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Abstract

In this thesis work we present CLIK, a new, automated, remote attack on the control logic of

a programmable logic controller (PLC) in industrial control systems. The CLIK attack modifies

the control logic running in a remote target PLC automatically to disrupt a physical process. We

implement the CLIK attack on a real PLC. The attack is initiated by subverting the security

measures that protect the control logic in a PLC. We found a critical (zero-day) vulnerability,

which allows the attacker to overwrite password hash in the PLC during the authentication process.

Next, CLIK retrieves and decompiles the original logic and injects a malicious logic into it and then,

transfers the infected logic back to the PLC. To hide the infection, we propose a virtual PLC that

engages the software the virtual PLC intercepts the request and then, responds with the original

(uninfected) control logic to the software.

KEY WORDS

Programmable Logic Controller, Instruction List, Decompiler, Industrial Control System, Digital

Forensics, Cyberattack
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Chapter 1

Introduction

Industrial control systems (ICS) are used to automate physical processes such as wastewater treat-

ment plant, gas pipeline, and power grid station. These systems are increasingly connected to

corporate network and Internet for significant economic gain. Unfortunately, the connectivity also

makes them vulnerable to cyberattacks [6]. To secure ICS environments, it is imperative to under-

stand their threat vector, i.e., how an adversary can target these systems.

An ICS environment consists of a control center and field sites [7,8]. The physical processes are

located at field sites and are monitored and controlled via sensors, actuators, and programmable

logic controllers (PLCs). The PLCs send data to ICS services at the control center such as human-

machine-interface (HMI), Historian and Engineering Workstation. They are programmed to define

a control logic to maintain the desired state of a physical process. For instance, in a gas pipeline,

a PLC monitors and controls the gas pressure of the compressed gas in the pipe. The control logic

of the PLC is defined as follows: when the gas pressure exceeds a certain threshold, the PLC opens

a solenoid valve (i.e., an actuator) to release some gas, which reduces the gas pressure in the pipe.

An attacker targets the control logic to compromise a PLC to sabotage a physical process.

For instance, Stuxnet [9] infects the control logic of the Siemens S7-300 PLCs controlling variable

frequency drives of centrifuges. The infected logic disrupts the normal operation of the drives by

changing their motor speed periodically from 1,410 Hz to 2 Hz to 1,064 Hz and then over again.

A typical attack of infecting the control logic involves gaining access to the engineering software

at the control center, modifying the logic and then, transfer it to a target PLC. In particular,

Stuxnet [9] employs this approach. It compromises STEP 7 engineering software (by replacing

s7otbxdx.dll that handles communication with the PLC) and infect the PLC with a malicious

control logic.

In this thesis work, we present CLIK, an autonomous attack on the control logic of a PLC. We

assume a realistic scenario where an engineering software in the control center is not accessible for
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the attack, thereby making the attack more challenging. In particular, the attack cannot utilize

the engineering software to do the following: 1) transfer the control logic to/from the PLC, 2) use

the project files of the current control logic of a target PLC residing at the engineering workstation

to make malicious modification, and 3) provide the security credentials (such as password) to the

PLC to access the control logic.

The goal of the CLIK attack is to introduce malicious logic in a target PLC automatically without

access to the engineering software. The CLIK attack is initiated after the attacker penetrates into

an ICS network and can send/receive messages to/from a target PLC remotely. The compromising

of ICS network is out of the scope of this work and can be achieved via typical attack vector in our

IT world such as infected external USB device, vulnerable web server, etc.

CLIK is a full attack that involves compromising the PLC security measures followed by stealing

the control logic from the PLC, decompiling the stolen (compiled) binary of the control logic to inject

the malicious logic, and then transferring the infected binary back to the PLC. Finally, to hide the

malicious logic in the PLC from the engineering software, we propose a new approach consisting of

a virtual PLC and captured network traffic of original control logic. When the engineering software

attempts to acquire the control logic from the PLC, the virtual PLC intercepts the request and

then, responds by sending the original control logic using the captured traffic.

To present a real-world case study, we implement the full CLIK attack on a real PLC (Schneider

Electric Modicon M221) and engineering software (SoMachine-Basic) used in industrial settings.

The PLC protects its control logic using password authentication. The attacker can employ different

known techniques to compromise the password such as brute-force and social engineering attacks.

However, in this work, we present a critical (zero-day) vulnerability in the password authentication

mechanism of the PLC. We demonstrate that the attacker can exploit the vulnerability to reset the

password by overwriting the original password hash in the PLC with its password hash during the

authentication process. We have already disclosed the vulnerability responsibly to the PLC vendor.

After successful password authentication, the PLC allows reading the control logic remotely.

Since SoMachine-Basic supports Instruction List (one of the languages defined by IEC 61131-

3) to program the PLC, the acquired control logic from the PLC is a binary (compiled) form of

an Instruction List (IL) program. We developed a decompiler Eupheus for the Instruction List to

transform the binary into its corresponding IL source code. We further utilize a rule-based approach
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to define criteria for automated malicious modification of the source code, and then compile the

code to transform it into a binary that can run on the PLC. Finally, the binary is transferred back to

the PLC to compromise the control logic. To hide the malicious logic in the PLC from SoMachine-

Basic, we developed a virtual PLC that engages the SoMachine-Basic using the captured traffic of

the original control logic. It is worth mentioning that we only use SoMachine-Basic to write and

install an uninfected control logic in the PLC (which is a part of normal engineering operations),

and evaluate the virtual PLC during the attack.

We evaluate the CLIK implementation on 52 control logic programs including three real-world

control logic. The evaluation results show that CLIK exploits the zero-day vulnerability to reset

the passwords successfully and then, retrieves the control logic remotely. The decompiler Eupheus

decompiles the binary control logic to IL code with 100% accuracy. CLIK is evaluated with infection

rules, and the infected logic are transferred to the PLC with 100% success rate. Finally, the virtual

PLC hides the infected PLC from the SoMachine-Basic successfully.

Organization. The rest of the work is organized as follows: Chapter 2, Related work presents the

related work. Chapter 3, Control logic Infection Attack (CLIK) presents the detailed explanation

about the four phases of the attack. Chapter 4, Real-world Implementation of CLIK presents the

implementation details CLIK in various phases and the zero day vulnerability we have discovered

and its exploitation, followed by chapter 5, Evaluation with the evaluation results and ends with a

conclusion in Chapter 6 Conclusion.
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Chapter 2

Related Work

This chapter presents the attacks on PLCs that are closely related to CLIK.

Pavlovic et al. [13] present a tool for the fully automated transformation of IL programs into

models of the NuSMV model checker. Both this work and CLIK use IL programs. However, CLIK

is different in that it decompiles a low-level representation of a control logic to IL program.

A formal verification of PLC software is of great importance, since the safety demands of many

systems based on PLC are considerable. Which is why our decompiler Eupheusis designed to verify

that the control logic downloaded to the PLC is authentic and malicious logic free, by decompiling

the machine code into higher level Instruction Language, so that anyone can conduct forensic

investigation easily in case of any suspicion.

McLaughlin [12] evaluates how PLC malware may infer the structure of the physical plant and

then, use this information to construct a dynamic malicious payload to achieve an adversary’s

end goal. He finds that a dynamic payload that causes unsafe behavior for an arbitrary process

definition can be constructed. The malware first gathers clues from within the control system

regarding either the nature of the process, the layout of the physical plant, or both. These clues

are then used to generate a payload that can be uploaded to the PLC and executed. His focus was

autonomously generating a PLC payload. However, CLIK focuses on infecting a current control logic

running by a target PLC in a ICS environment. It uses rule-based approach based on heuristics

instead of the exact knowledge of a target physical process.

McLaughlin et al. [11] also present SABOT, a tool that automatically maps the control instruc-

tions in a PLC to an adversary-provided specification of the target control systems behavior using a

dynamically generated payload. This approach requires that the adversary has to correctly specify

full system behavior to ensure complete and correct payload compilation. It is not for adversaries

that do not understand the behavior of the victim plant [11]. This work is different from CLIK in

that CLIK’s malicious logic generator does not assume any knowledge of the physical process. The
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logic generator is configured based on heuristics and the semantics of variables and IL instructions

in control logic and thus, modify the analog values of the control logic. The attacker could know

how the target physical system behaves, or just use some general feature and use that information

to configure the malicious logic generator to find and modify the specific variable related to the

target variable and change the the flow of the entire control logic, just by changing the operation

block equation, or even replacing one operator by its opposite, and so, make the control flow act

the exact opposite way to the way it was originally intended.

