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Abstract

Carleo and Troyer [3] have recently pointed out the possibility of solving quan-

tum many-body problems by using Artificial Neural Networks (ANN). Their work

is based on minimizing a variational wave function to obtain the ground states

for various spin-dependent systems. This work is primarily focused on developing

efficient method using ANN to solve the ground state wave function for atomic sys-

tems. We have developed a theoretical groundwork to represent the wave function

of a many-electron atom by using artificial neural network while still preserving

its antisymmetric property. By using the Metropolis algorithm, Variational Monte

Carlo (VMC), and Stochastic Reconfiguration (SR) methods for minimization, we

were able to obtain a highly accurate ground state wave function for the He atom.

To verify our optimization algorithm, we reproduced the results for the ground

state of a three dimensional Simple Harmonic Oscillator (SHO) given by Teng

[18].
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1. Introduction

1.1 Background

The world of tiny molecules and atoms can be described by Quantum Mechanics.

Owing to the inherent uncertainty in the quantum world that persists beyond

the precision of the measurement techniques, their description is given by a wave

function Ψ rather than a fixed set of numerical values. The wave function con-

tains all the information about a quantum system, which can either be a single

particle or a system of many such particles. This wave function can be projected

into various bases (i.e. position, momentum, spin) to obtain the required proba-

bilistic description. Such a wave function can be obtained by solving the famous

Schrödinger equation. It is a second order differential equation whose com-

plexity increases exponentially with an increase in the number of particles in the

system. Not surprisingly, most of the systems of interest to the scientific commu-

nity are many-body, which are impossible to solve analytically. Thus, scientists

rely on a variety of numerical techniques such as the variational methods. Most

of these methods are based on an efficient representation of a many-body system

by an appropriate function of many variables and its optimization to achieve the

ground state. Optimization of too many variational parameters is still beyond

the capability of the state-of-the-art computational resources, thereby requiring

improved methods to solve the quantum many-body problems.

An Artificial Neural Network (ANN) is a widely used technique in the ma-
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chine learning community. A vast oversimplification of a biological neural network,

ANN has been very successful at learning the results to a given set of input vari-

ables. ANNs have been widely used by the computer science community in a

variety of problems such as image and speech recognition, data prediction, and

gaming. A popular example in today’s context is AlphaGo [1], a computer pro-

gram developed by Google, that was able to defeat the world’s best player Ke Jie

on a board game called Go. The varied application of ANN suggests its versatility

in representing a function of many variables with a wide range of constraints, and

its application to solve the quantum many-body problems has recently come to

the attention of quantum scientists. In a paper by Lagaris et al. [2], a variational

solution in the form of an ANN was assumed, and solved for simple systems such

as Morse potential and an anharmonic potential. More recently, the efficiency

resulting from the use of ANN in solving the quantum many-body problems has

been amply demonstrated in a paper by Carleo and Troyer[3]. They introduced

a representation of the spin-only dependent wave function in terms of an ANN

specified by a set of variational parameters and used a stochastic framework for

reinforcement learning of the parameters, allowing for the best possible repre-

sentation of both ground state and time-dependent physical states of quantum

Hamiltonians such as Ising and Heisenberg.

In this work, we have attempted to expand this technique to solve for the electronic

wave functions of multi-electron atoms. Density Functional Theory (DFT)

and Hartree-Fock[5, 6], also known as Self Consistent Field (SCF), methods are

being widely used to obtain the wave functions for atoms and molecules, but these

methods are limited by computational resources for large systems. We have used

a variational expression for the wave function consisting of four parts:

1. Neural network (Radial)

2. Exponential decay (Radial)

2



3. Spherical harmonics (Angular)

4. Spin part

The variational parameters are optimized by using the Stochastic Reconfigu-

ration method [7] based on the variance minimization of the local energy. We

calculated the expectation values for local energy as well as the operators as-

sociated with the variational parameters using the Variational Monte Carlo

(VMC)[8]. The spatial samples for implementing the VMC algorithm were ob-

tained stochastically through a simple Metropolis algorithm[9]. The details on

the variational representation of the atomic wave function as well as the stochastic

optimization technique will be discussed in more detail in chapter 5.

1.2 Overview

A brief introduction to the quantum many-body problems and our motivation for

using ANN to solve these problems has been given in the preceding section. This

section presents an overview of the structure of this thesis.

Chapter 2 will review the Schrödinger equation in three dimensions and its solu-

tions to a Coulombic potential to obtain the stationary states of a hydrogen atom.

Chapter 3 will briefly cover the anti-symmetrization of the wave function for a

fermionic system by using Slater determinants and the Hartree-Fock procedure

to solve for the electronic wave function for atoms. Chapter 4 will discuss ANN

and its application to our variational representation of the atomic wave function.

