Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks @ The University of New Orleans

University of New Orleans

ScholarWorks@UNO

University of New Orleans Theses and

Dissertations Dissertations and Theses

Summer 8-6-2018

Assessing Apache Spark Streaming with Scientific Data

Janak Dahal
jdahal@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

b Part of the Other Computer Sciences Commons

Recommended Citation

Dahal, Janak, "Assessing Apache Spark Streaming with Scientific Data" (2018). University of New Orleans
Theses and Dissertations. 2506.

https://scholarworks.uno.edu/td/2506

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://core.ac.uk/display/303948151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uno.edu%2Ftd%2F2506&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2506?utm_source=scholarworks.uno.edu%2Ftd%2F2506&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Assessing Apache Spark Streaming with Scientific Data

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
In partial fulfillment of the
Requirements for the degree of

Master of Science
in
Computer Science

By
Janak Dahal

B.S. University of New Orleans, 2012

July, 2018

Dedication

| dedicate this thesis work to my wife and newborn child.

Acknowledgments

| would like to present my gratitude towards my supervisor Dr. Mahdi Abdelguerfui for his
continuous support and guidance at every level throughout the process of this Thesis
work. | would like to thank Dr. Elias loup for his valuable advice and knowledge about the
direction of this project, and Dr. Shaikh M Arifuzzaman and Dr. Tamjidul Hoque for
reviewing the manuscript and suggesting changes. | would like to appreciate Dr. Vassil
Roussev and Dr. Shengru Tu for their productive coursework in different classes relating

to distributed systems.

| would also like to present my appreciation towards all my coworkers and lab partners at

Cannizaro Livingston Gulf States Center for Environmental Informatics (GulfSCEI).

As an effort to further grow this research, | would like to take these findings and use them

to solve real-world problems.

Contents

IS o o U =TT vi
LISt Of TADIES ...ttt b e b bt b et et et e bt b bt vii
ADDIEVIBLIONS ...ttt ettt b e bbb e et eae bt b e e bt st n et e et eneeneas viii
AADSTIACT ...ttt bbbt h bbb et a st b et bt b i
IMEFOTUCTION. ...ttt b et b bbbt b et e b e e b s ebesae st nneseneeneas 1
BACKGIOUNG ...ttt st e sttt e s be e aa et e e beesaesbeesaesteesaentesteessensesasensessaensesteeseans 3
APBCNE SPAIK ...ttt h e h e b ettt et h e eheea e b e nen 5
3. 1 Resilient Distributed Data (RDD)cccoceviririerieieieieesiestestesieeeee ettt seens 5
0 0 I = L= o] [T0r= 1 =T [T RS PTPRRSRRU 6
.12 IMMUEADIE ...ttt 6
BLL.B RESIHENT ...ttt 6

3.2 Apache SPark SIrEaIMINGcoererieieiereee ettt sttt sbe e 7
APPIICALION ...ttt b e bt h bttt a e h e bt h e bt et e et neen e ae b e nen 9
I S < L] USRS 9
.11 HAOOOP. ... eeitieeieieiteeieete ettt ettt et e et e st e st e et e s teebe e besteessesbeessasesbeessesbeeseenbestsessensesasessesseensensesseans 9
o A AN o T- Lo L= TS o =g SRR 11

.2 DALAL ...cviitiiiicce e e 12
4.2.1 DALA FIlES....c.ooiiiiiiiciice e 12
4.2.2 DALA FOIMMALoooiiiiiiieiieiee ettt s r e sr e ne e eneesnesre s 13
4.2.3 DALA COlIECHON ...ttt ettt 14

G T Tt 1] 0= 1 TR 14
Y o o] [[or=1 (o o I T E- =TSR 15
T q =TT 0= o | PSSR 17
5.1 Complexity Of the OPEIAtIONcccooiieiiee et s 17
5.1.1 Variation of each StatistiCal ANAIYSISccueevveiieceecece e 18
5.1.2 Multivariable analysis of the GRIB data............ccecveerieviinieeseeeseeeee e 20

5. 2 Number of EXECULOr NOUES.........cc.ciriiiriiiiciicece et 23
LIRC TS Tox= 1= o] | 1 28RS 26

D FAUIE TOIBIANCE .ottt ettt e ettt e et e s e et e e s e bt e eseea bt e esaasbeeesassaseessssreeessasraeesssraeas 28

A S 0Tz 1IN o] o] [ToT= 11 o ISP 30
FINOINGS ettt b e bbbt et e et s e e bt e bt e bt e b et et et et et e st ebenbeer et 33

7.1 Spark Streaming vs. Hadoop’s batch processing vs. Storm Tridentccccoeeevvrceinnenen. 33

7.2 SPAK LIMIALIONSoovicieeiiciecteeeeete ettt ettt ettt et sttt e s et e e aa e besbeenbestessaensesreensensennnas 34
REIBLEA WOTK ...ttt 35
FUTUIE WWOTK. ...ttt ettt et b e b b a b et e e et e st ebesbeebeneen 36
CONCIUSION ...ttt s bbb bt ettt s e bt eb e s b b et et et ent e st eneebenaenen 37
BIBHOGIAPNY ... bbbttt sr e 38
RV - VRO SURSR PR 40

List of Figures

Figure 1:0utline of Apache Streamingceveviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 7
Figure 2:Node CPU CONfIQUIAtIONcooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 10
Figure 3:Hadoop Cluster Configurationceeeeeiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 10
Figure 4:Apache Spark Configurationeeeeviiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 12
Figure 5:Data file name SpecifiCations.............ccovvvviiiiiiiiiiiiiiiiieeeeeee 13
Figure 6:ApPlICAtioN OVEIVIEW...........uuuiiiii e e eeeeeeie e e e e e e e e e e e e e e e e ee e e e eeeeeeennes 15
Figure 7:Statistical Analysis of the initial set of data...............ccccoeeeeeiiiiiiiiiii e, 21
Figure 8:Statistical Analysis of batches of streamcccccviiiiii i, 23
Figure 9:Statistical analysis on initial Transformation vs. #EXecutorscccceeeees 24
Figure 10:Statistical Analysis of Stream Data vs #EXEeCULOrSccoevvvvivuiiiiieeeeneeennns 25
Figure 11:Streaming jobs ordered by input size for the different number of executors . 25
Figure 12:Showing the status of dead workers on YARN dashboard............................ 27