Abbasi et al. [5] looked into the current state of host-based detection techniques for embed-

ded devices, with a particular focus on PLCs. They only mimicked a PLC environment and used

Codesys as the PLC run-time. They implemented an attack against a PLC environment by exploit-

ing the run-time configuration of the I/O pins used by the PLC to control a physical process. They

present two variations of the attack implementation. The first implementation allows an extremely

reliable manipulation of the process at the cost of requiring root access. The second implementa-

tion slightly relaxes the requirement of reliable manipulation while allowing the manipulation to be

achieved without root access. CLIK on the other hand does not exploit the configuration of the I/O

pins. Instead, it modifies the control logic of a target PLC directly. Furthermore, it implements a

virtual PLC utilizing the network traffic of a normal control logic to engage an engineering software.

The attack allows one to reliably take control of the physical process normally managed by

the PLC,while remaining stealth to both the PLC runtime and operators monitoring the pro-

cess through a Human Machine Interface, a goal much more challenging than simply disabling the

process control capabilities of the PLC, which would anyway lead to potentially catastrophic conse-

quences. The attack does not require modification of the PLC logic or traditional kernel tampering

or hooking techniques, which are normally monitored by anti-rootkit tools

We implement the CLIK attack on a real PLC used in industrial settings. CLIK can look for

special instructions in the decompiled code to detect specific engineering software. We generate

and apply 3 rules to manipulate and infect the PLC, using 3 PLC programs that can be used in a

variety of situations. The first infection changes the output or input instructions to either energize

the output or not. The second infection inserts a new rung into the Instruction list. The third

infection modifies the analog flow determinant and changes the operation block.

Garcia et al. [10] present Harvey, a PLC rootkit that implements a physics-aware stealthy man-
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in-the-middle attack against power grid control systems. They implemented the attack on Allen

Bradley PLC and evaluated it on a real-world electric power grid test-bed. They modified the

firmware of the PLC to implement the rootkit. CLIK on the other hand focus on the control logic

and does not modify the PLC firmware. Cyber-physical attack which is completely invisible to the

control center of an ICS and they reverse engineered the central control loop mechanism of a widely

deployed Allen Bradley 1769-L18ER-BB1B CompactLogix 5370 L1 Rev. B PLC. Harvey damages

the underlying physical system, while providing the operators with the exact view of the system

that they would expect to see following their issued control commands.We present a new infection

hiding method based on a virtual PLC to overcome the limitations of the current methods, which

typically require rigorous manual reverse engineering, which is a server program replying with valid

response messages when it receives request messages from an engineering software.

Falliere et al. [9] explained how Stuxnet creators amassed a vast array of components to increase

their chances of success. This includes zero-day exploits, a Windows rootkit, the first ever PLC

rootkit, antivirus evasion techniques, complex process injection and hooking code, network infection

routines, peer-to-peer updates, and a command and control interface [9]. Stuxnet’s payload needs

to be precompiled, which is not the case with our attack tool, CLIK. CLIK uses the decompiled code

of a control logic, infect it and then compile it again to machine code at runtime.

Packets 
(normal 

logic)

Manual
Analysis

Packet
Filter

(ettercap)

MITM
System

Engineering
Software

PLC

Packets
(normal logic)

Packets
(malicious logic)

Location of the critical 
code/data of control logic

Preparation Phase

modified code/data

Figure 2.1: Infection hiding based on a packet filter

Senthivel et al. [15, 16] present three new attack scenarios referred to as Denial of Engineering
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Operations (DEO) attacks where an attacker can interfere with the normal cycle of an engineering

operation leading to a loss of situational awareness. The attacker can deceive the engineering

software during attempts to retrieve the ladder logic program from a PLC by manipulating the

ladder logic on the PLC such that the software is unable to process it while the PLC continues

to successfully execute it. This attack vector can provide sufficient cover for the attacker’s actual

scenario to play out while the owner tries to understand the problem and reestablish positive

operational control. DEO attacks [16], also uses Ettercap, which has limited support of writing

comprehensive filters to cover complex control logic such as removing a series of malicious rungs in

a ladder logic in network packets (refer to Figure 2.1). On the other hand, CLIK uses virtual PLC

to engage an engineering software without crashing it.

Our decompiler Eupheusis the first developed for the Instruction List defined in IEC 61131-3 to

transform the binary into its corresponding IL source code for Schneider Electric Modicon M221

and SoMachine-Basic engineering software. We further utilize rule-based approach to define criteria

for automated malicious modification of the source code, and then compile the code to transform it

into a binary that can run on the PLC. Then, the binary is transferred to the PLC to compromise

the control logic. We present 3 different attack scenarios, to show that it is flexible enough to allow

different types of attacks, since it can be configured to conjecture semantics of variables in control

logic, depending on the degree of the adversary’s knowledge about the system.

7



Chapter 3

Control Logic Infection Attack

(CLIK)

Figure 3.1 shows a high-level overview of CLIK, the proposed control logic infection attack com-

prising of four phases: 1) Stealing the original control logic from a target PLC, 2) decompiling the

stolen low-level (binary) representation of the control logic to its high-level source code, 3) infecting

the source code via rule-based automated approach, followed by compiling the code to a binary

representation (that can run on the PLC) and then, transferring the binary back to the PLC to

infect the control logic, and finally 4) concealing the infected logic in the compromised PLC from

an engineering software at the control center using a virtual PLC.

3.1 Phase I: Stealing the Original Control Logic from a Target

PLC

The first phase involves gaining access to the control logic in a target PLC and retrieves the logic

remotely over the network.

Subverting Security Measure This phase includes compromising any security measures that

are supposed to protect a PLC from remote cyber attacks such as theft of control logic. The

security measures include integrity protection of PLC firmware, configuration and control logic,

access control and firewall to segregate PLC based on the access medium (such as the physical

interface and communication protocol) and white-listing of IP addresses, and authentication (such

as password) to restrict remote read/write access to PLC.

In Section 4.1, we will demonstrate an attack case of subverting the password authentication

of a real PLC by exploiting a zero-day vulnerability that we found during the implementation of

8
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Figure 3.1: High-level overview of CLIK, an automated control logic infection attack

CLIK.

Retrieving Control Logic After security measures are compromised, CLIK retrieves the control

logic from the PLC. It communicates with the PLC using the protocol supported by the PLC and

then, requests the control logic. A control logic is typically divided into three parts: configuration

(metadata) blocks, code blocks, and data blocks. Configuration blocks have the mapping addresses

and sizes of other blocks. A code block is the machine code, which executes in PLCs. Data blocks

contain values of variables used by a code block such as input, output, timer, and counter. In

most cases, mapping addresses and sizes of code and data blocks vary, therefore CLIK first retrieves

and parses the configuration blocks to get valid mapping addresses and sizes of other blocks.

3.2 Phase II: Decompiling the Stolen Binary to Source Code

The stolen control logic is in low-level (binary) format. The second phase decompiles the binary

into its respective source code for automating the infection phase. The source code is written in

one of the five high-level languages defined in IEC 61131-3 i.e., Instruction List, Ladder Logic,

Sequential Function Charts, Function Block Diagram, and Structured Text. Figure 3.2 illustrates

the decompilation process of CLIK, which takes the code block as an input and utilizes a database of
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Figure 3.2: Decompilation of the Control Logic

opcode to instruction mapping for decompilation. Furthermore, CLIK takes into account the data

block to obtain additional configuration parameters for the instructions. For instance, the timer

instruction has the parameters of preset, time base and the type of timer (Timer On - TON, Timer

Off - TOF, Pulse Timer - TP) in data block.

The decompiler maps each opcode in code block to the database to get the corresponding high

level representation of the instruction in Instruction List.

3.3 Phase III: Infecting the Control Logic via Rule-based Ap-

proach

The third phase is the infection of the control logic that makes rule-based malicious modifications

in the (decompiled) source code of the control logic, and then, compiles the modified infected code

to a binary that can run on the PLC. Lastly, it transfers the binary to the PLC.

Rule-based Malicious Logic Generator CLIK employs a rule-based approach to serve two

purposes: 1) identifying a target control logic and then, 2) infecting it automatically.

To identify a target control logic, CLIK leverages the semantics of the (decompiled) source code

and estimated range of critical variables of a target physical process. In many cases, the source

code contains sufficient semantics of the underlying physical process to generate rules. CLIK for

instance, can look for special instructions in the decompiled code to infer meaning of specific

variables such as set-points. These instructions include PID instructions of Allen-Bradley RSLogix

500, and drive blocks of Schneider Electric SoMachine-Basic. Furthermore, CLIK can look for the

data to identify estimated range of critical variables representing a physical process. For instance,
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similar to Stuxnet, CLIK can observe the data that range between 807 Hz and 1,210 Hz to identify

variable frequency drives of centrifuges.