Chapter 5 will present the optimization scheme and the description of the various

techniques used. In the last chapter, some of the results obtained from our pre-

liminary calculations will be discussed.
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2. Stationary States of Hydrogen

2.1 Separation of spatial and time variables

Schrödinger equation can be expressed in its most general form as follows:

ĤΨ(r, t) = ÊΨ(r, t) (2.1)

where Ĥ is the Hamiltonian operator and Ê = i ∂
∂t

is the energy operator. The

wave function Ψ is a function of both space (r), and time (t). Expressing the

Hamiltonian as the sum of potential energy (V) and the kinetic energy (T =

− ~2

2m
∇2), we get the following Time Dependent Schrödinger Equation (TDSE):

− ~2

2m
∇2Ψ(r, t) + VΨ(r, t) = i~

∂

∂t
Ψ(r, t) (2.2)

Using separation of variables, this equation can be separated into the spatial

and time parts. The solution to the time part is simple and is given by:

C exp

(
−iEt
~

)
(2.3)

where C is a proportionality constant and E is another constant used for the sep-

aration of variables. The spatial part depends on the potential, and the solution

is unique for a specific potential function (V(r)). The following equation com-

prising only the spatial variables is known as the Time Independent Schrödinger

4



Equation(TISE):

− ~2

2m
∇2ψ + V ψ = Eψ (2.4)

where ψ is the time independent (spatial) wave function.

2.2 TISE in Spherical Coordinates

The potential energy between the electron and the proton in the H atom is Coulom-

bic which is spherically symmetric. Thus, it makes more sense to proceed with

change of coordinates from the usual rectilinear to spherical. The Laplacian op-

erator (∇2) in spherical coordinates is given as follows:

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
(2.5)

Using this operator, we can write the TISE in the following form:

− ~2

2m
∇2(r, θ, φ)ψ(r, θ, φ) + V (r)ψ(r, θ, φ) = Eψ(r, θ, φ) (2.6)

Again, we evoke the separation of variables to separate this equation into angular

and radial parts:

ψ(r, θ, φ) = R(r)Y (θ, φ) (2.7)

Substituting this relation into equation 2.6 gives:

− ~2

2m

[
Y

r2
∂

∂r

(
r2
∂R

∂r

)
+

R

r2 sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

R

r2 sin2 θ

(
∂2Y

∂φ2

)]
+V RY = ERY

Multiplying both sides of this equation by
−2mr2

RY ~2
, we get:

1

R

d

dr

(
r2
dR

dr

)
+

1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

Y sin2 θ

(
∂2Y

∂φ2

)
− 2m

~2
V = −2m

~2
E

or,
1

R

d

dr

(
r2
dR

dr

)
+

1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

Y sin2 θ

(
∂2Y

∂φ2

)
− 2m

~2
(V (r)− E) = 0
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Rearranging the radial part to the Left Hand Side (LHS) and angular part to the

Right Hand Side (RHS):

[
1

R

d

dr

(
r2
dR

dr

)
− −2mr2

~2
(V (r)− E)

]
=
−1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

(
∂2Y

∂φ2

)]

Here, the LHS depends on only the radial distance(r) whereas the RHS depends

only on angles (θ and φ). Since changing either of these variables changes only

one side of the equation, each side can be assumed to be a constant. Let this

constant be l(l + 1). We are being wise in our selection of this constant because

it will simplify the further calculations. Thus, we get the following equations for

angular and radial parts:

−1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

(
∂2Y

∂φ2

)]
= l(l + 1) (2.8)

and [
1

R

d

dr

(
r2
dR

dr

)
− 2mr2

~2
(V (r)− E)

]
= l(l + 1) (2.9)

2.3 Angular Solution

Again, we employ the separation of variables to separate the angular wave function(Y )

into two parts:

Y (θ, φ) = Θ(θ)Φ(φ) (2.10)

Substituting this expression into equation 2.8 gives:

Φ sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ Θ

d2Φ

∂φ2
= −l(l + 1)ΘΦ (2.11)

Dividing by Θ(θ)Φ(φ), and rearranging we get:

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ = − 1

Φ

d2Φ

∂φ2
(2.12)
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We observe that the LHS depends only on θ and the RHS depends only on φ.

Using the same argument as before, we can assume that each side is a constant

given by m2. Again, we are being wise in choosing the constant. Now, we get the

following two equations:

1

Φ

d2Φ

∂φ2
= −m2 (2.13)

and

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ = m2 (2.14)

The solution to equation 2.13 is given by:

Φ(φ) = Ceimφ (2.15)

where C is a proportionality constant. We are not writing e−imφ because we will

let m have both positive and negative values. Since eimφ is periodic with period

2π, eimφ = eim(φ+2π) ⇒ eimφ = eimφei2mπ. Thus, m = ±1,±2,±3, · · · .

The solution to equation 2.14 is non-trivial, and is given by associated Leg-

endre’s polynomials as follows:

Θ(θ) = APm
l (cos θ) (2.16)

where A is a constant of proportionality and Pm
l (cos θ) is an associated Legendre’s

polynomial given by:

Pm
l (cos θ) = (−1)m(sin θ)m

dm

d(cos θ)m
Pl(cos θ) (2.17)

where

Pl(x) =
1

2ll!