Figure 13:Scheduling delay for different dataset with the varying number of executors 27
Figure 14:Processing Time for different dataset with the varying number of executors 27

Figure 15:Explanation for a failing NOdeuvviiiiii i 28
Figure 16:Difference in processing time for node failuresccccoevvviiiiiii e, 29
Figure 17:Summary of the web application ... 30
Figure 18:Screenshot of color-coded representation of the result..........cccccccvvvvvieennnnn. 31

Vi

List of Tables

Table 1:Result for statistical analySiScoiieieiiiiiiiici e
Table 2: Standard Deviation and TranSformMationsScoveeee e

Table 3: DAG visualization for each operationcccooviieiiiiiiiiiii e

Vii

Abbreviations

API Application Program Interface
HDFS Hadoop Distributed File System
GFS Global File System

RDD Resilient Distributed Dataset

USGODAE United States Global Ocean Data Assimilation Experiment

YARN Yet Another Resource Negotiator

GUI Graphical User Interface

DAG Directed Acyclic Graph

SBT Simple Build Tool

REPL Read—Eval—-Print Loop

NCAR National Center for Atmospheric Research
CDO Climate Data Operators

GRIB General Regularly-distributed Information in Binary Form

viii

Abstract

Processing real-world data requires the ability to analyze data in real-time. Data
processing engines like Hadoop come short when results are needed on the fly. Apache
Spark’s streaming library is increasingly becoming a popular choice as it can stream and
analyze a significant amount of data. To showcase and assess the ability of Spark various
metrics were designed and operated using data collected from the USGODAE data
catalog. The latency of streaming in Apache Spark was measured and analyzed against
many nodes in the cluster. Scalability was monitored by adding and removing nodes in
the middle of a streaming job. Fault tolerance was verified by stopping nodes in the middle
of a job and making sure that the job was rescheduled and completed on other node/s. A
full stack application was designed that would automate data collection, data processing
and visualizing the results. Google Maps API was used to visualize results by color coding

the world map with values from various analytics.

Keywords: Hadoop, Streaming, Apache Spark, real-time processing, fault tolerance,
cluster, scalability, latency, nodes, SciSpark, RDD

Chapter 1

Introduction

Processing and analyzing data in real time can be a challenge because of its size. In the
current age of technology, data is produced and continuously recorded by a wide range
of sources. According to a marketing paper published by IBM in 2017, as of 2012, 2.5
quintillion bytes of data was generated every day, and 90% of the world data was created
since 2010 [1]. With new satellites, sensors, websites, etc. coming into existence every
day, data is only bound to grow exponentially. Not only these new mediums but also the
users who interact with them are producing data at an enormous rate. With the internet
reaching to new nooks and corners of the world, sources of potential data are ever
growing. As more data keep coming into existence, the necessity of a system that can
analyze it in real-time becomes even more imminent. Although the concept of batch
processing (using multiple commodity machines in a truly distributed setting) was a
revolution when it first came into existence, it might not be a complete solution to big-
data-needs anymore as the demand for real-time-processing is gaining momentum. Real-
time computation can be applicable in many areas from banking, marketing to social
media. Identifying and blocking fraudulent banking transactions require quick actions by
processing vast amounts of data and producing quick results. Sensitive and illegal posts

on social media can be quickly removed to nullify the adverse effects on its users.

Weather data, like the one used in this research, can be analyzed in real time to detect

or predict different climatic conditions.

Chapter 2

Background

The notion of using commodity machines as a computational power came into existence
with the advent of Google File System (GFS). It introduced a distributed file system that
excelled in performance, scalability, reliability, and availability [2]. As this truly distributed
and replicated file system became rigidly stable, the next step in the ladder was to be able
to process the data stored in it. For this, Google introduced MapReduce as a
programming model and published a paper with an implementation for processing large
datasets [3]. This new parallel programming model demonstrated the ability to write small
programs (map and reduce classes) for processing big data. It introduced the concept of
taking computation to the data and thus nullifying the effect of network bottleneck on batch
processing by not having to move the input data between nodes. Hadoop is the most
popular MapReduce framework today, but it has its limitations. The most prominent
shortcoming of Hadoop lies in the iterative data-processing [4]. To extend Hadoop beyond
conventional batch processing requires various third-party libraries. Storm can be used
along with Hadoop to accomplish real-time processing [5]. Other libraries like Hive,
Giraph, HBase, Flume, Scalding, etc. are designed to tackle specific operations like
querying, graphing, etc. Managing these different libraries can be time-consuming from a

development point of view.

With Hadoop's limitation in mind, a new application called Spark was designed that would

reuse a working set of data across multiple operations [4]. More iterative the process,

more efficient was the job running on Apache Spark. Also, the processing libraries are
directly written over its core that provide streaming, querying and graphing operations [4].
Spark Streaming has become widely popular and accepted library to run real-time
processing-jobs. This library allows applications to stream data from different sources and
with its general code base, it boasts that if it can be stored, then it can be streamed [6].
Some of the most popular streaming sources include Kafka, Flume, Twitter, HDFS, etc.
Data can be streamed into the streaming job from one source or multiple sources as they
can be unified into a single stream. For the application designed for this research, data is

streamed from the Hadoop File System (HDFS).

Chapter 3

Apache Spark

Introduced through a paper published in 2010, Spark is a cluster computing framework
that uses a read only collection of objects called Resilient Distributed Datasets (RDDs)
that let users perform in-memory calculation on large clusters [7]. RDDs are fault-tolerant,
parallel data structures which makes it possible to explicitly persist intermediate results in
memory, control their partitioning to optimize data placement, and manipulate them using
a rich set of operators [7]. As the intermediate results are stored in memory, iterative
analytics like PageRank calculation, k-means clustering and linear regression become

much more efficient in Spark compared to Hadoop [5].

