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 Abstract 
 

Introduced in this paper is the time difference of arrival (TDoA) conic approximation method 

(TCAM), a technique for passive localization in three dimensions with unknown starting 

conditions. The TDoA of a mutually detected signal across pairs of detectors is used to calculate 

the relative angle between the signal source and the center point of the separation between the 

detectors in the pair. The relative angle is calculated from the TDoA using a mathematical model 

called the TDoA approximation of the zenith angle (TAZA). The TAZA angle defines the 

opening angle of a conic region of probability that contains the signal source, produced by each 

detector pair. The intersecting region of probability is determined from the conic regions of 

probability and represents the volumetric region with the highest probability of containing the 

signal source. TCAM was developed and tested using synthetic data in a simulated environment.  
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Chapter 1: Introduction 
 

 Wave source localization is a complex endeavor with a multitude of practical applications 

in a variety of fields. In this paper, a new computational method for passive three dimensional 

localization will be introduced, and the results of simulation testing of this method will also be 

presented. The introduced method allows for three dimensional localization of a signal with 

single path detection across multiple detectors and unknown starting conditions. This method can 

be applied to any type of signal detected, however it was originally developed for marine 

acoustic applications. 

 

Marine Acoustics 
 

Developmental inspiration for this method came while localizing marine mammals in the 

Gulf of Mexico as research for the LADC-GEMM consortium. LADC-GEMM’s mission is 

tracking marine mammal recovery after the Deepwater Horizon oil spill. We deployed sets of 

highly sensitive hydrophones, called EARS, in strategic locations to study sperm whale, beaked 

whale, and dolphin acoustic signals in the region of the oil spill. Behavioral studies and 

population density calculations require passive acoustic localization and tracking of the detected 

signals. The Gulf of Mexico offers a unique environment for passive acoustic localization. Mud 

floors and varying sea states eliminate the reliability of multipath detections. Furthermore, 

underwater monitoring has the added complication of being isolated from any electromagnetic 

waves (US Department of Commerce, 2013) making time synchronization and data transmission 

very limited. 

Localization in this environment requires an understanding of the history of acoustic localization.  

 

History of Acoustic Localization  
 

Acoustic localization was refined for military use in the early 20th century and has roots 

in human cognition and perception of sound. The ancient Greeks pondered the “there-here” 

problem, which attempts to examine how the sound of a plucked Lyre in one place (there) can be 

perceived by a person in another place (here). There was a plethora of explanations to this 

question raised from many different schools of thought. One proposed explanation involved the 

opening of a tunnel in the ether that the sound would flow through, while atomists like 

Democritus and Epicurus believed that sound was a stream of indivisible atoms that contained 

information. While diligent in their attempts, no cogent theory of sound would emerge until the 

19th century. 

The 19th century was a time of scientific growth and development in the West. The wave 

equation had been established by the works of such people as Newton, Bernoulli, D’Alembert, 

and Lagrange. In 1822 Joseph Fourier published his theorems on heat flow (Fourier, 1822); 

which were later used by Georg Simon Ohm to develop Ohm’s Acoustic Law in 1843 

(Ohm,1843). As psychophysics became more popular in the 19th century, researchers applied 

these new mechanics theorems to human bioacoustic localization. In 1876, John William Strutt, 

3rd Baron Rayleigh, 1904 Nobel Laureate, gave his lecture on “Our perception of the direction 

of a source of sound” (Strutt, 1876) in which he proposed that human sound localization was the 

result of amplitude differences detected by each ear. However, Strutt had considerable difficulty 
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localizing low frequency sounds. Later, in 1907, Strutt gave a follow up lecture in which he 

proposed that the low frequency problems may be caused by a phase difference perceived across 

the ears. This was an unpopular notion at the time because it conflicted with Ohm’s Acoustic 

Law, which states that the quality of a complex tone depends solely on the number and relative 

strength of its partial simple tones, and not on their relative phases. The introduction of the 

telephone receiver enabled experimenters to control the timing of the signal to each ear 

separately, and led to new experiments in localization. In the 1920’s von Hornbostel and 

Wertheimer (von Hornbostel, Wertheimer,1920), and later Klemm (Klemm,1920), proposed that 

the intermediate time could be computed from the intermediate phase as a basis for sound 

localization. 

At this time, the world was still recovering from the mechanized warfare of the first 

World War. Advances in artillery enabled cannons to hit targets at extreme distances, and the 

need for localizing the cannon shots, also known as artillery sound ranging, was paramount for 

strategic advantage. During the war, a method was devised that utilized several detectors 

separated by a few kilometers. All of the detectors were connected to a central signal processing 

system that analyzed the time difference of arrival of the sound wave across the detectors. The 

law of cosines was used to form a non-linear system of equations that could be solved to estimate 

the wave source location. However, the calculations required were often too difficult to perform 

while maneuvering in a battle. In a 1924 paper by C.V. Drysdale titled Submarine Signaling and 

the Transmission of Sound Through Water, (C.V. Drysdale,1924) examined the acoustic 

localization techniques developed on land for submarine applications. In his paper, Drysdale 

pondered various ways to reduce the computation and data requirements of acoustic localization 

under water. He proposed pairing hydrophones and modelling the TDoA of a mutually detected 

wave as a hyperbola whose branches account for the possible locations of the wave source, and 

the asymptotic lines of the branches can be used to approximate the wave source location. 