(
d

dx

)l
(x2 − 1)l (2.18)

7



is called Legendre’s polynomial given by this Rodrigue’s formula. For these

formulas to make physical sense, l > 0, and Pm
l = 0 whenever |m| > l. Thus,

m = −l,−l + 1, · · · , 0, · · · , l − 1, l.

In spherical coordinates, the volume element is given by d3r = r2 sin θdrdθdφ.

We can impose the normalization as follows:

∫
|ψ|2r2 sin θdrdθdφ =

∫
|R|2r2dr

∫
|Y |2 sin θdθdφ = 1 (2.19)

It is often convenient to separately normalize both the radial part (R) and the

angular part (Y) separately so that the overall wave function is normalized also.

The normalization condition for angular part is:

∫ 2π

0

∫ π

0

|Y |2 sin θdθdφ = 1 (2.20)

The normalized angular wave functions are called spherical harmonics, and

are given by:

Y m
l (θ.φ) = ε

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

eimφPm
l (cos θ) (2.21)

where,

ε = (−1)m if m ≥ 0

ε = 1 if m ≤ 0

Since the angular equation 2.8 does not depend on the potential, spherical

harmonics give the general solution to the angular part for spherically symmetric

potentials. These are important to our work because our variational wave function

consists of spherical harmonics in addition to the neural network and exponential

decay radial terms and spin terms.

8



Y 0
0 =

(
1
4π

)1/2
Y ±22 =

(
15
32π

)1/2
sin2 θe±2iφ

Y 0
1 =

(
3
4π

)1/2
cos θ Y 0

3 =
(

7
16π

)1/2
(5 cos3 θ − 3 cos θ)

Y ±11 = ∓
(

3
8π

)1/2
sin θe±iφ Y ±13 = ∓

(
21
64π

)1/2
sin θ(5 cos2 θ − 1)e±iφ

Y 0
2 =

(
5

16π

)1/2
(3 cos2 θ − 1) Y ±23 =

(
105
32π

)1/2
sin2 θ cos θe±2iφ

Y ±12 = ∓
(

5
8π

)1/2
sin θ cos θe±iφ Y ±33 =

(
35
64π

)1/2
sin3 θe±3iφ

Table 2.1: Some of the low order spherical harmonics

2.4 Radial Solution

For an H atom, we substitute the Columbic potential for V in equation 2.9. The

solution to this equation is again non-trivial, so only the results will be mentioned

here:

Rnl =

√(
2

na

)3
(n− l − 1)!

2n[(n+ l)!]3
e−r/na

(
2r

na

)l [
L2l+1
n−l−1

(
2r

na

)]
(2.22)

where

Lq−pp (x) = (−1)p
(
d

dx

)p
Lq(x) (2.23)

is an associated Laguerre Polynomial, and

Lq(x) = ex
(
d

dx

)q
(e−xxq) (2.24)

is the qth Laguerre Polynomial. n stands for the order of the stationary state,

and l = 0, · · · , n−1 comes from the part we omitted. We can obtain the stationary

wavefunctions for the H atom by multiplying equation 2.21 and 2.22, i.e. ψnlm =

Rnl.Y
l
m

9



3. Hartree-Fock SCF Method

The Self Consistent Field (SCF) method is based on the assumption that the

motion of each electron in the effective field of the (n-1) others is governed by a

one-particle Schrödinger equation[10]. From the studies of the motions of electrons

in atoms done in early 1920’s, it was found possible to reproduce the energy levels

of a valence electron if the Bohr orbits of the inner electrons were smeared out into

a continuous, spherically symmetrical charge distribution[10]. Using this premise

that a bound electron behaves as a charge cloud, with charge density for the

k-th electron given by ρk(r) = −e|fk(r)|2, where fk(r) is the wave function for

k-th electron, Hartree worked out a self-consistent field theory for atoms which is

described in the following section[11].

3.1 Hartree SCF Method

For an atomic system consisting of more than one electron, because of the in-

terelectronic repulsion terms, the Schrödinger equation is not separable, but we

can obtain a zeroth-order wave function by neglecting there repulsions. The

Schrödinger equation would then separate into n one-electron H-like wavefunc-

tions. The zeroth-order wave function would then be a product of n hydrogenlike

(one-electron) orbitals:

ψ = f1(r1)f2(r2) · · · fn(rn) (3.1)

10



where the hydrogenlike k-th orbitals are in the form:

fk = Rnklk(rk).Y
mk
lk

(θk, φk) (3.2)

Electron 1 is assumed to move in the combined field of the nucleus taken as

a point charge Ze and (n − 1) other electrons taken as a continuous negative

charge distribution, in which the density of the k-th electron is given by: ρk(r) =

−e|fk(r)|2. Now, we can write Hartree’s equation for the k-th electron as follows:

Ĥeff
k f(rk) = εkf(rk) (3.3)

where

Ĥeff
k = − ~2

2m
∇2 + Vk(f1, f2 · · · , fn) (3.4)

and

Vk(f1, f2 · · · , fn) = −Ze
2

r
+
∑
l 6=k

e2
∫
dτ ′
|fl(r′)|2

|r− r′|
(3.5)

Here, the prime (′) coordinates represent the coordinates of the l-th electron with

l 6= k. To use the Hartree’s method, we make the central-field approximation

that the potential is dependent on the radial distance only, and solve the Hartree’s

equation for the first electron to obtain an improved orbital by using (n− 1) trial

orbitals. Then we use 1 improved orbital and (n− 2) trial orbitals, and solve the

Hartree’s equation for the second electron to obtain the second improved orbital.

