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ABSTRACT

We examined whether western fence lizards Sceloporus occiden-
talis occurring in thermally divergent environments display dif-
ferential responses to high temperature in locomotor perfor-
mance and heat-shock protein (Hsp) expression. We measured
maximum sprint speed in S. occidentalis from four populations
at paired latitudes and elevations before and after exposure to
an experimental heat treatment and then quantified hind-limb
muscle Hsp70 expression. Lizards collected from northern or
high-elevation collection sites suffered a greater reduction in
sprint speed after heat exposure than lizards collected from
southern or low-elevation sites. In addition, lizards from north-
ern collection sites also exhibited an increase in Hsp70 ex-
pression after heat exposure, whereas there was no effect of
heat exposure on Hsp70 expression in lizards from southern
collection sites. Across all groups, there was a negative rela-
tionship between Hsp70 expression and sprint speed after ther-
mal stress. This result is significant because (a) it suggests that
an increase in Hsp70 alone cannot compensate for the im-
mediate negative effects of high-temperature exposure on sprint
speed and (b) it demonstrates a novel correlation between an
emergent property at the intersection of several physiological
systems (locomotion) and a cellular response (Hsp70 expres-
sion). Ultimately, geographic variation in the effects of heat on
sprint speed may translate into differential fitness and popu-

lation viability during future increases in global air temper-
atures.

Introduction

Environmental temperature varies greatly across geographic
regions, and it is known to limit species distributions through
its effects on reproduction and survival in many taxa (Jenkins
and Hoffmann 1999; Parmesan et al. 1999; Helmuth and Hof-
mann 2001). As a consequence, changes in temperature over
geological and ecological timescales have been linked to range
shifts as well as local extinctions of species (Parmesan et al.
1999; Clarke 2003; Rank et al. 2007). Understanding the link
between temperature and the distribution of species or pop-
ulations is especially relevant given that current models of cli-
mate change predict that average global temperature will in-
crease by a minimum of 0.15�C per decade, with greater
increases at higher latitudes and elevations, and an increase in
the frequency and intensity of extreme temperatures (Jayko and
Millar 2001; Walther et al. 2002; IPCC 2007). These predicted
changes in temperature may be especially important for ec-
tothermic animals for which variation in ambient temperature
(Ta) may have especially pronounced effects on whole-animal
performance capacities, survival, and geographic distribution
(Helmuth et al. 2002; Pörtner 2002; Parmesan 2006; Deutsch
et al. 2008).

Whole-organism performance traits arise from interactions
among morphology, behavior, and physiology, often as a result
of strong natural and sexual selection (Arnold 1983; Irschick
et al. 2008). Maximum sprint speed is an example of an eco-
logically relevant measure of whole-organism performance that
is often important for eluding predators and capturing prey
(Bennett 1990; Garland and Losos 1994) and has been exten-
sively studied in lizards (Irschick et al. 2008). As with many
whole-organism performance traits, sprint speed typically
shows an asymmetric bell-shaped curve in which performance
is poor at low Ta’s, increasing to a plateau of higher performance
at moderate temperatures, and followed by a precipitous decline
at very high temperatures (Huey and Kingsolver 1993). If liz-
ards cannot sprint at or near their maximum capacities, then
this could effect many other traits, such as their ability to elude
predators (de Barros et al. 2010; Okafor 2010). As a conse-
quence, reduction in sprint speed at nonoptimal body tem-
peratures (Tb’s) is potentially coupled with negative effects on
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fitness. Indeed, a recent review examining the relationships be-
tween whole-organism performance traits and fitness revealed
that in about half the cases, animals with high-performance
capacities were favored by natural selection (Irschick et al.
2008).

