
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-18-2018

Applications of Artificial Intelligence in Power Systems Applications of Artificial Intelligence in Power Systems

Samin Rastgoufard
srastgou, srastgou@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Artificial Intelligence and Robotics Commons, Electrical and Electronics Commons, Power

and Energy Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Rastgoufard, Samin, "Applications of Artificial Intelligence in Power Systems" (2018). University of New
Orleans Theses and Dissertations. 2487.
https://scholarworks.uno.edu/td/2487

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uno.edu%2Ftd%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uno.edu%2Ftd%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uno.edu%2Ftd%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uno.edu%2Ftd%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.uno.edu%2Ftd%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2487?utm_source=scholarworks.uno.edu%2Ftd%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Applications of Artificial Intelligence in Power Systems

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy
in

Engineering and Applied Science
Electrical Engineering

by

Samin Rastgoufard

B.S. Shiraz University, 2009
M.S. Shiraz University, 2012

May 2018

All rights reserved

ii

To my lovely parents
and my sister

iii

Acknowledgments

I would like to express my appreciation to my honorable advisor Dr. Dimitrios Charalam-

pidis for all his guidance and support through this journey. His patience and encourage-

ment were essential for the completion of this dissertation. I would like to express my

gratitude to my dear uncle, Dr. Parviz Rastgoufard for his unconditional love and support

and all the life lessons through these years. I would also like to thank Dr. Sumaiya Iqbal

and Dr. MD. Tamjidul Hoque for their collaboration in some parts of this dissertation.

I would like to thank my dear committee members Dr. Edit J. Kaminsky Bourgeois, Dr.

Ittiphong Leevongwat, Dr. Emir Jose Macari, and Dr. Tumulesh Kumar S Solanky for

their valuable comments and guidance.

My gratitude to my dad Mr. Kourosh Rastgoufard and my mom, Mrs. Farkhondeh

Tajdaran, who are the loveliest and most supportive parents that anyone could wish. I

like to thank my lovely sister Mrs. Sana Rastgoufard and my brother in law Dr. Ehsan

Zahed for their unconditional love and emotional support.

Finally, I like to thank all of dear friends and family who helped me technically and

emotionally to finish this dissertation.

iv

Contents

List of Figures viii

List of Tables x

Abstract xiv

1 Introduction 1

1.1 The Necessity of this Research . 1

1.2 Introduction to Applications of AI to Solve SSE 2

1.3 Introduction to Applications of EC to Solve ED 6

1.4 Overview of the Dissertation Chapters 8

2 Power Systems Problems 9

2.1 Static Security Evaluation . 9

2.2 Economic Dispatch . 11

3 Machine Learning and Data Mining 14

3.1 Introduction . 14

3.2 Support Vector Machine . 15

3.2.1 Multi-Class Support Vector Machine 17

3.2.2 Support Vector Regression . 19

3.3 Random Forest . 21

3.4 Multi-Layer Feedforward Neural Nework 22

3.5 Radial Basis Function Network . 23

3.6 Feature Selection . 25

v

3.7 Sequential Forward Selection . 26

4 Evolutionary Computation 28

4.1 Variants of Genetic Algorithm . 29

4.1.1 Breeder Genetic Algorithm (BGA) 30

4.1.2 Fast Navigating Genetic Algorithm (FNGA) 31

4.1.3 Twin Removal Genetic Algorithm (TRGA) 32

4.1.4 Kite Genetic Algorithm (KGA) 33

4.1.5 Unified Genetic Algorithm (UGA) 34

4.2 Particle Swarm Optimization . 35

4.2.1 Multi-Objective Particle Swarm Optimization 37

4.3 Differential Evolution . 39

4.4 Ant Colony Optimization for Continious Domain 40

4.5 Harmony Search . 41

5 Proposed Techniques 43

5.1 Parameter Selection of Multi-Class SVM with EC Methods for Online SSE 43

5.1.1 Implementation Steps of Section 5.1 44

5.2 Tuned Support Vector Regression by Modified PSO for Online SSE . . . 46

5.2.1 Implementation Steps of Section 5.2 48

5.3 Feature Selection by MOPSO for SSE . 50

5.3.1 Implementation Steps of Section 5.3 51

5.4 Multi-Classifier Voter Model for SSE . 52

5.4.1 Implementation Steps of Section 5.4 53

5.5 Genetic Algorithm Variant based Effective Solutions for ED 55

5.5.1 Implementation Steps of Section 5.5 56

6 Case Studies and Experimental Results 58

6.1 Case Studies . 58

6.1.1 Case Studies for SSE . 58

6.1.2 Case Studies for ED . 62

vi

6.2 Simulation Results . 63

6.2.1 Simulation Results of Parameter Selection of Multi-Class SVM with

EC Methods for Online SSE . 65

6.2.2 Simulations Results of Tuned Support Vector Regression by Modi-

fied PSO for Online SSE . 68

6.2.3 Simulation Results of Feature Selection by Multi-Objective PSO

for SSE . 71

6.2.4 Simulation Results of Multi-Classifier Voter Model for Online SSE 72

6.2.5 Simulation Results of GA Variant based Effective Solutions for ED 73

7 Conclusion and Future Work 85

7.1 Conclusions and Future Work for Section 5.1 85

7.2 Conclusions and Future Work for Section 5.2 86

7.3 Conclusions and Future Work for Section 5.3 86

7.4 Conclusions and Future Work for Section 5.4 87

7.5 Conclustion and Fucture Work of Section 5.5 87

Appendix 87

Bibliography 88

Vita 96

vii

List of Figures

3.1 Linear binary SVM classifier . 17

3.2 Nonlinear binary SVM classifier . 17

3.3 The soft margin loss setting for a linear SVR [67] 20

3.4 Nonlinear SVR . 21

3.5 Structure of MLFNN [9] . 24

3.6 Structure of RBFN [76] . 25

4.1 Swarm intelligence . 29

4.2 Updating position of particle . 36

5.1 Implementation procedure of section 5.1 46

5.2 Implementation steps of TSVR-MPSO 49

5.3 Finding the classifier error . 51

5.4 MOPSO implementation for feature selection 52

5.5 Implementation steps of SVM-MPSO . 54

5.6 Multi-classifier voter model . 54

6.1 IEEE 9-bus single line diagram [96] . 59

6.2 IEEE 14-bus single line diagram[101] . 59

6.3 IEEE 39-bus single line diagram [102] . 60

6.4 IEEE 57-bus single line diagram [103] . 60

6.5 IEEE 118-bus single line diagram [104] 61

6.6 IEEE 300-bus single line diagram [105] 62

6.7 Loss coefficients for 6-unit . 63

viii

6.8 Loss coefficients for 15-unit . 63

6.9 RMSE comparison between SVR-PSO and TSVR-MPSO1. Positive values

indicate higher RMSE for SVR-PSO. 69

6.10 Convergence plots of GA variants for 15-units 83

6.11 Convergence plots of GA variants for 10-units 84

ix

List of Tables

2.1 SSI labeling for two classes . 11

2.2 SSI labeling for three classes . 11

2.3 SSI labeling for four classes . 11

3.1 OVO coding scheme . 18

5.1 Number of data in each class . 45

5.2 MOPSO parameters . 51

5.3 MOPSO population size . 52

6.1 Number of branches and generators of case study 59

6.2 Total number of PQ and PV buses of each case study 59

6.3 Generaing unit capacity and coefficients of 6-unit 63

6.4 Generaing unit capacity and coefficients of 15-unit 64

6.5 Ramp rate limits and prohibited zones of 6-unit 64

6.6 System coefficients for10-unit test system with VPE and MFO 65

6.7 Ramp rate limits and prohibited zones of 15-unit 66

6.8 Parameters set for each optimization method 67

6.9 Results for 4 classification problem . 67

6.10 Results for 3 classification problem . 67

6.11 Results for 2 classification problem . 67

6.12 Training Time (sec) of multi-class SVM with EC methods for SSE 67

6.13 Inertia weight and parameters of different methods 70

6.14 One-line outage for IEEE 14-bus under 110% load base 70

x

6.15 Optimized SVR parameters of best experiment for IEEE 14-bus 71

6.16 Optimized SVR parameters of best experiment for IEEE 118-bus 71

6.17 Prediction accuracy of different SVR methods for IEEE 14-bus system . 72

6.18 Prediction accuracy of different ANN methods for IEEE 14-bus System . 73

6.19 Prediction accuracy of different SVR methods for IEEE 118-bus system 74

6.20 Prediction accuracy of different ANN methods for IEEE 118-bus system 75

6.21 Number of generated data and selected features 75

6.22 Comparing MOPSO and SFS for IEEE 9-bus, 14-bus, and 39-bus 76

6.23 Comparing MOPSO and SFS for IEEE 57-bus, 118-bus, and 300-bus . . 76

6.24 Performance of multi-classifier voter for IEEE 9-bus 77

6.25 Performance of multi-classifier voter for IEEE 14-bus 77

6.26 Performance of multi-classifier voter for IEEE 39-bus 78

6.27 Performance of multi-classifier voter for IEEE 57-bus 78

6.28 Performance of multi-classifier voter for IEEE 118-bus 79

6.29 Performance of multi-classifier voter for IEEE 300-bus 79

6.30 Results of GA variants for 6-units . 80

6.31 Results of GA variants for 15-units . 80

6.32 Results of GA variants for 10-units . 80

6.33 Comparison results for the 6-unit system 80

6.34 Comparison results for the 6-unit system 81

6.35 Comparison results for the 15-unit system 81

6.36 Comparison results for the 15-unit system 82

6.37 Comparison results for the 10-unit system 82

6.38 Comparison results for the 10-unit system 83

xi

Abbreviations

ACOr Ant Colony Optimization for Continuous Domain
AI Artificial Intelligence
AMC AM-based Crossover
ANN Artificial Neural Network
ASPSO Analytical Selection Particle Swarm Optimization
BGA Breeder Genetic Algorithm
CART Classification and Regression Tree
CCF Chromosome Correlation Factor
CCR Correct Classification Rate
DE Differential Evolution
EC Evolutionary Computation
ECOC Error-correcting Output Codes
ED Economic Dispatch
ERM Emperical Risk Minimization
FNGA Fast Navigating Generic Algorithm
FS Feature Selection
GA Genetic Algorithm
GS Grid Search
HS Harmony Search
ISDA Iterative Single Data Algorithm
KDD Knowledge Discovery from Data
KGA Kite Genetic Algorithm
L1QP L1 Soft-margin Quadratic Programming
LOI Line Overload Index
MFO Multi Fuel Option
MLFNN Multilayer Feedforward Neural Network
MLPN Multilayer Percepteron Network
MOPSO Multi-Objective Particle Swarm Optimization
MPSO Modified Particle Swarm Optimization
MWV Max Wins Voting
NR Newton Raphson
NRLF Newton Raphson Load Flow
OOB Out of Bag
OVO One Versus One
OVA One Versus All
PAR Pitch Adjusting Rate
PMU Phasor Measurement Units
POZ Prohibited Operating Zones
PSO Particle Swarm Optimization

xii

RBF Radial Basis Function
RBFN Radial Basis Function Network
RF Random Forest
RMSE Root Mean Square Error
SBS Sequential Backward Selection
SCADA Supervisory Control and Data Acquisition
SFS Sequential Forward Selection
SMO Sequential Minimal Optimization
SSA Social Spider Algorithm
SSE Static Security Evaluation
SSI Static Security Index
STD Stand Deviation
SVM Support Vector Machine
SVR Support Vector Regression
TB Tree Bagging
TRGA Twin Removal Genetic Algorithm
TS Tabu Search
TSVR Tuned Support Vector Regression
UC Unit Commitment
UGA United Genetic Algorithm
VDI Voltage Deviation Index
VPE Valve Point Effect

xiii

Abstract

Artificial intelligence (AI) tools, which are fast, robust and adaptive can overcome the
drawbacks of traditional solutions for several power systems problems. In this work,
applications of AI techniques have been studied for solving two important problems in
power systems.

The first problem is static security evaluation (SSE). The objective of SSE is to identify
the contingencies in planning and operations of power systems. Numerical conventional
solutions are time-consuming, computationally expensive, and are not suitable for online
applications. SSE may be considered as a binary-classification, multi-classification or
regression problem. In this work, multi-support vector machine is combined with sev-
eral evolutionary computation algorithms, including particle swarm optimization (PSO),
differential evolution, Ant colony optimization for the continuous domain, and harmony
search techniques to solve the SSE. Moreover, support vector regression is combined with
modified PSO with a proposed modification on the inertia weight in order to solve the
SSE. Also, the correct accuracy of classification, the speed of training, and the final cost of
using power equipment heavily depend on the selected input features. In this dissertation,
multi-object PSO has been used to solve this problem. Furthermore, a multi-classifier
voting scheme is proposed to get the final test output. The classifiers participating in the
voting scheme include multi-SVM with different types of kernels and random forests with
an adaptive number of trees. In short, the development and performance of different
machine learning tools combined with evolutionary computation techniques have been
studied to solve the online SSE. The performance of the proposed techniques is tested
on several benchmark systems, namely the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus,
and 300-bus power systems.

The second problem is the non-convex, nonlinear, and non-differentiable economic dis-
patch (ED) problem. The purpose of solving the ED is to improve the cost-effectiveness of
power generation. To solve ED with multi-fuel options, prohibited operating zones, valve
point effect, and transmission line losses, genetic algorithm (GA) variant-based methods,
such as breeder GA, fast navigating GA, twin removal GA, kite GA, and United GA
are used. The IEEE systems with 6-units, 10-units, and 15-units are used to study the
efficiency of the algorithms.

Keywords: Aritifical intelligence (AI), static security evaluation (SSE), classification,
regression, support vector machine/regression (SVM/R), random forest (RF), evolution-
ary computation (EC), modified particle swarm optimization (MPSO), multi-objective
particle swarm optimization (MOPSO), feature selection (FS), economic dispatch (ED),
genetic algorithm (GA)

xiv

Chapter 1

Introduction

1.1 The Necessity of this Research

Nowadays, recent developments and different new challenges in power systems dictate

the need for several improvements in the power systems planning, operation, and control.

The necessity of obtaining online solutions as fast as possible for different problems in

power systems is becoming more apparent. Traditional methods are usually not able to

solve power system problems in real time. In general, such methods are time-consuming

and computationally expensive, and are not suitable for online monitoring and control.

Artificial intelligence (AI) techniques, which include machine learning, data mining, and

evolutionary (or meta-heuristic) computation methods, can successfully solve extremely

challenging problems. Combining AI with traditional analytical techniques, such as sta-

tistical analysis, may also improve the overall performance of the techniques. The main

advantages of AI tools are their speed, robustness, and relative insensitivity to noisy

or missing data [1]. In this work, two important problems in power systems have been

selected to be solved with different AI tools. The first is the static security evaluation

(SSE) problem, and the second is economic dispatch (ED) problem. In the following

sections, the details of each problem are discussed, and a brief review of existing works

is presented.

1

1.2 Introduction to Applications of AI to Solve SSE

Nowadays, the growth of power systems in terms of both size and complexity indicates

the importance of achieving a high degree of system security. At the same time, modern

electric utilities are operating under stressed operating conditions and closer to their

limits [2], [3] [5]. Therefore, it is clear that due to these higher demands a system may

easily collapse under any moderate disturbance [6]. As a result, a fast, accurate online

monitoring model is a necessity for preventing equipment damage, localized loss of power,

loss of voltage, loss of frequency or, in severe cases, blackout [7], [8]. Security monitoring,

contingency analysis, and security control are three major steps in security evaluation.

In security monitoring, the operating conditions are reported to the operational engineer.

In contingency analysis, the contingencies are screened and ranked in order of decreasing

severity. In the security control step, control actions are implemented to return the

insecure system to a secure state [9]. Security can be mainly classified as transient

security and static security [10]. Transient security analysis studies the ability of the

system to survive the transition to the steady state condition following a set of severe

credible contingencies [11]. Monitoring the steady-state behavior of the system with

regards to its ability to withstand credible contingencies is called SSE. SSE discovers

any potential system overload or out-of-limit voltage. Contingencies include generating

unit outages, transmission line outages, a sudden increase in demand, or loss of any

equipment in the system. The contingencies with a high probability of occurrence are

called credible contingencies. These are transmission equipment overloads and inadequate

voltage levels at systems buses [12]. Contingency screening and ranking is a critical part

of SSE requiring the solution of a large set of nonlinear algebraic equations for N and

N − 1 system conditions [13]. Traditionally, SSE is solved offline due to significant

computation time required. However, there is an increasing demand for more accurate

and fast static assessment [14]. Supervisory control and data acquisition (SCADA) and

phasor measurement units (PMU) have been used in power plant and transmission lines

for a while. They are used to improve and control system reliability. However, even

with a large amount of available data they cannot always take the suitable action to

2

prevent blackouts [8]. Performing online security analysis is hindered by the size and

complexity of power systems. As mentioned above, SSE requires the solution of a large

set of nonlinear algebraic equations [3]. It is then expected that in a real environment

where the operating system conditions change regularly, it is crucial for SSE to be able

to frequently and quickly assess the security level and determine appropriate preventive

actions [2].

In recent years, the employment of AI tools to solve power system problems has

been increasing. Combining machine learning, data mining, and evolutionary algorithms

can be a powerful solution for real-time security assessment. These modern techniques

have been shown to provide more robust results and, often, exhibit faster response times

compared to traditional methods [2]. In some recent literature, different machine learning

methods are used to solve SSE as a regression, binary classification, or multi-classification

problem. Some of the most recently published papers are briefly mentioned below.

In [9], [13] and [15], different artificial neural networks (ANN) like radial basis function

network (RBFN) and multilayer perceptron network (MLPN) have been used to solve SSE

online as a binary classification problem or a regression problem. In [16], the SSE is solved

as a binary classification problem by particle swarm optimization (PSO) and in [5] by

PSO based K-means clustering. A technique combining a support vector machine (SVM)

combined with different evolutionary algorithms for parameter tuning has been proposed

in [2], [12], and [17] to solve multi-classification SSE online. In these works, the security

regions are classified into four operating conditions. Different decision tree trainers have

been compared with C-4.5 tree classifier in [18] to solve the binary SSE in electric power

grid with the presence of PV power plants. Also, static security assessment and control

of power systems using ANN techniques have been studied in [19], [20], [21], [22]. In

[9] and [13], RBFN and multilayer feed-forward networks (MLFFN) were used for online

static security assessment. In [23], ANNs were used for online contingency screening and

ranking. However, most ANN-based techniques require a large number of neurons and

hidden layers for achieving acceptable results. Training large ANNs can be a considerably

time-consuming process, and may also result in model over-fitting.

3

In this work, several AI techniques have been used and proposed to solve and improve

the performance of online SSE. These are explained briefly below.

First, multi-class support vector machine (SVM) with error correcting output codes

(ECOC) (one-versus-one or OVO) is used to address the SSE classification problem.

The performance of SVM heavily depends on its parameter selection. Therefore, several

evolutionary (Meta-Heuristic) optimization techniques have been used to optimize SVM

parameters. In particular, PSO, differential evolution (DE), Ant colony optimization for

the continuous domain (ACOr) and harmony search (HS) are the four evolutionary com-

putation (EC) techniques which were used to optimize the penalty parameter C and radial

basis function (RBF) kernel parameter (γ). For each method, the classification accuracy

for each class and overall are presented. The techniques are also compared in terms of

their training execution speed. For this part of the work, SSE is viewed as a 2-class, a 3-

class or a 4-class classification problem, while commonly only 2 classes (secure or insecure)

are considered. Moreover, additional optimization techniques are studied compared to

previous works that used evolutionary optimization techniques to train SVMs. It will be

demonstrated that all methods provide similar classification accuracy, while HS operates

faster than other methods. An important conclusion is that the level of accuracy for each

technique depends on the number of classes, namely, the number of security levels. The

IEEE 39-bus has been used for implementing and validating the classifier performance.

The proposed technique and its simulation results are presented in sections 5.1 and 6.2.1,

respectively.

Second, support vector regression (SVR) is used to solve SSE as a regression problem.

SVR is a powerful machine learning paradigm which attempts structural risk minimization

rather than the empirical risk minimization adopted in ANN training. However, similarly

to SVM, the performance of SVR heavily depends on its parameter selection. In [26] and

[27], grid searching was used as an exhaustive method for parameter tuning, but due to

the discretization of the search space, some information is lost. Traditional optimization

methods may not perform satisfactorily in general, but evolutionary optimization methods

such as genetic algorithm (GA), PSO and DE have been effectively used for tuning SVR

4

parameters [28]. In this work, an improved technique based on SVR and PSO, namely the

tuned support vector regression by modified particle swarm optimization (TSVR-MPSO)

is proposed for SSE. Recently, an approach was proposed for reliability prediction using

SVR and PSO [24]. The main contribution in [24] is that different PSO particles are

adapted using a different inertia weight based on an estimated global best. In this work,

adaptation of the inertia weights is modified further, so that it is different for each one of

the particle dimensions. In particular, in our proposed method, the PSO weight is updated

for each particle based on the absolute distance between the global best and each particle’s

best position. The performance of TSVR-MPSO is compared with the method in [24]

and with another weight-adapting PSO technique, MLFNN and RBFN methods. The

IEEE 14-bus and 118-bus have been used for implementing and validating the regressor

performance. The proposed technique and its simulation results are presented in sections

5.2 and 6.2.2 respectively.