We continue the process until we have improved orbitals for all n electrons. Then

we go back to electron 1 and repeat the process until convergence is achieved.

3.2 Slater Determinant

In the preceding discussion, we paid no attention to the Pauli exclusion principle

which states that no two electrons can occupy the same quantum space. For a

wave function to represent the correct physical picture, it has to be antisymmetric.

11



An antisymmetric wave function can be constructed for an n electron system by

writing the Slater determinant of n orbitals as follows:

ψ(r1, r2 · · · , rn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(r1) f2(r1) · · · fn(r1)

f1(r2) f2(r2) · · · fn(r2)

...
...

. . .
...

f1(rn) f2(rn) · · · fn(rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.6)

Often, we see the following condensed notation used for the Slater determinant:

ψ(r1, r2 · · · , rn) = |f1(r1) f2(r1) · · · fn(r1)| (3.7)

3.3 Hartree-Fock SCF Method

In 1930, Fock and Slater [6, 13] independently worked out a SCF method consisting

of determinantial, antisymmetric wave functions. The procedure is the same as

before except that we are using a slighlty different form of Hamiltonian in equation

2.3 consisting of particle exchange operators (P̂ij). In 1951, Roothaan introduced

a representation of the Hartree-Fock orbitals as linear combinations of a complete

set of known functions called basis functions, i.e.

fk(r) =
n′∑
α=1

ciαχα(r) (3.8)

Here n′ is the number of linearly independent functions χ1, χ2, · · · , χn′ in the basis

set. If n is the number of occupied orbitals, it is necessary that n′ ≥ n. For n′ = n

it is called the minimal basis set. Commonly used basis sets are Slater Type

Orbitals(STOs) and Gaussian orbitals. Using this method, we can compute

the integrals for the expectation values for the kinetic and potential energies in

advance, and the problem reduces to n eigenvalue problems for n′ × n′ matrices.
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4. Variational Wave Function

4.1 Artificial Neural Network

A standard Artificial Neural Network (ANN) consists of many simple, connected

processors called neurons, each producing a sequence of real-valued activations.

The input neurons are activated through sensors perceiving the environment while

other neurons are activated through the weighted connections from already active

neurons. Such interconnection of neurons leads to output neurons, the final result

of all the neuronal processing on the input sensors[15]. An ANN may be either

recurrent or feedforward, of which only the latter is discussed in this thesis. A

simple example of a feedforward neural network is given in the figure below:

Figure 4.1: A feedforward Artificial Neural Network(ANN)

Suppose x
(1)
i is the input, w

(1)
ji is the weight and b

(1)
j us the bias for the input layer.

13



In this notation, the index of the layer is denoted by the superscript. The input

layer 1 is now fed to the hidden layer 2, in which each nodal value is given by the

following relation:

y
(1)
j =

∑
i

w
(1)
ji x

(1)
i + b

(1)
j (4.1)

Before feeding these values to the next layer, they are are transformed by an

activation function. If a(x) is the activation function, the transformed value of

each node in layer 2 is given by:

x2j = a(y
(1)
j ) (4.2)

Activation function in use these days include the sigmoid function, rectified linear

unit, gaussian, ramp function and so on. In this work, we have used the sigmoidal

activation function:

σ(x) =
1

1 + e−x
(4.3)

In a similar fashion, a weighted sum is carried out to calculate the transformed

input for layer 2 to obtain y
(2)
j , which is transformed into x

(3)
j , the input to layer

3. The following schematic explains the notation clearly:

Figure 4.2: Notation for various neural layers

4.2 Radial Basis Function Neural Network

Another type of neural network used in this work is the radial basis function neural

network. We’ll use the radial basis function neural networks to approximate the

ground state wave function for a three dimensional simple harmonic oscillator.

For a three-layer neural network with one input layer, one output layer, and one

14



hidden layer, the output is given by the following equation:

y(x) =
M∑
i

aiρi(||x− ci||) (4.4)

where ai and ci are the parameters of the neural network, xi is the input vector

with the same dimension as ci , M is the number of neurons in the hidden layer

and ρ(|| ||)is a radial basis function. Two of the commonly used radial basis

functions are :

ρi(||x− ci||) = e−|bi||x−ci|
2

(4.5)

and

ρi(||x− ci||) = e−|bi||x−ci| (4.6)

In a recent paper, Teng[18] has used the radial function network to carry out the

Variational Monte Carlo (VMC) calculations for the ground state of some simple

Hamiltonians such as a Simple Harmonic Oscillator (SHO). In this work, too, we

tried to reproduce his results to get familiarized with the optimization techniques.