Another effect of high temperatures is that cellular proteins
become denatured because of the perturbation of weak inter-
actions stabilizing protein structure and function (Hofmann
and Somero 1996; Hochachka and Somero 2002). In many
organisms, this leads to increased expression of molecular chap-
erones called heat-shock proteins (Hsps), which prevent further
denaturation and help restore function to damaged proteins
(Parsell and Lindquist 1993; Feder and Hofmann 1999; So-
rensen et al. 2003). The expression of inducible Hsp isoforms
after thermal stress supplements constitutively expressed Hsps
already present in cells that assist in folding newly translated
proteins (Morimoto et al. 1994; Hochachka and Somero 2002).
Increased levels of Hsps, specifically Hsp70-class chaperones
(68–76 kDa), are correlated with increased thermal tolerance
and survival in a wide variety of organisms, including fish
(Fader et al. 1994; Fangue et al. 2011), reptiles (Ulmasov et al.
1992), and invertebrates (Hofmann and Somero 1995; Yocum
2001; Rinehart et al. 2007). However, the overproduction of
Hsps is also known to incur a substantial physiological cost
(Krebs and Holbrook 2001; Sorensen et al. 2003), although this
relationship is still being tested in natural populations (To-
manek and Somero 2000; Rank et al. 2007).

In this study, we examined the simultaneous effects of heat
treatment on one measure of organismal performance (maxi-
mum sprint speed) and one indicator of cellular stress (muscle
Hsp70 expression) in the western fence lizard Sceloporus occi-
dentalis collected from field sites that vary in their thermal
regimes. We predicted that exposure to elevated temperatures
would more adversely affect both metrics in animals from
cooler habitats compared with those from warmer habitats.
Sceloporus occidentalis is ideal for studies of thermal physiology
for several reasons: (1) it is widely distributed in thermally
diverse habitats throughout western North America, (2) sprint
speed varies among populations collected in different parts of
its range (Buckley et al. 2007), and (3) the relationship between
temperature and sprint speed follows the typical trend described
earlier in which sprint speed increases to about 35�C and then
declines sharply above that temperature (Adolph 1987; Angil-
letta et al. 2002). Our study extends previous work on the
thermal effects on locomotion by incorporating Hsp expression
to assess the relationship between locomotion and this indicator
of cellular stress. In addition, our study expands on a growing
body of literature that examines geographic variation in phys-
iological performance and the cellular stress response (Lenor-
mand 2002; Karl et al. 2009). Geographic variation in the effects
of elevated temperatures on thermal physiology may provide
insight into how populations of ectothermic animals will re-
spond to increased Ta during global climate change (Somero
2011).

Methods

Study Sites and Animals

The western fence lizard Sceloporus occidentalis occurs through-
out western North America from Washington State to central
Baja California, Mexico, and from sea level to approximately
2,500 m (Stebbins 2003; Buckley et al. 2010; Fig. 1a). Adults
average 60–90 mm snout to vent and are semiarboreal habitat
generalists, utilizing perches consisting of boulders, bushes, and
trees. This species is typically active at the sites used for this
study from April to October (Asbury and Adolph 2007). All
lizards used here were collected from four locations in Cali-
fornia: Bishop Creek (BC), 7.9 km southwest of Bishop, Inyo
County (37�17′34′′N, 118�33′05′′W, elevation 2,135 m); Keough
Hot Springs (KHS), 12.5 km south of Bishop, Inyo County
(37�15′4′′N, 118�22′20′′W, elevation 1,220 m); Table Mountain
(TM), 3.5 km northwest of Wrightwood, San Bernardino
County (34�22′43′′N, 117�39′33′′W, elevation 2,230 m); and
Largo Vista (LV), 11.2 km west of Pinion Hills, Los Angeles
County (34�26′30′′N, 117�45′42′′W, elevation 1,370 m). These
four sites represent two geographic regions (north and south)
with paired high and low elevations. Previous work has shown
that lizards from these two geographic regions are genetically
distinct from one another (S. Adolph, unpublished data), al-
though there are no clear data showing genetic divergence be-
tween high and low elevations within either the northern lo-
cations or the southern locations.