Third, multi-objective PSO has been used for feature selection (FS) to improve the

solution to the SSE problem. FS is an essential task for reducing the dimensionality

and providing better performance of the classification algorithms [77]. Feature selection

is a multi-objective problem with two conflicting objectives which are, first, maximiz-

ing the classification accuracy and, second, minimizing the number of features [77]. In

previous works, feature selection for SSE has been solved without considering it to be a

two-objective problem, and a predefined number of features has been set at the begin-

ning. In this work, we are proposing the employment of multi-objective particle swarm

optimization (MOPSO) for the purpose of selecting the best number of features and for

improving the classification accuracy for SSE. The IEEE 9-bus, 14-bus, 39-bus, 57-bus,

118-bus, and 300-bus systems have been used for the simulations. The proposed work is

compared with the popular sequential feature selection (SFS) technique. The proposed

method and the associated simulation results are presented in sections 5.3 and 6.2.3,

respectively.

The fourth and final part of the dissertation work includes a voting scheme for solv-

ing the multi-classification SSE problem. Following FS by MOPSO, different machine

5

learning methods (9-classifier models) are trained. These 9 models are based on two

well-known pattern classifiers. The first classifier is the SVM with different nonlinear ker-

nels, such as the polynomial kernel and the RBF kernel having its parameters tuned by

MPSO. The second classifier is a popular ensemble learning method, namely the random

forest (RF), with an adaptive number of trees. The last stage of the technique involves

a voting scheme which aims at improving the overall performance for online SSE. The

IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus systems have been used for

simulations. The proposed technique and the associated simulation results are presented

in sections 5.4 and 6.2.4 respectively.

1.3 Introduction to Applications of EC to Solve ED

The massive consumption of fossil fuels has resulted in a dramatic reduction of these

resources [4]. The power generation required for the operation of power systems is one of

the leading causes of fossil fuel consumption. In order to reduce consumption by optimal

usage of fuel resources, power should be generated at the lowest possible cost, while still

meeting a known power demand and satisfying various constraints. This can be achieved

by solving the economic dispatch (ED) problem which finds the best feasible power gen-

eration with minimum fuel cost while satisfying the generation constraints of the power

units [29], [37]. Several classical and numerical methods, such as fast lambda iteration,

Lagrange relaxation (LR), linear programming, and gradient methods have been tradi-

tionally used for solving the ED problem [38], [39], [40]. Often, these methods solve the

ED problem by simplifying or ignoring some constraints such as the prohibited operat-

ing zones (POZ) of generators, the ramp rate limits [29], the valve-point effect (VPE)

[41], and the multi-fuel options (MFO) [42]. Incorporating these real factors increases

the complexity of the ED problem, which becomes a non-convex, non-continuous, and

non-differentiable constrained optimization problem [29]. In general, traditional methods

often fail to solve the non-simplified ED problem successfully.

Several evolutionary and metaheuristic algorithms have been used in the literature

to solve the ED problem and to overcome the difficulties of conventional optimization

6

methods. Some of the advanced evolutionary algorithms used include GA [41], [43],

tabu search (TS) [44], PSO [29], differential evolution (DE) [45], ant colony optimization

(ACO) [46], harmony search [47], artificial bee colony (ABC) [48], and the social spider

algorithm (SSA) [49], [50]. Furthermore, hybrid algorithms have also been employed to

solve the ED problem [51, 52, 53].

In this work, advanced variants of GAs [54] are used to solve the ED problem. The

idea of GA was inspired by Darwin’s theory of evolution and was first invented by John

Holland [55]. GA, in its implementation, starts with a set of individuals (initial population

of candidate solutions) that are evolved over consecutive generations (epochs) through

selection and variation to solve an optimization problem. In GA, individual problem-

solutions, to which the values of the solution variables are encoded, are referred to as

chromosomes. GA evolves through the natural adaptation process in which the fitter

chromosomes tend to survive, breed, and propagate their genetic information to the

future generations. GA variants, with integrated advanced and innovative strategies,

help produce competitive solutions. Though the GA variants were separately shown, a

solution-suite can be easily formulated to have the combined benefits of the GA variants.

The GA variants which are used in this work are breeder GA (BGA), fast navigating

GA (FNGA), twin removal GA (TRGA), kite GA (KGA), and united GA (UGA). Three

IEEE benchmark test systems with 6-unit, 15-unit, and 10-unit are used to study the

efficacy of the proposed algorithms. The 6-unit and 15-unit have POZ, ramp rate limits

and transmission line losses as their constraints, while the 10-unit system is the multi-fuel

system with valve-point effect. In section 6.2.5, the results obtained by different advanced

GA variants are compared for solving the ED problem. It is also shown that for some

case studies the kite GA (KGA) and twin removal GA (TRGA) outperform the results

obtained by some recently proposed evolutionary and metaheuristic techniques, such as

the modified social spider algorithm (MSSA) [50] and the backtracking search algorithm

BSA [42].

7

1.4 Overview of the Dissertation Chapters

In this section, the organization of the following chapters is presented. In chapter 2, two

power system problems (namely SSE and ED) are described. In chapter 3, an overview

of different machine learning techniques and data mining tools which have been used in

this dissertation are presented. These include SVM, SVR, RF, RBFN, MLFNN, and FS.

In chapter 4, several EC methods are explained shortly. These methods are PSO, the

variants of GA (BGA, FNGA, TRGA, KGA, and UGA), DE, ACOr, and HS. Proposed

methods and implementation steps are described in section 5. The proposed techniques

are parameter selection of multi-class SVM with EC methods for online SSE, tuned

support vector regression by modified PSO for online SSE, feature selection by multi-

objective PSO for SSE, multi-classifier voter model for SSE, and genetic algorithm variant-

based effective solutions for ED. In chapter 6, case study and simulation results of each

proposed method are presented. Finally, chapter 7 closes with some conclusion and

suggestions for future work.

8

Chapter 2

Power Systems Problems

In the following sections, an overview of two power system problems is presented. The

first problem is static security evaluation (SSE) and the second problem is economic

dispatch (ED).

2.1 Static Security Evaluation

The security of power systems is an important issue in online power system networks.

In order to prohibit a blackout, all power system equipment should work within their

appointed limits [12]. The main goal of security assessment is to evaluate the robustness

of the system or the security level of the system during and after an contingency incident.

The security of the system should be analyzed online due to the influence of different

contingencies and the time-to-time variation of system operating conditions. Tradition-

ally, SSE is solved using the algebraic load flow equations for any outage, one at a time,

which requires a huge number of computations. This is why conventional methods cannot

assess the security level of the power systems in real-time. In this work, the traditional

Newton Raphson (NR) load flow has been only used off-line in order to generate the data

required for the purpose of training a classification or regression system. Once the system

is trained, the SSE can be performed in real-time.

In power systems, examples of contingencies include an outage of a line or generator,

a sudden increase in load, or a three-phase fault in the system. The set of contingencies

9

which are considered in this work were one-line outages, namely N − 1 contingencies,

and random changes in the loads from 80% to 120% of their base values. In literature,

the system is considered static secure if it remains in steady state after a contingency

occurrence or, in other words, if the MVA flow of the branches and the amplitude of

bus voltages stay within their specified limits. Eq. 2.1 and Eq. 2.2 show the voltage

magnitude limit and the maximum MVA flow respectively.

|V min
k | ≤ |Vk| ≤ |V max

k | k = 1, 2, ..., Nbus (2.1)

Skm ≤ Smaxkm (2.2)

where |V min
k |, |V max

k | and |Vk| are the minimum voltage limit, maximum voltage limit,

and the bus magnitude of bus k. Moreover, Skm and Smaxkm are the MVA flow and the

MVA limit of the branch from bus k to bus m.

In order to obtain the MVA flow and bus voltage magnitude, the nonlinear load flow

equation should be solved. Different static security index (SSI) types have been presented

in the literature to determine the level of system security. Some SSIs have been proposed

to indicate overloaded lines or bus voltages that deviate from the normal operation limits

[2], [12]. The SSI can be calculated by the line overload index (LOI) and voltage deviation

index (VDI) which are presented in Eq. 2.3 and Eq. 2.4. The SSI index is defined in Eq.

2.5:

LOIkm =


Skm−Smax

km

Smax
km

× 100 Skm > Smaxkm

0 Skm ≤ Smaxkm

(2.3)

V DIk =



|Vmin
k |−|Vk|
|Vmin

k | × 100 |Vk| < |V min
k |

|Vk|−|Vmax
k |

|Vmax
k | × 100 |Vk| > |V max

k |

0 |V min
k | < |Vk| < |V max

k |

(2.4)

SSI =
w1

∑NLine

i=1 LOIi + w2

∑NBus

i=1 V DIi
NLine +NBus

(2.5)

10

where w1 and w2 are the constant weighting factors, which can be changed according to

one’s preference. Moreover, NLine and NBus are the total number of lines and buses of

the system, respectively.

The SSE can be solved as a classification or regression problem. The SSI index will

be used as the output of the training model, if SSE is considered as a regression problem.

To solve SSE as a classification problem, the 2-class, 3-class, and 4-class labeling are

presented in Table 2.1, Table 2.2, and Table 2.3, respectively, for classifying the security

level of the system.

Table 2.1: SSI labeling for two classes

Static Security Index (SSI) Class Label

SSI ≤ 5 Class 1: Secure
SSI > 5 Class 2: Insecure

Table 2.2: SSI labeling for three classes

Static Security Index (SSI) Class Label

SSI ≤ 1 Class 1: Safe
SSI > 1 & SSI ≤ 15 Class 2: Alarm

SSI > 15 Class 3: Emergency

Table 2.3: SSI labeling for four classes

Static Security Index (SSI) Class Label

SSI ≤ 1 Class 1: Safe
SSI > 1 & SSI ≤ 5 Class 2: Alarm
SSI > 5 & SSI ≤ 15 Class 3: Insecure

SSI > 15 Class 4: Emergency

2.2 Economic Dispatch

Economic dispatch (ED) is one of the important problems in power system control and

operation. ED is a sub-problem of unit commitment (UC) as well as a nonlinear optimiza-

11

tion problem with various constraints. The objective of solving the ED problem is to find

the optimum power generated by all generators in a power system in order to minimize

the total fuel cost of the system. At the same time, a number of constraints such as load

demand, spinning reverse capacity, ramp rate limits, and generator prohibited operating

zones need to be satisfied. The ED objective function which needs to be minimized can

be expressed as follows:

n∑
j=1

Fj(Pj) =
n∑
j=1

aj + bjPj + cjP
2
j (2.6)

where, Fj(Pj) is the fuel cost function of the jth power unit, Pj, and n is the total number

of power units. The parameters a, b, c represent constant coefficients associated with the

fuel cost. In practice, the valve-point effect (VPE) of steam-power plants exhibits ripples

which can be modeled as a recurring rectified sinusoid. Therefore, the VPE effect can be

incorporated in the ED objective function by modifying Fj(Pj) as follows:

Fj(Pj) = aj + bjPj + cjP
2
j + |ejsin(fj(P

min
j)− Pj| (2.7)

where Pmin
j is the minimum power generated by the jth power unit. Moreover, ej and

fj are constant coefficients describing the VPE [41]. Furthermore, some power units can

operate using multiple fuels with different associated costs [49]. Based on the power

generation requirements, the fuel with minimum cost should be selected for each unit.

Consequently, the fuel cost function of the jth power unit can be modified to incorporate

the multi-fuel option as follows:

Fj(Pj) = min
k=1,...,m

(aj,k + bj,kPj + cj,kP
2
j (2.8)

+|ej,ksin(fj,k(P
min
j)− Pj|)

where, m is the total number of fuel options while aj,k, bj,k, cj,k, ej,k and fj,k are the fuel

cost coefficients of the jth power unit’s kth fuel option [42]. In addition to defining the ED

objective function, certain constraints should be considered. First, the total generated

12

power has to be equal to the power demand plus any power losses. The requirement to

maintain the active power balance of the system can be expressed as follows:

n∑
j=1

Pj = PD + PL (2.9)

where PD is the load demand and PL is the line loss. In particular, PL can be calculated

by:

PL =
n∑
i=1

n∑
j=1

PjBijPj +
n∑
i=1

Bi0Pi +B00 (2.10)

where Bij are the line loss coefficients [29]. Each power unit may be restricted by addi-

tional constraints depending on the problem at hand. In particular, the power generated

by each power unit may not drop below a minimum value, Pmin
j , or exceed a maximum

value, Pmax
j . Moreover, the ramp rate limits may restrict the power generated by the jth

unit as follows:

max(Pmin
j , Pj0 − LRj) ≤ Pj ≤ min(Pmax

j , Pj0 + URj) (2.11)

where Pj0 is the previous interval output power, while LRj and URj are the lower and

upper ramp rate limits of the jth unit, respectively. Another constraint which is considered

in different works is the generator prohibited operating zone (POZ). The POZ represents

an infeasible or forbidden operation range of a power unit. Eq. 2.12 introduces this

additional constraint considering zj POZs for the jth power unit.

Pj ∈ [Pmin
j , P l,1

j]
⋃

[P u,1
j , P l,2

j]
⋃

...
⋃

[P
u,zj
j , Pmax

j] (2.12)

where P l,k
j and P u,k

j are, respectively, the lower and upper bounds of the jth power unit’s

kth POZ and z is the total number of POZs [29, 49].

13

Chapter 3

Machine Learning and Data Mining

3.1 Introduction

It is well-known that during the last few decades vast amounts of information are contin-

uously generated around the globe. Therefore, it does not come as a surprise that large

amounts of data are available in all engineering and science fields, especially considering

the nature of these fields. An important objective of Engineering and science is to observe

and analyze various natural phenomena, as well as man-made systems. For this purpose,

given the huge amount of data available, it is important to be able to identify and ex-

tract only this information which is useful for a particular application. Data mining is

a subfield of knowledge discovery from data (KDD), which aims at processing the data

in order to identify patterns and to present best relationships among data. Data mining

includes data preprocessing, feature selection (FS), classification, clustering, regression,

data warehousing, frequent pattern mining, and outlier analysis.

Machine learning is a sub-field of AI. It mainly concentrates on proposing algorithms

that can learn from data, and that can draw conclusions about the data. It is then

clear that machine learning algorithms can be used in data mining for the purpose of

training models, so that necessary information can be extracted from the data. Artificial

neural networks (ANN), such as the radial basis function network (RBFN) [30] and multi-

layer feedforward neural network (MLFNN) [31], as well as fuzzy logic [32], support

vector machines (SVM) [33], decision trees, random forest (RF) [34], k-means [35], and

14

reinforcement learning [36] are some of the available machine learning tools.

In this chapter, a brief description of some machine learning and data mining methods,

especially the ones which were used to solve the SSE problem, is presented. In particular,

SVM and SVR are discussed in section 3.2, RF is described shortly in section 3.3, and

the RBFN and MLFNN techniques are presented in section 3.5 and 3.4. Finally, FS is

outlined in section 3.6.

3.2 Support Vector Machine

The SVM was first introduced by Cortes and Vapnik in 1995 for supervised binary classi-

fication [33]. However, it was later extended to solve multi-class and regression problems

as well. In general, SVM possesses two special properties. First, it is capable of maxi-

mizing the margin of separation between different classes. Second, it supports nonlinear

functions by utilizing different kernels [58]. The SVM constructs an optimal hyperplane

classifier that classifies the data without error by maximizing the margin of separation,

which in turn minimizes the empirical risk (the average loss of an estimator for a finite

set of data) and expected risks (hypothesis value of loss function). Empirical risk mini-

mization (ERM) minimizes the error on the training data and is used to give theoretical

bounds on SVM performance. The idea of risk minimization is not only measure the

performance of an estimator by its risk, but to actually search for the estimator that

minimizes risk over distribution [59].

A constrained quadratic programming problem has to be solved to obtain the optimal

hyperplane. This may be a linear or nonlinear combination of support vectors (a subset

of training data) [58]. In order to construct the optimal hyperplane, the SVM classifier

solves the following optimization problem if the two classes are linearly separable:

min
wij ,bij ,ζijt

1

2
(wij)Twij + C

∑
t

ζ ijt (3.1)

(wij)Txt + bij ≥ 1− ζ ijt if yt = i (3.2)

(wij)Txt + bij ≥ −1 + ζ ijt if yt = j (3.3)

15

ζ ijt ≥ 0 (3.4)

where wij is the weight vector for the hyperplane, C is the penalty parameter, ζ ijt is a

slack variable. For better illustration, Fig. 3.1 shows binary SVM linear classification.

This Fig has been generated in Matlab.

When two classes are not linearly separable, following optimization problem should

solve, as:

min
wij ,bij ,ζijt

1

2
(wij)Twij + C

∑
t

ζ ijt (3.5)

(wij)Tφ(xt) + bij ≥ 1− ζ ijt if yt = i (3.6)

(wij)Tφ(xt) + bij ≥ −1 + ζ ijt if yt = j (3.7)

ζ ijt ≥ 0 (3.8)

where φ(xt) is a nonlinear kernel function. Mainly, two types of kernel functions are

used for nonlinear classification in SVM. The Gaussian or RBF is the first and, possibly,

best choice owing to its capability of successfully handling nonlinear relations and to its

accuracy. The other well-known and easy to use kernel is the polynomial which can be

of different order, q. Fig. 3.2 which has been created in Matlab illustrates an example of

nonlinear (RBF) binary SVM classification.

Different types of solvers can be used to solve the SVM optimization problem. L1

soft-margin quadratic programming (L1QP) [61] minimization is one of the mostly used

optimization solvers. Other than L1QP, iterative single data algorithm (ISDA) [62], and

sequential minimal optimization (SMO) [63] are other solvers who have been implemented

and compared in this work. In this work, we used both RBF and polynomial kernel for

multi-classification. However, the performance of SVM with RBF kernel heavily depends

on its parameters tuning. Therefore, different EC algorithms are used to tune the penalty

parameter, C, and the RBF kernel parameter, γ.

16

Figure 3.1: Linear binary SVM classifier

Figure 3.2: Nonlinear binary SVM classifier

3.2.1 Multi-Class Support Vector Machine

Binary SVM classifiers can be extended to multi-class classifiers. For solving the multi-

class problem, a combination of several binary SVM classifiers should be trained. One-

versus-all (OVA), one-versus-one (OVO), dense random, and sparse random are some of

the multi-class SVM coding strategies [2]. In OVA coding, SVM constructs k different

distinct classes, considering two classes, namely class i and all other classes. The OVA

technique is simple, but it is computationally expensive. Based on the OVO technique

(which is also called pairwise SVM), a total of k(k−1)/2 binary classifiers are constructed.

They are trained by data belonging to the corresponding two classes only [12]. Classifi-

cation based on the OVO method uses the max-wins voting (MWV) strategy to pick the

class with the largest number of votes. In dense random, each binary learner is assigned

17

Table 3.1: OVO coding scheme

Learner 1 Learner 2 Learner 3

Class 1 1 1 0
Class 2 -1 0 1
Class 3 0 -1 -1

randomly to a “positive class” or a “negative class”. In sparse random, each binary

learner is again assigned randomly to a positive or negative class, but with probability

0.25 for each class, and by ignoring both classes with probability 0.5 [64]. In this work,

the OVO method has been used to extend the binary SVM to the 3-class and 4-class

classification problems.

In [64], error-correcting output codes (ECOC) with coding and decoding steps are

proposed for solving multi-class classification. This approach improves classification ac-

curacy compared to other multi-class models. The ECOC model reduces the classification

problem with 3 or more classes to a set of 2-class classification problem. The coding design

of ECOC determines how the 2-class learners are trained. The decoding design of ECOC

decides how to compress the predictions of the 2-class classifiers. For better illustration,

suppose that a 3-class problem using the OVO coding strategy and loss g decoding scheme

wants to be solved with SVM learner. An OVO coding design is presented in Table 3.1.

Learner 1 trains class 1 and class 2 as class positive and class negative respectively. Rows

containing a 0 infer to the 2-class learner to ignore all observations in the corresponding

classes. Other learners are trained similarly. Assume that the coding design is matrix

M with elements mkl. A new observation is assigned to the class k̂ that minimizes the

aggregation of the losses for the L binary learners. Eq. 3.9 shows the observation for

class k̂ which minimizes the aggregation [64].

k̂ = argmin
k

N∑
l=1

|mkl|g(mkl, sl)

N∑
l=1

|mkl|
(3.9)

where L is the total number of learners and sl is the predicted classification score of the

class positive of learner l.