To infect the identified control logic, CLIK utilizes preconfigured infection rules including the

following: replacing input or output bits with memory bits (to disturb normal update on output

pins), replacing operators in equations, modifying set-points, modifying control flow determinants

(to influence a decision at a conditional branch of control logic), insert/delete instructions/rungs,

etc. For example, similar to Stuxnet, an infection rule can be configured to insert a new rung that

manipulates the set-point of motor speed periodically from 1,410 Hz to 2 Hz to 1,064 Hz leading

to sabotage the centrifuges controlled by the target PLC.

In this phase, we use the resultant decompiled code from network and modify the Instruction

List as a string array and replace or add new rungs and instructions based on the rules and the

type of attack selected.

We present four heuristic rules that can be implemented while changing the Instruction List:

rule 1) replacing input or output bits with memory bits, rule 2) modifying analog control flow

determinant, rule 3) modifying set-points, and rule 4) replacing operators.

The rule 1 can be generally applied for modifying digital values in control logic. By disabling

input and output bits of a control logic, it performs a denial-of-service attack in effect. On the

other hand, rule 2, 3, and 4 focus on modifying analog values in control logic. By examining

analog values, CLIK could be configured to find a target variable in control logic to conduct more

sophisticated modification. If attackers have some estimated range of the target variable, CLIK can

try to find the target variable based on the estimated value range. A target value estimation can

be done in two ways: observation and general feature.

If the attacker is able to observe the features of the target physical process, for example, the

time period of a traffic light system, that information can be used to configure the malicious logic

generator to find a specific timer preset. Otherwise, the target physical system could have some

general feature. For example, a centrifuge for enriching Uranium-235 is required to spin at 50,000 ∼

70,000 rpm. Therefore, attackers who want to sabotage a nuclear facility can use this information

to configure the malicious logic generator to find and modify the specific variable related to the

target variable-frequency drive of a gas centrifuge.
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Infection rule 1) Replacing input or output bits with memory bits The infection may

make the PLC unresponsive by replacing memory bits with input or output instructions. This

approach mainly focuses on the digital values in control logic, which can only result into a static

attack with same or similar kind of results when a new rung is appended to the original control

logic.

Infection rule 2) Modifying analog control flow determinant We define that a variable X

is a control flow determinant if X influences a decision at a conditional branch of control logic. For

example, analog control flow determinants include variables of function blocks such as timer preset

and counter preset. The modification is done by following steps: 1) finds all analog control flow

determinants except input/output variables in control logic, 2) if there is configured range of target

variables, finds matching variables among the control flow determinants and modifies them with

configured values, 3) if there is no configured value or fails to find the matching variable, randomly

selects an analog control flow determinant and modifies it with a random value.

Infection rule 3) Modifying set-points A set-point is a desired value for a process value

of systems like a motor frequency of a gas centrifuge. In most of control logic program, a set-

point of underlying physical process is represented using special function blocks or instructions

provided by an engineering software. For example, Schneider Electric SoMachine-Basic provides

drive block which allow drive devices to be controlled by a PLC. Allen-Bradley’s RSLoigx 500

supports proportional integral derivative instructions which control a process variable to be at a

desired set-point using a closed process loop. The modification is done by following steps: 1) finds

those function blocks or instructions which contain a set-points, 2) if there is configured range of

target variables, finds matching variables among the set-points and modifies them with configured

values, 3) if there is no configured target value or fails to find the matching variable, randomly

selects a set-point and modifies it with a random value.

Infection rule 4) Replacing operators in operational blocks Changing the operational

block equation can change the flow of the entire control logic. This modification can be accomplished

by replacing the operators with an opposite operator (like �:= can be replaced with <>) which makes

the control flow to act exactly opposite than it was originally intended to.
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Compiler After the decompiled code block is infected, it is compiled to a binary that can run

on the target PLC. The compiler uses the same database that the decompiler used for conversion

but the other way around. It searches for the instruction opcode for a high level instruction in the

database and replaces the former with the latter.

Transfer of the Control Logic to the PLC The infected control logic is transferred to the

target PLC using the write-requests of the PLC protocol. The modified (infected) control logic

blocks should be mapped to the address of the original blocks to ensure the stable transition of the

PLC to the infected logic.

If the target PLC accepts the write requests of control logic blocks at a specific state of the

protocol implementation, it needs to transit to the valid state before sending write requests. In

addition, if the PLC requires a checksum for control logic, the checksum for the infected control

logic should be calculated.

3.4 Phase IV: Concealing the Malicious PLC Control Logic from

Engineering Software

When the control logic in a target PLC is infected, CLIK hides the infection from the engineering

software to sustain the operation of the infected logic. Existing approaches i.e., Stuxnet [9] and DEO

attacks [16] intercept and modify the packets between the engineering software and PLC to hide the

infection. Stuxnet [9] intercepts control logic packets by replacing s7otbxdx.dll of SIMATIC STEP

7 engineering software that handles communication with the PLC and then, masks the infection.

Furthermore, DEO attacks [16] utilize a packet filter of Ettercap [2] and ARP poisoning to intercept

the packets and then, removes the malicious changes in the control logic before forwarding them to

the engineering software.

The current approaches hide the infected control logic successfully. However, they have several

limitations. Stuxnet compromises the integrity of a dynamic link library, which demands advanced

attack capabilities to deceive integrity checking services. DEO attacks [16], on the other hand,

uses Ettercap, which has limited support of writing comprehensive filters to cover complex control

logic such as removing a series of malicious rungs in a ladder logic in network packets (refer to
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Figure 2.1). Also, it leaves several duplicate packets in the network trace due to packet forwarding,

which a network operator can quickly notice by using network monitoring tools such as Wireshark.

Moreover, since the packet filter is generated based on one specific normal control logic, it only

works for that control logic. If the engineering software downloads other control logic to the target

PLC, their packet filter could not correctly locate the critical parts of the control logic.

Virtual PLC We present a new infection hiding method based on a virtual PLC that overcomes

the limitations of the existing approaches. The goal of the virtual PLC is to achieve stealthi-

ness by avoiding significant perturbation in the environment including installing malicious DLL or

generating duplicate traffic.

The virtual PLC utilizes the captured network traffic of the original control logic obtained in

phase 1 of CLIK to engage engineering software. It is a server program that intercepts the request

messages from an engineering software and then, replies with valid response messages using the

captured traffic. In other words, the virtual PLC mimics the behavior of an uninfected real PLC

from engineering software’s viewpoint.

A Systematic Approach of Building a Virtual PLC. Building a virtual PLC requires reverse engi-

neering especially when a target PLC uses a proprietary protocol. In this paper, we present a

systematic approach to build a virtual PLC. Figure 3.3 presents a systematic approach to build

a virtual PLC. The virtual PLC faces two main challenges. 1) when engineering software sends a

request message, virtual PLC has to identify the corresponding response messages in the captured

traffic, and 2) also adjust the dynamic fields in the response messages whose values vary within

and across different sessions. To solve these challenges, the virtual PLC develops communication

template and essential protocol format in two stages for a target PLC. It executes both stages offline

during the preparation of the CLIK attack.
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We build virtual PLC based on our insight that the regular traffic (excluding messages containing

control logic in their payload) between engineering software and PLC consist of a manageable

number of different messages that can be represented as a communication template. If a virtual

PLC receives a request message, it looks up the template to find a matching request and replies

with the corresponding response message. This approach is black-box that does not require the

complete semantic knowledge of request/response message content, thereby, saving time and effort

for reverse engineering every aspect of the protocol.

Virtual PLC, however, has to take into account some dynamic fields, of which values may change

within a session (e.g., sequence number), between sessions (e.g., session id), and for control logic

(e.g., control logic checksum). Also, since the communication template does not include messages

containing control logic, the virtual PLC has to understand how to generate valid control logic

read/write response messages. To this end, the virtual PLC needs to understand these essential
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parts of the protocol format, refer to as essential protocol formats.This section further describes a

two-stage process of deriving a communication template from network-traffic-captures and building

an essential protocol format.