In order to characterize the thermal habitat at each site,
environmental temperature was measured using Pendant data
loggers (UA-002-64, Onset Computer, Pocasset, MA) sus-
pended in inverted opaque white plastic cups with holes cut
to allow for ventilation. Loggers were affixed to randomly cho-
sen trees at each site and programmed to record Ta every 20
min between April and September of each year beginning Au-
gust 20, 2005, and ending September 20, 2008. Measurement
of air temperature at one site (TM) was not possible between
June 15, 2007, and June 25, 2008, because the logger was de-
stroyed in a brush fire.

At each site, 13–15 adult male lizards were collected between
May and September 2007, with an additional six lizards col-
lected between May and September 2008. All lizards were trans-
ported to the laboratory within 8 h of capture and housed in
custom-made 25-L wooden enclosures with screen tops. A sin-
gle rock was included for a perch, and sand was used as a
substrate. Heat lamps suspended above each cage provided a
12L : 12D cycle and a thermal gradient that allowed lizards to
thermoregulate. Water was provided ad lib. in a small dish;
crickets dusted with vitamin powder were provided as food
every other day. The presence of food in the stomach has been
shown to affect locomotor performance in other species (Ke-
lehear and Webb 2006), so lizards were not fed within 24 h
before experiments. All research conducted herein conformed
to national and institutional guidelines for research on verte-
brate animals (IACUC 27-10-02, University of Massachusetts,
Amherst).
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Figure 1. Geographic distribution of the western fence lizard Sceloporus occidentalis and collection site temperatures from April to September
2005–2008. a shows the distribution of S. occidentalis (shaded region) and the location of study sites: Bishop Creek (BC), Keough Hot Springs
(KHS), Table Mountain (TM), and Largo Vista (LV). Distribution map adapted from Buckley et. al. (2010). b shows daily mean temperature
and c shows daily maximum temperature at the four collection sites (�SEM). See Table A1 in the online edition of Physiological and Biochemical
Zoology and text for statistical analysis.

Heat Treatment and Sprint Speed Trials

Sprinting performance trials were conducted within 72 h of
capture. Sprint speed was measured at 22�C using a custom-
built 2-m racetrack with photo gates every 25 cm. The time
required to traverse each 25-cm interval was converted into
measurements of speed, and the interval with the highest speed
was recorded as the sprint speed for that trial. Three trials were
conducted for each lizard during each sampling period, and a
mean maximum speed was calculated using the fastest interval
during each of the three trials. To minimize the change in Tb

during sprint speed measurement, each lizard was measured
immediately on removal from the incubator and returned to

the environmental chamber while other individuals were
measured.

To test for differential responses in sprint speed and Hsp70
accumulation in response to elevated temperatures, lizards were
randomly assigned to one of two experimental treatments: a
heat treatment at 40�C ( per site) or a control treat-N p 14–16
ment at 22�C ( per site). Sprint speed was measured inN p 5
all lizards before exposure to experimental treatment (0 h, time
point T1). After initial sprinting trials, each lizard was placed
in a small plastic container in a temperature incubator at either
40�C (heat treatment) or 22�C (control) for 4 h. At the end of
the experimental treatment, sprint speed was measured in all
lizards (4 h, time point T2). Then all lizards were held for 1
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Table 1: Mean sprint speed and body temperature (Tb) for Sceloporus
occidentalis collected from four collection sites and exposed to heat or
control treatments

T1 (0 h) T2 (4 h) T3 (5 h)

Sprint speed (m/s):
BC 1.537 (.110)A .709 (.070)B .693 (.930)B

KHS 1.576 (.076)A 1.326 (.188)A 1.020 (.131)B

TM 1.326 (.095)A 1.131 (.142)B .934 (.116)C

LV 1.821 (.146)A 1.924 (.218)A,B 1.652 (.147)B

Pooled controls 1.375 (.094)A 1.185 (.134)A 1.222 (.094)A

Tb (�C):
BC 23.39 (.13)A 37.24 (.18)C 24.93 (.14)B

KHS 23.34 (.15)A 37.03 (.17)C 24.85 (.19)B

TM 23.84 (.21)A 37.55 (.23)C 24.32 (.17)B

LV 23.88 (.12)A 37.06 (.12)B 24.05 (.17)A

Pooled controls 22.59 (.10)A 24.27 (.67)C 23.23 (.09)B

Note. Values represent means (�SEM) of each site for lizards exposed to experimental