18

3.2.2 Support Vector Regression

Support vector regression (SVR) is an extension of SVM to accommodate regression

problems. The objective of SVR is to estimate a function which maps l-dimensional

input vectors, xi ∈ Rl, to real-valued outputs, yi, i = 1, ..., N , where N is the number of

data patterns. For the linear case, SVR can be described as follows [24, 65, 67]:

yi = f(xi) = wTxi + b (3.10)

where w and b are the weight vector and the intercept of the regression model, respectively.

The values of w and b should be obtained based on the available dataset to determine

the optimal linear function. This linear case can be extended to nonlinear mappings as

Φ : Rl → S, where S is the feature space of Φ. The nonlinear case can be formulated as:

yi = f(xi) = wTΦ(xi) + b (3.11)

In ε−SV regression, the goal is to find a function f(xi) which does not deviate more

than ε from the targets, yi, while concurrently remain as flat as possible. The latter

implies minimizing the Euclidean norm of the linear weight, namely ‖w‖2. For the best

regression function, the soft margin ε-insensitive loss function is defined as:

|ζ|ε =


0, if |ζ| < ε

|ζ| − ε, otherwise.

(3.12)

The deviation of the training data outside the ε-insensitive zone can be specified by slack

variables ζ, ζ∗ which are used for minimizing the empirical risk. Figure 3.3 from [67]

shows the soft margin loss setting for a linear SVR.

The formulation stated by Vapnik [61] leads to solving the following quadratic opti-

mization problem:

min J(w, ζ, ζ∗) =
1

2
‖w‖2 + C

n∑
i=0

(ζ + ζ∗) (3.13)

19

Figure 3.3: The soft margin loss setting for a linear SVR [67]

s.t.


yi − wTΦ(xi)− b ≤ ε+ ζi

wTΦ(xi)− b− yi ≤ ε+ ζ∗i

ζi, ζ
∗
i ≥ 0

i = 1, 2, ..., n (3.14)

where C > 0 is a penalty coefficient which determines the trade-off between empirical

and generalization errors [66]. The optimization problem in Eq. 3.13 can be solved in

the standard dual method utilizing Lagrange multipliers. The solution of this quadratic

optimization problem is:

f(xi) =
n∑
j=0

(αi − α∗i)K(xi, xj) + b (3.15)

where αi, α
∗
i are Lagrange multipliers, and K(xi, xj) = Φ(xi)

TΦ(xj) is the kernel function.

In this paper, the radial basis function is used as the kernel function:

K(xi, xj) = exp(
−γ2

2
|xi − xj|2), γ ∈R (3.16)

For getting best regression results, the γ (width of RBF), ε, and C parameters have

to be properly tuned. Figure 3.4 which is generated in Matlab, shows an example which

presents the optimal margin and optimal hyperplane of nonlinear SVR.

20

Figure 3.4: Nonlinear SVR

3.3 Random Forest

RF is an ensemble learning method used for classification and regression. An ensemble

method is formed when a set of weak learners come together to form a strong learner.

RF works by building a group of decision trees [34]. In the case of classification, the

RF output is obtained as the most popular response considering all trees. In the case of

regression, the output is the mean of prediction associated with the individual trees [68].

In RF, except for tree bagging [69], the processes of finding the root node and splitting

the feature nodes are random. The RF is easy to use, and is robust to noise. Moreover,

the RF mitigates the overfitting issue of decision trees during training, thus improving

the generalization performance [70]. In [71], a collection of decision trees with controlled

variance is used to construct the RF. Each tree depends on the values of a random vector

which is sampled independently and distributed alike in the forest. In [71], uncorrelated

trees using a classification and regression tree (CART) are combined with randomized

node optimization and bagging technique in order to build the forest. Out of bag (OOB)

error has been used as an estimate of the generalization error.

In RF a random independent vector φi is generated for the ith tree with the same

distribution of past random vectors. A tree is using the training set and φi to grow.

In short, RF is a classifier which consists of several tree classifiers, C(x, φi), i = 1, ..., n,

where φi is an independently distributed random vector. Each tree builds a unit vote for

21

the most popular class for input x [71].

The general technique of bootstrap aggregating or tree bagging (TB) is being used

to train the RF. In this algorithm, for a number of trees, N , random cases with the

replacement of the training set is selected. At each node, m predictor variables are

selected randomly, and the one with the best split is applied for the binary split on the

node. This process should be repeated for each node. By taking the majority vote among

the outputs of all the individual trees, the prediction can be checked for the test data.

The optimal number of trees is found by the OOB error, which is the mean prediction

error on each training sample.

3.4 Multi-Layer Feedforward Neural Nework

The feedforward neural network (FNN) is the first and simplest type of ANN. There is

no cycle or loop in this ANN, and the information moves in only one direction, namely

forward, from the input nodes, through the hidden nodes, and finally to the output nodes

[31]. In MLFNN, each hidden layer can be considered as a single output perceptron

network, and the output layer is essentially a soft thresholded linear or nonlinear com-

bination of the hidden layers. Any kind of input-output mapping can be modeled by

MLFNN with enough neurons in the hidden layers. The sigmoidal activation function

may be used in hidden layers as:

Y (x) =
1

1 + e−x
(3.17)

Each layer is attached to the previous layer with some weights [9]. Backpropagation

algorithms (BPA) are used for training MLFNN using parameters such as the momentum

factor α, and the learning rate η. If η is set to be small, the learning rate is also small,

but if it set to a large value, training may become unstable. A momentum factor α can

be added to increase the value of the rate η without making the process unstable. The

weights associated with the connections between the hidden layer and the output layer

22

are updated as follows:

wb(j, k, t+ 1) = wb(j, k, t) + ηδk(t)Yb(j) + α(wb(j, k, t)− wb(j, k, t− 1)) (3.18)

where j varies from 1 to the total number of hidden layers, Nh, and k, varies from 1 to

the total number of neurons in the output layer, Nk. Moreover, Yb(j) is the output from

the hidden layers. The weights associated with the connections between the hidden layer

and the input layer are updated as follows:

wb(j, k, t+ 1) = wb(j, k, t) + ηδj(t)Ya(i) + α(wa(i, j, t)− wa(i, j, t− 1)) (3.19)

where i varies from 1 to the number of inputs to the network, Ni, Ya(i) is the output of

the first layer, and δj(t) is the error corresponding to the jth output after the tth iteration.

The errors δk(t) and δj(t) are related as follows:

δj(t) =
K∑
k=1

δk(t)wb(j, k, t) (3.20)

The measn square error (MSE) for the training patterns after the tth iteration is given

by:

MSE(t) = (
1

Np

)

Np∑
p=1

(X1p −X2p(t))
2 (3.21)

where Np is number of patterns in the training set. Training stops when the maximum

number of iterations is reached, or when an acceptable MSE values is obtained. The

MLFNN model from [9] is shown in Fig. 3.5.

3.5 Radial Basis Function Network

The RBFN has been used in nonlinear function approximation, time series prediction,

and classification. Commonly, RBFN has three layers: an input layer, a hidden layer with

a non-linear RBF activation function, and a linear output layer. An input vector, X, is

used as input to all RBFs, each with different parameters and the output of the network,

23

Figure 3.5: Structure of MLFNN [9]

Y , is a linear combination of the outputs from RBFs in the hidden layer [30, 74, 75]. The

output of the network is:

Y (X) =
N∑
i=1

wj.exp(
−||X − Ci||2

γ
) (3.22)

N , is the number of neurons in the hidden layer, Ci is the center vector for neuron i, wj

is the weight of neuron i in the linear output neuron, and γ is the RBF kernel parameter.

The weights can be derived in a manner that the fit between output and the input is

optimized. The structure of the RBF from [76]is presented in Figure 3.6. In the basic

form of the RBFN, all inputs are connected to each hidden neuron. RBFNs are universal

approximators, in the sense that given a sufficient number of hidden neurons they can

approximate any continuous function. Selecting an appropriate number of neurons is

important because a small number of neurons will result in low function classification

accuracy. On the other hand, a large number of neurons may cause overfitting of the

input data, which may deteriorate the global generalization performance.

24

Figure 3.6: Structure of RBFN [76]

3.6 Feature Selection

Data often consists of a large number of features, many of which may be redundant.

For instance, features may be highly correlated with other. Feature selection (FS) is the

process of selecting only a subset of necessary features from the original data. A Large

number of features may reduce the performance of data mining and machine learning

[77], while FS improves the speed and generalization performance of classifiers [79].

FS algorithms belong in the category of dimensionality reduction methods. However,

as opposed to other dimensionality reduction methods, FS selects a subset of the existing

features without applying any transformation to the data. In other words, FS attempts

to find a feature subset, Ym, from a feature set, X = x1, x2, . . . , xn, where m < n, so that

an objective function is minimized (or maximized). For a dataset with n features, the

total number of possible subsets is 2n. Apparently, the problem can become significantly

complex for large n [78].

FS algorithms mainly consist of filter or wrapper approaches. Filter approaches eval-

uate subsets of some information such as interclass distance, statistical dependence, or

information-theoretic measures. Filter methods exhibit a fast execution time and gener-

ality. However, they force to select an optional number of features to be selected. On the

other hand, wrapper approaches as opposed to filter methods, use a learning algorithm,

such as a classifier or a regression learner, and the performance of the learner is the ob-

jective used for selecting the features. Wrapper techniques are more accurate comparing

25

to filter methods. However, their execution is slow, and they lack generality.

It should be mentioned that dimensionality reduction algorithms which combine fea-

tures corresponding to different dimensions are not appropriate for SSE. For SSE, the

data is obtained through phase measurement units (PMUs) installed at substations and

power plants. The goal is to install a small number of PMUs to only acquire these fea-

tures required for classification. This is possible when FS is used, since PMUs only have

to be placed at m appropriate locations, namely the ones associated with the selected

feature subset. On the other hand, methods which use feature combinations require that

all n original features are available in order to produce the smaller number of combined

features. This implies that PMUs would have to be installed at all n locations.

Most works presented in the SSE literature use only the classifier’s performance has

been considered as the objective of FS. Such an FS example is sequential forward selection

(SFS). Yet, a second objective should be minimizing the number of features. The FS

method proposed in this work is a two-objective problem which attempts to minimize both

the classification error rate and the number of features, which are often two conflicting

objectives.

In this work, sequential forward selection (SFS) and multi-objective particle swarm

optimization (MOPSO) (see section 4.2.1) have been used to select appropriate features

for the SSE problem. SFS is explained briefly in section 3.7. The proposed technique

which uses MOPSO for FS is discussed in section 5.3.

3.7 Sequential Forward Selection

SFS is a bottom-up search procedure. It first initializes an empty feature subset. Then,

the selected features are gradually added to the subset, from the original feature set,

based on a fitness function which aims at minimizing the MSE. In each iteration, the new

feature to be included in the subset is selected among the remaining available features

of the feature set. The objective is that the updated subset should produce a smaller

classification error with respect to the subset which would be formed by the addition of

any other feature. SFS performs best when the optimal subset has a small number of

26

features. The advantages of SFS are its simplicity and speed, and this the reason why

many applications have been proposed based on SFS [73]. The main disadvantage of SFS

is that it is unable to remove features that do not positively contribute to the MSE after

the addition of other features.

27

Chapter 4

Evolutionary Computation

Evolutionary computation (EC) is a subfield of artificial intelligence (AI) which has

mainly adopted Darwinian principles and population-based optimization processes in-

spired by biological evolution. The EC methods can solve optimization problems for a

wide range of applications. The trial-and-error and randomness-based techniques em-

ployed by EC techniques facilitate the avoidance of local minima [1]. In EC, a random

initial set of solutions (i.e., the first generation) is first created. Subsequently, new gener-

ations are iteratively updated by removing the less fit solutions (selection), by combining

solutions (recombination), and by adding small random changes to members of the popu-

lation (mutation). The population evolves while improving the fitness of its members. In

other words, EC techniques are mainly based on the recombination between population

members and the mutation of individual members to obtain the necessary diversity, and

on selection, which increases the quality of members in future generations [80].

Swarm intelligence (SI), a subfield of EC, has been used in several applications. SI

mimics the behavior of bird flocking or swarms of insects, such as ants, which are interact-

ing locally with each other and with their environment. In general, there is no centralized

control method or intelligence in a particular member, but the interactions between the

members lead to the sharing of intelligence within the population [81]. Thus, the swarm

exhibits a strong collaboration, such as communication, exchanging, and flowing of in-

formation between its members, which is a key to success of the swarm intelligence (Fig.

4.1).

28

Figure 4.1: Swarm intelligence

In this work, several EC techniques have been used to solve the SSE and ED prob-

lems. Genetic algorithms (GAs) and several variants, such as breeder GA (BGA), fast

navigating GA (FNGA), twin removal GA (TRGA), kite GA (KGA), and unified GA

(UGA) have been implemented to solve the ED problem. Particle swarm optimization

(PSO), differential evolution (DE), ant colony optimization (ACO), and harmony search

(HS) have been used to tune the parameters of SVMs to solve the SSE problem. A mod-

ified particle swarm optimization (MPSO) technique has been proposed for tuning the

SVR parameters for the purpose of tackling the online SSE problem. Furthermore, multi-

objective particle swarm optimization (MOPSO) has been proposed for multi-objective

FS in SSE.

GA variant based algorithms are presented in section 4.1, while PSO and MOPSO are

discussed in section 4.2. Section 4.3 describes DE. Finally, ACO and HS are described in

sections 4.4 and 4.5, respectively.

4.1 Variants of Genetic Algorithm

GA is a metaheuristic technique inspired by natural genetic populations to evolve a

solution. The process of mutation, crossover, and selection in GA generate high-quality

solutions to optimization and search problems. In this work, five different GA variants are

implemented to solve the ED problem. Real-value encoding for this study has been used.

29

GA is an iterative algorithm that runs for a number of generations (epochs), which, in our

implementation, is controlled by a predefined number of objective function evaluations

(Evalmax), and terminates if the desirable solution is found. The five GAs that are

studied in this work uses different genetic operators, including some recently introduced

techniques, to produce new solutions for the next generation population. In following

sections, breeder GA (BGA), fast navigating GA (FNGA), twin removal GA (TRGA),

kite GA (KGA), and, unified GA (UGA) have been described [4].

4.1.1 Breeder Genetic Algorithm (BGA)

The breeder GA (BGA) [88, 89] includes three genetic operators during evolution: elitism,

uniform crossover, and uniform single-point mutation. The procedure has been outlined

in Algorithm 1. Elitism is an operator that segregates a subset of individuals from

the current population at the beginning of a generation. This predefined proportion of

chromosomes or individuals are relatively fitter than the others in the population, thus

called elites. Elitism aims at the survival of these highly fitted individuals to guarantee

non-decreasing GA performance over time. Both crossover and mutation can create or

destroy the genetic material of a chromosome. Yet, elites are passed on to the next

generation without any modification. Thus, elitism allows genetic material to be kept

intact through evolution.

After elitism, roulette wheel algorithm has been used to select two parent chromo-

somes, P1 and P2, and uniform crossover has been applied on the parents to generate

two offspring chromosomes, O1 and O2. In uniform crossover, the parents contribute to

the offspring chromosomes in the gene (or variable) level, not at the segment level. A

mixing ratio (α) has been defined for each variable in the chromosome which is sam-

pled from a uniform distribution within [−0.1,+1.1]. Then, O1 = αP1 + (1 − α)P2 and

O2 = αP2 + (1 − α)P1. Finally, single-point uniform mutation has been applied to ran-

domly selected candidates for mutation. Mutation is the process of randomly changing

individuals of the current population to produce new individuals for the next genera-

tion. Mutation emulates the process of having random genetic diversity in nature. In

30

Algorithm 1: Procedure of BGA
Initialize population of individuals randomly;
while generation count ≤ Evalmax do

Evaluate fitness of all chromosomes ;
Perform elitism;
Perform selection of parents for crossover;
Perform uniform crossover (AmC);
Perform uniform single-point mutation;

end

uniform mutation process, the value of one randomly chosen variable has been replaced,

also referred as mutation point (1 ≤ mutationp ≤ d, d is the number of variables in a

chromosome) in the mutation candidate with a uniform random value selected between

the minimum and maximum variable values in that chromosome [4].

4.1.2 Fast Navigating Genetic Algorithm (FNGA)

The FNGA is a recently introduced GA variant [90] that uses elitism, a modified single-

point crossover called AM-based crossover, and single-point mutation to introduce vari-

ation in the process of evolution, as outlined in Algorithm 2. At the beginning of the

evolution, first a predefined number of fitter chromosomes has been segregated as elites,

and these individuals have been passed to the next generation population without mod-

ification. Then modified single-point crossover operation has been applied. In the clas-

sical single-point crossover, one randomly selected locus is considered as the crossover

point (1 ≤ corssoverp < (d − 1)) and the parts of the two parent chromosomes beyond

crossoverp are exchanged to produce two offspring chromosomes.

FNGA uses Associative Memory (AM)-based single-point crossover (AmC) [90] to

enhance the constructive exploitation power of classical crossover. AM consists of two

triangular memories that store the current best individual at all crossover points [90].

Unlike the classical crossover that blindly swaps the parts of parents, AmC produces two

different offspring candidates for each offspring position: one taking the segment from

another participating parent (classical crossover) and other using the segment available

in AM. AmC takes feedback from the search space by evaluating the two potential off-

spring candidates and keeps the better one. Thus, the search for better solution variable

in AmC operation is not limited to the other parent individual, but is rather extended

31

Algorithm 2: Procedure of FNGA
Initialize population of individuals randomly;
Initialize AM with the best available solution (chromosome);
while generation count ≤ Evalmax do

Evaluate fitness of all chromosomes ;
Perform global elitism;
Perform selection of parents for crossover;
Perform AM-based single-point crossover (AmC);
Perform uniform single-point mutation;

end

to the current best solution that is stored in memory, and applied adaptively only if

used. Moreover, the AM is updated if a better solution is found from the mating part-

ner. Thus, AM can essentially contain the best-performing variables of a solution at

different crossover point through consecutive generations. In addition to the AM-based

crossover, FNGA uses single-point uniform mutation to ensure diversity in its popula-

tion, as described in section 4.1.1. In our implementation of these different GAs, elites,

as mutation candidates, have not been considered to always preserve the fitter solutions

in the population [4].

4.1.3 Twin Removal Genetic Algorithm (TRGA)

Twin removal (TR) is an improved diversification operation, introduced in [91] for GA.

The variant TRGA applies elitism, single-point crossover, uniform single-point mutation,

and twin removal as genetic operators, as outlined in Algorithm 3. It has been discussed

in [92] that GA tends to produce similar chromosomes called twins in the population as

the generation proceeds. The growth of such correlated twins inevitably debilitates the

impact of a mutation in producing new random solutions when the underlying landscape

is complex. The TR operator can back up the reduced exploration power of mutation due

to the similar chromosomes (twins) by introducing new random chromosomes in place of

the similar chromosomesb [93].

In TRGA, elitism (see section 4.1.1) has been executed first and the classical single-

point crossover on the selected parents has been executed to produce offsprings for the

next generation. Thus, the parents contribute to the offspring chromosomes at the seg-

ment level where the parents exchange the subset of their variables at the crossoverp

(see section 4.1.2) to generate the offspring. The crossover operation is followed by the

32

Algorithm 3: Procedure of TRGA
Initialize population of individuals randomly;
while generation count ≤ Evalmax do

Evaluate fitness of all chromosomes ;
Perform elitism;
Perform selection of parents for crossover;
Perform single-point crossover;
Perform uniform single-point mutation;
Perform twin removal (TR);

end

single-point uniform mutation operation (see section 4.1.1). Finally, the TR operator has

been exercised on the next generation population. The TR operation is controlled by

the chromosome correlation factor (CCF) which defines the allowable similarity between

chromosomes. The number of loci of the chromosome has been counted pair under com-

parison with identical values. For this application, CCF = 95% has been set and therefore

if the similarity between two chromosomes is higher or equal than 95%, the chromosome

has been replaced of relatively lower fitness with a new randomly generated chromosome

[4].

4.1.4 Kite Genetic Algorithm (KGA)

The KGA [90] combines the enhanced exploitation capacity of AM-based crossover (see

section 4.1.2) and improved diversification power of TR (see section 4.1.3). Thus, KGA

has advantages over both FNGA and TRGA in having balanced exploitation and explo-

ration in every generation. The flow of operations under procedure KGA has been shown

in Algorithm 4. It has been laid down by the Schemata Theorem [55] that GA works

by prioritizing and sustaining instances of the schema with above-average fitness. The

AM-based crossover (AmC) ensures this by guiding the crossover towards better schema

stored in the AM. Thus, it is more likely to exhibit similarity between chromosomes that

can make the GA search static. TR plays a complementary role by reducing similarity and

introducing new random solutions. Therefore, KGA employs elitism, AmC, single-point

uniform mutation, and TR in one generation [4].

