspective Divide: Convert from homogeneous coordinates to 2D plus depth.

3. Triangle Setup, Rasterization: Build triangles from the vertices and convert these to
pixels.

4. Shading and Texturing: Compute the color per pixel using textures and interpolated
lighting.

5. Depth Test: Compare the depth of the current pixel to that stored in the z-buffer. If the
new depth is equal or nearer, store the pixel.
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6. Alpha Blending: Mix the new pixel with the pixel currently present in the buffer.

This simplified representation of the render pipeline leaves out for instance back face culling
and the clipping of triangles that otherwise would overlap the borders of the view port.

On most current graphics chips, the “configurable pipeline” may be switched to a
“programmable pipeline”:

1. Vertex Shader: For every vertex a program is executed.
2. Perspective Divide: Convert from homogeneous coordinates to 2D plus depth.

3. Triangle Setup, Rasterization: Build triangles from the vertices and convert these to
pixels.

4. Pixel Shader: For every pixel a program is executed.

5. Depth Test: Compare the depth of the current pixel to that stored in the z-buffer. If the
depth is equal or nearer, store the pixel.

6. Alpha Blending: Blend the new pixel with the pixel currently present in the buffer.

Thus, the vertex shader is responsible for transform and lighting. It can introduce defor-
mations, compute lighting, colors or auxiliary parameters per vertex. The pixel shader is
responsible for retrieving textures and for computing the pixel’'s color, which may be based
on more or less complex reflection models etc.

To allow parallel processing, a vertex shader cannot access other vertices than the one
for which it is invoked; a pixel shader cannot access other pixels. A vertex shader can neither
create vertices nor delete them. (However, it can move them off screen or deform polygons
so that they have zero area.) A pixel shader cannot create pixels or charigeithposition
on the screen. However, it may discard the pixel.

Typical methods to overcome these and other restrictions are to add data to each vertex
and/or to render intermediate results in off-screen buffers, which can later be read back as tex-
tures. A classic way to cope with restrictions of graphics cards is to render a 3D object several
times but with different settings (and possibly different shaders), which mostly requires alpha
blending, see subsection 6.2. In the .fx framework, passes can be invoked simply by adding
furtherpass blocks inside gechnique  block. Atechnique is a complete single- or
multipass shader. An .fx file can contain sevaeahnique s to store different materials
or—rather—different implementations of the same material.

Here is a starting point for experiments with the .fx pipeline: In a typical vertex shader,
the original 3D vertex position is converted into homogeneous coordinates and subjected to
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the product oWorld , View , andProjection matrix. This may look similar to the fol-
lowing: On the topmost level of the .fx file the matrix is declared as to be delivered by the
application using the .fx filefloat4x4 WVP : WorldViewProjection; . The host
application can use the supplied “semantitbrldViewProjection to identify how to

set this matrix. In the vertex shader the following line or an equivalent expression will appear:
float4 HPosition = mul(float4(IN.Position, 1.0), WVP); , wheremul

is the built-in multiplication function. For an experiment, one may for instance use the
Projection matrix alone, thus overriding rotations etc. applied in the viewer.

3 Phong lllumination Model, Phong Interpolation

The first step to create own shaders is to reproduce the operations executed by the
classic, configurable render pipeline. These operations form the basis of most shaders.

3.1 Normal Vectors

A vertex shademustset the final position, which is expressed in homogeneous coor-
dinates, as seen in the previous section. In addition, a vertex shegerompute lighting
per vertex—which is exactly what would happen in the configurable render pipeline. To al-
low a computation of the lighting, each vertex typically does not only contain the data of the
pointx, but also another vector-valued attribute: the outward-pointing surface normal vector,
typically normalized to unit length.

In HLSL, the input to the vertex shader may be declared analogously to the following:

. struct AppData

A
float3 P : POSITION;
float3 N : NORMAL;

. VertexOutput myVertexShader(AppData IN)
A

3

1

2

3

4
5}
6

7

8 /...
9

The semanticROSITION andNORMAIsignal the shader compiler which data provided by
the application is to be used.

The per-vertex normal vector is given in object coordinates, whereas most computa-
tions happen in world coordinates. Thus, the normal vector has to be converted to the world
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frame. If theWorld matrix simply consists of a rotation and a translation, it can directly be
used for this transformation: The normal vector will be rotated in the same way as a point,
and it will keep unit length. Setting it® component to zero will protect the normal vector
from being influenced by the translation.