 

Conception of method 
 

The localization method presented in this paper is expanding on the concepts presented 

by Drysdale and uses modern computational capabilities to calculate the source of a signal in 

three dimensions based on passive detection with unknown starting conditions. This new method 

will use a mathematical model to determine the relative angles between sets of detectors and a 

detected signal, and then determine the mutual region that has the highest probability of 

containing the signal origin. The method offers several expressions for computing the relative 

angles; each having different accuracy and computational requirements. The method accounts for 

possible error in the mathematical model and applies upper and lower error bounds to the 

localization algorithm. Ultimately, the method was conceptualized as a fast and affective 

approach to three dimensional passive localization in order to expedite localization operations in 

various research fields. 
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Chapter 2: Methodology 
 

Signal Detector Pairing   
 

The technique introduced here is a method of spatial analysis derived from the time 

difference of arrival of a signal, TDoA, across at least two detectors. For this paper, the method 

assumes omnidirectional wave detectors with infinite detection range and perfect time 

synchronization, as well as a constant wave speed profile; however, the method can be 

augmented to account for variations in the detector system characteristics. Generally, the 

technique requires two or more time synchronized detectors positioned in three dimensional 

space. These detectors do not need to be positioned in any particular orientation, and can be 

positioned randomly. The detectors are grouped into pairs and analyzed together as a detector 

pair. Any two detectors can be paired, and more pairs result in more accurate localization. The 

pairs should be chosen based on their proximity and alignment to each other. Consideration of 

the separation distance with respect to the sampling frequency and wave speed when pairing 

detectors can reduce error, and careful attention to alignment can simplify the rotations that are 

needed in the method.  

 

Furthermore, the detectors can be grouped into multiple pairs with multiple other 

detectors. Cross-pairing the detectors in this manner allows for more pairs to contribute to the 

localization accuracy without the addition of more detectors. The method analyzes each pair 

individually then cross references the results of each; thus arbitrary pairing of detectors will not 

affect the behavior of the method.  

 

However, in order to be paired, both hydrophones in the pair must be time synchronized 

with respect to each other, which can limit the choice of detectors to be paired. In addition, the 

separation distance between the detectors in a pair must be large enough to allow for accurate 

signal detection while accounting for wave speed and sampling frequency, which can also limit 

cross-pairing.  

 

TDoA Approximation of the Zenith Angle 
 

 The TDoA Approximation of the Zenith Angle (TAZA) is a mathematical model of the 

relationship of the Time Difference of Arrival of a detected wave by a detector pair and the 

zenith angle of the wave to the midpoint half way between the detectors in the pair. The 

technique normalizes the TDoA by taking the ratio of the detected TDoA and the maximum 

possible TDoA. The maximum TDoA is determined by the separation distance of the detectors in 

a pair and the wave speed across the separation distance. Let  

 

Δ𝑡 = 𝑡2 − 𝑡1 

𝑡𝑚𝑎𝑥 =
𝑑𝑠

𝑐𝑤
 

𝜏 =
Δ𝑡

𝑡𝑚𝑎𝑥
, −1 ≤ 𝜏 ≤ 1 

(eq.01) 

(eq.02) 

(eq.03) 
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where Δ𝑡 is the TDoA of detection times 𝑡1, for detector 1, and 𝑡2, for detector 2, 𝑡𝑚𝑎𝑥 is the 

maximum possible TDoA, 𝑑𝑠 is the distance of separation of the two detectors, 𝑐𝑤 is the wave 

propagation speed, and 𝜏 is the normalized time ratio.  

 

The midpoint of the separation distance, called the reference point, 𝑃𝑟𝑒𝑓, is defined as 

half of the separation distance in the direction of the second detector from the first detector, as 

shown in figure 1. 

𝑃𝑟𝑒𝑓 =
1

2
𝑑𝑠𝑟̂12 

The first detector, called the reference detector, is defined by the experimenter and allows for 

standardization of directionality across all detector pairs. The reference point and reference 

detector define the local Euclidian coordinate system for each detector pair; where 𝑃𝑟𝑒𝑓 defines 

the origin, and the reference detector is located at half the separation distance in the z direction, 
1

2
𝑑𝑠𝑧̂, thus defining the z-axis, as seen in figure 1.  

  

 

The zenith angle of incidence is defined as the angle from the xy-plane toward the z-axis 

from the reference point to the detected wave source. Omnidirectional ambiguity and symmetry 

allows for interchangeability of the x and y axes across all detector pairs so long as handedness is 

consistent. The arbitrary nature of assigning the x and y axes allows for the problem to be 

simplified into two dimensions by defining the R-axis as a composite of the x and y axes: 

 

𝑅̂ = √𝑥̂2 + 𝑦̂2 

 

Where the positive direction of the R-axis is in the direction of the wave source from 𝑃𝑟𝑒𝑓. While 

the azimuthal angle is unknown, thus the exact direction of the R-axis is unknown, the zenith 

angle is the same for all azimuthal values. This allows for the calculations to be simplified into a 

two dimensional cross section, the R-Z plane, on which both 𝑃𝑟𝑒𝑓 and the wave source must both 

(eq.04) 

Figure 1: The reference point is determined as half of the separation distance of the pair in the direction from the 

reference detector to the second detector as defined by eq.04 (left). The reference point now defines the origin of 

the local Euclidian space around the detector pair with the positive z-axis in the direction of the reference 

detector (right).  
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be located. On the R-Z plane, the zenith angle of incidence, 𝜃𝑧, is the angle between the R-axis 

and the wave source from 𝑃𝑟𝑒𝑓, as seen in figure 2. 