33

Algorithm 4: Procedure of KGA
Initialize population of individuals randomly;
Initialize AM with the best available solution (chromosome);
while generation count ≤ Evalmax do

Evaluate fitness of all chromosomes ;
Perform elitism;
Perform selection of parents for crossover;
Perform AM-based single-point crossover (AmC);
Perform uniform single-point mutation;
Perform twin removal (TR);

end

4.1.5 Unified Genetic Algorithm (UGA)

The UGA integrates a very recently proposed genetic operator in the literature, homolo-

gous gene replacement (hGR) [94] with the operators used in KGA. Thus, the unified GA

(UGA) includes four genetic operators during evolution: elitism with hGR, AM-based

single-point crossover, uniform single-point mutation and twin removal, summarized in

Algorithm 5. The hGR works on the genes (or variables) of elites chromosomes and the

elites, if possible. This operator is motivated to mimic the natural phenomena that the

combination of good genes can form a fitter chromosome. The working principle of hGR

operator is to identify the best gene (or variable) of each elite chromosome and replace

the relatively weaker genes of the corresponding elite if this replacement improves that

elite’s fitness. Therefore, hGR involves the evaluation of relative fitness of the local vari-

ables to determine the best gene of an elite. To quantify the relative fitness of a gene in

a chromosome (one variable in a solution), a common base value equal to 0.5 has been

assigned to other variables to generalize the effect of other variables. The application

of hGR is controlled adaptively by taking feedback from the search space to ensure the

non-decreasing performance of GA. The benefits of hGR are first benchmarked in [95]

where the authors used classical single-point crossover operation. However, in this GA

variant, AM-based single-point crossover has been applied (see section 4.1.2) to utilize its

improved intensification capacity. For diversification, both mutation (see section 4.1.1)

and TR operatorhas been used (see section 4.1.3).

34

Algorithm 5: Procedure of UGA
Initialize population of individuals randomly;
Initialize AM with the best available solution (chromosome);
while generation count ≤ Evalmax do

Evaluate fitness of all chromosomes ;
Perform elitism with hGR;
Perform selection of parents for crossover;
Perform AM-based single-point crossover (AmC);
Perform uniform single-point mutation;
Perform twin removal (TR);

end

4.2 Particle Swarm Optimization

PSO is a population-based stochastic optimization technique in which every single so-

lution is called a particle. It is inspired by the social behavior of bird flocks and fish

schools [1]. Like other evolutionary methods, a population of random solutions is first

created. Then, the algorithm looks for better solutions by updating the population in

each iteration. At each iteration, t, the ith particle is aware of its own position, P t
i , and

velocity, V t
i . It is also aware of the position of its personal best solution, P t

Best,i, and of the

best solution of the whole swarm, Gt
Best,i. For all particles, the fitness value is obtained

by evaluating the function to be optimized at the particle position. The position of each

particle in the next iteration is determined by its current position and velocity, and by

the position of the personal and global best solutions. The stopping criteria are met when

all particles reach an acceptable solution, or when a predefined number of iterations is

reached. The velocity and position are updated as follows:

V t+1
i = wtV t

i + c1r1(P t
Best − P t

i) + c2r2(Gt
Best − P t

i) (4.1)

P t+1
i = P t

i + V t
i (4.2)

wt+1 = wdampw
t (4.3)

where c1 (cognition factor) and c2 (social learning factor) are constants, r1 and r2 are

random numbers in the range [0,1], and wt is the velocity weight at iteration t. Figure

4.2 shows the position updating process of a particle.

Velocity limits (Vmax and Vmin) and position limits (Pmax and Pmin) are set for each

35

variable. These limits can be set as follows:

Vmax = 0.1(Pmax − Pmin), Vmin = −Vmax (4.4)

V t+1
i = min(V t

i , Vmax), V t+1
i = max(V t

i , Vmin) (4.5)

P t+1
i = min(P t

i , Pmax), P t+1
i = max(P t

i , Pmin) (4.6)

A bound limiting method can be used to return the particle back within the allowed range

when a particle attempts to come out of the allowable limits. For instance, the velocity

may be mirrored, as shown in Eq. 4.7.

if P t
i ≤ Pmin or P t

i ≥ Pmax then Vi,o = −Vi,o (4.7)

In order to assist particle convergence, a constriction coefficient has been introduced [97].

This method aims at balancing the need for local and global search depending on the

swarm conditions. In particular, based on the constriction coefficient method, the PSO

parameters are defined as:

w = χ, c1 = χφ1, c2 = χφ2 (4.8)

where φ = φ1 + φ2 > 4 and χ = 2

|φ−2+
√
φ2−4φ|

.

Figure 4.2: Updating position of particle

36

4.2.1 Multi-Objective Particle Swarm Optimization

PSO has a high-speed convergence and is suitable for multi-objective optimization. In

[98], Pareto dominance is incorporated into PSO to extend its capability to handle multi-

objective problems. A multi-objective algorithm is searching for a set of non-dominated

solutions (Pareto optimal solutions). The set of all non-dominated solutions creates a

trade-off surface or the Pareto front. A vector x = {x1, x2, . . . , xk} is said to dominate

y = {y1, y2, . . . , yk} (Pareto dominance), if and only if x is partially less than y, i.e.,

∀ i ∈ {1, 2, . . . , k}, xi ≤ yi ∧ ∃ i ∈ {1, 2, . . . , k} : xi < yi.

MOPSO, which was proposed in [98], uses an external repository of particles from

which some are picked as leader particles. The repository of particles is used by other

particles to guide their own paths. The external repository, which consists of an archive

controller and a grid, keeps a historical record of the non-dominated vectors found along

the search process. The archive controller decides whether a certain solution should

be added to the archive or not. The grid produces well-distributed Pareto fronts from

the adaptive grid proposed in [99]. Combining the historical archive of non-dominated

particles with the global best of the swarm guides the solutions to globally nond-ominated

convergence.

MOPSO is initialized similarly to PSO by generating a random swarm and by updating

the position and velocity of each particle. After evaluating each particle, a repository of

non-dominated particles has to be created. Repp,i and Repc,i are the positions and the

cost of particle i in the repository. Then, the discovered objective space should be gridded

by generating hypercubes in the search space, and the grid index of each member in the

repository should be found [99]. The steps to create the grid are illustrated in Algorithm

6, where α is the inflation rate of the grid which helps to expand the grid and NObj is the

number of objectives (two in our problem).

The next step is selecting a leader L from the repository. The steps to select a leader

are outlined in Algorithm 7, where β is the leader selection pressure, and Ni is the number

of particles in the occupied cell i. Velocity and position of each particle should be updated

37

Algorithm 6: Grid creation for MOPSO
Find minimum and maximum of Repc;
Find distance between minimum and maximum d = Repc,max −Repc,min;
Find min and max after inflation (α = 0.1) (Repc,min = Repc,min − dα Repc,max = Repc,max + dα) ;
for k = 1 : nObj;

ck = linspace(Repkmin, Rep
k
max, nGrid+ 1);

Grid(k).LB = [−inf, ck];
Grid(k).UB = [ck,+inf];
end

Algorithm 7: Leader selection for MOPSO
Find grid index of all the repository members;
Find occupied cells of the grid;
Find number of particles in the occupied cells;

Find selection probability from Boltzmann equation (Psi = e−βNi∑
j e

−βNj
);

Find selected cell index by roulette wheel selection to select the leader L;

by Eq. 4.9 and Eq. 4.10, respectively.

vt+1
i = wtvti + c1r1(pti,Best − pti) + c2r2(Lt − pti) (4.9)

pt+1
i = pti + vt+1

i (4.10)

After updating the position, the cost function should be evaluated, and mutation

could be applied to the population with probability mutation rate of Pm = 1
µ
(1− t−1

MaxIt−1
).

Mutation will lead to a new solution, ptNew (µ is the mutation rate), where t is the iteration

and MaxIt is the maximum number of iterations. If the new solution dominates, the

position and cost of each particle should be updated as:

pt+1
i =


pti pti dom pNew

pNew pNew dom pti

if rand < 0.5 pti else pNew otherwise

(4.11)

If the current position of the particle is better than the position contained in its

memory, the particle’s position is updated as pt+1
i = pti,Best . Finally, add the non-

dominated particles to the repository and update the grid and repository. The repository

should be sorted and updated base on the geographical representations of particles in the

grid. The stopping criteria are met when all particles reach an acceptable solution, or

38

when a predefined number of iterations is reached. Non-dominated solutions could be

obtained from the historical record of PBest.

4.3 Differential Evolution

DE is another heuristic optimization method which is suitable for high dimensional, non-

linear, and non-differentiable continuous space function problems [82]. Similarly to other

evolutionary techniques, DE consists of three operations, namely mutation, crossover,

and selection. DE starts with a random initialization of the population vectors following

a uniform distribution within the search space [83]. The idea behind DE is that crossover

and mutation are used for generating trial vectors [12]. The mutated vector is generated

by adding the weighted difference between two population vectors to a third vector. The

newly generated vector is selected based on the crossover probability, PCR ∈ [0, 1], to

ensure search diversity. Some of the newly generated vectors are used as offspring vectors

for the next generation, while others remain unchanged [1].

The mutant vector is generated for each individual, xi, as:

yi = xr1 + β(xr2 − xr3) (4.12)

The position limits, xmax and xmin, are applied for each individual such as:

xt+1
i = min(xti, xmax), x

t+1
i = max(xti, xmin) (4.13)

It is important that the three indices, r1, r2, r3, are chosen to be different from each other,

and they are selected randomly from within the population. Crossover is performed by

combining the mutant vector, yi, with the target vector, xi, as follows:

zi =


yi ri ≤ PCR or i = i0

xi otherwise

(4.14)

39

PCR = PCR,min +
(PCR,max − PCR,min).t

MaxIter
(4.15)

In Eqs. 4.14 and 4.15, PCR ∈ [0, 1] , rj is a random number between 0 and 1, t indicates

the iteration number, and i0 ∈ 1, 2, ..., d, where d represents the dimensionality. If the

trial vector zi yields a better fitness than xi, then xi is replaced by zi, else xi is retained.

The stopping criterion is met when all individuals achieve an appropriate minimum, or

when the maximum number of iteration is reached.

4.4 Ant Colony Optimization for Continious Domain

The ants, which are almost blind insects, have the capability to cooperate in a colony

to find the shortest route between the nest and a source of food. The first ant colony

optimization (ACO) was proposed by Dorigo in the early 1990s [1]. ACO is able to

deal with finding optimal combinations or permutations of variable problem components,

and it was proposed to solve combinatorial optimization problems. In [84], ACO was

extended to continuous domains. This new method, namely ACOR, used a probability

density function (PDF) instead of a discrete probability distribution.

ACOR is initialized with a uniform random sampling solution archive Sl (l = 1, 2, ..., n)

where n is the total population or archive size. The solutions in the archive are sorted

based on their rank. Then, the weight vector, wl is computed as:

wl =
1√

2πqn
exp
−(l − 1)

2(qn)2
= N(l, 1, qn) (4.16)

where q is the intensification factor. The selection probability, Pl, is computed as:

Pl =
wl∑n
l=1wl

(4.17)

For the lth ant, the lth Gaussian function is computed in each iteration and the Gaussian

kernel PDF is sampled using roulette wheel selection. The standard deviation is calculated

based on average distance between solution Sl and other solutions in the archive, as

40

follows:

σl = ζ
n∑
r=1

|Sr − Sl|
n− 1

(4.18)

where, ζ, the deviation distance ratio, is a positive constant similar to pheromone evap-

oration ratio in ACO [84]. Finally, the new solution is generated by Eq. 4.19:

Snewl = Sl + rgσl (4.19)

where rg is a random variable sampled from a Gaussian distribution. The whole process

is repeated for each dimension until an acceptable minimum or a maximum number of

iterations is reached. Pheromone update is accomplished by adding the best generated

solutions to the archive and by eliminating the same number of worst solutions.

4.5 Harmony Search

HS is an optimization meta-heuristic algorithm inspired by the explicit principles of har-

mony improvisation, which is seeking a fantastic harmony (global optimum) [85]. Sim-

ilarly to other meta-heuristic algorithms, a set of initial random vectors is chosen. In

the case of HS, these vectors (harmonies), {H1, H2, ..., Hm}, are said to be filling the

harmony memory (HM) [86]. A harmonic memory considering rate parameter, namely

HMCR ∈ [0, 1] is used to update the vectors in HM in every iteration. More specifically,

the jth element of a new vector, Hj
new ∈ {H

j
1 , H

j
2 , ..., H

j
m} with probability HMCR, or a

new random value is chosen with probability 1 − HMCR. For improving the solutions

and escaping from local optima, Hj
new should be pitch-adjusted by the pitch adjusting

rate (PAR). Specifically, if the random number in each iteration is smaller than PAR,

then Hj
new is replaced as follows.

Hj
new ←− Hj

new + ∆ (4.20)

α = 0.02(Hmax −Hmin) (4.21)

41

∆ = αr (4.22)

where Hmax and Hmin are, respectively, the decision variable upper and lower bounds,

α is the fret width, which could be damp in each iteration, and r is a random Gaussian

number. New vectors should be added to HM if they provide better fitness values. In the

end, the extra are truncated. The above steps repeat until a stopping criterion is reached

[2].

42

Chapter 5

Proposed Techniques

In this chapter, the proposed AI techniques to solve the SSE and ED problems are

presented. In section 5.1, the parameter selection method of multi-class SVM combined

with EC methods for online SSE is described. In section 5.2, tuned support vector

regression by modified PSO for online SSE is described. The FS method by MOPSO for

SSE is explained in section 5.3. In section 5.4, a multi-classifier voter model for online SSE

is proposed. Finally, in section 5.5, the description of implementing GA variant-based

methods to solve the ED problem is presented.

5.1 Parameter Selection of Multi-Class SVM with

EC Methods for Online SSE

In this section, we present a study of different EC optimization techniques for parameter

selection of multi-class SVM to solve SSE online. In this work, SSE is viewed as a 2-

class, a 3-class, or a 4-class classification problem. Commonly only 2 classes (secure and

insecure) are considered in most works presented in the literature. Moreover, a number

of optimization techniques are studied, including techniques which were not considered

in previous works that used evolutionary optimization techniques to train SVMs.

More specifically, after employing a feature selection step, SVM with error-correcting

output codes (ECOC) is used to address the multi-classification problem. The RBF kernel

43

is used to handle the nonlinearity. The performance of the SVM model strongly depends

on the selection of the penalty factor, C, and the RBF kernel parameter, γ. Thus, it is

essential to properly tune the SVM parameters. Four different EC methods (MPSO, DE,

ACOr, and HS) are chosen to set the two SVM parameters. Each heuristic algorithm

is initialized with a random population. The fitness value of each element (particle for

MPSO, individual for DE, ant for ACOr, or harmony for HS) is evaluated for the whole

population. It will be demonstrated that all methods provide almost identical classifica-

tion accuracy, while HS operates faster than other methods. An important conclusion is

that the level of accuracy for each technique depends on the number of classes, namely

the number of security levels. The IEEE 39-bus system is used for implementing and val-

idating the classifier performance. In the following subsection the implementation steps

are provided.

5.1.1 Implementation Steps of Section 5.1

The IEEE 39-bus system was used to evaluate the proposed method. The information

about this case study is presented in section 6.1.1. Since there were no real data available

to check and compare the SSE performance, we had to generate the data used in the

experimental studies. For generating the data off-line, different operating conditions were

simulated by MatPower [87]. MatPower is a Matlab m-file package for solving power flow

and optimal power flow problems. A traditional method, the Newton-Raphson load flow

technique, was used to obtain the true SSI. The SSI was calculated using Eq. 2.5 and the

classifier output for each classes are the labels presented on Tables 2.1, 2.2, and 2.3. The

system load and generation were varied randomly in each case from 80% to 120% of their

base values to prepare different scenarios. Around 60% of the total scenarios (1000 in this

case) were associated with the N − 1 contingency case (single line outage). Figure 5.1

shows the steps which were followed to generate the offline data. The input vectors are

the voltage magnitude, |V |i, and voltage angle, θi, of each bus, i, as well as the complex

power of each generator bus, SGi, the complex power load at each bus, SLi, and the MVA

power of each branch from bus i to j, Sflow(ij). By evaluating the SSI, each scenario is

44

Table 5.1: Number of data in each class

4 Classes 3 Classes 2 Classes

Class1: 261 Class1: 261 Class1: 568
Class2: 307 Class2: 466 Class2: 432
Class3: 159 Class3: 273
Class4: 273

Total Number of Data: 1000

marked to be in one of the possible classes.

The total number of cases for each class is presented in Table 5.1. About 80% of the

data samples were randomly chosen for training, while 20% of the data were used for

testing. Normalization was used for adjusting the values of each input variable in the

range [0,1]. In particular, the maximum and minimum values of a particular variable

were set to 1 and 0, respectively. Fifteen most important features were selected out of

157 total features by applying the SFS technique.

The implementation steps of parameter selection for SVM using several EC methods

are shown in Figure 5.1. For tuning the SVM parameters, the algorithm starts with

initializing a random population of members from training data. The parameters of each

EC technique (MPSO, DE, ACOr, and HS) should be set at the beginning. Then, the

fitness function of each member of the population should be evaluated. An SVM model

is built for each member of the population, based on each member’s parameters. For the

experimental results presented in this work, 90% of the training samples were used for

training, and 10% were used for validation. The fitness function can be calculated from

the misclassified samples, as:

Missclass =
No. of missclassified samples

Total No. of samples
.100 (5.1)

Then the population should be updated base on each EC algorithm. The algorithm

can stop after a predefined maximum number of iteration. Otherwise the fitness function

should be evaluated again. The simulation results are presented in section 6.2.1.

45

Figure 5.1: Implementation procedure of section 5.1

5.2 Tuned Support Vector Regression by Modified

PSO for Online SSE

In this section, an improved technique based on SVR and PSO, namely the tuned support

vector regression by modified particle swarm optimization (TSVR-MPSO) is proposed for

online SSE. The performance of SVR heavily depends on the tuning of its parameters.

More specifically, the three parameters which need to be properly tuned are the penalty

parameter, C, the RBF kernel parameter, γ, and also the ε parameter (see section 3.2.2).

Recently, an approach was proposed for reliability prediction using SVR and PSO [24].

The main contribution in [24] is that different PSO particles are adapted using a different

inertia weight based on an estimated global best. Inertia weight significantly affects the

convergence and exploration and exploitation trade-off in PSO process [25]. In this work,

an adaptation of the inertia weights is modified further, so that it is different for each

one of the particle dimensions. In particular, in our proposed method, the PSO weight is

updated for each particle based on the absolute distance between the global best and each

particle’s best position. The performance of TSVR-MPSO is compared with the method

46

in [24] and with another weight-adapting PSO technique, multilayer feed-forward neural

network (MLFN) methods, and radial basis function network (RBFN) methods.

The objective of this work is to accurately predict the SSI for different contingency

scenarios by training an SVR whose kernel parameters are optimized by PSO. The original

SVR-PSO and the proposed method are presented in this section. The convergence

behavior analysis in [24] concludes that the convergence speed of PSO is related to its

inertia weight and prior knowledge about the global best can lead to better recognition

degree. In [24], the ASPSO (Analytical selection PSO) inertia weight is updated as:

wt+1
i = k2e−||P

t
i,New−XAS ||2 (5.2)

where k is a constant, vector XAS is fixed based on the statistical properties of the training

data [66], and Pi,New is updated as:

P t
i,New =

c1r1p
t
i,Best + c2r2G

t
Best

c1r1 + c2r2

(5.3)

In [24], the distance in the exponent of Eq. 5.3 was the Mahalanobis with a covariance

matrix Σ. However, in [24] it was assumed that Σ is a unit matrix, which reduces the

distance to the Euclidean, as shown in Eq. 5.3.

Based on the SVR-PSO theory, we propose TSVR-MPSO which associates the inertia

weight with the global best position, Gt
best, instead of XAS. The reasoning behind this

modification is that both XAS and Gt
best are estimates of the best solution. However,

using Gt
best eliminates the overhead needed to obtain XAS, while Gt

best is readily available

in each iteration. Moreover, Gt
best may be a better estimate than XAS as the iteration

number increases. This modification leads to the following equation for updating the

inertia weight as:

wt+1
i = 0.95e−||P

t
i,Best−G

t
Best||

2

(5.4)

and we call the corresponding method TSVR-MPSO2. Additionally, since the different

particle coordinates are associated with different parameter types, namely C, ε, and γ,

the above equation can be further modified so that each coordinate is updated according

47

to a different inertia weight. The TSVR-MPSO1 method updates the inertia weight as

follows:

wt+1
i = 0.95e−|P

t
i,Best−G

t
Best|

2

(5.5)

Experimental results demonstrate that the TSVR-MPSO method provides a lower RMSE

compared to other methods such as SVR-PSO, SVR-ASPSO, SVR-GS (SVR-grid search),

RBFN, and MLFNN. The IEEE 14-bus and 118-bus test systems have been used to

simulate our proposed technique.