3. 1 Resilient Distributed Data (RDD)

RDD is defined as a collection of elements partitioned across different nodes in a cluster
than be operated on in parallel [7]. From a user's point of view, it looks like any other data
structure, but behind the scenes, it performs all the operations necessary to run in a
distributed framework. Failures across large clusters are inevitable, so the RDDs in Spark
were designed with fault tolerance in mind. Since most of the operations in Spark are lazy
(no operations are run on data unless an action like collect, reduce, etc. is called), the
operations on the RDDs are stored in the form of Directed Acyclic Graph(DAG). DAG is

a collection of functional lineage like map, filter, etc. and this awareness of the functional

lineage makes it possible for Spark to handle node failures gracefully [7]. These RDDs
drive the streaming framework in Apache Spark. They have the following properties that

make sure the Apache Spark Streaming maintains its integrity:
3.1.1 Replicated

RDDs are split between various data nodes in a cluster. Replicas are also spread across
the cluster to make sure that the system can recover from any aftermath of the node
crash. Processing occurs on nodes in parallel, and all RDDs are stored in memory in each

node.
3.1.2 Immutable

When an operation is performed on an RDD, the original RDD is not changed, but instead,
a new RDD is created because of that operation [7]. Only two operations are performed
on an RDD namely transformation and action. A transformation would transform the RDD

into a new RDD whereas an action which would get the data from the RDD.
3.1.3 Resilient

The resiliency pertains to the replication of the data and storing the lineage of operation
on RDDs. When a worker node crashes, the state of the RDD can be regenerated by

running the same set of transformations to reach the current state of the RDD [7].

3.2 Apache Spark Streaming

In many real-world applications, data can often get stale very quickly as it is time sensitive.
So, to make the most of such data, it must be analyzed on time. For example, if a banking
website starts generating piles of 500 errors, the potential of incoming request crashing
the server must be evaluated in real time. Traditional MapReduce is not a viable solution
for such cases as it is mostly suited for offline batch processing where results are not
associated with any latency [4]. If the input data is repeatedly produced in discrete sets,
multiple passes of the map and reduce tasks would create overhead which can be
eliminated by using Spark instead. Apache Spark Streaming lets the program store
results in an intermediate data-form within the memory, and when new data arrives as
another discrete set, it is batched to perform transformations on them quickly and

efficiently [4].

:>£ SparkStreamingJ RDD || RDD || RDD |:>::>

Time Window
Receiver Worker

Various Stream
Sources

Figure 1:0Outline of Apache Streaming

Data can be streamed into Apache Spark streaming framework from various sources like
Kafka, flume, twitter, HDFS, etc. [8] A receiver must be instantiated and hooked up with
the streaming source to start the flow of data. One receiver can only stream data from

one input source, and if we have multiple stream sources, then we can union them so

7

that they can be processed as a single stream [9]. Once the receiver starts receiving the
data from the streaming source, spark stores the data into a series of RDDs delineated
by a specified time window. After this time, the data is passed into the spark core for
processing. To start a Spark Streaming job, it needs at least two cores, one that receives

the data as a stream and one that processes the data.

Chapter 4

Application

The goal of this application is to be able to run queries on a large dataset and produce
results in a certain amount of time which is a magnitude of times faster than running the
application in a traditional batch processing fixture. Apache Spark is chosen as a platform
to write the application because of its streaming library. Data will be streamed into a
streaming job from HDFS. Data is collected from USGODAE data catalog and then
processed and stored in the HDFS. The application will stream new data within the
configurable window of time and run transformation/s and action/s to generate the results.

Various steps were involved in the process to accomplish such an application.

4.1 Setup

4.1.1 Hadoop

Although Hadoop is not required to run Spark, it was installed because the application
reads data from HDFS. Hadoop was first installed on a single node setting, and then other
nodes were added one at a time. Each time a node was added, the sample MapReduce
tasks were run to make sure that the job was making use of all the nodes. Five nodes
with identical computational power were used to create the cluster. Each node has the

following configuration:

Architect
CPU op-

Order: ‘Endian

=N

[
.l

NUMA nodet
Vendor I

T P Bl P R

uthenticamD

Stepping:
CPU MHz:
BogoMIP
Virtual

NUMA noded CPU(.
MUMA nodel CPU(s):

Figure 2:Node CPU configuration

The following table can summarize the final Hadoop configuration:

Configured Capacity: 432 TB

DF S Used: 6.72 GB (0.15%)

Non DFS Used: 1.42TB

DF S Remaining: 2.79 TB (64.54%)
Block Pool Used: 6.72 GB (0.15%)
DataNodes usages% (Min/Median/Max/stdDev): 0.11% /0.12% / 0.23% / 0.05%
Live Nodes 5 (Decommissioned: 0)
Dead Nodes 0 (Decommissioned: 0)
Decommissioning Nodes 0

Total Datanode Volume Failures 0(0B)

Number of Under-Replicated Blocks 18

Number of Blocks Pending Deletion 0

Figure 3:Hadoop Cluster Configuration

10

4.1.2 Apache Spark

Apache spark was installed along with SBT and Scala. SBT would be used to build the
Scala projects. Scala was used as the programming language of choice to write streaming
jobs. Spark was installed in the same way as Hadoop by starting with a single node and
adding one node at a time. Two workers instances (SPARK_WORKER_INSTANCES=2)
ran on each terminal to utilize dual CPUs. Each worker was set up to utilize up to 15GB
memory (SPARK_WORKER_MEMORY=15GB) and up to 16 cores
(SPARK_WORKER_CORES=16). Hadoop File System(HDFS) was set up on each of the
nodes. YARN, which works as a resource manager and a dashboard to visualized and
summarize the metrics, was running on the driver node. REPL environment or Spark-
shell was set up in each node to make sure that the debugging would be swift when a
transformation would need to be performed on a set of data. The following figure

summarizes the Apache Spark Installation:

11

Spar Spark Master at spark://si o

220

URL: spark:#! FOTT

REST URL: spark:/i 6066 (cluster mode)
Alive Workers: 10

Cores in use: 160 Total, 0 Used

Memory in use: 150.0 GB Total, 0.0 B Used
Applications: 0 Running, 53 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id Address
worker-201530425193400-137.30.125.203-44511
worker-20130425193400-137.30.125.204-57709
worker-201530425193400-137.30.125.205-51391
worker-20130425193400-137.30.125.206-40515
worker-20130425193400-137 .30.125.207-44445
worker-20130425193403-137.30.125.203-35183
worker-20130425193403-137.30.125.204-53939
worker-20130425193403-137.30.125.205-60300
worker-20130425193403-137.30.125.206-55402

worker-20180425193403-137 .30.125.207-60025

4491
57708
31391
40518
444445
33183
:53995
60300
95402
60025

il 7077

State

ALIVE
ALIVE
ALIVE
ALIVE
ALIVE
ALIVE
ALIVE
ALIVE
ALIVE
ALIVE

Figure 4:Apache Spark Configuration

4.2 Data

4.2.1 Data Files

Cores

16 (0 Used)
16 (0 Used)
16 (0 Used)
16 (0 Used)
16 (0 Used)
16 (0 Used)
16 (0 Used)
16 (0 Used)
16 (0 Used)
16 (0 Used)