heat treatment (40�C) for 4 h or means for lizards from all four sites exposed to control

temperature treatment (22�C) for 4 h. Letters denote significant statistical differences between

time points within a single group (site or pooled controls). Statistical significance was

determined using matched paired t-tests for every possible combination of time points (T1

vs. T2, T1 vs. T3, and T2 vs. T3). BC p Bishop Creek; KHS p Keough Hot Springs; TM

p Table Mountain; LV p Largo Vista.

h at 22�C to allow for the synthesis of Hsps (Dahlhoff et al.
2001; McMillan et al. 2005), and sprint speeds were measured
again (5 h, time point T3). Sprint speed is highly dependent
on Tb in iguanid lizards (Huey and Kingsolver 1993; Du et al.
2007; Okafor 2010). Accordingly, Tb was measured immediately
on completion of each sprint replicate using a cloacal ther-
mometer, and mean Tb was calculated for each individual at
each experimental time point.

After completion of the sprint speed and Tb measurements,
all lizards were euthanized by decapitation. Upper hind-limb
muscle tissue was dissected, including the triceps femoris and
sartorius as well as the gracilis major and gracilis minor muscles,
all of which are made up of fast-twitch glycolytic muscle fibers
and are presumed to be used for power-burst locomotion ac-
tivities in iguanid lizards (Gleeson and Harrison 1986). After
dissection, all tissues were frozen on dry ice and stored at
�80�C.

Biochemical Analyses

Levels of Hsp70 were quantified following methods modified
from previous studies (McMillan et al. 2005). Dissected tissues
were homogenized in approximately 10 volumes of buffer (100
mM Tris-HCl, 0.5% SDS, 0.5% Triton-X, 1% Protease inhibitor
cocktail [Sigma-Aldrich], pH 7.2) using ground-glass tissue ho-
mogenizers (Kontes Duall 20) and centrifuged at 15,000 g for
15 min at 4�C. Total protein concentration was determined in
the supernatant using a commercially available kit (Thermo
Fisher Scientific, Rockford, IL) following a modified bicin-
choninic acid assay (Smith et al. 1985). Samples of 20 mg total
protein were reduced with 50 mM dithiothreitol combined with
SDS-sample buffer (Invitrogen, Carlsbad, CA) and heated at

95�C for 3–5 min to ensure complete protein denaturation.
Samples were then separated by SDS-polyacrylamide gel elec-
trophoresis (Laemmli 1970) on 4%–12% gradient gels using
commercially available MOPS running buffer (Invitrogen). Af-
ter electrophoresis, proteins were transferred to 0.45 mm PVDF
membranes using a constant current (400 mA) according to
published methods (Towbin et al. 1979; McMillan et al. 2005).
Blots were then probed for Hsp70 using an Hsp70-specific
antibody (MA3-006, Affinity BioReagents, Golden, CO) and a
peroxidase conjugated antimouse secondary antibody. Blots
were developed using chemiluminescence, images were cap-
tured by a CCD camera (Bio-Rad Chemi-Doc), and band in-
tensities were quantified with Quantity One software (Bio-Rad).
Relative quantification of Hsp70 expression was achieved by
loading two wells of each gel with human Hsp70 (NSP-555;
Assay Designs, Ann Arbor, MI) as positive controls. The
amount of standard ranged from 10 to 80 ng per well. To
standardize protein quantification across gels, all gels shared
one quantity of the positive control with at least one other gel.
All Hsp70 values reported here represent the band intensity
relative to the overall mean Hsp70 expression of lizards in the
control group. Importantly, the primary antibody used is ca-
pable of detecting multiple Hsps from ∼70 to ∼78 kDa, which
includes both inducible and constitutive members of the Hsp70
family. Therefore, the measures of Hsp70 concentration re-
ported in this study reflect the sum of these forms.