 

  
 

 

The dependence of the zenith angle of incidence, θz, on the time ratio can be expanded in 

an nth-order polynomial:  

𝜃𝑧(𝜏) =
𝜏

|𝜏|
 ∑ 𝑎𝑖|𝜏|𝑖

𝑛

𝑖=0

 

where 𝑎𝑖 is a weighting coefficient in the series of length (𝑛 + 1). Error is minimized for a 

longer series (larger values of 𝑛); however, testing shows a value of 𝑛 > 50 is sufficiently 

accurate and is used as the polynomial order for testing in this work. Mirror symmetry across the 

xy-plane means that the value of the time ratio will be the same for detections at the same angle 

both above and below the xy-plane, but they will have opposite signs (the classic ambiguity 

problem). For this reason, the absolute value of the time ratio is taken for the polynomial and the 

resultant calculated zenith angle is scaled to have the same sign as the time ratio. 

𝜏

|𝜏|
= {

1      𝜏 > 0
−1    𝜏 < 0
0      𝜏 = 0

 

 

The polynomial expression for TAZA is highly accurate with many terms, but computing 

the 𝑛𝑡ℎ-order polynomial can be difficult for some applications. TAZA can also be modeled as a 

trigonometric expression that uses only two coefficients 𝑏0 and 𝑏1, but suffers from reduced 

accuracy:  

𝜃𝑧(𝜏) =
𝑏0𝜏

|𝜏|
artanh(𝑏1|𝜏|) 

(eq.05) 

(eq.06) 

Figure 2: The R-Z plane is a cross section of the local coordinate system on which both 𝑃𝑟𝑒𝑓  and the wave 

source are located (left). The zenith angle of incidence, 𝜃𝑧, is shown on the R-Z plane (right).  
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This expression allows for very fast and easy calculations of the zenith angle with reasonable 

accuracy. The accuracy can be improved by applying a correction factor, Φ𝑧, which can be 

modeled as a thirteenth-order polynomial.  

Φ𝑧 = 1 − ∑ 𝑐ℎ|𝜏|ℎ

13

ℎ=0

 

Thereby making a sixteen coefficient expression for TAZA: 

𝜃𝑧(𝜏) =
𝑏0𝜏

|𝜏|
artanh(𝑏1|𝜏|) ∙ Φ𝑧 

 

The fourteen correction factor coefficients, 𝑐, plus the two hyperbolic arctangent coefficients, 𝑏, 

gave accuracy comparable to the fiftieth order zenith angle polynomial for the test cases 

described below.  

 

Figure 3 shows the zenith angle versus the time ratio generated using simulations for the 

different expressions for the TAZA model. The solid orange line shows the result for a 50 

coefficient polynomial expression (eq.05), the solid blue line shows the result for the two 

coefficient trigonometric expression (eq.06), and the dashed amber line shows the result for the 

16 coefficient corrected trigonometric expression (eq.08). The 𝑏 and 𝑐 coefficients used are 

given in table 1; the full table of 𝑎𝑛 coefficients can be found in the appendix. It can be seen that 

the corrected trigonometric expression is nearly identical to the 50 coefficient polynomial 

expression at this scale, unlike the two-coefficient trigonometric expression which diverges at 

higher values of 𝜏. However, the ease of calculating the two coefficient trigonometric expression 

makes it a viable option for fairly accurate results with limited computational resources. Minor 

differences in the expressions cannot be seen at this scale, however, the accuracy of each 

expression compared to the true value is illustrated in figure 6. Examining the error of each in 

figure 6 shows that the 50 coefficient expression is more accurate than the 16 coefficient 

expression.   

 

𝑏0 61.20987 𝑐6 2.43E+05 

𝑏1 0.879179 𝑐7 -7.13E+05 

𝑐0 -5.59E-02 𝑐8 1.44E+06 

𝑐1 -8.49E-01 𝑐9 -2.01E+06 

𝑐2 3.87E+01 𝑐10 1.90E+06 

𝑐3 -7.71E+02 𝑐11 -1.16E+06 

𝑐4 8.41E+03 𝑐12 4.14E+05 

𝑐5 -5.60E+04 𝑐13 -6.54E+04 

(eq.07) 

(eq.08) 

Table 1: TAZA coefficients 𝑏 and 𝑐 for 

eq.07 and eq.08 

Figure 3: Comparison of the TAZA 

expressions for the 𝜃𝑧 𝑣𝑠 𝜏 relationship. 

The 𝑛 = 50 and 𝑛 = 16 plots are 

identical at this scale, while the 𝑛 = 2 

plot varies slightly for lower values of 𝜏 

but diverges for values of 𝜏 > 0.7.  
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Conic Regions of Probability 
 

The approximated zenith angle on the R-Z plane defines a line of probability that extends 

from 𝑃𝑟𝑒𝑓 to the wave source. The line of probability is infinitely long (max detection range) and 

indicates all of the points in the direction of the angle where wave source could be located.    

The conic surface of probability is the result of revolving the line of probability by the full range 

of azimuthal ambiguity of the omnidirectional detectors around the z-axis, and represents the 

possible locations the source could be located in three dimensions. Earlier, the problem was 

simplified into two dimensions on the R-Z plane. When expanded back into three dimensions, 

the rotated line of probability creates a hollow cone whose vertex is located at 𝑃𝑟𝑒𝑓 and whose 

edges extend to infinity (max detection range) around the local z-axis, as seen in figure 4.  

  

 

The conic surface of probability, 𝑉, is expressed as: 

𝑉(𝑥, 𝑦; 𝜃𝑧) = 𝑅(𝑥, 𝑦) tan(𝜃𝑧) 
where, 

𝑅(𝑥, 𝑦) = √𝑥2 + 𝑦2 

 

The conic surface of probability is an ideal estimate of all possible source locations given by the 

TAZA model. However, the various accuracies for the various equations of TAZA means that the 

calculated zenith angle represents a center angle with an upper and lower error bounds, ±𝜓, in 

which the wave source must be located, as shown in figure 5. 