If, however, theNorld matrix is of different type, for instance a non-uniform scaling,
it cannot directly be applied to the normal vector. To find the general rule of how the normal
vectorn has to be transformed, note that it is parallel to the vector product of two linearly in-
dependent vectoesandb that are tangent to the surface. If the surface is subjected to a linear
mappingM, the normal vector of the resulting surface is paralléltfa) x (Mb). (We're us-
ing column vectors here to stick to usual mathematical notation.) A little linear algebra shows
that this equalglet (M) (M ~1)% (a x b), which is a multiple of A ~1)T(n). Thus, the nor-
mal vector has to be transformed by the inverse transposed world matrix and to be normalized
again. (If M does not preserve orientation, the normal vector will also have to be inverted.)
So we request from the applicatiofioatdx4 WIT : WorldinverseTranspose;
and use this matrix to transform the normal:

float3 NWorld = normalize(mul(float4(IN.N, 0.0), WIT).xyz);

3.2 Parameters

To compute the lighting, we need to provide data about the material and the light
source. For brevity we stick to a small number of parameters. In the .fx file we’re describing
a graphical user interface consisting of a color swatch, a slider, and four number fields for a
vector. This information and additional descriptions are found in the angle brackets as a col-
lection of “annotations”, i. e., descriptive data to be retrieved through the Effect framework:

1. float4 DiffuseColor : Diffuse

2. < string UIName = "Diffuse Color";
3. > = {0.6, 0.9, 0.6, 1.0}

4. float SpecularPower : Power

5. < string UlWidget = "Slider";

7. float UIMin = 1.0;

8. float UlMax = 128.0;

9. float UlStep = 1.0;

10. string UIName = "Specular Power";
11. > = 30.0;

12. float4 LightPosition : Position
13. <  string Object = "PointLight";
14, string Space = "World";
15. > = {-1.0, 2.0, 1.0, 1.0};
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A default value is assigned to every of these parameters, so that the application need not
supply data—-but may do so. Typical .fx viewers can for instance connect the position
LightPosition to an object in the 3D scene.

Note that not all currently available software conforms to the DirectX Standard Anno-
tations and Semantics (DXSAS). Therefore, there still may be variations in the names to be
used.

3.3 Phong lllumination Model in the Vertex Shader

Now we are ready to rebuild the Phong illumination model, which would be executed
by the rendering pipeline when programmable shading is turned off. For simplicity we as-
sume that the light and the specular highlights are white, that the light emits uniformly in
all directions, and that there is no decay with distance. We do not want to apply ambient
light (which would simply be an added color), so that in the Phong model there are two
contributions to the final color on the screen: a diffuse and a specular component.

The diffuse component is proportional to the amount of light received by a small area
of the surface around the current vertex. Assuming perfect diffusive behavior according to
Lambert, the incident light is reflected uniformly into all directions of the hemisphere outside
the object. Thus, if the vertex is visible at all, the diffuse component of its color does not
depend on the position of the viewer. Its intensity is determined by the angle between the
normal vector and the unit vector to the light source. If the light source is in the zenith, the
diffuse component will attain its maximum, see Fig. 4.

To implement the Lambert model in the shader, we first need to compute a unit vector
(“light vector”) pointing from the current vertex to the light source. The position of the
current vertex is given in object coordinates, but the position of the light source typically is
given in world coordinates, so that we need to convert between the two coordinate frames. To
this end, we request th&orld matrix from the applicationfloat4x4 W : World;
Using the built-in functionsrormalize , dot andmax we can compute the light vector
and the diffuse components as follows:

float4 PObject = float4(IN.P, 1.0);

float3 PWorld = mul(PObject, W).xyz;

float3 LightVector = normalize(LightPosition.xyz - PWorld);
float3 NWorld = normalize(mul(float4(IN.N, 0.0), WIT).xyz);
float Diffuselntensity = max(0.0, dot(LightVector,NWorld));
OUT.Color = Diffuselntensity * DiffuseColor;

ok wnhE

Several remarks are in order:
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Figure 4. A perfectly diffusely reflecting surface will scatter the incident light uniformly
over a hemisphere. The amount of incident light depends on the normal vector.

e The scalar product is computed bipt . The functionmul applied to two vectors
would compute a vector of component-wise products instead. This can for instance be
used to filter a light color with a surface color.

e max(0.0, dot(/*...*/)) clamps negative values of the scalar product to zero:
If the scalar product is negative, the light source is behind the horizon of the vertex, so
that its color should be zero. A negative color value would incur no problems by itself
but would distort other color components such as ambient lighting applied to the same
vertex in the same pass.