Memory

15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)
15.0 GB (0.0 B Used)

Data is generated every 6 hours by an oceanographic model (NAVGEM-Navy

Global Environmental Model) that predicts various environmental variables for the next

24 hours to 180 hours. The number of output files from the model depends on the type of

variable. The data is generated for 198 different variables which cover the entire world

with the discreteness of .5 degrees coordinates interval. The model generates multiple

files with the results, and each file only contains data for a single variable which is denoted

by the file name. The complete set of data for ten years was about 110TB, but there was

12

only about 4.5 TB disk space available in the distributed file storage, so only four variables
were included for the sake of this experiment. They are ground sea temperature,
pressure, air temperature and wind. Panoply [10] was used a GUI to visualize the input

data and resulting data.

4.2.2 Data Format
The file name for a model result is in the following format:

ProductKey°’AAAA_BBBB_CCCCCDDEEFFFFFFFFFF_GGGG_HHHHHH-IIIIIII...J

Template Description

AAAA Model (Col-1) - 4 characters integer

_ Separator - 1 character; an underscore ()
BBEBEB Geometry (Col-1) 4 characters integer

_ Separator - 1 character; an underscore (_)
CCCCC Tau (Col-1) 5 character integer (HHHmm)
(B]D] Dataset (Col-1) - 2 characters alphanumeric
EE Runtime {(Col-1) - 2 characters alphanumeric

FFFFFFFFFF |Cycle DTG(Col-1) 10 character integer (YYYYMMDDCC)
Separator - 1 character; an underscore (_)

GGGG Level Type (Col-1) - 4 characters numeric

_ Separator - 1 character; an underscore ()
HHHHHH Level (Col-1) /10 - 6 characters integer
- Separator - 1 character; a dash (-)

111 Level (Col-2) /10 - 6 characters integer

J.J Parameter type (Col-2) dynamic up to 30 characters alphanumeric

Figure 5:Data file name specifications

This data covers the entire world, so the size of the data array is 361 x 720 where 361
represents all latitude points from -90 degrees north to +90 degrees north with .5 degrees
increments, whereas 720 represents all longitude points from 360 degrees east to O

degreesNeast with 0.5 degrees increments as well.

13

4.2.3 Data Collection

Data collection was achieved with various steps. All the steps are defined in the list below:

A Java program would download the data into the filesystem. The parameter
type (Part J) in filename above was used to choose the files before
downloading them.

NCAR Command Language was used to convert the data from GRIB format
into the NetCDF3 data format (This changed the variable name by abbreviating
them, so an enum class was written to map the abbreviations with the original
variable names) [11].

CDO (Climate Data Operators - written by the Max Planck Institute for
Meteorology) was used to merge the data files [12]. So, each file could contain

data for multiple variables.

iv. Files were copied to the HDFS using standard HDFS commands.
V. A bash script was written to complete process ii — iv.
4.3 SciSpark

This application extends the functionality of the SciSpark project by changing its open

source code as needed. SciSpark library facilitated the process by mitigating the

necessity to write wrapper classes to represent GRIB. The library provided a class called

SciTensor that represented NetCDF data and implemented all basic mathematical

operations like addition, subtraction, multiplication, etc. [13] New functions were added to

SciTensor class to calculate max, min, and standard deviation. Other significant changes

included logic to account for missing variable in a dataset. For multivariable analysis, logic

14

was added to create unique names for x and y axes when creating NetCDF result file with
more than one variable. RDDs of type SciTensor were created using this library and fed

into the spark streaming queue.

4.4 Application in use

The application streams new files from a location in HDFS and writes the results back to
HDFS. The job runs with a configurable time window and performs transformations and
action on all the RDDs accumulated on that time-frame. QueueStream API in Apache
Spark was used to read the stream of new RDDs inside the streaming job. New RDDs
are represented as a Discretized Stream (DStream) of type SciTensor. Spark Streaming
APl defines DStream as a fundamental abstraction in Spark Streaming and is a

continuous sequence of RDDs (of the same type) [14].

The following figure summarizes the outline of the application:

FTF Server

NOSt Cluster

Job to get files from
server

}

Data file processor

h 4
T
Qo
B
[4:]

4

Folders list

hdfs:finput!1 v

hdfs:finput/2 > Streaming Job

Figure 6:Application Overview

15

A scheduled job running on the host would run every hour to download new data from the FTP
server. After the download is completed, the data is processed and uploaded to HDFS. The
streaming job running on the cluster would process these new files and update the result. The
website running on a separate server would poll the result file and visualize the data over a Google

Map.

16

Chapter 5

Experiment

Statistical analysis is one of the standard operations that programmers use in Apache
Spark Streaming to generate summary results in real-time. Following properties of a

streaming framework were analyzed:

5.1 Complexity of the operation

This metric would evaluate and measure two significant steps in the streaming process
namely transformation and action. Multiple mathematical queries were designed with a
varying level of complexity and, jobs were run to measure the performance of Apache
Spark Streaming. For example, Average, maximum and minimum are more
straightforward mathematical operation whereas standard deviation can be regarded as
a more complex one. The following statistical analyses were performed:

1. Mean

2. Max

3. Min

4. Standard deviation
Once a user submits the streaming job, it cannot be changed throughout the lifetime of
that job. The input sizes per streaming window for each job were approximately 180MB,
500MB, 1GB, and 2GB. 6 hours streaming window was set for the streaming process

because the input data is produced by the model every 6 hours.

17

5.1.1 Variation of each Statistical Analysis

Since GRIB1 data represents values in 361 x 720 2D arrays and the values are scattered
across multiple files, to calculate aggregate for each index, same indices across multiple
files were aggregated. To calculate aggregate results for each latitude and longitude
points, 361 and 720 more values in each file needed to be aggregated respectively.
Moreover, calculating one single aggregate result for all the values in all the files

increased the complexity of operation as it had to aggregate more values.

Following list shows the variation in statistical analysis in ascending order of complexity.
1. One result for each combination of latitude and longitude points.
2. One result for each latitude points.
3. One result for each longitude points.