(eq.09) 

(eq.10) 

Figure 4: Rotation of the line of probability defined by the TAZA angle, 𝜃𝑧, by the full range of azimuthal 

ambiguity (2𝜋) around the z-axis (left) creates a conic surface of probability on which the wave source must be 

located.  
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The conic surface of probability is expanded into a conic region of probability when the upper 

and lower bounds are also included in the rotation making a hollow funnel whose walls thicken 

with distance from the reference point at the conic vertex. The conic region of probability, 𝕍, is 

expressed as  

 

𝕍 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑉(𝑥, 𝑦; 𝜃𝑧 − 𝜓) ≤ 𝑧 ≤ 𝑉(𝑥, 𝑦; 𝜃𝑧 + 𝜓)} 
 

where 𝜓 is the upper and lower bound, measured in degrees, of the zenith angle, described by 

𝜓 = 𝕖𝜃 + 𝕖𝑐 
where the contributions of the error of the TAZA expression used to approximate the zenith angle 

are given by 𝕖𝜃, and the error of the wave speed profile on the detected TDoA to the angle 

bounds is given by 𝕖𝑐. These bounds also are measured in degrees. The conic region of 

probability is composed of the region between the upper and lower bounds of the zenith angle. 

Minimizing the conic region by reducing 𝜓 will result in a more precise localization. The wave 

speed error, 𝕖𝑐, is modeled for the detection environment for each application. For constant wave 

speed profiles, 𝕖𝑐 = 0.  

 

Each TAZA expression will have a unique error, 𝕖𝜃, the average percent error of the 

expression in the direction of 𝜃𝑧 on the R-Z plane. The percent error, 𝐸%, is a scaler field across 

𝑅 and 𝑧, expressed as 

𝐸%(𝑅(𝑥, 𝑦), 𝑧) =
|𝜃𝑧(𝜏) − arctan (

𝑧
𝑅)|

arctan (
𝑧
𝑅)

× 100 

The average of 𝐸% in the direction of 𝜃𝑧 is given as 

𝕖𝜃 =
𝜃𝑧

100 ∫ 𝑑𝑟
𝐶

∫ 𝐸%(𝑅(𝑥, 𝑦), 𝑧) 𝑑𝑟

C

 ;    𝐶 = r ∙ tan(𝜃𝑧) |
∞
 
0

;   𝑟 = √𝑅2 + 𝑧2 

Due to radial symmetry about the z-axis and mirror symmetry across the xy-plane, 𝐸% is the 

same for any direction of 𝑅; thus allowing for easy two dimensional modelling on the R-Z plane. 

(eq.11) 

(eq.12) 

(eq.13) 

(eq.14) 

Figure 5: To account for the error in 

the various equations for TAZA, an 

upper and lower bound, 𝜓, on 𝜃𝑧 

results in a conic region of 

probability derived from the 

expanded conic surface of 

probability.  
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Analysis shows a radial trend in 𝐸% from the reference point; as seen in figure 6. Therefore, 𝕖𝜃 is 

taken linearly across 𝐶, which is a line mimicking a cross section of 𝑉, as illustrated in figure 6.  

The 𝐸% for the different expressions for TAZA can be seen in figure 6, as well as a visual 

representation of the line 𝐶 along which the average of 𝐸% is calculated. The color scales for 

each of the three plots in figure 6 illustrate the range of error for each expression, and the 

average percent error, 𝐸̅%, illustrates the overall accuracy of the expression. As expected, all of 

the expressions have increased 𝐸% for values of 𝜃𝑧 that are closer to zero due to the relative 

scaling of percentages. Likewise, all of the expressions have increased 𝐸% for values of 𝜃𝑧 close 

to 90° due to the up-sweeping “hockey stick” trend of the TAZA model for higher values of 𝜏, as 

seen in figure 3. As discussed, the line 𝐶 represents the line that 𝕖𝜃 is calculated along in the 

direction of 𝜃𝑧, visualizations of 𝐶 are included in figure 6. The radial trend of 𝐸% results in 

values of 𝕖𝜃 that have negligible variance along 𝐶. Predictably, each equation for TAZA has 

different 𝕖𝜃 associated for each angle 𝜃𝑧, as seen in figure 7.  
 

 

TDoA Conic Approximation Method  
 

The TDoA conic approximation method, or TCAM, utilizes the conic regions of 

probability of multiple detector pairs to determine the intersecting region of probability for 

localization. A signal event detected across 𝑛 numbers of detector pairs will produce 𝑛 conic 

regions of probability in which the wave source must be mutually located. As stated, greater 

values of 𝑛 results in more conic regions of probability intersected, which results in greater 

accuracy. In order to find this intersecting region, all conic regions of probability must be 

oriented with respect to a common coordinate system. 

 

The 𝑛 different coordinate systems must be rotated and translated onto a base coordinate 

system to allow for computation of the intersecting mutual regions in which the wave source is 

located. One detector pair is chosen by the experimenter as the base pair that defines the base 

coordinate system. The coordinate systems for the other detector pairs are reoriented with respect 

to the base coordinate system using rotation and translation matrices. The 𝑛𝑡ℎ conic region in the 

base coordinate system is given as: 

𝕍𝑛
′ = 𝕍𝑛𝜆𝑛 + 𝑇𝑛 

 

Where 𝜆 is the rotation matrix that defines the offset of the pair’s axes verses the base axes, and 

𝑇 is the translation matrix that relocates the conic region with respect to the base coordinate 

system’s origin. After all of the contributing detector pairs’ coordinate systems have been 

reoriented with respect to the base coordinate system, the intersections of their conic regions of 

probability can be analyzed to create a three dimensional volumetric estimation of the wave 

source location, called the intersecting region of probability.   