Now we turn to the specular component. It will form a lobe around the direction in
which the light source would be perfectly mirrored in the surface. Therefore, the position
of the viewer has to enter the computation. This position may be given sim[flgza3
parameter. Alternatively, it can be read off from ¥ew matrix: This matrix transforms
the point where the viewer is located to the origin. Its inverse matrix reverses this and thus
contains the position of the viewer in its last row. So we can ask for the invéese matrix:
floatdx4 VI : Viewlnverse; and compute a unit vector pointing from the vertex to
the viewer:float3 ViewVector = normalize(VI[3].xyz - PWorld);
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A typical method to compute the intensity of the specular component is to introduce
the “half vector”:

float3 HalfVector = normalize(ViewVector + LightVector);

If this vector points along the normal vector, we have a mirror-like situation. The more the
half vector deviates from the normal, the more the viewer moves off the lobe of the specular
reflection, see Fig. 5. This effect can be captured through the scalar product of both vec-
tors. However, if you simply assigBUT.Color = max(0.0, dot(HalfVector,

NWorld)); you see a very broad light distribution. (Again, tmax is used to cut off un-

wanted negative values.) So we need to conserve values near to 1 and suppress the smaller
values. A simple way to do this is Phong'’s exponentiation: Simply form a high power of the
the scalar product:

OUT.Color=pow(max(0.0,dot(HalfVector,NWorld)),SpecularPower);

light
source

light
vector

surface

half vector

normal vector

( view
vector
viewer lobe of :
specular reflection

Figure 5. The more the “half vector” deviates from the normal, the more the viewing
direction deviates from the direction of mirror-like reflection.

Finally, add the diffuse color component computed before instead of replacing it, by
writing OUT.Color += pow(/*...*/) . In the highlight, some components of this sum
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will be larger than 1. The graphics card deals with such color values that are above one or
below zero by clamping them to one or zero, respectively.

The functionlit  of HLSL combines many of these computational steps into the
following:

1. float4 lighting = lit(dot(LightVector, NWorld),
2. dot(HalfVector, NWorld), SpecularPower);
3. OUT.Color = DiffuseColor*lighting.y + lighting.z;

Furthermorelit  suppresses the specular term when the normal points away from the light.
Otherwise, broad highlights may spill into the shadowed part of a surface.

3.4 Phong lllumination Model in the Pixel Shader, Phong Interpolation

The higher the Phong exponent, the smaller the highlights—and the more they turn
into a polygonal shape revealing the underlying geometry of triangles. This effect is due
to the bilinear (Gouraud) interpolation of the color values computed for the vertices: The
complete lighting computation is only executed in the vertex shader; the actual colors for the
single pixels are formed by blending the resulting vertex colors. A small highlight completely
contained inside a triangle would not show up at all because it is not present at the vertices.

A major improvement can be achieved by moving the lighting computation into the
pixel shader—at the cost of running this computation hundred or thousand times more often.
Now, the vertex shader will not deliver a color to the pixel shader, but basic geometric prop-
erties like normal, view and light vector, which it typically converts from the object to the
world coordinate frame.

Like it did with the color before, the graphics chip will bilinearly interpolate these data
so that every pixel receives an interpolated normal etc. This “Phong interpolation” results in
much improved results as compared to the interpolation of colors (“Gouraud interpolation”),
see Fig. 6. Virtually all offline 3D renderers employ Phong interpolation; with pixel shaders
one can achieve this quality in real time. (Note that Phong interpolation and the Phong
illumination model may be used separately from each other, as is the case in the standard
configurable render pipeline, which only employs Gouraud interpolation.)

Data is delivered from the vertex shader to the pixel shader using a common data
structure such agertexOutput  in the following:
1. struct VertexOutput
2. {
3. float4 HP : POSITION; // homogeneous position
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Figure 6. Computing the lighting model per pixel instead of interpolating the color
computed for the vertices leads to improved highlights.