Deriving Essential Protocol Format. Stage 1 collects multiple network packet captures of the same

control logic and then, processes each packet capture as follows: protocol messages are extracted

and grouped as request and response pair. For instance, some proprietary PLC protocols are

encapsulated by the Modbus/TCP protocol which is a de facto standard communication protocol

widely used in industrial control systems. Since a Modbus request and its corresponding Modbus

response have the same transaction identifier number, encapsulated PLC protocol messages can be

grouped based on the transaction identifier of the Modbus/TCP protocol. After pairing, duplicate

pairs are eliminated. Duplicated messages can exist if there is periodical status check between a

PLC and its engineering software. This process is repeated for all packet captures.

After that, messages in packet-captures are aligned and differences are analyzed. It is possible

to recognize a large chunk of aligned message, since the messages contain same control logic,

which leads to find essential format of a proprietary protocol. We will describe how the alignment

facilitates format recognition for a proprietary PLC protocol in Section 4.6. The essential protocol

format includes dynamic fields such as session id and sequence number, and control logic read/write

message formats.

Building a Communication Template. Stage 2 is similar to stage 1 except that it uses different

control logic programs to collect multiple network packet captures. It processes each network

capture by extracting and grouping the messages in request/response pairs, followed by eliminating

duplicate pairs of the messages. If a sequence number field is recognized in stage 1, it is ignored in

the deduplication step. The request and response messages involving control logic read/write are

removed based on the essential protocol format inferred in stage 1.

The remaining messages of the packet captures are aligned, and differences between them are

analyzed. At this step, a session id field is ignored. The aligned message chunks reveal control-logic

dependent fields (since other dynamic fields are ignored in the previous steps) including checksum

fields. These fields, as well as the previously derived format in stage 1, compose essential protocol

format. Lastly, merging ignores control-logic dependent fields to make a communication template

consisting of the unique request and response pairs.
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During the attack, virtual PLC finds the corresponding messages to a request message using the

communication template and then, adjusts the dynamic fields using the essential protocol format

before sending the messages to engineering software. If the request message is not in the template, it

means it is a control logic read/write request message. The virtual PLC generates a valid response

message according to the current control logic obtained in phase 1 of CLIK.
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Chapter 4

Real-world Implementation of CLIK

We implement CLIK on a real PLC, Schneider Electric Modicon M221, and its vendor-supplied

engineering software (SoMachine-Basic). CLIK is developed in Python and consists of five modules:

1) a password attack module, 2) a control logic upload & download module, 3) IL decompiler &

compiler, 4) a malicious logic generator, and 5) a virtual M221 PLC. Since the M221 PLC uses a

proprietary protocol and the format of the control logic blocks were unknown, we had to do some

reverse engineering. The detailed efforts of our reverse engineering works are not described here

for space reason.

4.1 Subverting PLC Password Protection by Exploiting a Zero-

day Vulnerability

Since the latest version of the M221 PLC is protected by a password authentication mechanism,

an unauthorized user is not allowed to read the control logic of the PLC. For example, one can not

upload the control logic of the M221 PLC without the correct password if the password protection

option is enabled. We have found a zero-day vulnerability in the authentication mechanism and

further develop a proof-of-concept exploit to subvert the password protection. We confirmed that

the latest version of firmware (v1.5.1.0 and v1.6.0.1) and SoMachine-Basic (v1.5 and v1.6) are

impacted by this vulnerability, and reported this to the vendor.

Figure 4.1 describes the authentication process between an M221 PLC and SoMachine-Basic.

First, the engineering software requests a one-byte random mask (mask1 ) from the PLC. After

receiving (mask1 ), the engineering software sends one-byte random mask (mask2 ) to PLC along

with the masked value of the password hash for authentication. The masked value is computed by

XORing the original password hash (SHA-256) against both mask1 and mask2. When the PLC

receives the masked hash and mask2, it computes its masked-hash using the same XOR operation
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Figure 4.1: Normal password authentication between the Schneider Electric Modicon M221 PLC
and SoMachine-Basic engineering software
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Figure 4.2: Password authentication while exploit the vulnerability in the Schneider Electric Mod-
icon M221 PLC by the CLIK

initially performed by the engineering software. If both masked-hashes are identical, the PLC

grants access permissions to the engineering software.

The M221 PLC does not allow reading control logic remotely before authentication. However,

writing to the PLC is still allowed, which is an exploitable vulnerability. We demonstrate that an

attacker can reset the password by overwriting the original password hash with its own. However,

the challenge for the attacker is to identify the correct location of the hash code in the PLC to

overwrite.

Figure 4.3 shows the address space layout of the M221 PLC. We find out that the password

hash is always preceded by a variable size zip file containing metadata of the control logic. We also

discover that the zip file is mapped at the fixed address (0xd000). Furthermore, the code block of

the control logic, which is a machine code of Renesas RX630 microcontroller [14], is always mapped

at an arbitrary location starting from 0xe000, referred to as random gap. Thus, we compute that

there is an unused area between the end of the password hash and the address 0xe000.

Although an attacker is not allowed to read control logic from the PLC without knowing the
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Figure 4.3: Address space of the M221 PLC

valid password, the attacker still can write values to the PLC. Therefore, if an attacker knows the

address where the authentication key (e.g. password hash) is stored, the attacker can pass the

authentication by overwriting the original authentication key with attacker’s key.

The address is represented by a two-byte field in read/write messages of the M221 PLC protocol.

The M221 PLC uses a password hash as authentication key, and the password hash is always

preceded by a variable size zip file containing metadata of the control logic. We also found out that

the zip file is mapped at fix address (0xd000) and the code block of the control logic, which is a

machine code of Renesas RX630 microcontroller [14], is always mapped at arbitrary address above

0xe000. Therefore, there is unused area between the end of the password hash and the address

0xe000.

To identify the correct location of the hash code to overwrite with new password hash, the

attacker can compute negative or positive offsets from a known reference point to password hash.

Unfortunately, the offsets are not consistent because of the following reasons. To compute the

positive offset, we know the starting address of the zip file. However, the size of the file varies and

cannot be found during the attack. To compute the negative offset, we know that the code block of

control logic starts from any random location after 0xe000. However, the random location is not

apparent making the offset value unpredictable.

The other approach is to fill the memory between the zip file and 0xe000 with the attacker’s

password hash. However, this approach is not reliable. It can start overwriting the memory from

0xe000 to password hash, but cannot precisely determine the end of the zip file since the file size

varies, which may cause exceeding the hash location and overwriting the zip file contents.

Furthermore, the size of the SHA-256 hash is 32 (0x20) bytes. The original hash must be located

by the multiple of 32-byte from 0xe000 to ensure that the new hash completely overwrites the old
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hash.

Figure 4.2 shows the overview of the password authentication while exploit the vulnerability.

Algorithm 1 describes the exploit method that takes advantage of the vulnerability and resets the

original password of the M221 PLC with an attacker’s password. It assumes that the password hash

is located anywhere starting from 0xe000 to a negative offset. Since the size of the SHA-256 hash is

32 bytes (0x20), it first overwrites the address 0xdfe0 ∼ 0xe000 with the new password hash (line

10 in Algorithm 1) and then, sends an authentication request to the target PLC using mask2 and

maskedHash (line 11). If the authentication fails, it iteratively performs the same steps. However,

every iteration overwrites the hash value to the memory location, which is one-byte negative offset

from the last address. For instance, the next address after the first failed authentication is 0xdfdf

∼ 0xdfff. At some point, an iteration overwrites the original hash code completely with the correct

alignment, which resets the password and authenticates successfully.

Since the size of the SHA-256 hash is 32 (0x20) bytes, it first overwrites the address 0xdfe0 ∼

0xe000 with the new password hash (line 10). Then, send an authentication request to the target

PLC using mask2 and maskedHash (line 11). If the authentication fails it overwrites the next

address 0xdfdf ∼ 0xdfff and send an authentication request again. In this manner, it iteratively

overwrites the address space until an authentication success message is received.