4. One single aggregate result for all data points.

The table below shows the average execution time for each variation of all four-statistical
analysis. It shows that the complexity of operation is directly proportional to the execution
time. More transformations were required on data when running with variation 2, 3 and 4.
Each additional transformation increased the length of the DAG and thus increased the

execution time.

18

Variation Dataset Size DAG Length Execution time (s)
1 180MB 5 22
500MB 5 37
1GB 5 49
2GB 5 81
2 180MB 6 23
500MB 6 41
1GB 6 51
2GB 6 101
3 180MB 6 22
500MB 6 43
1GB 6 60
2GB 6 117
4 180MB 7 42
500MB 7 87
1GB 7 133
2GB 7 278

Table 1:Result for statistical analysis

Thus, the performance of a streaming job based on the complexity of the operation was
measured with the different variation of mean, max, min and standard deviation using
GRIB1 data format.
The following code was used to accept a stream of RDDs and run transformations on
them and create the resulting dataset.
spark = SparkSession

.builder

.appName(

.getOrCreate()

sc = spark.sparkContext

convertedVariables: Array[] = args.map(x =>

VariableNameMapper.getVariableNameMapping(x))

org.apache.spark.rdd.RDD
org.apache.spark.streaming.{Seconds, StreamingContext, Time}
org.dia.core.{SciSparkContext, SciTensor}

scala.collection.mutable

19

SSSC = StreamingContext(sc, Seconds(10))
SsC = SciSparkContext(sc)
queue = mutable.Queue[RDD[SciTensor]]

scientificRDD = sssc.queueStream(queue)
result: RDD[SciTensor] =
convertedVariables.foreach(variable => {
filteredRDD = scientificRDD.filter(p => p !=).map(p=> p(variable)

meanRDD = filteredRDD.map(x=>x.mean(0)).map(x=>x.mean(1))
mean = meanRDD.reduce((a, b) => (a+ b) / 2)

mean.foreachRDD { (rdd: RDD[SciTensor], time: Time) =>
(result ==)
result = rdd

result = result ++ rdd

temp = result.collect().toList

temp.foreach(x => {
x.writeToONetCDF(

5.1.2 Multivariable analysis of the GRIB data

In addition to the metric in section 5.1.1, multivariable analysis was done to measure the
latency of each streaming window. The same four statistical analyses were performed but
with the varying number of variables. These analyses were serialized, thus increasing the
number of transformations and actions for each additional variable. There was 50GB data

initially stored in HDFS which required longer execution time as each worker had to

20

process more data. Each streaming window was once again fed with four different

datasets of size 180MB, 500MB, 1GB and 2GB.

Statistical Analysis of Initial set of data

1800
1600
1400
1200
1000

800

600

400
200 I
0

1 Variable 2 Variable 3 Variable 4 variable

Seconds

W Average Minimum Maximum Standard Deviation

Figure 7:Statistical Analysis of the initial set of data

When the first collect was called, it took a while to generate results. This behavior was
expected as it needed to perform operations on a massive set of data. Also, as expected,
the execution time increased with the complexity of the operation. Standard deviation
took the most amount of time because the algorithm had multiple transformations to be
performed. The following summarizes the algorithm for calculating one standard deviation

for an entire set of data.

il
_ 12
TN > _(z:—T)%
i=1
Transformation | Details
1 Calculate mean for latitudes
2 Calculate mean for longitudes

21

Calculate the (sum of variance) * (sum of variance)

Calculate the sum of variance

Calculate the square root of the sum of variance / N
Table 2: Standard Deviation and Transformations

g~ |lw

The following table shows the difference in the DAG lengths for mean, min/max, and
standard deviation. It shows that the length of the DAG is directly related to the latency of
the streaming job. In other words, more map and filter functions were run on the dataset,

so each parallel task needed to accomplish more for operations with higher complexity.

Mean Min/Max Standard Deviation

v DAG Visualization

Stage & Stage 9 Stage 8 Stage 9

. . i i Slage 2 Stage 3
binaryFiles reduce @ 05:44:50 binaryFiles reduce @ 08:26:40 ge £ ge 3

binaryFiles reduce @ 14:14:40
i L

map
map

filter @ 08:26:40

filler (@ 08:44:50 filter {@ 14.14.40

] map (@ 05:26:40

map | 08:44:50 map (@ 141440
o reduce| @ 08:26:40,

map [14:14:40
mi

=

p (@ 08:44:50

map (B 14:14:40

reduce

map (@ 14:14:40

map [@ 14:14:40

reduce

Table 3: DAG visualization for each operation

22

The following chart shows the average time taken for different statistical analysis using

the different number of variables.

Statistical Analysis of Batches of Stream

2000
1800
1600
1400
1200
1000
800
600
400
200

Milliseconds

0 | -
1 Variable 2 Variable 3 Variable 4 variable
W Average Minimum Maximum Standard Deviation

Figure 8:Statistical Analysis of batches of stream

Size of the dataset for each 6-hour period was roughly 1GB in size and latency for
streaming 1GB data was significantly smaller than the initial data. For input sources that
generate discrete data at a regular interval, the streaming job is more suitable than a

batch processing job because of the lack of overhead in running an iterative job [15].

5. 2 Number of Executor Nodes

Streaming jobs were run with the different number of worker nodes to record the change
in latency. Data was streamed from HDFS and YARN was used as a dashboard to
visualize states of different worker nodes. Since Apache Spark utilizes the in-memory
datasets [4], the multi-node setup outperformed the single node-setup as it could use

more resource from each worker.

23

Like the previous metric, the first streaming window had the initial dataset of size 10GB,
So it took longer to process that initial set. It is clear from the chart below that there is
linear scalability regarding latency for a streaming job. Based on the results from this
statistical analysis, one can concur that the efficiency of a streaming job would be directly

proportional to the number of workers.

Statistical Analysis on Initial Data vs #Executors
3500
3000
2500

2000

Seconds

1500
1000

500
0 i -

1 Executor 2 Executor 3 Executor 4 Executor

H Min Max Average St. Deviation

Figure 9:Statistical analysis on initial Transformation vs. #Executors

On the contrary, if the sample dataset is smaller than the memory used in each worker,
the difference between the efficiency of the streaming jobs are not very significant. So,
we can say that if the dataset is not very big and the initial transformation is not time
sensitive, then even a single-node cluster would yield similar efficiency. However, single-
node setup comes short on failure recovery as the RDDs would not be replicated across

multiple machines.