4 float3 N : TEXCOORDO; // normal vector
5. float3 V : TEXCOORD1; /I view vector
6. float3 L : TEXCOORD2; /I light vector
7

8

-k
. struct PixelOutput
9. {
10. float4 Color : COLOR;
11. };
12. VertexOutput myVertexShader(AppData IN)
13. {
14. VertexOutput OUT;
15. /...
16. return OUT;
17. }
18. PixelOutput myPixelShader(VertexOutput IN)
19. {
20. PixelOutput OUT;
21. /...
22. return OUT;
23. }

Semantics likePOSITION are used to declare how the single members are to be
delivered. Here, the data fields of the classic rendering pipeline are to be used. So there is
POSITION, which must be written in the vertex shader, but may on most current graphics
cards not be read in the pixel shade©LORGNdCOLORXan be written to and read back;
however, these values may be delivered in eight bit precision to the pixel shader and may be
clamped to the range. . . 1. At this stage behind the vertex shader there iBIGRMALMost
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parameters end up in a set of texture coordin@EXCOORMD

The form of the .fx file suggests that the pixel shader receives the data the vertex shader
has written. But this is not quite true: The pixel shader receives a bilinear interpolation of the
values computed in the vertex shader. This can cleverly be exploited to simplify shaders.

In the vertex shader, we now compute geometric quantities:

ertexOutput myVertexShader(AppData IN)

~ <

1
2
3 VertexOutput OUT;

4, float4 PObject = float4(IN.P, 1.0);

5. OUT.HP = mul(PObject, WVP);

6 float3 PWorld = mul(PObject, W).xyz;

7 OUT.L = normalize(LightPosition - PWorld);

8 OUT.N = normalize(mul(float4(IN.N, 0.0), WIT).xyz);
9. OUT.V = normalize(VI[3].xyz - PWorld);

10. return OUT;

The Phong illumination model can be evaluated from the interpolated geometric quantities in
the pixel shader:

PixelOutput myPixelShader(VertexOutput IN)
{

1.
2.
3 PixelOutput OUT;

4. float3 N normalize(IN.N);

5. float3 V normalize(IN.V);

6 float3 L normalize(IN.L);

7 float3 H normalize(V + L);

8 float4 lighting = lit(dot(L,N),dot(H,N),SpecularPower);
9 OUT.Color = DiffuseColor*lighting.y + lighting.z;

0.

10. }

For this to work, you have to make sure that at least Shader Model 2.0 is used: The compiler
line in the pass structure of the .fx file should read:

PixelShader = compile ps_2 0 myPixelShader();

The normalization on lines 4, 5, and 6 is required because the bilinearly interpolated vectors
will typically no longer possess unit length. But it is worth a try to skip the normalization.
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Especially for slowly varying vectors the difference may be so small that it is virtually invis-
ible. Another point left to optimization is to only compute the specular component inside the
pixel shader, not the diffuse component.

4 Basic Shader Effects

The typical use of vertex shaders is to deform models, while pixel shaders largely
work with textures. In this section we introduce these basic operations.

4.1 Deformation

Inside a vertex shader, deformation effects can simply be achieved by changing the
position of the vertex before subjecting it to M&rldViewProjection matrix or—for a
deformation occurring in world coordinates—tWeewProjection matrix. For instance,
one may form

float3 p = IN.P + float3(sin(IN.P.y), 0, 0);

to move vertices to the left or to the right, depending on their height.

However, also the per-vertex normal vectors have to be deformed correspondingly.
Otherwise the lighting will be wrong, see Fig. 7. If the deformation acts by transforming the
3D positionx to f(x), the normals should be transformed [12] @y !)?, whereJ is the
Jacobian matrix of, i. e., the matrix formed by all partial derivatives of the three components
of f.

Figure 7. A deformation effect may not only change the positions of the vertices (left:
original, mid: deformed) but must also adjust the normals to allow correct lighting (right).

Let us momentarily switch to column vectors in order to stick to the usual mathemat-
ical notation. Then for the example give above, we haye vy, z) = (x + sin(y), y, 2), SO
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that the Jacobian matrix is

Ofe/0x Ofs/0y Ofs/0z 1 cos(y) O
of,/0x 0f,/0y Of,/0z =| 0 1 0
of./0x 0f./0y Of./0z 0 0 1

The inverse transpose dfis

1 0 0
—cos(y) 1 0 |,
0 0 1

which means that the normal vector has to be transformed according to
float3 n = IN.N + float3(0, -cos(IN.P.y)*IN.N.x, 0);

and to be normalized again.