It first calculate newHash (line 1) and get mask1 from the PLC (line 2). Then, mask2 is set

with an arbitrary value (line 3). maskedHash is calculated from newHash, mask1, and mask2 (line

6-8). Then it iteratively overwrite targetAddr with the maskedHash as follow (line 9-14). When

the size of the password hash is 32 (0x20) bytes, an attacker first overwrite the address 0xdfe0 ∼

0xe000 with the attacker’s password hash, then send an authentication request to the target PLC

using the attacker’s password hash. If the authentication fails the attacker overwrite the address

(0xdfe0 - 1) ∼ (0xe000 - 1) and send an authentication request again. In this way, the attacker

iteratively overwrite the address (0xdfe0 - 2) ∼ (0xe000 - 2), (0xdfe0 - 3) ∼ (0xe000 - 3), ...,

(0xdfe0 - N ) ∼ (0xe000 - N ), until authentication succeeds.
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Algorithm 1 Pseudocode for password reset attack

Input: New password
Result: Reset password with the new password
1: newHash← sha-256 hash of the new password
2: mask1← Request mask1 from the PLC
3: mask2← A random number between 0 and 255
4: targetAddr← 0xdfe0
5: hashSize← 32
6: for i = 0 to hashSize− 1 do
7: maskedHash[i]← newHash[i]⊕mask1⊕mask2
8: end for
9: while res = False do

10: Send a write request (addr:targetAddr, size:hashSize, data:newHash) to PLC
11: Send an authentication request (mask2, maskedHash) to PLC
12: res← Received result of the authentication request
13: targetAddr← targetAddr− 1
14: end while

4.2 Control Logic Uploader & Downloader

The Uploader and Downloader retrieves the control logic from and transfer it to a PLC respectively.

In M221 PLC, the control logic consists of six blocks. We refer to them as conf1, conf2, code,

data1, data2, and zipHash since the protocol is proprietary and its specification is not publicly

available. The conf1 and conf2 blocks have information of other blocks. The code block is

the compiled version of control logic in RX630 machine code. The zipHash block consists of a

zip file (metadata of control logic) and password hash (if password protection option is enabled).

The data1 block contains the values of the variables used in control logic. The data2 block has

information about the data1 block.

The Uploader reads all six blocks of the control logic from the M221 PLC. It first obtains the

address and size of each block and then, sends read messages to the PLC to retrieve the entire logic.

Figure 4.4 illustrates the process of getting the address and size of the blocks. We find that the

conf1 block is always mapped at a fixed address (0xfed4) and has the fixed size of 300 bytes. The

conf1 block is then used to derive the size of the zipHash block, and the size and address of the

conf2 block. The conf2 block is retrieved from the PLC and then, used to derive the size of the

data1, and data2 blocks, and the address and size of the code block. After obtaining the addresses

and sizes of the control-logic blocks, the Uploader sends read-requests to the PLC to retrieve them.
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Figure 4.4: Start address and size of M221 control logic blocks

The Downloader sends write-requests to the PLC with the corresponding addresses and size of

the control-logic blocks. During the CLIK attack, the Malicious Logic Generator modifies either

data1 or code block, or both. The Downloader sends write-requests containing modified-blocks

with their original addresses and current sizes that may be different from original sizes after mod-

ifications.

4.3 IL Decompiler & Compiler

SoMachine-Basic (an engineering software) supports two programming languages, ladder logic,

and IL. The ladder logic consists of rungs and each rung has instructions. The SoMachine can

interchange the instructions between the two languages. When SoMachine compiles a control logic

program, it converts the program into RX630 assembly code.

IL Decompiler We implement the decompiler Eupheus that takes the RX630 code as input and

decompiles it into IL source code. We choose IL over ladder logic because IL is text-based and easier

to manipulate. Ladder logic, on the other hand, is a graphical language where each instruction is

represented as a graphical symbol and the instructions are grouped into rungs.

The decompiler Eupheus has two main components: First, the database for mapping the opcodes

to their corresponding IL instructions (refer to Figure 4.7). Currently, the database consists of 4079

mappings for 21 types of different instructions including input and output, relative branch, control

block, and operational block. Second, the mapper program, which utilizes the data and config
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blocks in the M221 control logic and the mapping database to process the code block. In the first

step of decomilation mapper divides the control logic into individual rungs, using two criteria, a

rung can be separated when an output instruction is followed by an input instruction or if the rung

has a control block instruction like Timer or Controller it ends with the END BLK instruction which

is considered as a delimiter in the database. when the rungs are separated and stored into an array,

the mapper proceeds to the next step: replacing the binary with appropriate instructions. The

mapper finds the RX630 instructions of the code block in the database of opcodes to obtain their

corresponding IL instructions. We notice that RX630 program maintains the essential constructs

of both languages, IL and ladder logic to facilitate the decompilation by SoMachine. The mapper

therefore, first identifies the rungs in RX630 program and then, processes each rung to identify IL

instructions.

The Table 4.1 shows an example of RX630 control logic that is mapped to IL instructions. The

rungs are separated when an output instruction opcode is preceded by the instruction opcode of an

input or a control block instruction such as Timer or Counter. In the latter case, the rung ends with

END BLK instruction denoted as 7F 1A 11 in RX630 control logic, The Figure 4.8 shows an example

of control logic that is using timer. After the rungs are separated, Eupheus decompiles each rung

at a time by identifying the instructions in the database and replacing the RX630 instruction with

equivalent IL instruction. The bitwise AND and OR are denoted in control logic as 0x23 and 0x22

respectively, followed by the byte that indicates the total number of bytes of the next instruction.

For example, 7C 0C 23 04 7C 1C represents that the two instructions 7C 0C and 7C 1C are in

series connection and the 04 shows that the next instruction has two bytes.

The control logic sometimes contain Operational Blocks, equations using memory floats or

memory words, which are used as control flow determinants for the physical process. In such cases

binary uses the opcode 7F 1A which means Jump to Sub-Routine in RX630. The mapper database

is not enough to decompile in this situation. So we implemented a separate program to decompile

the operation block equations. There is a specific code for each arithmetic operation in the binary.

we stored each operation so that when we come across the operation code, the operational block

decompilation program can be used. The binary has a specific structure for the equation as shown

in the Figure 4.5.

When the equation is complicated then the binary is divided into multiple simple equations
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7F 1A 3C 6D 00 32 32 02 81 04 81 06 81

[ %MF1 := %MF2 / %MF3 ]

JSR

OPERATION ( / )

TYPE OF OPERANDS 

PARAMETER OR SYMBOL 
ON LEFT HAND SIDE OF 

THE EQUATION OPERANDS IN THE EQUATION 

Figure 4.5: Simple Operation Block

with temp variables. The Figure 4.6 shows an example of complex equation breakdown in the

control logic binary and the usage of TEMP variable to connect each simple equation and form the

resultant complex equation. In the example given below the operand type 32 means the variable

and the type 29 means constant. Each operation have different code in the binary with one to one

connection.

OPERATION
OPERAND 

TYPES

USING TEMP
VARIABLE

Figure 4.6: Complex Operation Block

The mapper program finds the operation block binary and sends it to the Operational Block

Decompiler. the programs checks the binary and determines the complexity of the equation. The

simple equation can be decompiled by getting the operator from the database and decompiling the

constant and the variable. However when the equation is complicated like in the example given

in Figure 4.6 we have to determine the temp variable initialization, utilization and the assignment

of the TEMP variable. in the first step we decompile individual equations with the temp variable.

Next we replace the temp variable with the equation assigned to it to form the final equation. The

tricky part is as given in the figure if the temp variable is reassigned, that is if the temp variable

is utilized to make another equation to reassign. We use the top-down approach to replace the
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equations step by step.

Mapping Database The database maintains the opcodes of RX630 instructions and their cor-

responding IL instructions along with the category of the instruction such as inputs, outputs and

relative branch instructions (AND, OR, etc.). The logic also has timer specifications such as 23 00

indicates that the timer type is TON and the preset is 1.00 second.

includes Instructions table with the opcodes with their corresponding instructions and the

category of the instruction ( inputs, outputs and relative branch instructions like AND and OR).

MetaData table includes timer specifications like 23 00 indicates that the timer type is TON and

the preset is 1s

The database stores each instruction opcode and the equivalent instruction in a table called

Instructions. This table includes Input instructions, output instructions, relative branch in-

structions and block instructions which are constructed based on RX630 microcontroller assembly

language.

However, The conditional blocks or the operational blocks in the Instruction list may not be

completely mapped to the assembly code of RX630, as they use Jump to Sub Routine(7f 1a 10)

to represent the Block instruction and after that the Hex code represents each input and output

differently even then we were able to see some pattern to map the Instruction list and the code from

network packet. Also the Operational blocks that use Memory words/floats are also represented

with control logic that starts with (7f 1a) but the next few bytes of code is not as explained in the

microcontroller assembly language.

The database includes Instructions table with the opcodes with their corresponding instructions

and the category of the instruction ( inputs, outputs and relative branch instructions like AND and

OR). MetaData table includes timer specifications like 23 00 indicates that the timer type is TON

and the preset is 1s

Mapping Program The mapper program processes the M221 control logic by first dividing it

into separate rungs. Each rung may have opcodes of input, output and conditional block instruc-

tions that are searched in the database to find their equivalent IL instructions.