24

Stream Data vs #Executors

2000

1500

1000

50

o

Milliseconds

o

1 Executor

2 Executor

3 Executor

B Min B Max ™ Average m St.Deviation

4 Executor

Figure 10:Statistical Analysis of Stream Data vs #Executors

The snapshot below shows the time taken for processing different batches in a

streaming job with the different number of worker nodes.

Stage Id
352

214

130

308

184

102

45

282

170

88

36

Description

Streaming job from [output operation 0, batch time 13:38:20]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:26:50]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:19:50]
reduce at <console=:38 +details

Streaming job from [output operation 0. batch time 13:09:40]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:34:40]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:24:20]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:17:30]
reduce at <console>38 +details

Streaming job from [output operation 0, batch time 13:12:50]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:32:30]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:23:10]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:16:20]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:12:00]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:09:30]
reduce at <console=:38 +details

Streaming job from [output operation 0, batch time 13:09:20]

Submitted
2018/05/05 13:38:20

2018/05/05 13:26:54

2018/05/05 13:19:50

2018/05/05 13:09:52

2018/05/05 13:34:46

2018/05/05 13:24:46

2018/05/05 13:17:30

2018/05/05 13:13:06

2018/05/05 13:32:30

2018/05/05 13:23:10

2018/05/05 13:16:20

20158/05/05 13:12:02

2018/05/05 13:09:51

20158/05/05 13:09:39

Duration

4.5 min

2.9 min

2.3 min

1.9 min

2.8 min

1.8 min

1.4 min

1.0 min

1.8 min

58s

37 s

3s

0.7s

123

Tasks: Succeeded/Total

Input -
997.1 MB

997.1 MB

997.1 MB

997.1 MB

498.5 MB

4986.5 MB

498.5 MB

498.5 MB

179.5 MB

179.5 MB

179.5 MB

179.5 MB

1020.9 KB

10209 KB

Figure 11:Streaming jobs ordered by input size for the different number of executors

25

In the figure above, stage ids 352, 308, 282 were run with only two executors and 1GB
data, so they took the longest. The lesser number of executors means that each worker
must process a more significant sized chunk of data in parallel as the number of parallel
tasks decreases (this can be seen on tasks: successful/total column in the figure above).
Hence, this increases the overall processing time. If a node has higher processing power,
it can be configured to run higher number of workers. For this experiment, each node was

only configured to run two worker instances.

5.3 Scalability

Another important aspect of any big data processing engine is scalability concerning both
data storage and computational power [16]. As data grows and higher processing speed
is desired, new nodes should be easily added to the cluster. During this experiment,
nodes were killed and started in the cluster with fair speed and easiness. Bash scripts
were written to control the state of a node and YARN dashboard was used to verify the
state. Figure 12 shows the state of the cluster after two nodes were killed. Figures 13 and
14 showcase how different metrics of a streaming job can be visualized using apache
spark's dashboard. Figure 13 plots the scheduling delay and figure 14 plots the
processing time for batches ran with the different number of executor nodes. Yellow
represents six executors; brown is five executors and purple is three executors. The sizes
of datasets in different batches were 180MB, 500MB, and 1GB. The scheduling delay
and processing time are both directly proportional to the size of the data and inversely

proportional number of worker instances.

26

URL: spark./r orT

REST URL: spark./ 6066 (cluster mode)
Alive Workers: 4

Cores in use: 54 Total, 64 Used

Memory in use: 60.0 GB Total, 56.0 GB Used
Applications: 1 Running, 3 Completed

Drivers: 0 Running, 1 Completed

Status: ALIVE

Workers

Worker Id Address State Cores Memory
worker-20180505123655-137_.30.125.203-50094 50094 ALIVE |16 (16 Used) | 15.0 GB (14.0 GB Used)
worker-20180505123655-137.30.125.205-34560 34860 DEAD 16 (16 Used) 15.0 GB (14.0 GB Used)
worker-20180505123655-137.30.125.206-38811 38811 DEAD 16 (16 Used) 15.0 GB (14.0 GB Used)
worker-20180505123655-137_30.125.207-59964 59964 ALIVE 16 (16 Used) 15.0 GB (14.0 GB Used)
worker-20180505123657-137.30.125.203-38651 38651 ALIVE 16 (16 Used) 15.0 GB (14.0 GB Used)
worker-20180505123657-137.30.125.205-54055 54055 DEAD 16 (16 Used) 15.0 GB (14.0 GB Used)
worker-20180505123657-137.30.125.206-55099 55099 DEAD | 16 (16 Used) 15.0 GB (14.0 GB Used)
worker-20180505123657-137.30.125.207-60989 160989 ALIVE 16 (16 Used) 15.0 GB (14.0 GB Used)

Running Applications

Memory per
Application ID Name Cores Executor Submitted Time User State Duration
app-20180505130758-0003 Spark 64 14.0 GB 2018/05/05 hadoopuser RUNNING 26 min
(killy shell 13:07:58

Figure 12:Showing the status of dead workers on YARN dashboard

min
4.00
Scheduling Delay (7 3.00
Avg: 1 minute 12 2.00+
seconds 1.00
0.00 y
13:09:00 13:45:00

Figure 13:Scheduling delay for different dataset with the varying number of executors

min
4.00
Processing Time () 3.00
Ava: 8 seconds 240 ms 2.00
1.00
0.00 .

13:09:00 13:45:00

Figure 14:Processing Time for different dataset with the varying number of executors

27

5.4 Fault Tolerance

Spark can reconstruct the RDDs using lineage information stored in the RDD objects [4]
when a node falls apart. Since the data is already replicated across nodes in HDFS, lost
partitions can be reconstructed in parallel across multiple nodes without much overhead
[4]. If the node running receiver fails, then another node is spun up with the receiver which
can continue to read from HDFS. If the receiver was using Kafka or Flume as a source
instead of HDFS, then a small amount of data may be lost which hasn't been replicated
to other nodes in the cluster [15]. Performance of a system running streaming job with
various node failures was measured to access the fault tolerance capability of the Apache
Spark Streaming. Spark's dashboard interface was used to visualize the difference in
latency for different batches running with and without node failures. The dashboard also
showed the details about the failure which could aid in debugging the issue during

unexpected failures.