Deformers of this kind are typically used to produce twisting, tapering, melting, or
similar effects on an entire 3D object. For character animation another type of deformation is
important: skinning, i. e., controlling a mesh through a skeleton of bones, which exert local
forces. The deformation caused by a single bone can be described similar\Wotle
matrix. However, now we need a palette of matrices, one for each bone. Each vertex carries
information about which bone or which blend of bones is used to deform it.

4.2 Texture maps

To use a texture inside an .fx file, first the texture and the sampler have to be config-
ured:

1. texture DiffuseTexture : Diffuse

2. <

3 string ResourceName = "texture.dds";
4, >;
5. sampler DiffuseMap = sampler_state
6. {

7 texture = <DiffuseTexture>;

8 MAGFILTER = LINEAR;

9 MINFILTER LINEAR;

0 MIPFILTER LINEAR;

1
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This will load a texture file named texture.dds and assign it to a texture sampler employing
MIP mapping (i. e., blending multiple levels of detail to prevent artifacts). Files in the .dds
format of DirectX can be prepared for instance with DxTex of the Microsoft DirectX SDK
[7] or Nvidia’s texture tools [13].

The most basic way to use textures is to wrap an image around 3D objectsuusing
texture coordinates: To every vertex the information is added, which fain} of the image
shall be mapped onto this vertex € 0...1, v = 0...1), see Fig. 8. As usual, values are
assigned to the single pixels through bilinear interpolation of the values at the vertices.

.L\// T
AL?IE;‘ é— 7""

T
::' EERSREN
];)1 E F G
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Figure 8. Texture coordinates are used to wrap a picture (left) around the surface
(screenshot from Alias Maya).

We need to receivev data in the vertex shader:

struct AppData
{
/...
float2 UV : TEXCOORDS3;

h

The vertex shader simply hands over these data to the bilinear interpolation occurring before
the pixel shader:

struct VertexOutput
{
...
float2 UV : TEXCOORDS;

PobdE

k
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5. VertexOutput myVertexShader(AppData IN)
6. {

7. VertexOutput OUT;

8 ...

9. OUT.UV = IN.UV;

10. return OUT;

11. }

Now we are ready to retrieve texture values in the pixel shader. These consist of the texture
image’s RGBA values converted to four-component vectors.

PixelOutput myPixelShader(VertexOutput IN)

{
/...
float4 t = tex2D(DiffuseMap, IN.UV);
/...

}

A first experiment would be to use the retrieved value directly as output color. An advanced
method would be to use two texture maps, one controlling the diffuse color in the Phong
model and one controlling the intensity of highlights, thus adding wet spots to a model's
surface.

5 Bump Mapping

One of the most visually effective uses of pixel shaders is bump mapping: Fine struc-
tures like engraved letters or wood veins are applied to a surface by deforming not its actual
geometry but the per-pixel normals, see Fig. 9. This allows to depict fine-scale geometry
while still working with relatively few polygons. Of course, the method fails for structures
like mountains on a meteorite, where large deformations are needed for instance to let the
silhouette look deformed, too.

5.1 Tangent Space Coordinates

Small deformations of the normal vector field are best described in a coordinate frame
that is locally adjusted to the object’s surface: Ehaxis points in the direction of the origi-
nal normal, ther andy axes point along the tangent plane. To describe this moving coordi-
nate frame, we equip each vertex not only wibRMAIdata, but also witlTANGENTand
BINORMALdata. These form an orthogonal frame at each vertex, and are to be delivered by
the host application:
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4
8
Cc
G

Figure 9. A bump map (upper left) is converted to a normal map (lower left: separated RGB
channels), which is used to deflect the per-pixel normal from its original direction (mid) to
let a relief appear on the surface (right).

1. struct AppData

2. {

3. float3 P : POSITION;

4, float3 N : NORMAL;

5. float3 T : TANGENT;

6 float3 B : BINORMAL;
7 float2 UV : TEXCOORDO;
8.