In the cases of operational block, the mapping database is not enough to decompile the binary
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of control logic.

IL Compiler The compiler is the reverse process of the decompiler Eupheus, which uses the same

database to get the equivalent RX630 opcode of every instruction in Instruction List.

Original Control Logic (Engineering software) Decompiled Control Logic (Eupheus)

Figure 4.7: Mapping RX630 Opcodes with IL Instructions

4.4 Mapping RX630 Opcodes with IL Instructions

CLIK employs rule-based approach to inject malicious logic in the decompiled IL code of RX630

control logic automatically. The decompilation ensures that CLIK understands the RX630 control

logic correctly since the opcode of each instruction is of different size; a longer opcode of an

instruction may contain one or more smaller instruction opcodes. Furthermore, the original control

logic is written in high-level language such as IL. Thus, it is easier to identify malicious logic for

an IL control logic code than RX630 machine code.

4.5 Malicious Logic Generator

We used the decompiled Instruction List to modify or insert rungs to perform malicious activities

when the code is executed by the PLC. The reason behind this is the opcode of each instruction is in

different length, the longer instruction opcode the more chances that it might contain one or more

smaller instruction opcodes that mean absolutely different when converted into Instruction List,
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Table 4.1: Instruction List representation and corresponding machine code description

IL Hex Assembly Language Description Ref. (the manual [14])
Rung 0

LD %I0.1 7c 1c
BTST
1(imm), R12

Z = ∼(( src2 >>( src & 31 )) & 1 );
C = (( src2 >>( src & 31 )) & 1 );

p.194
(3)
BTST src, src2

AND
%I0.8

23 04
BCnd.B
4(pcdsp)
#cd: BNC(C == 0)

if ( Cnd )
PC = PC + src;
PC += 4: if I0.1 is 0, then
it skip the next instruction

p.185
(2)
BCnd.B src

7c 8c
BTST
8(imm), R12

Z = ∼(( src2 >>( src & 31 )) & 1 );
C = (( src2 >>( src & 31 )) & 1 );

p.194
(3)
BTST src, src2

ST
%M1

fc e6 72 00 00

BMCnd
1(imm), [R7].B
#cd: BMC
(C==1)
#dsp: 0x0000

if ( Cnd )
dest —= ( 1 <<( src & 7 ));
else
dest &= ∼( 1 <<( src & 7 ));

p.187
(1)
BMCnd src, dest

Rung 1

LD %M5 f6 75 00 00
BTST 5(imm), [R7].B
#dsp: 0x0000

Z = ∼(( src2
>>( src & 7 )) & 1 );
C = (( src2
>>( src & 7 )) & 1 );

p.194
(1)
BTST src, src2

AND
%M259

23 06
BCnd.B 6(pcdsp)
#cd: BNC(C == 0)

if ( Cnd )
PC = PC + src;
※if M5 is 0, then
it skip the next instruction

p.185
(2)
BCnd.B src

f6 73 20 00
BTST 3(imm), [R7].B
#dsp: 0x0020

※Target Memory addr = R7 + 0x20
Target bit offset is 259 (0x20 * 8 + 3)

p.194
(1)
BTST src, src2

ST %M260 fc f2 72 20 00

BMCnd
4(imm), [R7].B
#cd: BMC
(C==1)
#dsp: 0x0020

※
Target Memory addr = R7 + 0x20
Target bit offset is 260 (0x20 * 8 + 4)

p.187
(1)
BMCnd src, dest

Rung 2

LD %M307 f6 73 26 00
BTST 3(imm), [R7].B
#dsp: 0x0026

※Target Memory addr = R7 + 0x26
Target bit offset is 307 (0x26 * 8 + 3)

p.194
(1)
BTST src, src2

ST %M498 fc ea 72 3e 00

BMCnd
2(imm), [R7].B
#cd: BMC
(C==1)
#dsp: 0x003e

※Target Memory addr = R7 + 0x3e
Target bit offset is 498 (0x3e * 8 + 2)

p.187
(1)
BMCnd src, dest

02 RTS

PC = *SP;
SP = SP + 4;
※This instruction returns the
flow of execution from a subroutine

p.240
(1)
RTS

Figure 4.9 shows some examples of such cases, where inserting or changing the code is complicated.

To simplify we use the decompiled instruction list so that the change can be significant.
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Block start (BLK) XIO(LD %I0.0) Series Connection (AND) XIC (N %M2) 

OTE (ST %M0)

End of control logic

Indicating the end of rung 
which contains the Timer 

(END_BLK) 

Timer ID 0 ( TM0)

Timer Input  (IN)

Out Block (OUT_BLK) 

Timer Output Q for 
Timer TM0 (LD Q) 

End of first rung

Start of next rung

Figure 4.8: Mapping opcode with Instructions

Rules We define five heuristic rules to modify the IL code; more rules can be included to improve

the malicious logic generator: Rule-1: If input/output bits are found then, replace them with

memory bits. Rule-2: If a configured range of target variable matched then, modify its determinant.

Rule-3: If a set-point is less than a ¡certain value¿ then, modify the set-point. Rule-4: If an

operational block has an equation then, replace an operator in the equation. For instance, the

operator := can be replaced with <>. Rule-5: Insert a new rung at the end of the logic with an

energizer output of a target actuator to override the output with the attacker’s desired value.

The rule 1 can be generally applied for modifying digital values in control logic. By disabling

input and output bits of a control logic, it performs a denial-of-service attack in effect. On the

other hand, rule 2, 3, and 4 focus on modifying analog values in control logic. By examining

analog values, CLIK could be configured to find a target variable in control logic to conduct more

sophisticated modification. If attackers have some estimated range of the target variable, CLIK can

try to find the target variable based on the estimated value range. A target value estimation can

be done in two ways: observation and general feature.

First, attackers might be able to observe the features of the target physical process. For example,

attackers can observe time period of a traffic light system and use that information to configure

the malicious logic generator to find a specific timer preset. Otherwise, the target physical system

could have some general feature. For example, a centrifuge for enriching Uranium-235 is required to
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f6 73 00 00    LD %M3

fc f6 73 00 00  STN %M5

ef ce 7e 0e 7c 0e  N %I0.0 ef ce 7e 0e 7c 1e  N %I0.1

ce 7e 00 00 7e 0e 7c 0e  N %M0 ce 7e 00 00 7e 0e 7c 1e  N %M1 
ce 7e 01 00 7e 0e 7c 0e  N %M8 ce 7e 01 00 7e 0e 7c 1e  N %M9 
ce 7e 02 00 7e 0e 7c 0e  N %M16 ce 7e 02 00 7e 0e 7c 1e  N %M17 
ce 7e 03 00 7e 0e 7c 0e  N %M24 ce 7e 03 00 7e 0e 7c 1e  N %M25 

…. ….
ce 7e 3f 00 7e 0e 7c 0e  N %M504 ce 7e 3f 00  7e 0e 7c 1e  N %M505 

7f 1a 11   Out Block
7f 1a 11  End Block

Figure 4.9: Similar Opcode Examples

spin at 50,000 ∼ 70,000 rpm. Therefore, attackers who want to sabotage a nuclear facility can use

this information to configure the malicious logic generator to find and modify the specific variable

related to the target variable-frequency drive of a gas centrifuge.

Infection rule 1) Replacing input or output bits with memory bits The infection may

make the PLC unresponsive by replacing memory bits with input or output instructions. This

approach mainly focuses on the digital values in control logic, which can only result into a static

attack with same or similar kind of results when a new rung is appended to the original control

logic.

Infection rule 2) Modifying analog control flow determinant We define that a variable X

is a control flow determinant if X influences a decision at a conditional branch of control logic. For

example, analog control flow determinants include variables of function blocks such as timer preset

and counter preset. The modification is done by following steps: 1) finds all analog control flow

determinants except input/output variables in control logic, 2) if there is configured range of target

variables, finds matching variables among the control flow determinants and modifies them with

configured values, 3) if there is no configured value or fails to find the matching variable, randomly
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selects an analog control flow determinant and modifies it with a random value.

Infection rule 3) Modifying set-points A set-point is a desired value for a process value

of systems like a motor frequency of a gas centrifuge. In most of control logic program, a set-

point of underlying physical process is represented using special function blocks or instructions

provided by an engineering software. For example, Schneider Electric SoMachine-Basic provides

drive block which allow drive devices to be controlled by a PLC. Allen-Bradley’s RSLoigx 500

supports proportional integral derivative instructions which control a process variable to be at a

desired set-point using a closed process loop. The modification is done by following steps: 1) finds

those function blocks or instructions which contain a set-points, 2) if there is configured range of

target variables, finds matching variables among the set-points and modifies them with configured

values, 3) if there is no configured target value or fails to find the matching variable, randomly

selects a set-point and modifies it with a random value.