(eq.15) 
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Figure 6: Percent Error Fields for the three 

expressions for TAZA, where n is the number of 

expression coefficients. The 𝑛 = 2 expression 

for eq.06 has the highest percent error (top Left). 

The 𝑛 = 50 expression for eq.05 has the lowest 

percent error (bottom right). The 𝑛 = 16 

expression for eq.08 offers an easily calculated 

model with fair accuracy.  

Note: the line 𝐶 from eq.14 is the a line starting 

at the origin and extends to ∞ with a slope of 𝜃𝑧 

on which the average error is calculated (blue 

line). 

Figure 7: Mean angle error, 𝕖𝜃, for all values of 

𝜃𝑧 for the three expressions of TAZA, where 𝑛 

is the number of expression coefficients. 𝕖𝜃 is 

given in %, before being scaled by 𝜃𝑧 in eq.14 
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The intersecting region of probability, 𝕎, for 𝑛 detector pairs is expressed as the volume 

of intersection of the 𝑛 conic regions of probability in the base coordinate system: 

 

𝕎𝑛 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|(𝑥, 𝑦, 𝑧) ∈ ⋂ 𝕍𝑘
′

𝑛

𝑘=1

} 

 

The mutual region of probability represents the possible locations of the wave source with 

respect to the base coordinate system. Figure 8 shows a cross section of the volume 𝕎𝑛 on the 

R-z plane of the base coordinate system with the reoriented 𝕍𝑛
′  intersecting with the base region 

𝕍1.   

The volume of 𝕎 can be narrowed by 

optimizing 𝜓, and can be reduced by higher values of 

𝑛. The probability of source location is evenly 

distributed at all points in 𝕎. If one or more conic 

regions fail to intersect with the others over its volume, 

then the probability of the source location presumably 

will be greater for points closer to the nearest mutual 

region, or it can simply be disregarded if unneeded.  

Overall, the TCAM localization technique finds the 

intersecting region of probability, 𝕎𝑛, of 𝑛 conic 

regions of probability, 𝕍′, created by 𝑛 oriented and 

bound conic surfaces of probability, 𝑉 ± 𝜓, 

determined by the TAZA model’s calculation of the 

zenith angle, 𝜃𝑧, from the normalized time ratios, 𝜏, 
across 𝑛 detector pairs.  

 

Alternatively, TCAM computation can be 

simplified by using the intersections of the conic 

surfaces of probability instead of the conic regions of 

probability. Assuming no angle error allows for calculating the intersections of surfaces instead 

of volumes. This can be generally expressed as 

 

𝑊𝑛 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|(𝑥, 𝑦, 𝑧) ∈ ⋂ 𝑉𝑘
′

𝑛

𝑘=1

} 

 

where 𝑊𝑛  are the intersections of 𝑛 conic surfaces of probability. 𝑊 can be expanded into a 

volume after calculation to account for possible error since 𝑊 is always the center of 𝕎. The 

expansion expression can be modeled as a volume around 𝑊 that extends outward in every 

direction by radius, 𝑟𝜓, that depends on 𝜓 and the separation distance, 𝑑𝑟, of 𝑊 and 𝑃𝑟𝑒𝑓: 

𝑟𝜓 = 𝜓 ∙ 𝑑𝑟 

This method offers a second, less computationally heavy, approach to TCAM localization.

(eq.16) 

Figure 8: 2D cross section of the 

intersecting region of probability, 𝕎, for 

two conic regions of probability, 𝕍, created 

by two detector pairs. Shown in the base 

coordinate system (𝑧̂, 𝑅̂), with the 

𝑛𝑡ℎcoordinate system (𝑧̂′, 𝑅̂′). 

(eq.17) 

(eq.18) 
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Chapter 3: Localization Results 
 

The TCAM technique was developed using geometric deduction and computational 

simulations, and was tested using synthetic data. The technique was able to efficiently localize 

the simulated wave source in three dimensions into a volumetric region of probability. The size 

and shape of the region depends on the number and orientation of the contributing detector pairs. 

All simulations excluded possible multipath arrivals, assumed perfect detector synchronization 

and sampling, assumed infinite detection range with no wave attenuation, assumed a constant 

wave speed profile of 1500 
𝑚

𝑠
 (emulative of underwater acoustics), and disregarded non-

intersecting conic regions. The TAZA expression given in eq.05 is used for all calculations and 𝜓 

is assumed to be 0.1° for visualization purposes.  

 

In this chapter, the results of the TCAM technique for localizing signal sources in the 

simulated three dimensional space are analyzed. The results of localizing with up to four detector 

pairs will be presented as well as demonstrations of cross-pairing. The simulations cover 

examples of when the detectors are in a fixed arrangement with each other as well as when the 

detectors are at randomized locations. All of the presented signal source locations were randomly 

generated independently from the localization algorithm.  

The figures presented in this chapter follow a general format where the localization 

results for a single detection is shown from four different viewpoints. Due to the difficulty of 

visualizing volumetric data in three dimensional space, each figure includes a 3D view (top left), 

a top-down view down z-axis (top right), a side view down the x-axis (bottom left), and a side 

view down the y-axis (bottom right). Each figure in this chapter will also include a legend for all 

plots in the figure as well as details of the trial in the figure title. The visual representation of the 

intersecting volume will change depending on the size of the volume. Smaller volumes are 

difficult to see at scale; thus larger markers are used for the smaller volumes. Furthermore, each 

detector is uniquely color coded in each figure. The color of each detector carries over to each 

plot inside of the figure allowing for easy visualization of which detector is where in the rotated 

visual representations of the figures. The color assignments are unique to each figure, and do not 

persist from figure to figure. Furthermore, the  

 

Localization with two detectors 
 

Locating fixed sources with a single detector pair is the most straight forward and least 

accurate example of TCAM. Only one detector pair results in one conic region of probability, 

thus the intersecting region of probability is the same as the conic region of probability, as seen 

in figure 9. While a single conic region of probability doesn’t offer much precision, it does 

accurately contain the signal source location and provides a broad estimate for localization. If 

only one detector pair is contributing to the calculation, then it will indubitably be the base pair; 

however, it can still be reoriented to another base coordinate system if needed for a specific 

application.  