3
How these additional vectors can be generated will be treated in subsection 5.3.

The vertex shader transforms these three vectors from object space to world space:

1. struct VertexOutput

2. {

3. float4 HP : POSITION;

4 float2 UV : TEXCOORDQO;
5. float3 N : TEXCOORD1;
6. float3 T : TEXCOORDZ;
7 float3 B : TEXCOORD3;
8. float3 V : TEXCOORD4;
9. %

10. VertexOutput myVertexShader(AppData IN)
11. {
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12. VertexOutput OUT;

13. float4 PObject = float4(IN.P, 1.0);

14. OUT.H = mul(PObject, WVP);

15. OUT.N = normalize(mul(float4(IN.N, 0.0), WIT).xyz);
16. OUT.T = normalize(mul(float4(IN.T, 0.0), W).xyz);
17. OUT.B = normalize(mul(float4(IN.B, 0.0), W).xyz);
18. float4 PWorld = mul(PObject, W);

19. OUT.V = normalize(VI[3].xyz - PWorld.xyz);

20. OUT.UV = IN.UV;

21. return OUT,;

22. }

The graphics chip will interpolate tidORMALTANGENTand BINORMALdata and feed
those into the pixel shader. Precise perpendicularity will be lost due to the interpolation and
in the case of a non-uniform scaling by transforming the binormal vector with\bied

matrix, but typically this does not lead to visually objectionable errors.

5.2 Normal Maps and Environment Maps

Inside typical 3D offline-rendering software, bump maps are given as grey-scale im-
ages that describe the intended offset from the actual geometry: White means shift outward
along the normal, black means shift inward. The deformed normal vector can be computed
from the bump map, see section 5.3.

To gain speed, we need to compute the deformed normals in advance and store them
as a “normal map”. This is attached to the surface via texture coordinates. Technically being
a regular texture, the normal map can only store values bet@weew 1; the components
of a normal vector range, however, betweehand1, so that one has to rescale them: The
normal (n,,ny, n.) is stored as pseudo-color, g,b) = 0.5(ng, ny,n.) + (0.5,0.5,0.5)
inside the normal map. Here,, n,,, andn, refer to the tangent frame, which means that a
non-deformed normal is represented(By0, 1) and stored as the col¢d.5, 0.5, 1.0). Thus,
typical normal maps contain lots of bluish pixels: The normal is seldom deformed strongly.

The pixel shader retrieves the pseudo-color values from the normal map, reverses the
scaling and uses thdORMALTANGENTand BINORMALdata to compute the deformed
normal vector in world coordinates:

PixelOutput myPixelShader(VertexOutput IN)
{

1.

2.

3. PixelOutput OUT;

4, float3 N = normalize(IN.N);
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5. float3 T = normalize(IN.T);

6. float3 B = normalize(IN.B);

7. float3 NObj = 2.0*tex2D(NormalMap, IN.UV).xyz - 1.0;
8. float3 NWorld = normalize(NObj.x*T+NObj.y*B+NODbj.z*N);
9. /...

10. return OUT;

11. }

To achieve an impressive visual effect, the deformed normal vector can be used to
create the look of dented chrome. This requires fake reflections, since we do not want to
do ray tracing on the graphics chip. The usual solution is to load a “cube map” showing an
environment projected to the six faces of a cube:

1. texture EnviTexture : Environment
2. <

3 string ResourceName = "nvlobby cube_mipmap.dds";
4. string TextureType = "Cube";
5. >;

6. sampler EnviMap = sampler_state
7. {

8 texture = <EnviTexture>;

9. MINFILTER = LINEAR;

10. MAGFILTER = LINEAR;

11. MIPFILTER = LINEAR;

12. }

Then we can add the following line to the pixel shader:
OUT.Color = texCUBE(EnviMap, reflect(-IN.View, NWorld));

Here, the vectorIN.View from the viewer is reflected (another built-in function) on the
local bumped tangent plane. The resulting direction is used to retrieve a color from the envi-
ronment map. Thus, the environment map is treated like wallpaper glued to an infinitely large
cubic room. Untrained observers note neither the slight error in the mirror image resulting
from this approximation nor the circumstance that self-reflections are missing.

5.3 Computation of Tangent Vectors and Normal Maps

Given a smooth parameterized surfdeev) — p(u,v), one can easily find a (non-
normalized) tangent vector field @&p(u,v)/du. However, in the context of current 3D
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graphics chips we deal with polyhedra, not with smooth surfaces. One can approximate the
directional derivative along the local direction using a least-square fit. From that results

a approximate tangent vector at each vertex. Then, the binormal vector can for instance be
found by forming the vector product of the normal vector and the tangent vector. Ready-
to-use functions to compute tangent and binormal vectors are for instance available in the
application programming interface of Microsoft DirectX 9.0.