5.2.1 Implementation Steps of Section 5.2

The IEEE 14-bus and 118-bus systems have been used to simulate proposed technique in

section 5.2. The information about this case study is presented in section 6.1.1.

Since there were no real data available to check and compare SSE, we once again

generated data using MatPower [87]. Different scenarios were generated by changing the

load randomly from 90% to 110% of their base case. To evaluate the performance of

the different techniques, the Newton-Raphson load flow technique was used to obtain

the true SSI values. More specifically, the optimized Newton-Raphson load flow (NRLF)

method was used for each scenario, to obtain the true bus voltages (magnitude and

angle), and the line flows (net active and reactive power injected at each bus). Half of the

scenarios were generated without an outage, while for the other half, an N−1 line outage

contingency was considered. A total of 1000 and 4000 scenarios were generated for the

IEEE 14-bus and 118-bus systems, respectively. For each experiment, 80% of the data

vectors were used for training, and 20% were used for testing. The SSI was calculated

using Eq. 2.5. The input vector consisted of parameters PG (real power of generator),

QG (reactive power of generator), PD (real power of load), QD (reactive power of load),

|V | (magnitude voltage of PQ buses), δ (angle voltage of PQ buses) and the output is

the SSI. Input vector elements were normalized in the range [−1, 1] according to their

type. For example, if |V |max and |V |min are, respectively, the maximum and minimum

voltage magnitudes of all buses, the normalized voltage magnitude of the kth bus, |Vn|k,

48

is calculated as follows:

|Vn|k =
2(|Vk| − |V |min)

|V |max − |V |min
− 1 (5.6)

The steps to offline data generation and the implementation process diagram are shown

in Figure 5.2. The main steps of implementation are as follows:

1) Generate off-line data.

2) Initialize PSO. The P 0 = {P 0
1 , P

0
2 , ..., P

0
N} are randomly set for ε ∈ [0.0001, 0.0002], γ ∈

[0.1, 0.4] and C ∈ [2000, 10000]. N is the swarm population.

3) Train SVR using each particle as SVR parameters.

4) Calculate fitness, which is the root mean square error (RMSE) between the SVR

prediction and output of test data.

5) Find personal and global best positions, and update weight.

6) Repeat steps until t reaches a set maximum number.

7) SVR prediction with optimal parameters obtained by MPSO.

The simulation results are presented in section 6.2.2.

Figure 5.2: Implementation steps of TSVR-MPSO

49

5.3 Feature Selection by MOPSO for SSE

As mentioned in section 3.6, FS is an essential task for classification of data with many

parameters. For the SSE problem, PMUs are unitized for collecting the necessary pa-

rameters from the power system. Reducing the number of features essentially implies a

reduction of required PMUs. Using a smaller number of PMUs reduces the cost of the

system. It also reduces the complexity of communication between the different units,

resulting in a faster operation, which a requirement for online SSE. In previous literature,

FS was also considered for solving the SSE problem. However, a predefined number of

features had been set, and FS was solved as a single objective problem, mostly by the

SFS method. However, FS is a multi-objective problem. The first objective is minimiz-

ing the classifier error, and the second objective is reducing the number of features. In

this section, we use MOPSO (see section 4.2.1) for FS. The contribution of this work is

using MOPSO for performing the FS for the SSE problem. The two objectives of the

optimization problem are:

Fitness Function = Min


Z1 = 1

N

∑N
i=1(ti − Yi)2

Z2 = nf

(5.7)

where t is the target (the SSI) which was calculated by solving NR load flow equation (Eq.

2.5), Y is the output from the random forest (RF) classifier model, and N is the total

number of samples. Fig. 5.3 demonstrates how the classifier error is determined for the

first objective of the problem. In particular, a multi-classifier pattern is needed to model

the system. The RF classifier (see section 3.3) is used for classification. The RF was

chosen because it is simple, quick in terms of training, and no preparation regarding the

input data is required. The vector X = {|V |, θ, PL, QL} contains the features or inputs,

namely the voltage magnitude and phase angle of PQ buses and the real and reactive

power loads at all load buses. Then, Xf are the selected features. The second objective

is minimizing the number of features. In the following subsection, the implementation

steps of the proposed technique are presented.

50

Figure 5.3: Finding the classifier error

5.3.1 Implementation Steps of Section 5.3

In this section, the implementation procedure of MOPSO (see section 4.2.1) for feature

selection for SSE is illustrated. Fig. 5.4 demonstrates the implementation process. First,

a set of random initial population should be created. Then, the MOPSO parameters

should be set. These parameters are presented in Table 5.2. The swarm population and

the repository size of each case study are presented in Table 5.3. Then, a repository and

grid search should be generated from algorithm 6, and the fitness function from Eq. 5.7

should be evaluated. If the termination criterion is not satisfied, the leaders have to be

selected from algorithm 7. The velocity and position of each particle have to be updated

from Eqs. 4.9 and 4.10. Then, the fitness function should be evaluated again, and muta-

tion has to be applied. Finally, the best particle should be updated from Eq. 4.11. The

simulation results for this section are presented in section 6.2.3.

Table 5.2: MOPSO parameters

Parameter Vlaue

Personal learning coefficient c1 = 1.4962
Global learning coefficient c2 = 1.4962

Inflation Rate α = 0.1
Leader selection pressure β = 2

Mutation rate µ = 0.1
Number of grids per dimension nGrid = 5

51

Table 5.3: MOPSO population size

IEEE System Swarm population Repository size

9-Bus 10 5
14-Bus 15 10
39-Bus 20 15
57-Bus 30 20
118-Bus 50 30
300-Bus 100 50

 Random Initialization

 Create Repository and Grid Search

 Fitness Function Evaluation

 Select Leader

 Update Velocity and Position

 Apply Mutation

Update Best Particle

Update Best Particle

Update Repository and Grid Search

Update Best Particle

Back to Fitness Function

 until termination criteria reached

Figure 5.4: MOPSO implementation for feature selection

5.4 Multi-Classifier Voter Model for SSE

In this section, we propose a multi-classifier voter model for online SSE. We have con-

cluded, by observing the performance of different nonlinear classifiers for the SSE problem,

that different classifiers may exhibit superior performance depending on the particular

52

training and test data selection. Although the classification accuracy (CA) differences

may not be always significant for small systems (such as the ones used in this work)

they may be significant for larger systems. The proposed idea is based on the training of

several classifiers and on allowing all models to work together for obtaining the SSI for

the test data. After presenting the test data to each classifier, a simple voting scheme is

applied at the classifier outputs, and the class label with the larger number of the votes is

selected. Of course, it is apparent that a process which includes training several classifiers

may be time-consuming. However, training the classifiers may be performed infrequently,

and perhaps even only once. What is mainly important is for the testing process to be

fast, which is actually the case for the proposed multi-classifier system. It should also be

mentioned that although several classifier voting schemes have been used in the literature

for other applications, we are not aware of one proposed for online SSE. In the following

subsection, the implementation steps of the proposed technique are presented.

5.4.1 Implementation Steps of Section 5.4

In this work, nine multi-classifiers have been trained to perform the SSE. The first three

classifiers are SVMs which use the polynomial kernel. Three other classifiers are also

SVMs which use the RBF kernel. For these SVM three classifiers, the kernel parameters

have been tuned by the MPSO technique. The implementation process of SVM-MPSO is

shown in Fig. 5.5 and was explained in detail in section 5.2. The last three classifiers are

random forests with an adaptive number of trees. After training each classifier, the nine

models are saved and evaluated on the test data. A voting procedure (’mode’) has been

applied at the end, and the class label with a maximum number of votes is considered

to be the final classification result. The implementation steps of the voting procedure

are presented in Fig. 5.6, where Y1, Y2, ..., Y9 are the outputs of the 9 classifiers, NTest is

the total number of test data, YTest is the output after voting, SSIi is the SSI of the ith

sample, and CAi is a counter used for obtaining the number of correctly classified input

vectors. The simulation results over several case studies are presented in section 6.2.4.

53

Figure 5.5: Implementation steps of SVM-MPSO

Figure 5.6: Multi-classifier voter model

54

5.5 Genetic Algorithm Variant based Effective Solu-

tions for ED

ED is a nonlinear, nonconvex problem with several constraints. Traditionally, ED is solved

numerically which is time-consuming and not effective. Recently, several EC algorithms

have been used, proposed and tested to solve ED problems. In this work, advanced

variants of GAs are used to solve the ED problem. Although ED problem was solved

with GA algorithm before however, the contribution of this section is solving ED with

several new GA variant based algorithms which have not been used to solve ED before.

The idea of GA was inspired by Darwin’s theory of evolution and was first invented

by John Holland. GA, in its implementation, starts with a set of individuals (initial

population of candidate solutions) that are evolved over consecutive generations (epochs)

through selection and variation to solve an optimization problem. In GA, individual

problem-solutions, to which the values of the solution variables are encoded, are referred

to as chromosomes. GA evolves through the natural adaptation process in which the

fitter chromosomes tend to survive, breed, and propagate their genetic information to

the future generations. The new proposed GA variants, with integrated advanced and

innovative strategies, help produce competitive solutions. Though the GA variants were

separately shown, a solution-suite can be easily formulated to have the combined benefits

of the proposed GA variants.

In this work, BGA, FNGA, TRGA, KGA, and UGA (see section 4.1) have been tested

on three IEEE benchmark systems, the 6-unit, 10-unit, and 15-unit systems (see section

6.1.2). It is also shown that for some case studies the KGA and TRGA outperform the

results obtained by some recently proposed evolutionary and metaheuristic techniques,

such as the modified social spider algorithm (MSSA) [50] and the backtracking search

algorithm BSA [42]. In the following section the implementation steps to solve ED by

GA variants is presented.

55

5.5.1 Implementation Steps of Section 5.5

For implementing the technique of section 5.5, the model of the system should be created

first. The information about parameters of each case study is presented in section 6.1.2.

The objective function and constraints should be created from Eqs. 2.6- 2.12. To handle

the active power balance of the system (see Eq 2.9), a violation criterion has been set

such as shown below:

violation =


0 PTotal > PD + PL

1− PTotal−PL

PD
otherwise

(5.8)

where, PTotal =
n∑
j=1

Pj. Therefor the objective function can set as:

Fitness Function = CTotal(1 + q.violation) (5.9)

where q was set to 100 in this work, and CTotal =
n∑
j=1

Fj(Pj) (see Eq. 2.6). To use GA

variant based algorithms for solving the ED problem, it is essential to normalize Pj, as:

Pnorm,j = P̂min + (P̂max − P̂min) (5.10)

where,

P̂min = max(Pmin
j , P 0

j −DRj) (5.11)

P̂max = min(Pmax
j , P 0

j + URj) (5.12)

To handle the POZ, if Pj is smaller than the average point of each interval, it should be

set as the minimum value of the interval. Otherwise, it should be set as the maximum

value of the interval. Then, the main loop of each GA algorithm should be initialized

by setting the GA parameters, such as maximum number of iterations, population size,

crossover percentage, number of parents and offsprings, mutation percentage, number of

mutants, and the elitism rate. After generating a random population, the population

should be sorted based on the fitness cost. The associative memory should be set later,

56

and the elitist selection, crossover, mutation, and twin removal should be coded based

on the algorithms which are presented in section 4.1. The simulation results of each GA

variant based algorithm is presented in section 6.2.5.

57

Chapter 6

Case Studies and Experimental

Results

6.1 Case Studies

In this section, the different IEEE system case studies which have been used in this work

are briefly described. In particular, section 6.1.1 describes the different IEEE bus systems

which have been used for evaluating the performance of algorithms for the SSE problem.

Section 6.1.2 describes the different IEEE unit systems which have been used for testing

different algorithms for the ED problem.

6.1.1 Case Studies for SSE

For solving the SSE problem, the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and

300-bus systems have been used for the simulations. The total number of branches and

generators of each system is presented in Table 6.1. The total number of PQ and PV

buses of each case study is presented in Table 6.2. The single line diagrams of the IEEE

9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus systems are shown in Figs. 6.1, 6.2,

6.3, 6.4, 6.5 and, 6.6, respectively. More information about bus data, generator data, and

branch data of each case study is available at [87].

58

Table 6.1: Number of branches and generators of case study

Case Study No. Branches No. Generators

IEEE 9 Bus 9 3
IEEE 14 Bus 20 5
IEEE 39 Bus 46 11
IEEE 57 Bus 80 7
IEEE 118 Bus 186 54
IEEE 300 Bus 411 69

Table 6.2: Total number of PQ and PV buses of each case study

Case Study No. PQ buses No. PV buses

IEEE 9 Bus 6 2
IEEE 14 Bus 9 4
IEEE 39 Bus 29 9
IEEE 57 Bus 50 6
IEEE 118 Bus 64 53
IEEE 300 Bus 231 68

Figure 6.1: IEEE 9-bus single line diagram [96]

Figure 6.2: IEEE 14-bus single line diagram[101]

59

Figure 6.3: IEEE 39-bus single line diagram [102]

Figure 6.4: IEEE 57-bus single line diagram [103]

60

Figure 6.5: IEEE 118-bus single line diagram [104]

61

Figure 6.6: IEEE 300-bus single line diagram [105]

6.1.2 Case Studies for ED

In this section, the case studies which were used to solve ED are presented. Three popular

benchmarks, namely the IEEE 6-unit, 15-unit, and 10-unit systems, were used to evaluate

the performance of GA variants to solve ED. For the 6-unit and 15-unit systems, the

total load demand is 1263 MW and 2630 MW, respectively. For these two cases, power

balance, generator limits, ramp rate limits, and POZ (all described in Section 2.2) are

used as constraints. For the 10-unit system, VPE and MFO are used as constraints. For

this scenario, the load demand is 2700 MW. Generating unit capacity and coefficients of

6-unit, 10-units, and 15-units are presented in Tables 6.3, 6.4, and 6.6 respectively. the

ramp rate limits and prohibited zones of 6-unit and 15-units are shown in Tables 6.5 and

6.7 respectively. The B loss coefficient matrix of 6-unit and 15-unit are presented in Figs

62

6.7 and 6.8 respectively.

Table 6.3: Generaing unit capacity and coefficients of 6-unit

Unit Pmini Pmaxj aj bj cj

1 100 500 240 7.0 0.0070

2 50 200 200 10.0 0.0095

3 80 300 220 8.5 0.0090

4 50 150 200 11.0 0.0090

5 50 200 220 10.5 0.0080

6 50 120 190 12.0 0.0075

Figure 6.7: Loss coefficients for 6-unit

Figure 6.8: Loss coefficients for 15-unit

6.2 Simulation Results

In this section, the simulations results of all proposed techniques in chapter 5 are pre-

sented. The experiments were performed using MATLAB 8.6.0 (R2015b) running Win-

dows 10 on an i5-42000U CPU 2.29 GHz.

63

Table 6.4: Generaing unit capacity and coefficients of 15-unit

Unit Pmin
j Pmax

j aj bj cj

1 150 455 671 10.1 0.000299
2 150 455 574 10.2 0.000183
3 20 130 374 8.8 0.001126
4 20 130 374 8.8 0.001126
5 150 470 461 10.4 0.000205
6 135 460 630 10.1 0.000301
7 135 465 548 9.8 0.000364
8 60 300 227 11.2 0.000338
9 25 162 173 11.2 0.000338
10 25 160 175 10.7 0.001203
11 20 80 186 10.2 0.003586
12 20 80 186 10.2 0.000807
13 25 85 225 13.1 0.000371
14 15 55 309 12.1 0.001929
15 15 55 323 12.4 0.004447

Table 6.5: Ramp rate limits and prohibited zones of 6-unit

Unit P 0
j URj(MW/h) DRj(MW/h) Prohibited zones (MW)

1 440 80 120 [210 240][350 380]
2 170 50 90 [90 110][140 160]
3 200 65 100 [150 170][210 240]
4 150 50 90 [80 90][110 120]
5 190 50 90 [90 110][140 150]
6 110 50 90 [75 85][100 105]

64

Table 6.6: System coefficients for10-unit test system with VPE and MFO

Unit fuel Pminj Pmaxj aj bj cj ej fj

1 1 100 250 26.97 -0.3975 0.002176 0.02697 -3.975

1 2 100 250 21.13 -0.3059 0.001861 0.02113 -3.059

2 1 50 230 118.4 -1.269 0.004194 0.1184 -12.69

2 2 50 230 1.865 -0.0399 0.001138 0.00187 -0.3988

2 3 50 230 13.65 -0.198 0.00162 0.01365 -1.98

3 1 200 500 39.79 -0.3116 0.001457 0.03979 -3.116

3 2 200 500 -59.14 0.4864 1.18E-05 -0.05914 4.864

3 3 200 500 -2.876 0.0339 0.000804 -0.00288 0.3389

4 1 99 265 1.983 -0.0311 0.001049 0.00198 -0.3114

4 2 99 265 52.85 -0.6348 0.002758 0.05285 -6.348

4 3 99 265 266.8 -2.338 0.005935 0.2668 -23.38

5 1 190 490 13.92 -0.0873 0.001066 0.01392 -0.8733

5 2 190 490 99.76 -0.5206 0.001597 0.09976 -5.206

5 3 190 490 -53.99 0.4462 0.00015 -0.05399 4.462

6 1 85 265 52.15 -0.6348 0.002758 0.05285 -6.348

6 2 85 265 1.983 -0.0311 0.001049 0.00198 -0.3114

6 3 85 265 266.6 -2.338 0.005935 0.2668 -23.38

7 1 200 500 18.93 -0.1325 0.001107 0.01893 -1.325

7 2 200 500 43.77 -0.2267 0.001165 0.04377 -2.267

7 3 200 500 43.35 0.3559 0.000245 -0.04335 3.559

8 1 99 265 1.983 -0.0311 0.001049 0.00198 -0.3114

8 2 99 265 52.85 -0.6348 0.002758 0.05285 -6.348

8 3 99 265 266.8 -2.338 0.005935 0.2668 -23.38

9 1 130 440 88.53 -0.5675 0.001554 0.08853 -5.675

9 2 130 440 15.32 -0.0451 0.007033 0.01423 -0.1817

9 3 130 440 14.23 -0.0182 0.000612 0.01423 -0.1817

10 1 200 490 13.97 -0.0994 0.001102 0.01397 -0.9938

10 2 200 490 -61.13 0.5084 4.16E-05 -0.06113 5.084

10 3 200 490 46.71 -0.2024 0.001137 0.04671 -2.024

6.2.1 Simulation Results of Parameter Selection of Multi-Class

SVM with EC Methods for Online SSE

As it is mentioned in section 5.1, the performance of the SVM model is strongly depen-

dent on the selection of the penalty factor, C, and the RBF kernel parameter γ. Four

different heuristic optimization methods (MPSO, DE, ACOR, and HS) are chosen to set

two SVM parameters. Each heuristic algorithm is initialized with a random population.

The fitness value of each element (particle for MPSO, individual for DE, ant for ACOR,

or harmony for HS) is evaluated for the whole population. A population size of 20 and a

65

Table 6.7: Ramp rate limits and prohibited zones of 15-unit

Unit P 0
j URj(MW/h) DRj(MW/h) Prohibited zones (MW)

1 80 120 400 -

2 80 120 300 [185 225][305 335][420 450]

3 130 130 105 -

4 130 130 100 -

5 80 120 90 [180 200][305 335][390 420]

6 80 120 400 [230 255][365 395][430 455]

7 80 120 350 -

8 65 100 95 -

9 60 100 105 -

10 60 100 110 -

11 80 80 60 -

12 80 80 40 [30 40][55 65]

13 80 80 30 -

14 55 55 20 -

15 55 55 20 -

search space limit of γ ∈ [2−4, 44] and C ∈ [25, 215] are used for all four heuristic methods.

Table 6.8 shows the values of the parameters associated with each heuristic method. A

total of 100 trials were performed for each method. The correct classification rate (CCR)

for each individual class, as well as the average CCR considering all classes are presented

in 6.9, 6.10, and 6.11. The total training time for all classes of each method is provided

in 6.12.

MPSO provided the best CCR (92.68%) for the 4-class problem with C = 14536.97 and

γ = 3.43, while ACOr provided the highest CCR (95.07%) for the 3-class problem with

C = 14143.62 and γ = 3.61. Then, HS provided a slightly higher CCR (97.42%) com-

pared to the other methods for the 2-class problem with C = 11884.56 and γ = 4.27.

In all experiments, HS exhibited the fastest training speed. The training CCR for all

methods was 100%.