Furthermore, figure 9 offers a good visualization of the conic regions in simulated three 

dimensional space. The small value of 𝜓 results in a fairly narrow conic region; the thickness of 

the region can easily be seen in the two top plots of figure 9.  
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Localization with four detectors 
 

The addition of another detector pair allows for the intersection of the conic regions of 

probability to be determined. Generally, the intersecting region of two conic regions is a non-

uniform hyperbolic paraboloid toroidal volume that snakes through the local space as seen in 

figure 10.  This tubular volume offers a much more precise localization estimate, but it still 

leaves a considerable amount of ambiguity as to the signal’s actual origin. The detectors in figure 

10 are arranged randomly in the simulated space, and are arbitrarily paired. This haphazard 

detector arrangement creates the twisted and crooked non-uniform shape of the hyperbolic 

paraboloid toroidal volume that is shown in figure 10.  

 

The accuracy of localization is greatly improved by cross-pairing the same arrangement 

of detectors as seen in figure 11. The volumetric results of figure 10 are caused by the low 

number of conic regions contributing to the calculation. Cross-pairing the detectors to every 

possible permutation allows for more conic regions to contribute without having to  

increase the number of detectors. It can be seen by comparing figure 10 and figure 11 that cross-

pairing can greatly improve the precision of TCAM if the conditions of the experiment allow for 

cross-pairing. As previously stated, cross-pairing requires ideal conditions that include detector 

separation distances, detector synchronization, and wave speed profile.  

Figure 9:  

TCAM results for 2 

detectors.  
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Figure 10:  

TCAM results for 4 

detectors, randomly 

situated, single 

pairing. 

Figure 11:  

TCAM results for 4 

detectors, randomly 

situated, cross-pairing. 
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Unlike the detectors in figure 10 and figure 11, that were arranged randomly in the 

simulated space, the detectors in figure 12 are arranged in a fixed array that is comprised of two 

detector pairs with the same 𝑧̂ orientation and equal spacing between all detectors.  This 

produces a more uniform hyperbolic paraboloid toroidal volume that accurately contains the 

signal source location. Figure 12 offers a good visualization of how the intersection of two conic 

volumes makes the hyperbolic paraboloid toroidal shape as one conic region cuts a cross-section 

of the other to make a hollow bent ellipsoid.  

 

The results of cross-pairing this same detector arrangement can be seen in figure 13. 

Once again cross pairing yields a much more precise localization of the signal source compared 

to the statically paired detectors. However, the localization results of the fixed detector array 

have more ambiguity than the randomly positioned detectors in figure 11. This is due to the 

sprawl of the detectors in figure 11 across the simulated space.   

 

 
 

Localization with six detectors  
 

The addition of a third pair of detectors, both randomly positioned and in a fixed array similar to 

figure 12, reduces the amount of ambiguity in the results. The shape of the intersecting volume 

of three detector pairs depends on the arrangement of the pairs. Figure 14 shows the results of 

randomly positioned detectors paired arbitrarily. In this case the intersecting volume is a tight 

narrow ellipsoid that is a precise and fairly accurate localization of the source; although the bulk 

of the intersecting volume is below the source location in the -𝑧̂ direction. 

Figure 12:  

TCAM results for 4 

detectors, in fixed 

array, single pairing. 
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The accuracy of localization with six randomly situated detectors is greatly improved in 

figure 15 due to cross-pairing the detectors. Cross-pairing allowed for the analysis of fifteen 

conic regions instead of just three. The results seen in figure 15 are much more precise and 

accurate than in figure 14 even though the intersecting region is still slightly under the source 

location. Figure 16 and figure 17 show the results of having six detectors in a fixed array instead 

of randomly situated. The array layout is the same as basic configuration as previously used in 

the other examples, and the new detector pair was added as to make a triangular array of detector 

pairs that are paired vertically. As a side note, this array most closely emulates the hydrophone 

array used for the underwater acoustics experiments mentioned in chapter 1. The triangular array 

produces three conic regions with the same orientation in the 𝑧̂ direction. The intersection of 

these three conic regions is usually scattered in several separate volumes, one of which contains 

the signal source location. These scattered results occur quite frequently when only three conic 

regions are being intersected; even if they are randomly situated. Figure 14’s lack of scattering is 

coincidental from randomization of detector locations. Furthermore, cross-pairing the six 

detector array to make fifteen conic regions for analysis, as seen in figure 17, yields much more 

accurate results than the singly paired results of figure 16.       

Figure 13:  

TCAM results for 4 

detectors, in fixed 

array, cross-pairing. 
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Figure 14:  

TCAM results for 6 

detectors, randomly 

situated, single 

pairing. 

 

Figure 15:  

TCAM results for 6 

detectors, randomly 

situated, cross-pairing. 
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Figure 16:  

TCAM results for 6 

detectors, in fixed 

array, single pairing. 