Normal Maps virtually cannot be generated manually. Wdsatbe drawn by hand
are bump maps, i. e., height fielgéu, v) where the gray level of a pixel indicates its dis-
placement along the normal. One can simply form pixel-wise differences along dhel
and thev directions to find how the normal vector has to be bent: For instance, if a dark
gray pixel is lying left to a medium gray pixel, the normal is inclined towards the left side.
This information can be converted to pseudo-colors and stored in a normal map. Software
tools [13] are available for this job. Thus, the use of tangent space coordinates allows to fake
deformations without reference to the actual geometry of the object. Furthermore, the use
of tangent space coordinates easily allows to scale the normal values in such a way that the
normal map exhausts the full range of eight bits per channel of standard textures. This proves
to be especially important with environment mapping, where the reflection tends to produce
objectionable artifacts from even small steps in the normal map. This problem disappears
with special texture formats that store 16 or 32 bits per channel.

6 Complex Shader Effects

6.1 Using Textures to Store Arbitrary Functions

As we have seen, textures may be used to store how the color of a material depends on
the position on the surface, how the environment looks like, and how the surface is deformed
on a small scale. Many more relationships cannot easily be expressed in analytical form and
thus are candidates for 1D, 2D, 3D, or cube maps. In addition, many functionsatibé
expressed in analytical form are better precomputed as textures to reduce the computatioal
load.

As first example of how to achieve complex results through textures as tabulated func-
tions, consider the following extension of the per-pixel Phong lighting model. In the corre-
sponding pixel shader, we may write:

float3 N = ... // normalized normal vector
float3 V = ... // normalized view vector
float3 L = ... // normalized light vector

float3 H = normalize(V + L); // normalized half vector
float VdotN = dot(V, N);

oukNE
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7. float HdotN = dot(H, N);
8. OUT.Color = tex2D(LightingModel, float2(VdotN, HdotN));

Here, the texture bound taghtingModel controls the “look” of the surface. It
can be computed to exactly reproduce the Phong illumination model. Much more interesting
and/or realistic behavior can be achieved by painting an image to be used for this map, see
Fig. 10. Furthermore, we see that the texture saves computation. For instanpewthe
function is no longer invoked. We even do not need to clamp negative valiodfl and
HdotN , because the texture sampler can do that automatically.

'\ v/

Figure 10.Using textures (square insets) to store arbitrary functions can both save
computation time and add to the realism.

As another example of a not-so-obvious use of textures we present a shader for an-
isotropic highlights. These are present on shiny materials that possess a directional structure
on a microscopic scale such as brushed aluminum, fur, or textile fabrics. The texture used as
function table resembles an image of the highlight. For instance, if the texture contains in its
center an horizontal ellipsis painted white on a dark background, the highlight extends along
thew direction of the surface, see Fig. 11.

One way to achieve this is to compute the components of the half vector in the
TANGENTand theBINORMALdirection. If both are zero, we have a mirror-like situation.
Thus, these two components form a kind of local coordinate frame around the highlights.

1. float HdotT dot(H, T);

2. float HdotB = dot(H, B);

3. OUT.Color = dot(L, N)* tex2D(HighlightModel,

4 0.5*float2(HdotT, HdotB) + float2(0.5, 0.5));

The texture addressing is shifted in order to put the highlight at the centey = (0.5, 0.5).
The dot product of the light vector and the normal is introduced because otherwise also faces
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n% o

Figure 11. A texture (square insets) can be used to control the shape of anisotropic
highlights.

pointing away from the light would be illuminated spuriously. In addition, this factor softly
cuts off the highlight at the horizon.

6.2 Alpha Blending, Multiple Render Passes

Finally, we give meaning to alpha, the fourth component of all color ve¢tors b, a).
It may control how strongly the currently computed color will be blended with the color
already present at this pixel location. For a first experiment, try a pixel shader producing the
output colorOUT.Color = float4(0, 1, 0, 0.5); and use the following settings
inside thepass :

AlphaBlendEnable = true;
SrcBlend = SrcAlpha;
DestBlend = InvSrcAlpha;
BlendOp = Add;
ZEnable = true;
Z\WriteEnable = false;
CullMode = None;

NogasrwhE

Lines 2, 3, and 4 configure the operation used for blending. Here we compute a weighted
sum (blend operation) of the new color (source) with the color already present (destination):

Cdest < AsrcCsrc 1 (1 - asrc)cdest

The new alpha acts as weight: If it equals one, the new color will completely replace the
existing color, which corresponds to full opacity. If it equals zero, the pixel will be left
unchanged, which corresponds to full transparency.
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Line 5 says that we want to execute the depth test, so that no pixels are touched that lie
in front of our current object. Line 6, however, switches off the writing into the z-buffer, and
line 7 switches off back face culling. So all faces of the current 3D object will be rendered—if
they are not hidden behind other 3D objects that have been drafeneZ\WriteEnable
was switched off. This is a typical setting for semi-transparency effects.