66

Table 6.8: Parameters set for each optimization method

Method Parameters

PSO C1 = C2 = 1.4192, w = 0.8298, wdamp = 0.98
DE β = 0.05, PCRmin = 0.1, PCRmax = 0.9

ACOr q = 0.5, ζ = 1
HS HMsize = 10, Hnew,size = 10, HMCR = 0.5, PAR = 0.24

Table 6.9: Results for 4 classification problem

Testing Phase CCR%

SVM-MPSO SVM-DE SVM-ACOr SVM-HS

Class1 92.42% 91.44% 90.68% 90.08%
Class2 89.75% 90.14% 89.34% 87.86%
Class3 78.52% 77.78% 73.76% 72.20%
Class4 94.12% 95.51% 95.26% 94.53%

Total 92.68% 91.89% 91.65% 91.65%

Table 6.10: Results for 3 classification problem

Testing Phase CCR%

SVM-MPSO SVM-DE SVM-ACOr SVM-HS

Class1 92.93% 92.42% 93.31% 92.12%
Class2 92.97% 92.74% 93.32% 92.67%
Class3 94.91% 96.65% 94.58% 91.15%

Total 94.63% 94.48% 95.07% 94.42%

Table 6.11: Results for 2 classification problem

Testing Phase CCR%

CCR% SVM-MPSO SVM-DE SVM-ACOr SVM-HS

Class1 96.68% 97.06% 96.03% 95.68%
Class2 94.49% 94.83% 94.40% 94.83%

Total 97.31% 97.12% 97.31% 97.42%

Table 6.12: Training Time (sec) of multi-class SVM with EC methods for SSE

Training Time (sec)

Number of Classes SVM-MPSO SVM-DE SVM-ACOr SVM-HS

Four 3.9781 3.7962 2.2009 2.0091
Three 2.9766 3.2723 1.8637 1.6313
Two 4.2203 4.0573 2.4522 2.2309

67

6.2.2 Simulations Results of Tuned Support Vector Regression

by Modified PSO for Online SSE

In this section, the simulation results of proposed technique in section 5.2 is presented.

The prediction accuracy of different methods for SSE is assessed for the IEEE 14-bus

and 118-bus systems. In particular, the SSI obtained by these methods is compared with

the SSI obtained by the NRLF method, assuming that NRLF is accurate. The RMSE

between predicted and true SSI values for a set of test data is used for comparison. The

methods tested are:

• SVR-PSO: Inertia weight decreasing as iterations increase,

• TSVR-MPSO1 and TSVR-MPSO2: Inertia weight updated for each particle based

on, respectively, the absolute and Euclidean distance between personal and global

best,

• SVR-ASPSO: Inertia weight updated as in Eq. (5.2),

• SVR-GS: Basic grid search method which adopts v-fold cross-validation for tuning

the SVR,

• RBFN: For three different set of parameters, and

• MLFFN: For three different set of parameters.

Specific information about the different parameters of all methods mentioned above is

presented in Tables 6.13, 6.17, and 6.19 present the prediction accuracy results for IEEE

14-bus and 118-bus for 20 different test experiments.

As shown in Tables 6.17 and 6.19, the proposed TSVR-MPSO1 achieved the smallest

mean RMSE for both case studies, followed by TSVR-MPSO2. Large RMSE values for

some RBF and MLFN experiments may be due to overfitting or divergence. Minimum

and maximum RMSE, and the standard deviation of RMSE are also presented for all

experiments. The TSVR-MPSO1 provided only slightly lower mean RMSE compared

to most PSO methods. Yet, the advantage of TSVR-MPSO1 is more significant for

68

some experiments, and consistency is critical in SSE. For instance, case 17 in Table 6.14

indicates that the RMSE for TSVR-MPSO1 is 10% or lower than the other PSO methods.

Fig. 6.9 presents the RMSE difference between SVR-ASPSO and TSVR-MPSO1 for the

IEEE 118-bus case. Since the results are almost identical in most cases, the mean RMSE

does not emphasize the RMSE differences observed in some experiments. Yet, in three

experiments MSVR-MPSO1 provides a lower RMSE than SVR-ASPSO by 0.1. As the

system size increases, it is expected that the RMSE values may increase. Thus, the RMSE

differences may also become more significant.

0 5 10 15 20

-0.05

0

0.05

0.1

Experiment Number

R
M

S
E

 d
iff

er
en

ce

[RMSE for SVR-ASPSO] - [RMSE for TSVR-MPSO1]

Figure 6.9: RMSE comparison between SVR-PSO and TSVR-MPSO1. Positive values
indicate higher RMSE for SVR-PSO.

The optimized γ, ε, and C values of the best experiment for the IEEE 14-bus and 118-

bus systems are presented in Tables 6.15 and 6.16, respectively. The best RMSE for the

first four methods is identical for the IEEE 118-bus experiment, although the parameters

in Table 6.16 are different. This is justified by the fact that these methods share the same

SVR component, although their PSO component is different. For reference purposes, the

SSI obtained by NRLF, TSVR-MPSO1, and RBF3 are shown in Table 6.14 for the IEEE

14-bus system.

69

Table 6.13: Inertia weight and parameters of different methods

Method Weight

SVR-PSO wt+1
i = 0.95wti

TSVR-MPSO1 wt+1
i = 0.95e−|P

t
i,Best−G

t
Best|

2

TSVR-MPSO2 wt+1
i = 0.95e−||P

t
i,Best−G

t
Best||

2

SVR-ASPSO wt+1
i = 0.95e−||P

t
i,New−XAS ||2

PSO parameters for 14 Bus c1 = c2=1.4962, Population: 20, Iterations: 20
PSO parameters for 118 Bus c1 = c2=1.4962, Population: 50, Iterations: 20

Case Number of Neurons, Spread

RBF1 5, 0.1
RBF2 50, 0.1
RBF3 100, 0.1

Case Number of Hidden Layers

MLFN1 5
MLFN2 10
MLFN3 20

Table 6.14: One-line outage for IEEE 14-bus under 110% load base

Contingency Line SSI by NRLF TSVR-MPSO RBF

1 L 1-2 12.4809 12.4616 11.0306
2 L 1-5 5.0828 4.9688 4.7325
3 L 2-3 1.0004 1.1759 1.1308
4 L 2-4 9.1830 7.9418 6.4777
5 L 2-5 3.6291 3.7009 3.4460
6 L 3-4 3.3366 3.4348 2.9732
7 L 4-5 3.9656 3.8117 4.0995
8 L 4-7 1.7433 1.6093 1.6213
9 L 4-9 3.2589 3.4430 2.8741
10 L 5-6 6.3977 6.3488 5.7640
11 L 6-11 1.7091 1.7862 1.5930
12 L 6-12 1.6126 1.5465 1.3774
13 L 6-13 1.9205 2.0153 1.9517
14 L 7-8 1.1943 1.1537 1.1985
15 L 7-9 2.5523 2.7056 2.5459
16 L 9-10 1.6029 1.5209 1.5777
17 L 9-14 2.9751 2.9567 2.7368
18 L 10-11 1.6200 1.6154 1.6507
19 L 12-13 1.6167 1.6410 1.4888
20 L 13-14 1.6459 1.6203 1.7579

70

Table 6.15: Optimized SVR parameters of best experiment for IEEE 14-bus

Case γ ε C

SVR-PSO 0.1174 1.5022e-4 5.6178e+03
TSVR-MPSO1 0.1124 1.4876e-04 5.6105e+03
TSVR-MPSO2 0.1167 1.4856e-04 6.3248e+03
SVR-ASPSO 0.1022 1.611e-04 5.5553e+03

SVR-GS 0.1459 1.2556e-04 5.6548e+03
XAS 0.2210 2.5786e-04 2.9747e+03

Table 6.16: Optimized SVR parameters of best experiment for IEEE 118-bus

Case γ ε C

SVR-PSO 0.1375 1.5058e-4 5.9193e+03
TSVR-MPSO1 0.1330 1.4914e-04 5.9403e+03
TSVR-MPSO2 0.1429 1.5574e-04 5.9720e+03
SVR-ASPSO 0.1425 1.4855e-04 5.9941e+03

SVR-GS 0.1695 1.3875e-04 5.0384e+03
XAS 0.2000 0.3661e-04 5.0168e+03

6.2.3 Simulation Results of Feature Selection by Multi-Objective

PSO for SSE

In this section, the simulation results of different IEEE case studies are presented to show

the effectiveness of our proposed method from section 5.3. The total number of generated

data for each class, features, selected features, and the dimensionality reduction for each

system are shown in Table 6.21. Tables. 6.22 and 6.23 shows the usefulness of feature

selection in classification performances. SVM with polynomial kernel and SMO solver is

used for all case studies in this table. The first row of Tables. 6.22 and 6.23 present the

classification accuracy while all features are used. The second row shows the results of

the SFS and the last row illustrates the classification accuracy by MOPSO. Both feature

selection techniques improved the accuracy of the systems except for the IEEE 9-bus

system which is a very small case study. However, MOPSO significantly improved the

classification accuracy of other larger systems comparing SFS.

71

Table 6.17: Prediction accuracy of different SVR methods for IEEE 14-bus system

RMSE

Exp SVR-PSO SVR-MPSO1 SVR-MPSO2 SVR-ASPSO SVR-GS

1 0.0425 0.0398 0.0411 0.0409 0.0686
2 0.0634 0.0634 0.0744 0.0634 0.1111
3 0.0606 0.0606 0.0604 0.0606 0.0861
4 0.0394 0.0351 0.0381 0.0349 0.0921
5 0.0762 0.0762 0.0762 0.0771 0.1164
6 0.0233 0.0198 0.0233 0.0233 0.0661
7 0.0687 0.0694 0.0693 0.0704 0.0907
8 0.0667 0.0467 0.0494 0.0644 0.0981
9 0.0725 0.0725 0.0716 0.0725 0.0981
10 0.0291 0.0333 0.02601 0.0318 0.0759
11 0.0319 0.0319 0.0319 0.0319 0.0833
12 0.0438 0.0438 0.0438 0.0438 0.0766
13 0.0412 0.0413 0.0412 0.0419 0.0765
14 0.0474 0.0456 0.0441 0.0491 0.0966
15 0.0788 0.0807 0.0788 0.0799 0.1003
16 0.1048 0.1051 0.1036 0.1055 0.1373
17 0.0691 0.0676 0.0673 0.0677 0.1038
18 0.0803 0.0858 0.0815 0.0785 0.1284
19 0.0295 0.0234 0.0283 0.0269 0.0759
20 0.1136 0.1122 0.1136 0.1119 0.1254

Mean 0.0591 0.0577 0.0581 0.0591 0.0953

Min 0.0233 0.0198 0.0233 0.0233 0.0661

Max 0.1136 0.1122 0.1136 0.1119 0.1373

STD 0.0249 0.0259 0.0255 0.0249 0.0203

6.2.4 Simulation Results of Multi-Classifier Voter Model for

Online SSE

In this section, the simulation results of different IEEE case studies are presented to show

the effectiveness of our proposed method from section 5.4. Tables. 6.24-6.29 show the

performance evaluation of different classification methods for IEEE 9-bus, 14-bus, 39-bus,

57-bus, 118-bus, and 300-bus. SVM-RBF-MPSO classifier gave the best correct accuracy

for all case studies, and the voting technique improved the correct accuracies from 0.521%

to 0.9976%.

72

Table 6.18: Prediction accuracy of different ANN methods for IEEE 14-bus System

RMSE

Exp RBF1 RBF2 RBF3 MLFN1 MLFN2 MLFN3

1 1.2222 0.0923 0.0162 0.1502 0.1273 0.1181
2 1.2711 0.3839 0.1934 0.2221 0.1059 0.0914
3 1.3316 0.1629 0.0697 0.1066 0.1468 0.1309
4 1.3075 0.1497 0.0656 0.1231 0.1027 0.0694
5 1.3247 0.4892 0.2649 0.1059 0.1301 0.4543
6 1.2027 0.0828 0.0308 0.0317 0.1999 0.0591
7 1.3112 0.2396 0.0596 0.0557 0.0742 0.2501
8 1.2701 0.1636 0.0653 0.1675 0.0875 0.0701
9 1.3464 0.1841 0.0767 0.1761 0.1102 0.0996
10 1.2038 0.1052 0.0208 0.1159 0.1416 0.1428
11 1.2913 0.1409 0.0477 0.1297 0.0874 0.2998
12 1.1924 0.1463 0.0283 0.0646 0.0617 0.0651
13 1.3141 0.1165 0.0359 0.0204 0.2011 0.0695
14 1.2871 0.1222 0.0337 0.2084 0.3391 0.1292
15 1.3421 0.1412 0.0862 0.1494 0.1493 0.2961
16 1.4179 0.5258 0.3141 0.1211 0.1132 0.0841
17 1.1729 0.2209 0.0551 0.0871 0.1955 0.1636
18 1.3211 0.4488 0.3831 0.1752 0.2591 0.2833
19 1.3388 0.0863 0.0342 0.1488 0.1464 0.3114
20 1.4315 0.5076 0.2991 0.1314 0.2738 0.4586

Mean 1.2951 0.2255 0.1090 0.1245 0.1526 0.1823

Min 1.1729 0.0828 0.0162 0.0204 0.0617 0.0591

Max 1.4315 0.5258 0.3831 0.2221 0.3391 0.4586

STD 0.0699 0.1529 0.1138 0.05405 0.0723 0.1281

6.2.5 Simulation Results of GA Variant based Effective Solu-

tions for ED

Three popular benchmarks, namely the IEEE 6-unit, 15-unit, and 10-unit systems, were

used to evaluate the performance of GA variants. All algorithms were implemented in

MATLAB for a population size of 50. The elite rate, crossover rate, and mutation rate

were set to 10%, 80%, and 10%, respectively. Each algorithm was iterated for a maximum

of Evalmax = n× 105 function evaluations and was repeated 25 times.

For the 6-unit and 15-unit systems, the total load demand is 1263 MW and 2630

MW, respectively. For these two cases, power balance, generator limits, ramp rate limits,

and POZ (see section 2.2) are used as constraints. The system coefficients, the line loss

73

Table 6.19: Prediction accuracy of different SVR methods for IEEE 118-bus system

RMSE

Exp SVR-PSO TSVR-MPSO1 TSVR-MPSO2 SVR-ASPSO SVR-GS

1 1.2336 1.2336 1.2275 1.2336 2.0910
2 0.9091 0.9010 0.9091 0.9091 1.0643
3 1.6491 1.6180 1.6221 1.5978 2.0104
4 0.8899 0.8871 0.8899 0.9899 1.7202
5 0.7867 0.7861 0.7831 0.7836 0.6561
6 0.4109 0.4161 0.3783 0.3810 0.4253
7 2.7824 2.7824 2.7723 2.8406 3.3024
8 1.7131 1.7015 1.6982 1.7062 1.8103
9 1.1137 1.1104 1.1103 1.1118 1.2522
10 0.9110 0.9106 0.9110 0.9110 0.9664
11 0.4911 0.4862 0.4865 0.4893 0.3188
12 1.8527 1.8523 1.8527 1.8526 1.0876
13 0.9981 0.8981 0.8581 0.8539 0.9626
14 0.6801 0.6800 0.5946 0.6140 0.7742
15 0.8617 0.8617 0.9617 0.9617 0.9638
16 0.7476 0.7546 0.7420 0.7414 0.7224
17 0.9979 0.8986 0.9803 0.9858 1.1529
18 0.7175 0.7175 0.7175 0.7175 0.7509
19 0.3318 0.3318 0.3418 0.3318 1.8419
20 0.2726 0.2726 0.2726 0.2726 0.6814

Mean 1.01753 1.0050 1.0054 1.01878 1.2277

Min 0.2726 0.2726 0.2726 0.2726 0.3188

Max 2.7824 2.7824 2.7723 2.8406 3.3024

STD 0.5989 0.5974 0.5994 0.5950 0.7132

coefficients, and the POZs are available in. For the 10-unit system, VPE and MFO

are used as constraints. For this scenario, the load demand is 2700 MW. The system

coefficients are available in section 6.1.2. Tables 6.30, 6.31, and 6.32 present the best,

mean, median, and standard deviation of the cost provided by the GA variants for the

three case studies.

Tables 6.33 and 6.34 presents detailed results regarding the best cost and the as-

sociated solution (unit powers) determined by the GA variants, and also by MSSA [50],

ASPSO [106] and BSA [42] for the 6-unit case study. Similarly, Table 6.35 presents results

for the GA variants, and Table 6.36 shows CBPSO-RVM [107], BSA [42] for the 15-unit

case study. The convergence plots of the GA variants for this case study are illustrated

in Figure 6.10. Finally, Tables 6.37 and 6.38 present results for the GA variants, as well

74

Table 6.20: Prediction accuracy of different ANN methods for IEEE 118-bus system

RMSE

Exp RBF1 RBF2 RBF3 MLFN1 MLFN2 MLFN3

1 3.7056 1.9813 1.8358 1.3920 1.0295 1.4107
2 5.7756 20.220 21.2201 0.2844 25.399 17.8318
3 2.0890 9.1233 31.1233 16.549 8.9802 15.5829
4 1.0076 17.715 37.7153 0.1234 14.989 10.5833
5 1.7674 3.0245 11.0245 8.7696 8.4286 12.1043
6 1.7232 2.6608 34.6608 6.0969 14.104 14.9583
7 2.6644 5.4622 30.4622 15.593 2.5626 23.788
8 2.2309 5.9256 15.9256 6.8450 8.3807 17.0944
9 2.0457 6.8629 6.86290 10.309 10.761 10.7604
10 1.9480 5.7538 10.7538 7.5996 13.321 11.2232
11 1.1117 30.430 410.430 12.470 6.4015 38.739
12 2.8424 22.044 223.044 1.4053 9.2550 10.757
13 1.9291 16.697 168.697 15.861 21.519 18.0236
14 1.7823 8.8998 18.8998 9.3988 11.516 10.2112
15 1.8755 22.341 22.3414 10.927 11.332 8.6678
16 1.7004 19.546 19.5462 6.9739 13.473 25.3493
17 2.9949 29.403 292.403 8.9699 8.7041 17.4105
18 1.1939 14.053 14.0536 11.044 7.6404 15.9732
19 2.3743 26.738 26.7384 8.7102 8.2870 10.9883
20 3.9309 38.377 38.3775 4.5572 10.927 18.9669

Mean 2.3346 15.3631 71.8058 9.6940 11.8507 15.5212

Min 1.0076 1.9813 1.8358 1.3920 1.0295 1.4107

Max 5.7756 38.377 410.43 16.549 25.399 38.739

STD 1.1171 10.641 111.962 3.7368 5.2142 7.7076

Table 6.21: Number of generated data and selected features

IEEE Test System

9-bus 14-bus 39-bus 57-bus 118-bus 300-bus

Operating Scenario 300 600 1000 1500 2000 3000
Class Safe 77 160 271 370 501 750

Class Alarm 81 155 251 366 556 802
Class Insecure 78 167 243 364 479 812

Class Emergency 64 118 235 400 464 636
No. of Features 17 36 91 159 283 734

No. Selected Features 4 5 6 8 10 12
Dimensionality Reduction % 23.53 13.89 6.59 5.03 3.53 1.63

75

Table 6.22: Comparing MOPSO and SFS for IEEE 9-bus, 14-bus, and 39-bus

Classification Method: SVM-Polynomial CA%

Feature Selection Method IEEE 9-bus IEEE 14-bus IEEE 39-bus

No Feature Selection 85.4387 81.8894 83.3345
Sequential Forward Selection (SFS) 82.2277 87.1254 89.4768

Multi-Objective PSO (MOPSO) 84.8423 90.4571 90.3267

Table 6.23: Comparing MOPSO and SFS for IEEE 57-bus, 118-bus, and 300-bus

Classification Method: SVM-Polynomial CA%

Feature Selection Method IEEE 57-bus IEEE 118-bus IEEE 300-bus

No Feature Selection 84.5763 82.7812 82.4355
Sequential Forward Selection (SFS) 85.4576 86.4212 84.3828

Multi-Objective PSO (MOPSO) 89.9872 89.2412 90.0985

as for CBPSO-RVM [107] and BSA [42], for the 10-unit system. The convergence plots of

the GA variants for this case study are presented in Figure 6.11. The 10-unit case study

took larger number of iterations to converge because it has multi-fuel options.

In summary, experimental results have revealed that KGA is the most consistent GA

variant, both in terms of best cost and mean cost, although TRGA, FNGA, and UGA

are also competitive. With respect to convergence, UGA was confirmed to be the fastest

GA variant. In terms of the best cost, KGA outperformed BSA and CBPSO-RVM for

the 10-unit case, and performed similarly to BSA and MSSA for the 6-unit case. BSA

appears to exhibit a slight advantage over the GA variants for the 15-unit system.