 

Figure 17:  

TCAM results for 6 

detectors, in fixed 

array, cross-pairing. 
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Localization with eight detectors 
 

Finally, another pair of detectors is added to the cluster to show the results of localizing 

with eight detectors total. Once again, the detectors are situated both randomly and in a fixed 

array, and they are analyzed with both single pairing and cross-pairing. While the logistics of 

having eight synchronized detectors in a single observation region is unlikely in underwater 

acoustics, the results are presented for conceptualization of the TCAM technique with a 

multitude of detectors. The results of the randomly situated, single-paired, detectors are seen in 

figure 18. The sprawl of the detectors in figure 18 is fairly vast across the simulated space, and 

the resultant localization has high accuracy and precision. In fact, the localization results in 

figure 18 are nearly perfect. However, the results of cross-pairing the randomly situated detector 

in figure 19 yields a less accurate localization. This is an example of the dangers of cross-pairing 

detectors, especially detectors that are randomly situated. Granted, the accuracy of the cross-

paired detectors is still considerably high in figure 19, but it is still not as accurate when 

compared to figure 18. The most likely explanation for the reduced accuracy in the cross-paired 

results is the tight clustering of some of the detectors in the set.  

Arranging the detectors in an array similar to the ones used in previous examples, as seen 

in figure 20, produced nearly identical results to the six detector array in figure 16. The fourth 

detector pair was added to the prior triangular array as to make a diamond or box array. Once 

again the results in figure 20 show a scattered intersecting region that accurately contains the 

signal source location. Furthermore, the results of cross-pairing the detectors in the array, as seen 

in figure 21, is nearly identical to the results of cross-pairing the six detectors in figure 17.   

 

 

Figure 18:  

TCAM results for 8 

detectors, randomly 

situated, single 

pairing. 
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Figure 19: 

TCAM results for 8 

detectors, randomly 

situated, cross-pairing. 

  

Figure 20:  

TCAM results for 8 

detectors, in fixed 

array, single pairing. 
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Figure 21:  

TCAM results for 8 

detectors, in fixed 

array, cross-pairing. 
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Chapter 4: Discussion and Conclusions 
 

In summary, TCAM is a three dimensional wave localization technique for single path 

wave detections with unknown starting conditions. TCAM utilizes the TAZA model to 

approximate the zenith angle of incidence for pairs of detectors located throughout space. TAZA 

is a model for the relationship between the TDOA and the zenith angle of incidence from the 

center of the detector pair to the source of the detected wave. The TAZA angle defines the conic 

surface of probability on which the wave source is located. The conic surface of probability is 

expanded into a conic region of probability defined between the upper and lower bounds of the 

detection. The intersecting region of probability is the intersection of the detector pairs’ conic 

regions of probability in which the signal source must be located. 

 

Discussion 
 

It can be seen from the results in chapter 3 that the TCAM technique offers a viable 

approach to three dimensional passive localization. The accuracy of TCAM depends on several 

different factors, but the number of contributing conic regions is the main factor that determines 

the accuracy of the results. As seen, more conic regions yield more accurate results.  

 

Generally, one pair of detectors, therefore one conic region of probability, will produce an 

intersecting region that matches the conic region. Two pairs of detectors, therefore two conic 

regions, will typically produce the hyperbolic paraboloid toroidal shaped intersecting region. 

This shape is commonly non-uniform and can stretch across large areas of the region. Three 

detector pairs are the minimum number of pairs needed for TCAM to localize with high 

precision in three dimensions. The three detector pairs will likely produce a scattered ellipsoid 

shaped intersecting region, depending on the orientation of the detector pairs, but it can also 

produce singular results that are accurate and precise. Four detector pairs will usually produce a 

singular intersecting region, but as seen in figure 16, it can also produce a scattered region.    

 

Cross-pairing the detectors proved to be a valuable tool that greatly increased the 

accuracy of localization. This was especially impactful in the examples with only a few 

detectors. The increased accuracy of cross-pairing the detectors is due to the increased number of 

conic regions contributing to the TCAM calculation. The increased number of conic regions 

offers redundant intersection calculations that hone in on the single source location. However, as 

stated previously and as shown in the results, cross-pairing can have a negative effect on 

localization accuracy depending on the orientation and position of the detectors. Furthermore, 

with increased conic regions comes increased computation for calculating the intersections of 

those regions. Thus cross-pairing can be extremely useful in the right situations and applications, 

but can also be a hindrance if the circumstances are unfavorable.  
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Future Work 
 

The TCAM approach to localization is still in development with many aspects that can be 

optimized in the future. The goal is to make TCAM an easy to use and light weight tool that can 

perform on demand in a wide variety of signal localization applications. Focused areas of 

improvement include: reduced TAZA error, expedient calculation, spatial detector optimization, 

predictive tracking, and statistical probability analysis.  

 

The main source of error in TCAM comes from the curve fitted expressions. The TAZA 

model was built from brute force computation of all possible TDoA in the local space. The 

resultant curve is fitted using the various expressions presented in this paper. As a result, the 

TAZA model expressions represent a balancing act between the number of coefficients needed 

for the expression and the error produced by the curve fit. Obviously more coefficients mean less 

error, but also more computation. Ideally, the optimal expression for TAZA would be symbolic 

with minimal coefficients and perfect accuracy. Expanding further on the spatial analysis done 

by Drysdale (Drysdale, 1924) may offer better expressions for TAZA in the near future. 

 

The main drawback to TCAM, and for all passive localization techniques, is the time and 

cost of performing the calculations in a timely manner. TCAM has two computationally heavy 

parts that are difficult to calculate; the TAZA angle calculation and the intersecting region 

calculation. As previously stated, an ideal TAZA expression would eliminate the need for 

calculation of numerous coefficients in the expression. However, less ideal TAZA expressions 

are a viable option for the reduction of coefficients. Future work will not only look for the ideal 

expression for TAZA, but also for any expedient expressions that can simplify the calculations 

needed. The complexity of calculating of the intersecting region of probability depends on the 

number of conic regions of probability contributing the calculation. Obviously more intersecting 

regions means lengthier calculations. However, there is more than one way to determine 

intersecting volumes, and the computation can be minimized by optimizing the calculation of the 

intersecting region. Development of faster intersection calculations will enable TCAM to be 

performed more quickly and easily. 