Alpha blending allows to break up complex computations into several rendering passes:

1. technique tO
2. {

3 pass pO
4. {

5. \\...
6 }

7 pass pl
8 {

9. \\...
10. }

11. }

For instance, each pass may add the contribution of a different light source. While this would
be more time-consuming than a single-pass solution, it may demand less capabilities from
the hardware, especially in terms of the shader’s program length.

Furthermore, some effects employ several different geometric deformations, and thus
cannot be realized within a single pass. A classic example for this is the simple glow effect:
First, render the 3D object as usual; second, render it in a bright color with medium alpha
and using a vertex shader to expand the geometry along the normal vector.

7 Conclusion and Outlook

We have introduced the programming model of the current programmable graphics
pipeline using hands-on experiments to introduce basic methods and tools of the trade. In
this final section, we outline advanced methods and give directions for future work.

7.1 Advanced Features and Effects

The next major step in using the Effect framework is to use it in self-developed soft-
ware. With Microsoft's DirectX 9.0 or Nvidia’s CgFX toolkit this merely boils down to code
like the following:
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int numPasses = myEffect.Begin();

. for(int i = 0; i < numPasses; i++)

{
myEffect.BeginPass(i);
myMesh.DrawSubset(0);
myEffect.EndPass(); // added in DX 9.0c

}
myEffect.End();

NGO~ WNE

For own experiments, Managed DirectX [14], which is a .NET wrapper of the DirectX API,
may prove helpful. It allows to use virtually all advanced features of 3D graphics cards using
powerful classes under C++ or C#, the Java cousin introduced by Microsoft.

Employing vertex and pixel shaders in one’s own software secures more control about
what is rendered into which buffer. For instance, one way to create shadows is to render
the depth of the 3D scene seen from the view of the light source into an off-screen buffer.
This buffer is then retrieved as texture (“shadow map”) inside a rendering pass on the frame
buffer. If a point is more distant from the light source than the minimum distance on this ray
(as stored in the off-screen buffer), it receives no light. Other effects demanding off-screen
buffers include soft glow and depth-of-field.

None of the shaders covered so far included loops sufdr asndwhile , branching
such asf ... else , or subroutines. We did not even use integer variables. Obviously,
many features of typical programming languages are not crucial to shading. Current graphics
cards do not fully support loops. When branching over a piece of code, most of them will
take as much time as if they actually executed every single statement in between. Even the
latest graphics cards use float variables to emulate integer types.

For an overview of the zoo of “Shader Models” see the DirectX documentation [7].
The shader version also appears in dompile commands in an .fx file. For instance,
compile ps_2 0 MyPixelShader(); asks the Effect framework to compile the shader
using the capabilities of a graphics card with pixel shader version 2.0.

7.2 ldeas for Future Work

Two main directions offer themselves for future work:

First, one can try to convert each and every classic effect into a shader program—or
try to invent new effects or new shader algorithms from scratch. Given the major restrictions
of the programming model, this requires some ingenuity. However, graphics hardware is a
moving target. What is difficult today can become trivial with tomorrow’s chips. For instance,
some of the newest graphics cards allow to retrieve textures inside a vertex shader, whereas

152 RITA ¢ Volume Xl e NUmero 1e 2004



Shader Programming: An Introduction Using the Effect Framework

previously textures were only accessible from pixel shaders.

Second, one can try to improve the workflow. Working with shaders will largely
turn from engineering into a less technical activity, like designing and animating 3D objects
did long ago. How can designers be supported best? This requires, for instance, effortless
debugging, good integration of shaders into 3D content creation software, and the support of
a broad range of hardware and software platforms, notably those based on OpenGL.

Inside of FX Composer, the .fx file format is already amended by instructions to render
into off-screen buffers and use them as textures inside a later pass [11]. The next version of
FX Composer and upcoming software of Microsoft will even take further steps towards inte-
grating more complex effect structures [15]. However, the question arises, if .fx is becoming
overburdened with these extensions, so that one should better develop a new language instead.
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