2 772 0 FAILED ANY 18/ 2018/05/05 ExecutorLostFailure (executor 18 exited caused by one of the running tasks) Reason: Remote
13:52:20 RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check
stdout driver logs for WARN messages
stderr

Figure 15:Explanation for a failing node

The figure below shows that if some nodes fail while running a batch, it will take longer to
account for the lost nodes and reschedule those jobs in different node/s. Stage Id 520
lost a node with two workers, and the driver had to reschedule seven tasks running on

that node somewhere else. As a result, the latency increased from 2.9 min to 5.1 minutes.

28

Stage Tasks:

Id Description Submitted Duration Succeeded/Total Input ~

520 Streaming job from [output operation 0, batch time 13:52:20] 2018/05/05 samin [SHSTEIRGNN 997.1
reduce at <console=:38 +details | 13:52:20 MB

352 Streaming job from [output operation 0, batch time 13:38:20] 2018/05/05 asmin [NEEE 9971
reduce at <console=:33 +details | 13:38:20 MB

214 Streaming job from [output operation 0, batch time 13:26:50] 2018/05/05 29min [SHS 9971
reduce at <console>"38 +details | 13:26:54 MB

Figure 16:Difference in processing time for node failures

29

Chapter 6

Visual Application

The web interface demonstrates a sample usage of this application. The web page uses
Google Map and its developer API to visualize the results generated by the application.
The web application is written in .NET MVC framework. The server-side code grabs the
latest result from the cluster by using the WinSCP library (this was used to avoid installing
FTP on the master in the cluster), then converts the results into the text format using
ncl_dump. A text dump of the resulting NetCDF file was processed and sent to the view.
A JavaScript function regularly polls for the result, and once the spark application

generates the result, it is visualized on the web.

The following figure summarizes the workflow of the web application:

Cluster Web Server

Data Input

L

Streaming Joh

/ Web Application

¥ /

Result /

Figure 17:Summary of the web application

30

c ‘(DIocalhost:21581/5park/5(reaming ﬁ‘ o e 0N -
sps [Cic || WorkPages || mvc || rouses || youtwe || telerik BN remove BN PleaseSignin BN IscaleAdmin BN batch BN 5720 [} KingCske &% lssues-Digicomm S || UNO || c#compilers || progs » | [l Oth

Canizaro Livingston Guif States Center for Environmental Informatics

° ° ° News ° Publications

Greenland
o = =

==

‘ Finland L—— |

EEEE——— 5
ErEE Icetand, Sweden
— Norway e
==
[United ———
Canade Kingdom Cinade
Polang. =
Germiny = "ThEe Kazakhsten

Mongohia Mongohia

2
s

I

— United States Tiskey United States

Figure 18:Screenshot of color-coded representation of the result

31

Following ajax post method is used to poll the cluster to get the latest results.

$.ajax({
type: "POST",
url: "/spark/getdata",
dataType: 'json',
contentType: 'application/json',
success: function (result) {
var reduced = Math.sqrt(259200 / result.data.length);
var response = result.data;
var counter = -1;
removeRectangles();
loop1l:
for (var latCounter = -
90; latCounter < 90; latCounter = latCounter + (reduced / 4)) {
for (var longCounter = -
180; longCounter < 180; longCounter = longCounter + reduced) {
counter++;
var value = response[counter];
if (value == undefined) break loopil;
if (latCounter < -86 || latCounter > 84) continue;

var colorcode = "#45CA7B";
if (value < 235) {
colorcode = "#2B9FOE";
} else if (value >= 235 && value < 265) {
colorcode = "#FEFF00";
} else if (value >= 265) {
colorcode = "#FF3F00";
}
var rectangle = new google.maps.Rectangle({
fillColor: colorcode,
fillOpacity: 0.65,
strokeWeight: o,
map: map,
clickable: false,
bounds: {
north: latCounter,
south: latCounter + (reduced / 4),
east: longCounter + reduced,
west: longCounter
}
})s

rectangles.push(rectangle);

}
}s

error: function (xhr, status, error) {
$("#errorContainer").append("<div class='alert alert-
danger'>" + error + "</div>");
}
});

Chapter 7

Findings

7.1 Spark Streaming vs. Hadoop'’s batch processing vs. Storm Trident

An iterative job like the one used in this experiment can be expressed as multiple Map
and reduce operations in Hadoop. However, different MapReduce jobs cannot share
data, so for iterative analysis, the same dataset must be read from HDFS multiple times,
and results would need to be written to HDFS many times as well [17]. These iterations
create much overhead because of the I/O operations and other unwanted computations
[18]. Spark tackles these issues by storing intermediate results in the memory. Spark
Streaming uses D-Streams or discretized streams of RDDs which provides consistent,
"exactly-once" processing across the cluster [19] and thus significantly increases the
performance for iterative analysis. Apache Storm can process unbounded streams of data
in real time, and it can be used alongside Hadoop, but it only guarantees "at-least-once"
processing [20]. Trident bolsters Storm by providing micro-batching and other
abstractions that would ensure "exactly-once" processing [21]. It would need three
different libraries to work seamlessly to accomplish what Spark Streaming can
accomplish by itself. Time and effort required to setup and maintain Storm Trident
application along with Hadoop can hamper the production and deployment. On the
contrary, Spark's Streaming library is directly written over its core and maintained by the
same group of people who maintain the core's code base. Thus, spark streaming

outshines both Hadoop and Storm Trident combination for streaming scientific data.

33

7.2 Spark Limitations

The limitation of using Spark over Hadoop boils down to memory. When a dataset is large
enough not to allow any more RDDs to be stored in memory, Sparks starts to replace
RDDs, and such frequent replacement degrades the latency and thus makes Hadoop
more suitable in such situations [22]. When running spark streaming job with two nodes
and four workers with each node getting maximum of 2GB memory, Spark crashed and
threw JVM heap exceptions. So, when memory is not abundant for large datasets, batch
processing in Hadoop is a better choice. However, for this research, we needed a
framework that would seamlessly stream datasets that were only relatively large and

Spark Streaming was able to handle it efficiently.

34

Chapter 8

Related work

H5Spark library could have easily been used in this application instead of SciSpark to
generate RDDs [14]. It takes HDF5 data type as the entry type, and since our data was
in GRIB format, it would have taken two hop conversions from GRIB to NetCDF and
NetCDF to HDF5. The GitHub repo for the H5Spark project consists of streaming

examples, but they were not evaluated for this experiment.