The results obtained from these calculations are presented in the results section.

The reason for using the neural networks as the wave function approximators

is their representation capability. Hornik [16] showed that a standard multilayer

feedforward networks with as few as a single hidden layer and an arbitrary bounded

and nonconstant activation function are universal approximators for arbitrary fi-

nite input environment measures, provided that sufficiently many hidden units

are available. His results of representing an arbitrary function by neural networks

can be thought of being inspired by Kolmogorov’s representation theorem [17] that

states for any integer n ≥ 2 there are continuous real functions ψpq(x) on the closed

unit interval E1 = [0, 1] such that each continuous real function f(x1, · · · , xn) on

15



the n-dimensional unit cube En is representable as:

f(x1, · · · , xn) =

q=2n+1∑
q=1

Xq

[
n∑
p=1

ψpq(xp)

]
(4.7)

where Xq(y) are continuous real functions.

4.3 Variational Representation of an Atomic Wave

Function Using ANN

To derive the variational representation of an atomic wave function using ANN,

we will rewrite equations 3.1 and 3.2. The zeroth order wave function, that does

not involve any correlation terms, for a many-electron atom can be written as

follows:

ψ = f1(r1)f2(r2) · · · fn(rn) (4.8)

where the hydrogenlike k-th orbitals are in the form:

fk = Rnklk(rk)Y
mk
lk

(θk, φk) (4.9)

Here nk, lk, and mk are the principal, angular momentum, and magnetic quantum

numbers, respectively. In our approach, rather than approximating the radial

functions for each of the orbitals differently, we approximate them in a combined

fashion by using a single feedforward artificial neural network with one hidden

layer and m sigmoid hidden units, i.e.

N(r1, r2, · · · , rn;λ) =
m∑
i=1

aiσ

(
n∑
j=1

bijrj + ci)

)
=

m∑
i=1

aiσi(r1 · · · rn; bi; cj) (4.10)

In this equation, λ = (a1, · · · , am; b1, · · · ,bn; c1, · · · , cn) is a collective represen-

tation for all the network parameters a, b, and c. σ is the sigmoid function widely
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used by the machine learning community, given by:

σ(x) =
1

1 + e−x
(4.11)

An advantage of using this function can be seen while differentiating it. The

evaluation of the function gets us very close to the evaluation of its derivative,

resulting in a huge computational advantage:

σ′(x) = σ(x).[1− σ(x)] (4.12)

If we look up the radial wave functions for an electron in H-like atoms, we will see

that these consist of an exponential decay term given by e
− Zr

nka0 , where a0 is the

Bohr’s radius. Using this observation, we will multiply our neural network radial

wave function by the following term:

e−d1r1e−d2r2 · · · (4.13)

To make the our formulation tidier, we will rewrite the wave function as follows:

Ψ = N(r1, r2, · · · rn;λ) e−d1r1Y m1
l1

(θ1, φ1)︸ ︷︷ ︸
f1(r1,θ1,φ1)=f1(r1)

· · · e−dnrnY mn
l1

(θn, φn)︸ ︷︷ ︸
fn(rn,θn,φn)=fn(rn)

(4.14)

= N(r1, r2, · · · rn;λ)f1(r1) · · · fn(rn) (4.15)

Here, the fi’s are not to be confused with the actual orbitals. These are one-

electron functions consisting of both radial and angular part, but are missing the

polynomial radial part of H-like orbitals.

Our formulation of the wave function for a many-electron atom in the form of

equation 4.8 so far does not take into account the antisymmetric requirement re-

quired by the Pauli exclusion principle. This formulation is similar to the Hatree

theory whose successor is the Hartree-Fock theory includes the Pauli exclusion

principle while still letting each electron have its own orbital. In this theory, the
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assumed form of the wave function is a Slater determinant (see section 3.2) . How-

ever, our formulation does not consist of distinct orbitals rather the product of the

radial parts from each of the orbitals is represented by the neural network. It is

important to note that, in addition to the neural network representation, we also

have an exponential decay factor (equation 4.13) for each of the orbitals. We could

have included the effect of these factors into the neural network itself, however,

doing so would eliminate the possibility of exploiting the Slater determinant to

achieve the antisymmetric wave function, which is so far the only method known

to us to enforce the Pauli exclusion principle in a many-electron wave function.

Each of the orbitals can accommodate two electrons with opposite spins. Spin

can be regarded as an internal degree of freedom having two possible states, de-

noted by the spin functions α or β. Unless magnetic interactions are included in

the Hamiltonian, space and spin variables for each electron are separable. Notice

that n orbitals can account for 2n electrons. Now, we are in a position to express

the many-electron wave function in the form of Slater determinant:

Ψ = N(r1, r2, · · · rn;λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(r1)α f1(r1)β f2(r2)α f2(r1)β · · ·

f1(r2)α f1(r2)β f2(r2)α f2(r2)β · · ·
...

...
...