76

Table 6.24: Performance of multi-classifier voter for IEEE 9-bus

IEEE 9-bus

Classifier Type Training Time (sec) Train (CA%) Test (CA%)

SVM-Poly-SMO 0.4732 93.2245 85.4387
SVM-Poly-ISDA 1.9375 92.8212 85.2234
SVM-Poly-L1QP 0.3189 93.5232 85.4367

SVM-RBF-MPSO1 39.7474 97.8344 86.6451
SVM-RBF-MPSO2 48.4096 97.2352 86.6667
SVM-RBF-MPSO3 49.4874 97.6756 86.9876
RF-NO.TREE 30 0.34988 100.00 86.3461
RF-NO.TREE 20 0.6192 99.5568 85.8972
RF-NO.TREE 10 0.0941 96.1248 84.1241

Voting - - 87.9852
Improvement - - 0.9976

Table 6.25: Performance of multi-classifier voter for IEEE 14-bus

IEEE 14-bus

Classifier Type Training Tim (sec) Train (CA%) Test (CA%)

SVM-Poly-SMO 0.1319 98.2543 90.3267
SVM-Poly-ISDA 0.1598 97.7556 90.3155
SVM-Poly-L1QP 0.2793 98.2543 90.3267

SVM-RBF-MPSO1 13.034 96.5087 91.4577
SVM-RBF-MPSO2 18.4414 95.5112 91.4572
SVM-RBF-MPSO3 10.3262 96.5087 90.9547
RF-NO.TREE 30 0.3980 99.7506 88.9246
RF-NO.TREE 20 0.3336 100.00 87.9396
RF-NO.TREE 10 0.1394 97.0074 81.4071

Voting - - 92.0255
Improvement - - 0.5678

77

Table 6.26: Performance of multi-classifier voter for IEEE 39-bus

IEEE 39-bus

Classifier Type Training Time (sec) Train (CA%) Test (CA%)

SVM-Poly-SMO 0.6371 85.9821 90.0985
SVM-Poly-ISDA 3.5030 86.2265 90.0451
SVM-Poly-L1QP 0.9220 85.9005 90.0976

SVM-RBF-MPSO1 156.0437 88.0195 90.1238
SVM-RBF-MPSO2 166.8111 87.938 90.5612
SVM-RBF-MPSO3 97.3404 87.8565 90.6712
RF-NO.TREE 30 0.6316 100.00 83.8988
RF-NO.TREE 20 0.8816 99.5110 81.2039
RF-NO.TREE 10 0.2567 96.6585 82.2675

Voting - - 91.2156
Improvement - - 0.5444

Table 6.27: Performance of multi-classifier voter for IEEE 57-bus

IEEE 57-bus

Classifier Type Training Time (sec) Train (CA%) Test (CA%)

SVM-Poly-SMO 0.6371 85.9821 90.0985
SVM-Poly-ISDA 3.5030 86.2265 90.0451
SVM-Poly-L1QP 0.9220 85.9005 90.0976

SVM-RBF-MPSO1 156.0437 88.0195 90.1238
SVM-RBF-MPSO2 166.8111 87.938 90.5612
SVM-RBF-MPSO3 97.3404 87.8565 90.6712
RF-NO.TREE 30 0.6316 100.00 83.8988
RF-NO.TREE 20 0.8816 99.5110 81.2039
RF-NO.TREE 10 0.2567 96.6585 82.2675

Voting - - 91.2156
Improvement - - 0.5444

78

Table 6.28: Performance of multi-classifier voter for IEEE 118-bus

IEEE 118-bus

Classifier Type Training Time (sec) Train (CA%) Test (CA%)

SVM-Poly-SMO 1.2658 92.3771 89.2412
SVM-Poly-ISDA 1.9655 92.9381 89.2122
SVM-Poly-L1QP 1.5033 92.8838 89.2401

SVM-PSO-TEST1 151.7228 96.8213 91.0461
SVM-PSO-TEST2 202.1941 97.5313 90.1629
SVM-PSO-TEST3 143.2213 96.8738 89.9678
RF-NO.TREE 30 0.7719 100.00 90.2221
RF-NO.TREE 20 1.3461 100.00 88.2168
RF-NO.TREE 10 0.68296 98.2758 85.7713

Voting - - 91.5671
Improvement - - 0.5210

Table 6.29: Performance of multi-classifier voter for IEEE 300-bus

IEEE 300-bus

Classifier Type Training Time (sec) Train (CA%) Test (CA%)

SVM-Poly-SMO 1.2315 92.3538 89.9399
SVM-Poly-ISDA 1.6231 92.3538 90.0985
SVM-Poly-L1QP 1.41652 92.3538 89.9399

SVM-PSO-TEST1 151.2341 96.5517 89.2882
SVM-PSO-TEST2 202.2561 97.3763 91.1279
SVM-PSO-TEST3 143.2415 96.6266 90.1381
RF-NO.TREE 30 0.7452 100.00 89.9399
RF-NO.TREE 20 1.0741 99.8501 87.3873
RF-NO.TREE 10 0.2821 97.8261 85.2852

Voting - - 91.7165
Improvement - - 0.5886

79

Table 6.30: Results of GA variants for 6-units

Method Best ($/hr) Mean ($/hr) Med. ($/hr) Std.

BGA 15449.90979 15450.12343 15450.05756 0.193968201

FNGA 15449.96906 15451.09826 15450.77771 1.021224104

KGA 15449.89994 15449.92394 15449.92245 0.017044814

TRGA 15449.91319 15450.27628 15450.12628 0.32292185

UGA 15449.93556 15450.24261 15450.16914 0.25539524

Table 6.31: Results of GA variants for 15-units

Method Best ($/hr) Mean ($/hr) Med. ($/hr) Std.

BGA 32712.03 32715.95 32715.12 2.56917

FNGA 32706.7 32717.3 32714.79 8.086838

KGA 32704.81 32706.77 32706.49 1.593172

TRGA 32704.53 32707.32 32706.27 2.896268

UGA 32705.52 32708.3 32707.58 2.346371

Table 6.32: Results of GA variants for 10-units

Method Best ($/hr) Mean ($/hr) Med. ($/hr) Std.

BGA 623.9761 624.31287 625.13249 1.23677

FNGA 623.9432 624.11104 624.15378 0.1817

KGA 623.7736 623.85665 623.87061 0.09831

TRGA 623.8951 623.8879 623.90404 0.0855

UGA 623.8863 623.8819 623.88564 0.07753

Table 6.33: Comparison results for the 6-unit system

Generation BGA FNGA KGA TRGA

P1 (MW) 447.5560503 448.5251124 447.6611636 447.0228188

P2 (MW) 172.9237691 173.6749594 173.5994024 172.7145796

P3 (MW) 263.7451965 264.9752614 262.9094742 264.5056047

P4 (MW) 139.4709937 138.6599312 139.1772992 138.975938

P5 (MW) 164.8319461 164.8087921 165.5761515 165.7457395

P6 (MW) 87.41794403 85.32395972 87.03216628 87.00090973

Total Generations (MW) 1275.9459 1275.968016 1275.955657 1275.96559

PL (MW) 12.94541391 12.96764091 12.95558197 12.96539486

Total generation cost ($/h) 15449.90979 15449.96906 15449.89994 15449.91319

80

Table 6.34: Comparison results for the 6-unit system

Generation UGA MSSA APSO BSA

P1 (MW) 447.4926549 447.5029 446.66857 447.4902

P2 (MW) 173.8888666 173.3186 173.155594 173.3308

P3 (MW) 262.8151961 263.463 262.825958 263.4559

P4 (MW) 138.1555654 139.0656 143.468614 139.0602

P5 (MW) 166.1256904 165.473 163.91395 165.4804

P6 (MW) 87.50021122 87.1349 85.343745 87.1409

Total Generations (MW) 1275.978185 1275.958 1275.37643 1275.9583

PL (MW) 12.97662296 12.958 12.421628 12.9583

Total generation cost ($/h) 15449.93556 15449.8995 15449.99 15449.8995

Table 6.35: Comparison results for the 15-unit system

Generation BGA FNGA KGA TRGA

P1 (MW) 454.9993 455.0000 455.0000 455.0000

P2 (MW) 379.5807 380.0000 380.0000 380.0000

P3 (MW) 129.9073 129.9979 130.0000 130.0000

P4 (MW) 129.9933 129.9943 130.0000 130.0000

P5 (MW) 169.9111 168.8164 170.0000 169.9735

P6 (MW) 459.9703 459.9957 460.0000 460.0000

P7 (MW) 429.9738 430.0000 430.0000 430.0000

P8 (MW) 79.8044 61.96802 77.0887 69.3805

P9 (MW) 82.91083 70.05567 52.94777 61.29818

P10 (MW) 127.6979 160.0000 160.0000 159.9730

P11 (MW) 79.58085 79.99906 80.0000 80.0000

P12 (MW) 79.58233 79.75555 80.0000 80.0000

P13 (MW) 25.18185 25.0000 25.00248 25.02635

P14 (MW) 16.06463 15.0000 15.0000 15.0000

P15 (MW) 15.21293 15.11412 15.60567 15.0000

Total Generations (MW) 2660.371 2660.697 2660.645 2660.6520

PL (MW) 30.37138 30.69576 30.64399 30.65153

Total generation cost ($/h) 32712.03 32706.7 32704.81 32704.53

81

Table 6.36: Comparison results for the 15-unit system

Generation UGA CBPSO-RVM BSA

P1 (MW) 454.9889 455.0000 455.0000

P2 (MW) 380.0000 380.0100 380.0000

P3 (MW) 130.0000 130.0000 130.0000

P4 (MW) 130.0000 126.5228 130.0000

P5 (MW) 169.9876 170.1312 170.0000

P6 (MW) 460.0000 460.0000 460.0000

P7 (MW) 430.0000 428.2836 430.0000

P8 (MW) 60.0000 60.0000 71.6368

P9 (MW) 77.11828 25.0000 59.0234

P10 (MW) 153.4569 159.7893 160.0000

P11 (MW) 80.0000 80.0000 80.0000

P12 (MW) 80.0000 80.0000 80.0000

P13 (MW) 25.0000 33.7037 25.0001

P14 (MW) 15.0000 55.0000 15.0001

P15 (MW) 15.0000 15.0000 15.0005

Total Generations (MW) 2660.552 2658.323 2660.661

PL (MW) 30.54953 28.36553 30.6609

Total generation cost ($/h) 32705.52 32976.68 32704.45

Table 6.37: Comparison results for the 10-unit system

Generation BGA FNGA KGA TRGA

P1(MW) 218.2629 218.1646 217.188 214.4453

P2(MW) 213.1529 209.9432 212.17 212.4232

P3(MW) 282.6736 283.5296 277.7917 278.8647

P4(MW) 241.2989 241.8433 239.4108 240.2289

P5(MW) 284.2452 281.9754 278.7414 276.1498

P6(MW) 236.8393 242.0798 240.4689 240.5948

P7(MW) 291.8698 287.0128 287.721 289.7905

P8(MW) 235.7892 242.7772 240.359 241.7059

P9(MW) 416.8246 423.4688 429.5014 427.3029

P10(MW) 279.0435 269.2094 276.6584 278.5045

Total Generations(MW) 2700.000 2700.004 2700.011 2700.010

Total generation cost($/h) 623.9761 623.9432 623.7736 623.8951

82

Table 6.38: Comparison results for the 10-unit system

Generation UGA CBPSO-RVM BSA

P1(MW) 217.9038 219.2073 218.5777

P2(MW) 212.6456 210.2203 211.2153

P3(MW) 284.5811 278.5456 279.5619

P4(MW) 239.5394 239.3704 239.5024

P5(MW) 276.3653 276.412 279.9724

P6(MW) 237.1091 240.5797 241.1174

P7(MW) 290.8168 292.3267 289.7965

P8(MW) 239.5454 237.7557 240.5785

P9(MW) 427.7358 429.4008 426.8873

P10(MW) 273.7903 276.1815 272.7907

Total Generations(MW) 2700.033 2700.000 2700.0001

Total generation cost($/h) 623.8863 623.9588 623.9016

Figure 6.10: Convergence plots of GA variants for 15-units

83

Figure 6.11: Convergence plots of GA variants for 10-units

84

Chapter 7

Conclusion and Future Work

This chapter presents some conclusions based on the proposed work. Moreover, some

suggestions for future work regarding each of the proposed technique in chapter 5 are

discussed.

7.1 Conclusions and Future Work for Section 5.1

Section 5.1, proposed a study of different optimization techniques which were used to

obtain the optimal parameters of an SVM for static security assessment. As opposed

to past works, this dissertation investigated the performance of optimization techniques

considering a different number of classes, and thus, different security levels.

As expected, in general, a smaller number of classes results in higher CCR. Indeed,

being able to differentiate between secure and insecure cases is an easier problem compared

to being able to identify different levels of security. Nevertheless, it is not guaranteed that

the same technique provides a consistently higher CCR in all cases. On the contrary, the

preliminary results presented in this work may indicate otherwise. Yet, although a small

difference in terms of CCR may still be proven crucial for the reliable operation of a

system, the fact that all techniques exhibit a similar performance implies that additional

studies are needed in order to verify this conclusion. On the other hand, in terms of

execution times, HS followed by ACOr were consistently faster.

Future work includes investigation of additional optimization techniques, for a larger

85

number of trials, and for different bus systems. Also, different SSIs proposed in the liter-

ature could be considered. Such studies could be important for choosing the appropriate

optimization technique depending on the security assessment conditions.

7.2 Conclusions and Future Work for Section 5.2

SSE is an essential problem in power systems which can be solved by machine learning

methods. Their advantage over NRLF is that, once the training phase is complete, the

SSI can be obtained almost instantaneously for different contingencies. Yet, the system

topology should remain unaltered. Otherwise, the methods require retraining. SVR is

a robust regression method which can be used to solve the SSE problem. However, the

SVR parameters need to be tuned for good performance. In section 5.2, MPSO was used

to set the SVR parameters. MPSO updates the inertial weight based on the exponential

distance between the particle’s best position and the global best position of the swarm.

The experimental results demonstrate that the proposed TSVR-MPSO provides a slightly

lower average RMSE with respect to SVR-ASPSO, without having to obtain an estimate

of the best solution through analytical selection.

Future work includes improving our proposed MPSO to converge faster, and also

to study the possibility of employing other evolutionary algorithms for tuning the SVR

parameters. Also, considering larger case studies and using other proposed SSIs could be

studied.

7.3 Conclusions and Future Work for Section 5.3

As mentioned in section 5.3, FS is an essential task which may be performed prior to

classification to improve the correct accuracy and generalization of the classifier. Often,

a large number of features may be responsible for reducing the correct classification

performance of an algorithm, especially when some features associated with different

classes do not possess any distinctive differences. In general, FS is a multi-objective

problem. However, in most works presented in the power systems literature, it is treated

86

as a single-objective problem. In this work, the were two objectives considered. The

first objective was minimizing the classification error rate, while the second objective was

minimizing the number of features. We used MOPSO to select the features for solving

the SSE problem. The experimental results have indicated that MOPSO performs better

with respect to the classification rate than SFS for the same number of selected features.

Moreover, the MOPSO technique exhibits a fast convergence rate. In future work, other

multi-objective evolutionary algorithms (MOEAs) could be compared with MOPSO to

solve the SSE problem.

7.4 Conclusions and Future Work for Section 5.4

In section 5.4, a multi-classifier voting model was proposed for online SSE. Several multi-

classifier models were trained, and a simple voting technique was applied to the output of

all models. The class label with the largest number of votes was selected as the output.

The proposed SVM-RBF-MPSO classifier provided the best correct accuracy for all case

studies, and the voting technique improved the correct accuracies from 0.521% to 0.9976%

for the different case studies. Future work includes checking other voting techniques and

more multi-classifier models.

7.5 Conclustion and Fucture Work of Section 5.5

In section 5.5, several GA variants were employed to solve the ED problem. All GA

variants, as well as other algorithms tested, provided a seemingly similar best cost. Nev-

ertheless, even small savings of 0.1−0.2/h for a 10-unit system may result in considerable

savings for a significantly larger system over a long period of time. In general, KGA ap-

pears to be the most consistent of the GA variants for this problem, both in terms of the

best cost as well as the mean cost. The GA variants tested in this work were proven to be

strong competitors to other ED solutions such as MSSA and BSA. Future work includes

testing other GA variants for our case studies, but also for larger case studies.

87

Bibliography

[1] Edited by Kwang Y. Lee and Mohamed A. El-Sharkawi. Modern heuristic optimiza-
tion techniques : theory and applications to power systems. Hoboken, N.J. :Wiley ;
2008. Print.

[2] S. Rastgoufard, D. Charalampidis, ”Parameter selection of multi-class SVM with
evolutionary optimization methods for static security evaluation in power systems,”
IEEE Electrical Power and Energy Conference (EPEC), 2016.

[3] S. Rastgoufard, D. Charalampidis, ”Tuned support vector regression by modified par-
ticle swarm optimization for online power system static security evaluation,” IEEE
Texas Power and Energy Conference (TPEC), 2018.

[4] S. Rastgoufard, S. Iqbal, MD. T. Hoque, D. Charalampidis, ”Genetic algorithm
variant based effective solutions for economic dispatch problems”, IEEE Texas Power
and Energy Conference (TPEC), 2018.

[5] S. Kalyani, K.S. Swarup, ”Particle swarm optimization based K-means clustering ap-
proach for security assessment in power systems,”, Expert Systems with Applications,
vol. 38, pp. 10839-10846, 2011.

[6] K. Niazi, C. Arora, S. Surana, ”Power system security evaluation using ANN: Feature
selection using divergence,” Electric Power Systems Research, vol. 69, pp. 161-167,
2004.

[7] K. Morison, L. Wag, P. Kundur, ”Power system security assessment,” IEEE Power
and Energy Mag, vol. 2, no. 5, pp. 30-39, Oct. 2005.

[8] N. Tomin, V. Kurbatsky, D. Sidorov, ” Machine learning techniques for power system
security assessment,” IFAC, vol. 49-27, pp. 445-450, 2016.

[9] P. Sekhar, S. Mohanty, ”An online power system static security assessment module
using multi-layer perceptron and radial basis function network,”, Electrical power
and energy systems, vol. 76, pp. 165-173, 2016.

[10] SM. Shahidipour, ”Communication and control in electric systems”, Wiley inter-
science, John Wiley and Sons, 2003.

[11] Y. Mansour, E. Vaahedi, M. El-Sharkawi, ” Neural network based pattern recognition
for power system security assessment,” IEEE Trans. Neural Network, vol. 8, no. 4,
pp. 942-950, 1997.

[12] S. Kalyani, K.S. Swarup, ”Pattern analysis and classification for security evaluation
in power networks.” Electrical Power and Energy Systems, vol. 44, pp. 547-560, 2013.

88

[13] Sunitha. R, R.S. Kumar, A.T. Mathew, ”Online static security assessment module
using artificial neural networks.”, IEEE Trans. on Power Systems, vol. 28, no.4,
2013.

[14] R. Schainker, P. Miller, W. Dubbelday, P. Hirsch, and G. Zhang, ”Real-time dynamic
security assessment: Fast simulation and modeling applied to emergency outage
security of electric grid,” IEEE Power and Energy Mag., vol. 4, no. 2, pp. 51-58,
2006.

[15] D.S. Javan, H. R. Mashhadi, M. Rouhani, ”A fast static security assessment method
based on radial basis function neural networks using enhanced clustering,” Electrical
power and energy systems, vol. 44, pp. 988-996, 2013.

[16] S. Kalyani, K.S. Swarup, ”Classifier design for static security assessment using par-
ticle swarm optimization”, Applied Soft Computing, vol.11, pp. 658-666, 2011.

[17] S. Kalyani, K.S. Swarup, ”Static security assessment in power systems using multi-
class SVM with parameter selection methods”, International journal of computer
theory and engineering, vol. 5, no. 3, June 2013.

[18] I.S. Saeh, M.W. Mustafa, Y.S. Mohammed, M. Almaktar, ”Static security classi-
fication and evaluation classifier design in electric power grid with presence of PV
power plants using C-4.5”, Renewable and Sustainable Energy Reviews. vol. 56, PP.
283-290, 2016.

[19] L. Hassan, M. Moghavvemi M, H. Almuriv, O. Steinmayer, ”Current state of neu-
ral networks applications in power systems monitoring and control,” International
Journal of Electr power and eneregy syst, vol. 51, pp. 134-144, Oct. 2013.

[20] V. Vankayala, N. Rao, ”Artificial neural network and their application to power
system,” Electric Power Systems Research vol. 28, no. 1, pp. 67-79, Oct. 1993.

[21] K. Swarup, P. Corthis, ”ANN approach assesses system security,” IEEE Computer
Applications in Power, vol. 15, no. 3, PP. 421-426, Jul. 2002.

[22] T. Sidhu TS, C.Lan, ”Contingency screening for steady-state security analysis by
using FFT and artificial neural networks,” IEEE Transactions on Power Systems,
vol. 15, no. 1, pp. 1253-1263, Feb. 2000.