The SciSpark project demonstrates the ability to process NetCDF3/4 data files correctly
and run transformations using Apache spark, but there is no out of the box support for
streaming NetCDF data into the framework [13]. There is an experimental library called
ncstream intended to stream data in GRIB or NetCDF format, and although there isn't any
implementation of using this library in Spark or Hadoop, the possibility for it to be

combined with big data processing libraries does exist [24].

35

Chapter 9

Future Work

With the development of new DataFrame API that provides a further abstraction for
creating streaming, graphing or batching jobs in Spark, more sturdy application for
streaming GRIB data can be achieved by refactoring the current logic [25]. For a long-
running streaming job that computes an aggregate like a count or max over a sliding
window, the ReduceByWindow operation can be used [19] [26]. Machine learning libraries
can be used as another metric to compare the iterative data processing with other
frameworks. The same statistical metrics can be run on Storm Trident framework to
compare the latency between the two frameworks. The visualization tool can be extended

to allow the user to submit their statistical analysis.

36

Chapter 10

Conclusions

SciSpark was successfully used with Apache Spark to stream GRIB1 data in a streaming
application. The bulk of the logic in this application lies in the ability to convert the
statistical analysis into transformations and actions that would run upon the DStream of
RDDs of type SciTensor. Datasets ranging from 180MB to 50GB were used in the
application without running into any memory issues. Various properties of a streaming
application like operation complexity, scalability and fault tolerance were assessed, and
results were summarized using simple mathematical operations like mean, min/max and
standard deviation. Based on these results and other properties of apache Spark
Streaming, it was deduced that the Spark Streaming is a better solution to stream the

scientific data over Hadoop or Storm Trident.

37

Bibliography

[1] “10 Key Marketing Trends for 2017 and Ideas for Exceeding Customer Expectations.” 10 Key
Marketing Trends for 2017, IBM, 19 July 2017, www-01.ibm.com/common/ssi/cgi-
bin/ssialias?htmlfid=WRL12345USEN.

[2] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. The Google file system. Vol. 37.
No. 5. ACM, 2003.

[3] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large
clusters." Communications of the ACM 51.1 (2008): 107-113.

[4] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica, Spark:
cluster computing with working sets, Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing, p.10-10, June 22-25, 2010, Boston, MA

[5] Gopalani, Satish, and Rohan Arora. "Comparing apache spark and map reduce with
performance analysis using k-means." International journal of computer applications 113.1
(2015).

[6] Krof3, Johannes, and Helmut Krcmar. "Modeling and simulating Apache Spark streaming
applications." Softwaretechnik-Trends 36.4 (2016): 1-3.

[7] Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing.” Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2012.

[8] Salloum, Salman, et al. "Big data analytics on Apache Spark." International Journal of Data
Science and Analytics 1.3-4 (2016): 145-164.

[9] Grulich, Philipp M., and Olaf Zukunft. "Bringing Big Data into the Car: Does it Scale?" Big
Data Innovations and Applications (Innovate-Data), 2017 International Conference on. IEEE,
2017.

[10] “Panoply.” NASA, NASA, www.giss.nasa.gov/tools/panoply/.

[11] “Converting GRIB (1 or 2) to NetCDF.” NCL Graphics, Histograms,
www.ncl.ucar.edu/Applications/griball.shtml.

[12] Schulzweida, U., L. Kornblueh, and R. Quast. "CDO User’s Guide: Climate Data Operators
Ver. 1.6. 1."

[13] Palamuttam, Rahul, et al. "SciSpark: Applying in-memory distributed computing to weather
event detection and tracking." 2015 IEEE International Conference on Big Data (Big Data).
IEEE, 2015.

[14] Zaharia, Matei, et al. "Apache spark: a unified engine for big data processing."
Communications of the ACM 59.11 (2016): 56-65.

[15] Cérdova, Patricio. "Analysis of real time stream processing systems considering latency."
University of Toronto patricio@ cs. toronto. edu (2015).

38

http://www.giss.nasa.gov/tools/panoply/
http://www.ncl.ucar.edu/Applications/griball.shtml

[16] Murray, Derek G., et al. "Naiad: a timely dataflow system." Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM, 2013.

[17] Bu, Yingyi, et al. "HalLoop: efficient iterative data processing on large clusters." Proceedings
of the VLDB Endowment 3.1-2 (2010): 285-296.

[18] Ekanayake, Jaliya, et al. "Twister: a runtime for iterative mapreduce." Proceedings of the
19th ACM international symposium on high performance distributed computing. ACM, 2010.

[19] Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale."
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
2013.

[20] Toshniwal, Ankit, et al. "Storm@ twitter." Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 2014.

[21] Apache Storm. (2014, December) Trident Tutorial. [Online].
https://storm.apache.org/documentation/Tridenttutorial.html

[22] Gu, Lei, and Huan Li. "Memory or time: Performance evaluation for iterative operation on
hadoop and spark." High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE
10th International Conference on. IEEE, 2013.

[23] Liu, Jialin, et al. "H5spark: bridging the 1/0O gap between spark and scientific data formats
on Hpc systems." Cray user group (2016).

[24] “NetCDF Streaming Format (Experimental).” Ncstream, 1 Nov. 2010,
www.unidata.ucar.edu/software/thredds/v4.3/netcdf-java/stream/NcStream.html

[25] Armbrust, Michael, et al. "Scaling spark in the real world: performance and usability."
Proceedings of the VLDB Endowment 8.12 (2015): 1840-1843.

[26] Chintapalli, Sanket, et al. "Benchmarking streaming computation engines: Storm, flink and
spark streaming." Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016.

39

https://storm.apache.org/documentation/Tridenttutorial.html
http://www.unidata.ucar.edu/software/thredds/v4.3/netcdf-java/stream/NcStream.html

Vita

The author Janak Dahal was born in Tehrathum, Nepal. He received his Bachelor's
Degree in Computer Science from the University of New Orleans in 2012. After three
years of professional work, he joined Graduate program of Computer Science at The
University of New Orleans. He worked at Canizaro Livingston Gulf States Center for
Environmental Informatics center as a graduate assistant while working on his Thesis.
This research work was conducted under the supervision of Dr. Mahdi Abdelguerfi and

Dr. Elias loup in 2016/2017.

40

	Assessing Apache Spark Streaming with Scientific Data
	Recommended Citation

	tmp.1532663858.pdf.CzmUi