Infection rule 4) Replacing operators in operational blocks Changing the operational

block equation can change the flow of the entire control logic. This modification can be accomplished

by replacing the operators with an opposite operator (like := can be replaced with <>) which makes

the control flow to act exactly opposite than it was originally intended to.

Injecting Malicious Logic via the Rules We apply the rules to inject three different malicious

logic in a control logic program. To generate the first malicious logic, the CLIK applies the rule-1

to replace an I/O register of an actuator with a memory I/O to control the actuator state via a

memory location. In the second malicious logic, the CLIK applies the rule-5 to append a new rung

at the end to energizing an output used in the control logic.

To generate the third malicious logic, the CLIK applies the rule-4 to disable the condition that

energizes an actuator when a certain threshold is met. This logic can cause severe damage to an

ICS system. For instance, consider a scenario where a control logic energizes a red light when a

particular threshold is reached to indicate danger. If the attacker manipulates the control logic

using this method, it will disable the condition to energize the light thereby, making the operator

utterly oblivious to the situation.

31



Li

ne
Packet capture-1 Packet capture-2

1 --> 3a:29:a8:e0:01:07:3b:00:7f:1a:10:0b:00:... | --> 01:29:a8:e0:01:07:3b:00:7f:1a:10:0b:00:...

2 <-- 3a:fe | <-- 01:fe

3 --> 3a:29:00:d0:00:07:ec:00:37:7a:00:00:00:... | --> 01:29:00:d0:00:07:ec:00:37:7a:00:00:00:...

4 <-- 3a:fe | <-- 01:fe

5 --> 3a:29:ec:d0:00:07:ec:00:25:78:f6:26:4b:... | --> 01:29:ec:d0:00:07:ec:00:25:78:f6:26:4b:...

6 <-- 3a:fe | <-- 01:fe

7 --> 3a:29:d8:d1:00:07:ec:00:93:80:b5:ac:87:... | --> 01:29:d8:d1:00:07:ec:00:93:80:b5:ac:87:...

8 <-- 3a:fe | <-- 01:fe

9 --> 3a:29:c4:d2:00:07:5b:00:01:02:33:00:2d:... | --> 01:29:c4:d2:00:07:5b:00:01:02:33:00:2d:...

10 <-- 3a:fe | <-- 01:fe

11 --> 3a:29:54:4f:04:07:ac:00:aa:aa:00:00:00:... | --> 01:29:54:4f:04:07:ac:00:aa:aa:00:00:00:...

12 <-- 3a:fe | <-- 01:fe

+

+

+

Payload (control logic)
--> Request message  (ES to PLC)
<-- Response message (PLC to ES)

Figure 4.10: A snippet of aligned M221 protocol message chunks

4.6 Virtual M221 PLC

We have developed a virtual M221 PLC based on the systematic approach presented in Section

3.4. Since the Modbus/TCP protocol encapsulates the M221 PLC protocol, the encapsulated PLC

protocol messages can be extracted and grouped according to the transaction identifier of the

Modbus/TCP protocol. After deduplication of the extracted messages, the remaining message of

different packet captures (containing identical control logic) are aligned to facilitate recognition

of the essential protocol format. Figure 4.10 shows a snippet of aligned message chunks using the

diff [1] on two packet captures (of same control logic being downloaded to the M221 PLC). The first

byte of each message can be inferred as a session related field because its values are identical within

a packet capture but different across the packet-captures. The second byte of request messages can

be recognized as a write command (remember that the packets are captured when control logic is

being downloaded in this example) since its values are always 0x29 in the packet captures. Also,

we can find a data-size field by recognizing that the two-byte little-endian value of the seventh and

eighth bytes of the request messages exactly represents the size of the following bytes (payload).
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a) Write request

…

…

Write
request

Address

Data size
Status: 
success

b) Reply with success status for a write request

Address

Data size

MBAP 
header

Modbus
function code

Address

Start of data

c) Read request d) Reply with data for a read request

Status:
success

MBAP 
header

Modbus
function code

Session 
ID

MBAP 
header

Modbus
function code

Read
request

MBAP 
header

Modbus
function code

Session
ID

Start of data

Figure 4.11: Read and write message format of the M221 proprietary protocol

a) Session ID request

…

Session ID
Request

b) Reply with a session ID

Session ID

MBAP 
header

Modbus
function code

MBAP 
header

Modbus
function code

Status: 
success

Figure 4.12: Session ID request/response message format of the M221 proprietary protocol

The address field (third and fourth bytes in the request messages) can also be easily noticeable

since the values are increased by the data size in some successive request messages (line 5,7, and 9

in Figure 4.10). It cannot be recognized as a type of sequence number field because its value is not

always increased by the data size of the previous request message. For example, its value (0x4f54)

of the request message in the line 11 is not the sum of its value (0xd2c4) and the data size (0x5b)

of the previous request message (in line 9).

Figures 4.11, 4.12 and 4.13 show the recognized essential protocol format of the M221 PLC.

When the virtual PLC receives a read or write request message, it dynamically generates a valid

response message using the read/write message formats (Figure 4.11) and the control logic blocks

obtained in phase 1 of CLIK. Figure 4.12 describes the session ID request and response message

format. The session ID is used in the write request/response messages and some of the messages

in the communication template. Since the M221 PLC decides a session ID for a session, we use

the same session ID appeared in the communication template for every session, thereby the virtual

PLC does not have to correct the session ID in the communication template.

Figure 4.13 shows the request/response messages used by SoMachine-Basic to check the in-
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b) Checksum request-1 c) Checksum reply-1

Checksum

Session ID

d) Checksum request-2 e) Checksum reply-2

a) Checksum in conf1 block

Checksum
Request1

MBAP 
header

Modbus
function code

Checksum
Request2

MBAP 
header

Modbus
function code

Status:
success

MBAP 
header

Modbus
function code

Status:
success

MBAP 
header

Modbus
function code

Checksum

Session ID

Checksum

Figure 4.13: Integrity check of control-logic using a checksum in M221 proprietary protocol

tegrity of control logic periodically. We found two types of request/response messages as shown in

Figure 4.13. The checksum value is located at the end of the conf1 block (refer to Figure 4.13(a)).

The byte order of the checksum is slightly different for both message types. The checksum re-

ply messages in the communication template are corrected according to the checksum in the conf1

block when the virtual PLC loads the template. Along with the essential protocol format, we derive

a communication template for the M221 PLC according to the procedure explained in Section 3.4.

The communication template consists of 40 messages (20 request and response pairs) including two

session id related messages and four messages of the integrity checking of control logic. To redirect

the packets from the engineering software to the virtual PLC, we use ARP poisoning for the proof-

of-concept along with the destination network address translation (DNAT) of iptables [3] in the

virtual PLC.

34



Chapter 5

Evaluation

5.1 Experimental Settings

Lab Setup We evaluate CLIK on Schneider Electric Modicon M221 PLC (firmware v.1.6.0.1)

and SoMachine-Basic v1.6. The PLC is connected with simple physical processes; each consists of

toggle switches, push buttons, pilot lights, potentiometer, ammeter, etc., and communicates with

SoMachine-Basic over Ethernet. SoMachine-Basic runs on Windows 7 virtual machine (VM), and

the CLIK implementation runs on Ubuntu 16.04 VM.

Dataset Our dataset consists of 52 IL programs for evaluation. The programs have 286 rungs

and 1678 instructions in total and are written for different physical processes such as traffic light,

gas pipe line and Hot water tank using various conditional and operational instruction blocks.

5.2 Reliability of the Password Attack

We evaluate the password attack using the 52 different control logic programs. Each program is

set with a unique password and downloaded to a real M221 PLC. We use a random password

generator [4] for each password to generate strong passwords that are 25 characters long including

lower case, upper case, and numbers. We performed the attack on the control logic programs

and found that the attack always resets the password successfully within 14 seconds. Table 5.1

summarizes the experimental results. The total block size represents the total sum of the six

control logic block sizes (conf1, conf2, zipHash, code, data1, and data2).