...
. . .

f1(rn)α f1(rn)β f2(rn)α f2(rn)β · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.16)

This notation can be abbreviated as follows:

Ψ = N(r1, r2, · · · rn;λ)

∣∣∣∣ f1(r1)α f1(r1)β f2(r1)α f2(r1)β · · ·
∣∣∣∣ (4.17)

= N(r1, r2, · · · rn;λ)

∣∣∣∣ f1(r1) f1(r1) f2(r1) f2(r1) · · ·
∣∣∣∣ (4.18)

Here, the unbarred function is multiplied by the spin variable α while the barred

function is multiplied by the spin variable β. Note that the normalization factor

1√
N !

has been omitted from the Slater determinant as it is taken into account in the
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coefficient of the neural network function. In this variational notation, we expect

to have fewer parameters for the variational representation because the radial part

of each of the orbitals is not optimized separately rather we are optimizing their

product while still preserving the antisymmetric property of the wave function.

Following is a simple illustration of this property. Consider the He wave function:

Ψ = N(r1, r2, · · · rn;λ)

∣∣∣∣∣∣∣
f1(r1)α f1(r1)β

f1(r2)α f1(r2)β

∣∣∣∣∣∣∣
= N(r1, r2, · · · rn;λ)

∣∣∣∣∣∣∣
e−d1r1Y 0

0 (θ1, φ1)α e−d1r1Y 0
0 (θ1, φ1)β

e−d1r2Y 0
0 (θ2, φ2)α e−d1r2Y 0

0 (θ2, φ2)β

∣∣∣∣∣∣∣
If r1 = r2 i.e. (r1, θ1, φ1) = (r2, θ2, φ2), rows 1 and 2 are equal resulting in a zero

determinant.
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5. Optimization Scheme

5.1 Variational Principle

The variational principle in quantum mechanics allows us to find the ground state

of a quantum system that satisfies the Schrödinger equation:

Ĥψ = Eψ (5.1)

It states that, for any choice of trial function ΨT the energy calculated is always

greater than or equal to the ground state energy i.e.

E0 ≤
〈ψT |Ĥ|ψT 〉
〈ψT |ψT 〉

(5.2)

Since our goal is to find the ground state, the problem is now reduced to a

optimization problem in which we are supposed to minimize the energy by finding

optimal values of the variational parameters for the wave function as described in

the previous section.

5.2 Variational Monte Carlo (VMC) Integration

To calculate the expectation value of an operator Ô, we need to integrate over all

spatial and spin variables. The number of spatial variables (x, y, z) increases by

a factor of 3 with the addition of each new particle to the system. Consequently,

grid-based integration method can be computationally very expensive in higher
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dimensional calculations. Although grid-based integration is a very accurate, de-

pending on how fine a mesh we choose, most of the time, we are sampling over

configurations in which the probability of finding the particles is extremely low.

Thus, it makes more sense to use a method that spends less time sampling over

low probability configurations and more time sampling over high probability con-

figurations. Variational Monte Carlo Integration computes the expectation value

of an operator by taking the average value of the the operator over the configura-

tions sampled based on the probability distribution function given by |ψ(R;λ)|2,

which is literally the probability of finding the particles in the given configuration.

Suppose R represents the set of all the spatial variables (r1, r2, · · · , rn) and λ

represents all the variational parameters. The calculation of the expectation value

proceeds as follows:

〈Ô〉 =
〈ψ(R;λ)|Ô|ψ(R;λ)〉
〈ψ(R;λ)|ψ(R;λ)〉

=

∫
|ψ(R;λ)|2 Ô|ψ(R;λ)〉

|ψ(R;λ)〉 dR∫
|ψ(R;λ)|2dR︸ ︷︷ ︸

1

=

∫
|ψ(R;λ)|2︸ ︷︷ ︸
Probability
Distribution
Function

Ô |ψ(X;λ)〉
|ψ(R;λ)〉

dR (5.3)

There is no spin part in this expression because we are assuming that the opera-

tor Ô does not act on spin .We can see that that the quantity being sampled is

Ô|ψ(R;λ)〉
|ψ(R;λ)〉 rather than Ô.

The following is an example that illustrates the calculation of the expectation

value for the hamiltonian (Ĥ):

E = 〈ψ(R;λ)|Ĥ|ψ(R;λ)〉

=

∫
|ψ(R;λ)|2 Ĥ |ψ(R;λ)〉

|ψ(R;λ)〉
dR (5.4)
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Suppose

EL(R) =
Ĥ |ψ(R;λ)〉
|ψ(R;λ)〉

(5.5)

is the local energy. Then we can write the energy as:

E =
1

N

N∑
i=1

EL(Ri) (5.6)

Here, EL is calculated for N samples sampled according to the probability distri-

bution function |ψ(R;λ)|2. The sampling is carried out by using the Metropolis

algorithm which is described in the following section. In theory, the accurate value

of energy is obtained as N →∞

5.3 Metropolis Algorithm

The Metropolis algorithm is the most popular form of Markov Chain Monte

Carlo(MCMC) process. We start with some random configuration Rold, pick

a trial configuration Rtrial, and now attempt to make the move Rold → Rtrial .