[23] R. Fischl, ”Application of neural networks to power system security: technology and
trends,” IEEE World Congress on Computational Intelligence, Jul. 1994.

[24] W. Zhao, T. Tao, E. Zio, W. Wang, ”A novel hybrid method of parameters tuning
in support vector regression for reliability prediction: Particle swarm optimization
combined with analytical selection,” IEEE Transactions on Reliability, vol. 65, no.
3, pp. 1393-1405, Sept. 2016.

[25] J.C. Bansal, P.K. Singh, M. Sraswat, ”Inertia weight strategies in particle swarm
optimization”, IEEE Nature and biologically inpired computing, 2011.

[26] C.C. Chang and C.J. Lin, ”Training v-support vector classifiers: Theory and algo-
rithms,” Neural Computat., vol. 13, no. 9, pp. 2119-2147, Sep. 2001.

89

[27] C.W. Hsu, C.C. Chang and C.J. Lin, A practical guide to support vector classification,
2003.

[28] S.W. Lin, K.C. Ying, S.C. Chen, and Z.J. Lee, ”Particle swarm optimization for
parameter determination and feature selection of support vector machines,” Expert
Syst. Applic, vol. 35, no. 4, pp 1817-1824, Nov. 2008.

[29] Z.L. Gaing, ”Particle swarm optimization to solving the economic dispatch consider-
ing the generator constraints,” IEEE Trans. Power Syst. vol. 18, no. 3, pp. 1187-1195,
2003.

[30] D.S. Broomhead, D. Lowe ”Radial basis functions, multi-variable functional inter-
polation and adaptive networks.” Technical report. RSRE, 1988.

[31] P. Auer, H.Burgsteiner, W. Maass, ”A learning rule for very simple universal ap-
proximators consisting of a single layer of perceptrons”. Neural Networks, vol. 21,
no. 5, pp. 786–795, 2008.

[32] L.A. Zadeh, ”Fuzzy sets”, Information and Control, vol. 8, no. 3,pp.338-353, 1965.

[33] C. Cortes and V. Vapnik, Machine learning, 1995.

[34] J.R. Quinlan, ”Simplifying decision trees”,International Journal of Man-Machine
Studies, vol. 27, no. 3, 1987.

[35] J.A. Hartigan, M.A. Wong, ”Algorithm AS 136: A K-Means Clustering Algorithm”,
emphJournal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28,
no. 1, pp. 100-108, 1979.

[36] L.P. Kaelbling, M.L. Littman, M.W. Andrew W, ”Reinforcement Learning: A Sur-
vey”,Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

[37] V. Jadoun, N. Gupta, K.R. Niazi, A. Swarnkar, ”Modulated particle swarm opti-
mization for economic emission dispatch,” Electr. Power Energy Syst. vol. 73, pp.
80-88, 2015.

[38] J. Dodu, P. Martin, A. Merlin, J. Pouget, ”An optimal formulation and solution
of short-range operating problems for a power system with flow constraints,” Proc.
IEEE, vol. 60, no. 2, pp. 54-63, 1972.

[39] J. Y. Fan, L. Zhang, ”Real-time economic dispatch with line flow and emission
constraints using quadratic programming,” IEEE Trans. Power Syst., vol. 13, no. 2,
pp. 320-325, 1998.

[40] R. M. Chen, ”Application of the fast Newton-Raphson economic dispatch and re-
active power/voltage dispatch by sensitivity factors to optimal power flow,” IEEE
Trans. Energy Convers, vol. 10, no. 2, pp. 293-301, 1995.

[41] D.C. Walters, G.B. Sheble, ”Genetic algorithm solution of economic dispatch with
valve point loadings,” IEEE Trans. Power Syst., vol. 8, no.4, pp. 1325-1332, 1993.

[42] M. Modiri-Delshad, S. Hr. Aghay Kaboli, E.Taslimi-Renani, N. Abd Rahim, ”Back-
tracking search algorithm for solving economic dispatch problems with valve-point
effects and multiple fuel options,” Energy, vol. 116, pp. 637-649, 2016.

90

[43] C.L. Chiang, ”Genetic-based algorithm for power economic load dispatch,” IET Gen.
Transm. Distrib., vol. 1, no. 2, pp. 261-269, 2007.

[44] W.M. Lin, F.S. Cheng, M.T. Tsay, ”An improved Tabu search for economic dispatch
with multiple minima,” IEEE Trans. Power Syst., vol. 17, no. 1, pp. 108-112, 2002.

[45] N. Noman, H. Iba, ”Differential evolution for economic load dispatch problems,”
Electr. Power Syst. Res., vol. 78, no. 3, pp. 1322-1331, 2008.

[46] S. Pothiya, I. Ngamroo, W. Kongprawechnon, ”Ant colony optimization for economic
dispatch problem with non-smooth cost functions,” Int. J. Electr. Power Energy
Syst., vol. 32, no. 5, pp. 478-87, 2010.

[47] M. Fesanghary, MM. Ardehali, ”A novel meta-heuristic optimization methodology
for solving various types of economic dispatch problem,” Energy, vol. 34, no. 6, pp.
757-766, 2006.

[48] Y. Labbi, D. Attous, B. Mahdad, ”Artificial bee colony optimization for economic
dispatch with valve point effect,” Frontiers in Energy, vol. 8, no. 4, pp. 449-458,
2014.

[49] J. Yu and V. Li, ”A social spider algorithm for solving the non-convex economic load
dispatch problem,” Neurocomputing, vol. 171, pp. 955-965, 2016.

[50] W.T. Elsayed, Y.G. Hegazy, F.M. Bendary, M.S. El-bages, ”Modified social spi-
der algorithm for solving the economic dispatch problem,” Engineering Science and
Technology, an International Journal, vol. 19, no. 4, pp. 1672-1681, 2016.

[51] S. Duman, N. Yorukeren, IH. Altas, ”A novel modified hybrid PSOGSA based on
fuzzy logic for non-convex economic dispatch problem with valve-point effect,” In-
ternational Journal of Electrical Power & Energy Systems, Vol. 64, pp. 121-135,
2015.

[52] A. Bhattacharya, P.K. Chattopadhyay, ”Hybrid differential evolution with
biogeography-based optimization for solution of economic load dispatch,” IEEE
Trans. Power Syst, vol. 25, no. 4, pp. 1955-1964, 2010.

[53] B. Mahdad, K. Srairi, ”Interactive gravitational search algorithm and pattern search
algorithms for practical dynamic economic dispatch,” Int. Trans. Electr. Energy
Syst., vol. 25, pp. 2289-2309, 2015.

[54] S. Iqbal, M.T. Hoque, ”AMLGA: A Genetic Algorithm with Adaptive and
Memory-Assisted Local Operators”, Technical paper TR2016/2, http://cs.uno.

edu/~tamjid/TechReport/AMLGA_TR20162.pdf.

[55] J. Holland, ”Adaptation in natural and artificial systems: Introductory analysis with
applications to biology, control, and artificial intelligence”, 1992.

[56] H. M’́uhlenbein and D. Schlierkamp-Voosen, ”The science of breeding and its appli-
cation to the breeder genetic algorithm (BGA),” Evolutionary Computation, vol. 1,
no. 1, pp. 25-49, 1993.

91

http://cs.uno.edu/~tamjid/TechReport/AMLGA_TR20162.pdf
http://cs.uno.edu/~tamjid/TechReport/AMLGA_TR20162.pdf

[57] A. Ukil, Intelligent systems and signal processing in power engineering. Berlin:
Springer Verlag, 2007.

[58] M.V. Suganyadevi, C.K. Babulal, S. Kalyani, ”Assessment of voltage stability margin
by comparing various support vector regression models,” Soft Computing. vol. 20,
no. 2, pp. 807-818, 2016.

[59] http://www.ra.cs.uni-tuebingen.de/lehre/ss12/advanced_ml/lecture6.pdf

[60] http://www.ra.cs.uni-tuebingen.de/lehre/ss12/advanced_ml/lecture6.pdf

[61] V. Vapnik, The nature of statistical learning theory. Springer, New York, 1995.

[62] V. Kecman, T. M. Huang, M. Vogt. ”Iterative single data algorithm for training
kernel machines from huge data sets: Theory and Performance.” In Support Vector
Machines: Theory and Applications, pp. 255-274. Berlin: Springer-Verlag, 2005.

[63] R.E. Fan, P.H. Chen, C.J. Lin. ”Working set selection using second order information
for training support vector machines.” Journal of Machine Learning Research, vol.
6, pp. 1889-1918, 2005.

[64] S. Escalera, O. Pujol and P. Radeva, ”On the decoding process in ternary error-
correcting output codes,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 32, no. 1, pp. 120-134, 2010.

[65] J. Tin-Yau Kwok, ”Support vector mixture for classification and regression prob-
lems,” Pattern Recognition, Fourteenth International Conference, Aug. 1998.

[66] D. Mattera and S. Haykin, ”Support vector machines for dynamic reconstruction of
a chaotic system,” Advances in Kernel Methods, pp. 211-242, 1999.

[67] A. Smola, B. Scholkopf, ”A tutorial on support vector regression,” Statist. Comput.,
vol. 14, no. 3, pp. 199-222, Aug. 2004.

[68] Ho, Tin Kam (1998). ”The random subspace method for constructing decision
forests”.IEEE Transactions on Pattern Analysis and Machine Intelligence. vol. 20,
no. 8, pp. 832-844, 1998.

[69] L. Breiman, ”Bagging predictors”. Machine Learning, vol. 24, no. 2, pp. 123-140,
1996.

[70] T. Hastie, R. Tibshirani, J. Friedman, ”The Elements of Statistical Learning”,
Springer, 2009.

[71] L. Breiman, Random Forests. Machine Learning. vol. 45, pp. 5-32, 2001.

[72] G. James, D. Witten,T. Hastie, R. Tibshirani, ”An Introduction to Statistical Learn-
ing”, Springer. pp. 316-321, 2013.

[73] A.M. Cedeno, J.Q. Dominguez, M.G. Corthina. D. Andina, ”Feature selection using
sequential forward selection and classification applying artificial metaplasticity neu-
ral network”, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics
Society, 2010.

92

http://www.ra.cs.uni-tuebingen.de/lehre/ss12/advanced_ml/lecture6.pdf
http://www.ra.cs.uni-tuebingen.de/lehre/ss12/advanced_ml/lecture6.pdf

[74] D.S. Broomhead, D. Lowe, ”Multivariable functional interpolation and adaptive net-
works”. Complex Systems. vol. 2, pp. 321–355, 1988.

[75] F. Schwenker, H.A. Kestler, G. Palm, ”Three learning phases for radial-basis-function
networks.”, Neural Networks, vol. 14, pp. 439-458, 2001

[76] A. Bianconi, C.J. VonZuben, A.B. Serapiao, and J.S. Govone. ”Artificial neural
networks: A novel approach to analyzing the nutritional ecology of a blowfly species”,
Journal of Insect Science. vol. 10, no. 58. 1536-2442, 2010.

[77] B. Xue, M. Zhang, W.N. Browne, X. Yao, ”A survey on evolutionary computation
approches to feature selection,” IEEE Transaction on Evolutionary Computation,
vol. 20, no. 4, August 2016.

[78] M. Dash, H. Liu, ”Feature selection for classification,” Intell. Data Anal., vol. 1, no.
1-4, pp. 131-156, 1997.

[79] B. Xue, M. Zhang, W.N. Browne, ”Particle swarm optimization for feature selection
in classification: A multi-objective approach,”, IEEE Trans. on Cybernetics, vol.43,
no.6, 2013.

[80] H. Back, D.B. Fogel, and Z. Michalewicz (Editors), :Handbook of Evolutionary Com-
putation”, Oxford University Press, 1997.

[81] G. Beni, J. Wang, ”Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO
Advanced Workshop on Robots and Biological Systems,” Lecture Notes in Computer
Science, vol. 3342. 2005.

[82] R. Storn, K. Price, ”Differential evolution – A simple and efficient heuristic for global
optimization over continuous spaces”, Journal of Global Optimization, vol. 11, pp.
341–359, 1997.

[83] L. Arya, S.Choube, R.Arya. ”Differential evolution applied for reliability optimiza-
tion of radial distribution systems,” Int. J. Electr. Power Energy Syst., vol. 33, no.
2, pp. 271–277, 2011.

[84] K. Socha and M. Dorigo, ”Ant colony optimization for continuous domains,” Euro-
pean Journal of Operational Research, vol. 185, no. 3, pp. 1155-1173, 2008.

[85] L. Pereira, J. Papa and A. de Souza, ”Harmony search applied for support vector
machines training optimization,” Eurocon IEEE, 2013.

[86] X. Yang, ”Music-Inspired Harmony Search Algorithm”, The series Studies in Com-
putational Intelligence, vol. 191, pp. 1-14, 2009.

[87] R.D. Zimmerman, C.E.Murillo-Sanchez, ”MatPower 5.1 User’s Manual”, http://

www.pserc.cornell.edu/matpower/manual.pdf

[88] H. M’́uhlenbein and D. Schlierkamp-Voosen, ”The science of breeding and its appli-
cation to the breeder genetic algorithm (BGA),” Evolutionary Computation, vol. 1,
no. 1, pp. 25-49, 1993.

93

http://www.pserc.cornell.edu/ matpower/manual.pdf
http://www.pserc.cornell.edu/ matpower/manual.pdf

[89] H. M’́uhlenbein and D. Schlierkamp-Voosen, ”The science of breeding and its appli-
cation to the breeder genetic algorithm (BGA),” Evolutionary Computation, vol. 1,
no. 4, pp. 335-60, 1993.

[90] M.T. Hoque and S. Iqbal, ”Genetic Algorithm based Improved Sampling for Protein
Structure Prediction,” International Journal of Bio-Inspired Computation, vol. 9,
no. 3, pp. 129-141, 2017.

[91] M.T. Hoque, M. Chetty, L. Dooley, ”Critical Analysis of the Schemata Theorem:
The Impact of Twins and the Effect in the Prediction of Protein Folding Using
Lattice Model,” GSIT, MONASH University, 2005.

[92] M.T. Hoque, M. Chetty, L. Dooley, ”Generalized schemata theorem incorporating
twin removal for protein structure prediction,” Pattern Recognition in Bioinformat-
ics, pp. 84-97, 2007.

[93] M.T. Hoque, M. Chetty, A. Lewis, A. Sattar, ”Twin removal in genetic algorithms for
protein structure prediction using low-resolution model,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 8, no. 1, pp. 234-245, 2011.

[94] S. Iqbal, and M.T. Hoque MT, ”A Homologous Gene Replacement based Genetic
Algorithm,” Proceedings of Genetic and Evolutionary Computation Conference Com-
panion, ACM, 2016.

[95] S. Iqbal S, and M.T. Hoque MT, ”hGRGA: A scalable genetic algorithm using ho-
mologous gene schema replacement,” Swarm and evolutionary computation, vol. 34,
pp. 33-49, 2017.

[96] M.O. Hassan, S.J. Cheng and Z.A. Zakaria, ”Steady-State Modeling of Static Syn-
chronous Compensator and Thyristor Controlled Series Compensator for Power Flow
Analysis.” Information Technology Journal, Vol. 8, pp. 347-353, 2009.

[97] G. Pranava, P.V. Prasad, ”Constriction coefficient particle swarm optimization for
economic load dispatch with valve point loading effect,” Power, Energy and Control
(ICPEC), 2013.

[98] C.A. Coello, G.T. Pulido, M. S. Lechuga, ”Handling multiple objectives with parti-
cle swarm optimization,”, IEEE Transactions on Evolutionary Computation, vol. 8,
no.3, 2004.

[99] J. D. Knowles, D.W. Corne, ”Approximating the nondominated front using the
Pareto archived evolution strategy,” Evol. Comput., vol. 8, pp. 149–172, 2000.

[100] J. D. Knowles and D.W. Corne, ”Approximating the nondominated front using the
Pareto archived evolution strategy,” Evol. Comput., vol. 8, pp. 149-172, 2000.

[101] N. Azadani, E. Hosseinian, S. Hasanpor, ”Stability Constrained Optimal Power
Flow in Deregulated Power Systems”, Electric Power Components and Systems.
vol.39, pp. 713-732, 2011.

[102] D. Subhasish, G. Sadhan, G. Arup, ”Congestion management considering wind en-
ergy sources using evolutionary algorithm. Electric Power Components and Systems.,
vol. 43, no. 7, 2015.

94

[103] A.A. El-Sawy, Z.M. Hendawy, ”Reference Point Base TR-PSO for Multi-Objective
Environmental/Economic Dispatch”, Applied Mathematics, vol. 4, no. 5, 2014.

[104] http://motor.ece.iit.edu/data/IEEE118bus_inf/IEEE118bus_figure.pdf

[105] http://al-roomi.org/power-flow/300-bus-system

[106] B.K. Panigrahi, V. Ravikumari, Sanjoy Das, ”Adaptive particle swarm optimization
approach for static and dynamic economic load dispatch,” Energy Conversion and
Management, vol. 49, pp. 1407-1415, 2008.

[107] H. Lu, P. Sriyanyong, YH. Song, ”Experimental study of a new hybrid PSO with
mutation for economic dispatch with non-smooth cost function,” Int. J. Electr. Power
Energy Syst., vol. 32, no. 9, pp. 921-935, 2010.

95

http://motor.ece.iit.edu/data/IEEE118bus_inf/IEEE118bus_figure.pdf
http://al-roomi.org/power-flow/300-bus-system

Vita

The author was born in December, 17th 1986 in Shiraz, Iran. She obtained her Bachelor’s

and Master’s degree in Electrical Engineering (Control) from Shiraz University, Iran in

2009 and 2012 respectively. She joined the University of New Orleans (UNO) in August

2013 as a Ph.D. candidate in the Electrical Engineering (EE) department. She worked

as a teacher and research assistant in EE department of UNO from August 2013 till May

2017 under the supervision of Dr. Dimitrios Charalampidis. She passed her qualifying

exam, general exam, and prospectus exam in April 2015, January 2016, and January 2018,

respectively. During her Ph.D. career, she published three conference papers and submit-

ted one journal paper to IEEE. She started to work at Entergy’s Corp. as a Co-Op since

March 2016 in transmission relay setting and relay design groups. Her research interests

include artificial intelligence, machine learning, data mining, evolutionary computation,

and optimization techniques.

96

	Applications of Artificial Intelligence in Power Systems
	Recommended Citation

	List of Figures
	List of Tables
	Abstract
	Introduction
	The Necessity of this Research
	Introduction to Applications of AI to Solve SSE
	Introduction to Applications of EC to Solve ED
	Overview of the Dissertation Chapters

	Power Systems Problems
	Static Security Evaluation
	Economic Dispatch

	Machine Learning and Data Mining
	Introduction
	Support Vector Machine
	Multi-Class Support Vector Machine
	Support Vector Regression

	Random Forest
	Multi-Layer Feedforward Neural Nework
	Radial Basis Function Network
	Feature Selection
	Sequential Forward Selection

	Evolutionary Computation
	Variants of Genetic Algorithm
	Breeder Genetic Algorithm (BGA)
	Fast Navigating Genetic Algorithm (FNGA)
	Twin Removal Genetic Algorithm (TRGA)
	Kite Genetic Algorithm (KGA)
	Unified Genetic Algorithm (UGA)

	Particle Swarm Optimization
	Multi-Objective Particle Swarm Optimization

	Differential Evolution
	Ant Colony Optimization for Continious Domain
	Harmony Search

	Proposed Techniques
	Parameter Selection of Multi-Class SVM with EC Methods for Online SSE
	Implementation Steps of Section 5.1

	Tuned Support Vector Regression by Modified PSO for Online SSE
	Implementation Steps of Section 5.2

	Feature Selection by MOPSO for SSE
	Implementation Steps of Section 5.3

	Multi-Classifier Voter Model for SSE
	Implementation Steps of Section 5.4

	Genetic Algorithm Variant based Effective Solutions for ED
	Implementation Steps of Section 5.5

	Case Studies and Experimental Results
	Case Studies
	Case Studies for SSE
	Case Studies for ED

	Simulation Results
	Simulation Results of Parameter Selection of Multi-Class SVM with EC Methods for Online SSE
	Simulations Results of Tuned Support Vector Regression by Modified PSO for Online SSE
	Simulation Results of Feature Selection by Multi-Objective PSO for SSE
	Simulation Results of Multi-Classifier Voter Model for Online SSE
	Simulation Results of GA Variant based Effective Solutions for ED

	Conclusion and Future Work
	Conclusions and Future Work for Section 5.1
	Conclusions and Future Work for Section 5.2
	Conclusions and Future Work for Section 5.3
	Conclusions and Future Work for Section 5.4
	Conclustion and Fucture Work of Section 5.5

	Appendix
	Bibliography
	Vita