 

Furthermore, future research could explore the possibility of ideal detector arrangements 

that complements TCAM. Spatial relations are paramount in the implementation of TCAM, and 

it stands to reason that careful selection of the detector arrangement may be able to further 

optimize the accuracy of the method. The examples given include fixed arrangements of the 

detectors, and it is indubitable that the layout of the arrangement effects the localization results. 

The arrangements used in the examples were more emulative of the experimental arrangement 

that the TCAM technique was developed under, and were not indicative of an optimized 

arrangement. One simple example of a detector arrangement that produces unique TCAM results 

is a simple six detector layout with each detector being equidistant from the reference point in 

the positive and negative direction of each major axis. This centralized cluster produces conic 

regions with a common vertex at the origin, and that open in the direction of each major axis. 

The resultant intersecting region of probability is a straight tubular volume that is pointed 

directly at the signal source from the reference point. This arrangement was conceptualized as a 

detector array mounted on a single station, such as a submarine or space shuttle, and is not 

optimized for TCAM; however, it illustrates the concept of optimizing the detector arrangement.  
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The TCAM technique can also be improved by modern methods of machine learning and 

clustering. More specifically, machine learning algorithms can be used to perform predictive 

tracking of signal sources over time. By categorizing and clustering the results of individual 

TCAM results in a mutual space, predictive models can be built for the behavior and destination 

of unique signal sources that are being tracked (Nasser, 2007). For example, in the case of 

marine mammal tracking, if a specific species of marine mammal is observed performing 

repeated behaviors, maybe it circles around before diving down, then the machine learning 

algorithm can predict the dive location when circling begins. This rough example illustrates the 

possibility that machine learning can bring to localization and tracking with TCAM. 

 

Machine learning can also contribute to better statistical probability results in TCAM. 

Currently TCAM cannot reduce any ambiguity in the intersecting region of probability, and as 

stated, the probability of the signal source location is evenly distributed throughout the volume 

of the region of probability. However, machine learning may offer a method of redistributing the 

probability in the volume based on prior measurements. Fourier analysis (Bracewell,2000) and 

wavelet analysis (Strang and Nguyen,1997) could also provide further categorization techniques 

to improve the machine the learning’s statistical capabilities. This could potentially improve 

precision in applications with few detectors or with a scattered intersecting region.  

 

Overall, the TCAM technique is still in its infancy and looks forward a bright future of 

growth and development. Improvements to TCAM can benefit the research community by 

offering quick and easy localization of signals. As stated, there is still an abundance of research 

and development to be done to the method. 

 

Conclusions  
 

Development of TCAM throughout my graduate career has been an engaging and 

fulfilling experience. I started researching three dimensional passive localization and decided to 

develop a modern method that was both effective and easy. Modelling the relationship of the 

TDoA and the zenith angle of incidence into the TAZA model enables expedient determination 

of the zenith angle. The TAZA model is expressed in three different ways, each offering various 

levels of complexity and accuracy. The zenith angle and TAZA expression used define a conic 

region of probability that contains the signal source location. Analysis of the intersection of 

multiple conic regions of probability reduces the possible location of the signal source to the 

overlapping volume of intersection; thereby effectively localizing the signal source to the most 

probable region of origin. Simulation testing with synthetic data confirms the validity of the 

TCAM technique. Testing in this manner allowed for the strengths and weaknesses of TCAM to 

be examined and improved. Overall the results of this new technique are pleasantly accurate and 

effective for passive localization in three dimensions with unknown starting conditions.   
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Appendix 
 

Coefficient values for 𝑎𝑛 (eq. 05) 

 

𝑛 0 1 2 3 4 5 

𝑣𝑎𝑙𝑢𝑒 2.78E+13 -1.5E+14 2.75E+14 -7.3E+13 -2.4E+14 -2.2E+13 

𝑛 6 7 8 9 10 11 

𝑣𝑎𝑙𝑢𝑒 5.02E+14 -3.1E+14 -5E+13 -2.5E+13 2.28E+13 5.06E+13 

𝑛 12 13 14 15 16 17 

𝑣𝑎𝑙𝑢𝑒 4.59E+13 -4.8E+12 -3.2E+13 -5.5E+13 -7.5E+12 3.26E+13 

𝑛 18 19 20 21 22 23 

𝑣𝑎𝑙𝑢𝑒 4.12E+13 1.54E+13 -2.9E+13 -2.4E+13 -2.8E+13 2.58E+13 

𝑛 24 25 26 27 28 29 

𝑣𝑎𝑙𝑢𝑒 3.8E+13 -2.8E+12 -1.4E+13 -3.8E+13 2.59E+13 1.5E+13 

𝑛 30 31 32 33 34 35 

𝑣𝑎𝑙𝑢𝑒 9.1E+11 -1.3E+13 -9.1E+12 1.22E+13 7.74E+12 -1.2E+13 

𝑛 36 37 38 39 40 41 

𝑣𝑎𝑙𝑢𝑒 -3.7E+12 1.47E+13 -1.3E+13 7.02E+12 -2.5E+12 6.54E+11 

𝑛 42 43 44 45 46 47 

𝑣𝑎𝑙𝑢𝑒 -1.2E+11 1.69E+10 -1.7E+09 1.15E+08 -5284825 151834.8 

𝑛 48 49 50    

𝑣𝑎𝑙𝑢𝑒 -2427.19 74.86819 -0.03607    
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