The probability of this move being accepted is given by the following factor:

w = min

(
1,

∣∣∣∣ψ(Rtrial,λ)

ψ(Rold,λ)

∣∣∣∣2
)

(5.7)

The acceptance ratio is given by the ratio of number of accepted moves to the

total number of attempted moves. It is common to adjust the range of the move

vector such that the acceptance ration is around 0.5. However, this method is

still inefficient because we are still calculating the value of the wave function at

a lot of configurations which are not very probable. To overcome this issue, an

improved version of this method calledthe Metropolis-Hastings algorithm [9] is

used. This MCMC process uses Green’s function to improve the acceptance ratio.

It is not described in detail here because we used the Metropolis algorithm for all

our calculations.
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5.4 Stochastic Reconfiguration (SR)

Stochastic Reconfiguration is commonly used to optimize the quantum wave func-

tion [7, 18, 3]. To use this method, we need to define the following operator:

Oλi =
∂iψ(R,λ)

ψ(R,λ)
(5.8)

The covariance matrix and forces are defined as:

Sij = 〈O∗iOj〉 − 〈O∗i 〉
〈
O∗j
〉

Fi = 〈ElocalO∗i 〉 − 〈Elocal〉 〈O∗i 〉

The parameters are updated as follows:

λ′
j = λj + αS−1F (5.9)

Since the covariance matrix (S) can be non-invertible, we take its Moore-Penrose

pseudo-inverse for regularization purposes.

5.4.1 SR Operators for Simple Harmonic Oscillator (SHO)

As mentioned earlier, we replicated the results for a SHO produced by Teng [18]

in which we used a Gaussian basis function to estimate the ground state. The

wave function can be approximated for this neural network as:

ψ(R; a,b, c) =
M∑
i

aiρi(||R− ci||) (5.10)

where

ρi(||R− ci||) = e−|bi||R−ci||
2

(5.11)
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is the Gaussian basis and we’ve used R = (x, y, z) for a 3-dimensional SHO.

Now we can define the SR operators as follows:

Ôai(R) =
ρi
ψ

(5.12)

Ôbi(R) = −aibi|R− ci|2ρi
|bi|ψ

(5.13)

Ôcij(R) =
2ai|bi|(rj − cij)ρi

ψ
(5.14)

5.4.2 SR Operators for Helium Wave Function

Here, we define the SR Operators for a Helium wave function only because it is

fairly simple; for bigger atoms, the number of terms in the Slater determinant

increases and calculation of the operators involving derivatives gets more compli-

cated. As mentioned in the previous chapter, the wave function for a He atom is

given by the following determinant:

ψ = N(r1, r2, · · · rn;λ)

∣∣∣∣∣∣∣
f1(r1)α f1(r1)β

f1(r2)α f1(r2)β

∣∣∣∣∣∣∣
= N(r1, r2, · · · rn;λ)

∣∣∣∣∣∣∣
e−d1r1Y 0

0 (θ1, φ1)α e−d1r1Y 0
0 (θ1, φ1)β

e−d1r2Y 0
0 (θ2, φ2)α e−d1r2Y 0

0 (θ2, φ2)β

∣∣∣∣∣∣∣
=

m∑
i=1

aiσ

(
n∑
j=1

bijrj + ci)

)
e−d1r1Y 0

0 (θ1, φ1)e
−d1r2Y 0

0 (θ2, φ2). (αβ − βα)︸ ︷︷ ︸
=1

(5.15)

The spin functions integrate to 1 when summed over all the spin configurations

so we are eliminating the spin part from our calculation for the Helium wave

function. However, for larger atoms, it is wrong to do so because not all the spin

terms integrate to 1. In order to avoid such complexity arising from the spin terms,

VMC calculations exploit the technique of separating the Slater determinant into

two determinants with spin up and spin down terms [8]. For He, the SR operators
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for each of the parameters are as follows:

Ôai(R) =
σi
N

Ôbij(R) =
σ′irjai
N

Ôcij(R) =
σ′jaj

N

where,

σ′ = σ(σ − 1) (5.16)

is the derivative of the sigmoid function.
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6. Results

6.1 Simple Harmonic Oscillator (SHO)

The Hamiltonian for the 3d simple harmonic oscillator is given by:

Ĥ = − ~2

2m
∇2 +

1

2
k(x2 + y2 + z2) (6.1)

In our simplified units, ~ = m = k = 1.Consequently,

Ĥ = −1

2
∇2 +

1

2
(x2 + y2 + z2) (6.2)

In these units, the ground state is given by:

ψ0(x, y, z) = e−
1
2
(x2+y2+z2) (6.3)

and the n-th energy level is given by En = (n+ 3
2
). So, the ground state energy is

equal to 1.5 units. We carried out the SR optimization for a Gaussian basis nerual

network of various hidden nodes (Nh) which are listed in Table 6.1:

Nh Energy
1 1.50
2 1.50
5 1.50
10 1.50

Table 6.1: Ground state energy for 3d SHO for various number of hidden nodes
(Nh)

26



The optimization using SR for a 3d SHO was very fast on the computer. Even for

the neural networks with 10 hidden nodes, the ground state was reached in less

than 10 steps. The plot below shows the convergence for neural networks with

various Nh.