While executing the attack, the initial target address is set to 0xdfe0 and the zipHash block

is always mapped to 0xd000. Therefore, if the size of the zipHash block is larger than 4,064

(0xfe0) bytes, the attack would not work. However, according to our experiment result, the size

of the zipHash block is always smaller than 4,064 bytes. Also, Every code block is mapped to a
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Table 5.1: The experimental results of the password reset attack

Total
block

size(KB)

# of
project

files

Max size
zipHash
(byates)

Lowest addr.
of code block

(hex)

Avg.
# of
write

Max
# of
write

Avg.
time
(sec)

Max
time
(sec)

Attack
success

rate

6 ∼ 7 5 831 0xe088 3325 3413 13.48 13.88 100%
7 ∼ 8 19 1712 0xe08c 2943 3266 11.89 13.31 100%
8 ∼ 9 25 2261 0xe08c 2034 2385 8.21 9.64 100%
>9 3 3103 0xe26c 1468 2379 5.89 9.42 100%

Total 52 3103 0xe088 2458 3413 9.93 13.88 100%

random address after 0xe000, thereby we confirm that the overwriting the target memory locations

of the PLC during the attack does not affect the integrity of the code block. Finally, we evaluate

the attack on two different firmware versions of the PLC i.e., 1.5.1.0 and 1.6.0.1. The attack is

successful on both versions. Thus, we confirm that both firmware versions are vulnerable to this

attack.

5.3 Compilation & Decompilation Accuracy

We evaluate the accuracy of the decompiler Eupheus and its counterpart compiler using the dataset

of 52 IL programs. We download programs to a real M221 PLC, capture their network traffic and

then, extract them from the traffic. The control logic programs are RX630 machine code that run

the PLC. We use Eupheusto decompile the programs into their IL source code and then, compare

the decompiled and original IL code to measure the accuracy of Eupheus. The experimental results

are summarized in Table 5.2 and conclude that Eupheus can accurately decompile RX630 machine

code into IL code since it does not encounter any intermingling of data and code.

To measure the accuracy of the compiler, we compiled the decompiled version back to RX630

machine code and compare both (recompiled and original) versions. The experimental results show

that the compiler can accurately recompile the decompiled version into RX630 machine code.

5.4 Generation of Malicious Logic

We evaluate the generation of malicious logic using three rules on the IL programs (traffic light, gas

pipeline, hot water tank, and others) in the datasets. Table 5.4 includes the experimental results
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Table 5.2: The accuracy of the decompiler Eupheus

Symbol (Name)

So-
Ma-

chine
Basic

Eu-
pheus

Accu-
racy

Symbol (Name)

So-
Ma-

chine
Basic

Eu-
pheus

Accu-
racy

LD (Load value) 339 339 100% DIV (Division) 11 11 100%
LDN (Load

negated)
84 84 100% OR (Bitwise OR) 36 36 100%

OTE (Output
energize)

251 251 100%
AND (Bitwise

AND)
136 136 100%

MUL
(Multiplication)

31 31 100% M (Memory bit) 197 197 100%

TON (Timer on
delay)

24 24 100% S (Set) 30 30 100%

TOF (Timer off
delay)

4 4 100%
OUT BLK (Block

out)
44 44 100%

CTU (Count up) 8 8 100%
END BLK (End of

the block)
44 44 100%

R (Reset) 21 21 100% IN (Input-timer) 27 27 100%
END (End of
control logic)

52 52 100%
LDR (Load rising

edge)
17 17 100%

CTD (Count down) 8 8 100%
LDF (Load falling

edge)
16 16 100%

EQU (Equal) 13 13 100% DR (Drum register) 8 8 100%
GEQ (Greater than

or equal)
4 4 100%

MW (Memory
word)

71 71 100%

GRT (Greater than) 9 9 100% TP (Pulse timer) 8 8 100%
LEQ (Less than or

equal)
5 5 100% MF (Memory float) 76 76 100%

LES (Less than) 3 3 100% Short (Short) 10 10 100%
NEQ (Not equal) 4 4 100% SB (System bit) 26 26 100%

ADD (Addition) 16 16 100%
XOR (Bitwise

XOR)
2 2 100%

SUB (Subtraction) 8 8 100% Done (Done) 1 1 100%

NOTE (Negated
output energize)

33 33 100%
Write Var (Write
Data to a Modbus

Device)
1 1 100%

Total 1678 1678 100%

of infecting the programs successfully.

The first infection is performed on Traffic light program that changes the I/O instructions to

energize the output. We trace the I/O instructions in the decompiled code and the location of every

I/O instruction is noted. The goal of the infection is to illuminate all LEDs. Thus, the malicious

Logic generator redirects every input instruction to negated memory bit input. Since the default

Memory bit value is false, the negated memory bit input will result in true thereby illuminating

all lights used in the Traffic light signal.
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Table 5.3: The experiment results on the virtual M221 PLC

Total
block

size(KB)

# of
control
logic

Avg. # of
template
lookup

Avg. # of
dynamic

generation

Avg.
time
(sec)

Upload
success

rate

6 ∼ 7 5 105 35 10.82 100%
7 ∼ 8 19 110 38 12.12 100%
8 ∼ 9 25 109 41 12.09 100%
>9 3 115 54 12.15 100%

Total 52 109 40 11.98 100%

The second infection inserts a new rung into the IL program of hot water tank. The program

controls the inlet and outlet valves, can fill or empty the tank, and maintains the water temperature

between the values. After getting the decompiled IL code, we infected it by appending a rung, which

has one output LED (L1) as an input instruction and one random LED (L2) as output instruction.

The LEDs indicate different hazard situations such as too hot or full tank. After appending the

rung, when the L1 is energized as per the program, L2 will also be energized, which causes a

confusion as to which situation is true.

The third infection modifies the gas pipeline program, which maintains the analog flow deter-

minants. This attack finds the determinants and changes the operation block by modifying the

decision operators such as (< or >) to the assignment operator (=). The modification causes an

unexpected behavior in the operation of the PLC.

5.5 Effectiveness of the M221 Virtual PLC

To evaluate the virtual M221 PLC, we first download each control logic program to the virtual PLC,

and extract control logic blocks from it. Then, we verify whether the virtual PLC can successfully

upload the control logic blocks to SoMachine-Basic, thereby SoMachine-Basic decompiles it and

show its source code. Table 5.3 shows the experimental results. The number of dynamic generation

means the number of times read/write response messages are generated dynamically (note that

control logic read/write messages are not in the communication template) and the time represents

the total operation time of the virtual PLC to successfully upload control logic to SoMachine-Basic.

In the experiments, virtual PLC uploads every control logic successfully to SoMachine-Basic.
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Table 5.4: The final evaluation result on CLIK

Control
logic

Real
world
logic

# of
files

Original
logic

size(bytes)

Infected
logic

size(bytes)

Phase-
I

Steal-
ing

Phase-
II

De-
com-
pile

Phase-
III

Infec-
tion

Phase-
IV

Con-
ceal-
ing

CLIK
Success

rate

Traffic
Light

Yes 1 8407 8415 100% 100% 100% 100% 100%

Gas
Pipeline

Yes 1 10110 10110 100% 100% 100% 100% 100%

Hot Water
Tank

Yes 1 7241 7245 100% 100% 100% 100% 100%

Others No 49
(avg.)

8029
(avg.)

8034
100% 100% 100% 100% 100%

Total - 52
(avg.)

8061
(avg.)

8070
100% 100% 100% 100% 100%

5.6 Putting CLIK-Phases All Together

We evaluate the entire CLIK attack by running it in autonomous mode. Table 5.4 summarizes the

evaluation result. We reuse the 52 control logic program in the dataset for the evaluation. Each

control logic is protected by a unique random password. After a complete execution of CLIK we

reset the environment before initiating the CLIK attack for the next control logic. The evaluation

results show that CLIK conducts its four phases (stealing, decompiling, infection, concealing) for

each control logic successfully, as shown in Table 5.4.
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Chapter 6

Conclusion

We presented CLIK, a new type of autonomous attack on the control logic of a PLC in industrial

control systems to disrupt a physical process controlled by the PLC. CLIK as a full attack was imple-

mented and evaluated on a real PLC (Schneider Electric Modicon M221) and engineering software

(SoMachine-Basic). The implementation of the CLIK included exploiting a zero-day vulnerability to

subvert a password authentication used in the PLC, a decompiler Eupheus to transform binary con-

trol logic into its corresponding IL source code, and a virtual PLC to engage the SoMachine-Basic

using the acquired network traffic of normal control logic. CLIK utilized a rule-based approach for

automated malicious modification of the source code. The evaluation results of CLIK on 52 control

logic program showed that it automatically infected control logic of the M221 PLC and hid the

infection from SoMachine-Basic with 100% success rate. This thesis work has been submitted to

ACSAC 2018 conference.
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