The average value of all the calculations with varying number of hidden nodes

Figure 6.1: Convergence for neural networks with various Nh

was 1.50, so the neural network wave function was able to accurately represent

the ground state of the SHO. It is not quite surprising because the ground state

of a SHO is a Gaussian given by equation 6.3 so only one hidden node should be

able to represent the ground state. The main purpose of this calculation was to

get acquainted with application of the various methods discussed in the previous

section by reproducing the results of Teng[18].

6.2 Helium Atom

The Hamiltonian for an atomic system in general is given by:

Ĥ = −1

2

n∑
i=1

∇2
i −

n∑
i=1

Z

ri
+

n−1∑
i=1

n∑
j=i+1

1

|ri − rj|
(6.4)

27



In this reduced system of units, we get the energy in the units of Hartrees (1

Hartree = 27.21138602 eV). For the He atom, the Hamiltonian is given by:

Ĥ = −1

2
∇2

1 +−1

2
∇2

2 −
2

r1
− 2

r2
+

1

r12
(6.5)

The calculated value of ground state energy by using a neural network wave func-

tion given by equation 5.15 is 2.86 Hartrees. The experimentally determined

value is 2.90 Hartrees and the value determined from SCF calculations is 2.86168

Hartrees [19]. Our calculation is very close to the SCF calculation; however, this

alone is not a proof of concept for the neural network based atomic wave func-

tions. The main reason is because the He ground state only involves 1s orbital.

The radial part for the 2s orbital for a hydrogen atom is 2a−3/2e
−r
a where a is the

Bohr’s radius. This expression is purely an exponential decay, and our variational

expression of the wave function consists of an exponential decay part already. So,

the neural network is only left to represent a constant function i.e. the normaliza-

tion factor. So, the problem predominantly turns into an optimization problem for

the exponential decay factor d rather than the actual neural network parameters.

Since we are trying to get the neural network to represent a constant function, the

optimization is completed in only 3-4 steps by using SR method.

6.3 Lithium Atom

The Hamiltonian for a Li atom is given by:

Ĥ = −1

2
∇2

1 +−1

2
∇2

2 −
3

r1
− 3

r2
− 3

r3
+

1

r12
+

1

r23
+

1

r13
(6.6)

As mentioned earlier, the wave function for Li atom obtained using Slater deter-

minant involves spin terms which is fairly non intuitive to optimize by using the

VMC algorithm that involves splitting the determinant into two determinants,

28



one each for spin up and spin down configurations. We have not yet been able to

apply this method, so we tried to optimize our variational wave function for the

Li atom by assuming it as a product of the orbitals:

ψ =
m∑
i=1

aiσ

(
n∑
j=1

bijrj + ci)

)
e−d1r1Y 0

0 (θ1, φ1)e
−d1r2Y 0

0 (θ2, φ2)e
−d2r3Y 0

2 (θ3, φ3)

(6.7)

Now the neural network is not representing just the normalization factor but rather

a polynomial function. For an H atom, the radial part for the 2s orbital is given

by:

R20 =
1√
2
a−3/2

(
1− 1

2

r

a

)
e−

r
2a (6.8)

We already have the exponential decay part in our variational form so the only

part that the neural network is left to approximate is the polynomial part. It

should be noted that our variational form in equation 6.7 is not entirely accu-

rate because we can have multiple electrons occupying the same position because

there is no antisymmetric property here. We calculate the ground state energy

to be -7.41 Hartrees, while the value calculated by using highly accurate SCF

method on Hylleraas basis set is -7.4780603239041 [20]. Although our value is

not quite the same as the SCF calculated value, it is more accurate than the

non-antisymmetrized wave function optimized value which is -7.403 Hartrees as

calculated by Davis[21].
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Conclusion

In this work, we have outlined a theoretical model to calculate the ground state

wave function for atomic systems by using an artificial neural network. Although

this model has not been fully tested, we developed the computational groundwork

for the wave function calculation and its optimization. In this process, we repro-

duced the results for solving the SHO ground state using radial basis function

neural network first proposed by Teng [18]. In all the calculations, the Metropolis

algorithm was used to sample the spatial configurations, VMC was used to cal-

culate the expectation values of the operators, and SR was used to minimize the

wave function. We tested this approach for the He atom and the results seem to be

competent with highly accurate SCF calculations. However, for the Li atom, we

have not fully worked out the VMC calculation involving the Slater determinant,

so we tested the un-antisymmetrized wave function which gave ground state en-

ergy value better than the one calculated by a similar approach [21]. Through this

work, we have demonstrated the case made by Carleo and Troyer [3] that novel

methods involving artificial neural networks can be developed to solve quantum

many body problems.
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