Statistical Analyses

To evaluate differences in habitat temperatures, we calculated
daily mean temperature and daily maximum temperature at
each site and included them as dependent variables in two-way
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Figure 2. Effects of experimental treatment on sprint speed perfor-
mance in Sceloporus occidentalis. Bars represent the proportion of sprint
speed (T3/T1) remaining after heat (a) or control (b) treatments. Heat
treatment consisted of 4-h exposure to 40�C followed by 1 h at 22�C,
while control treatment consisted of 5 h at 22�C. Bars with different
letters were significantly different, and error bars represent 1 SEM. See
Table A2 in the online edition of Physiological and Biochemical Zoology
and text for statistical analysis.

ANOVAs with collection site region (north or south) and el-
evation (high or low) as main factors. Preliminary analyses of
sprint speed demonstrated that speeds measured at room tem-
perature (22�C) without previous laboratory heat treatment did
not differ significantly between collection years ( ,F p 0.9848

, ) nor were they significantly related todf p 1, 78 P p 0.3241
snout-vent length ( , , ). Ac-F p 0.1547 df p 1, 78 P p 0.6951
cordingly, sprint speed data were pooled from both years, and
snout-vent length was excluded from all further analyses. Be-
cause initial sprint speeds varied among collection sites (Table
1), sprint speed remaining at the end of the experiment (T3)
was expressed relative to initial sprint speed (T1) for each in-
dividual, and the effects of region and elevation on this pro-
portion (T3/T1) were assessed with a full-factorial two-way
ANOVA. To evaluate variation in Hsp70 expression, we used
a three-way ANOVA, with region, elevation, and experimental
treatment (heat or control) as main effects (including all in-

teractions). Finally, to examine the relationship between Hsp70
expression and posttreatment sprint performance, a two-way
ANCOVA was used, with the proportion of sprint speed re-
tained after heat treatment (T3/T1) as the dependent variable,
region and elevation as main effects, and Hsp70 expression as
a covariate. All interactions were included in this model to test
for heterogeneity of slopes among sites in the relationship be-
tween Hsp70 expression and proportion of sprint speed re-
tained. Post hoc pairwise comparisons for all analyses were
made with Tukey’s HSD tests; P values ≤0.05 were taken to
indicate statistical significance. All tests were conducted using
JMP statistical software (ver. 9.0.0; SAS Institute, Cary, NC).

Results

Habitat Temperatures

Ambient air temperature was measured at the four collection
sites from August 2005 to September 2008. Measurements of
daily mean and daily maximum air temperatures during the
spring and summer months (April to September) showed that
the sites varied significantly (Fig. 1; see Table A1 in the online
edition of Physiological and Biochemical Zoology). As expected,
both measurements of temperature were strongly influenced
by elevation, with low-elevation sites being significantly warmer
than high-elevation sites (15�C difference on average; P !

for mean and maximum temperature; Table A1). There0.0001
was also a significant difference in daily maximum temperatures
between geographic regions (north and south; Fig. 1; Table A1;

), although this effect was generally smaller than theP ! 0.0001
effect of elevation (!1.5�C on average) and not necessarily in
the direction predicted for a latitudinal effect. During the mea-
surement period (581 d total), we also noted the number of
days in which the maximum temperature exceeded 40�C as an
index of potentially stressful temperatures for these lizards. This
measurement paralleled the trends observed in daily maximum
temperature, with the greatest number of days above 40�C at
the northerly low-elevation site (71) followed by the southerly
low-elevation site (38), the northerly high-elevation site (8),
and the southerly high-elevation site (3).

Sprint Trials

Maximum sprint speed measured at 22�C before the experi-
mental or control treatments (T1) was significantly higher for
lizards collected at low-elevation sites (Table 1; ).P p 0.0204
When subjected to a 4-h treatment at 40�C followed by a 1-h
recovery, maximum sprint speeds decreased in lizards collected
at all sites. In all cases, sprint speeds were greatest at the be-
ginning of the experiment (T1) and lowest when measured at
the end of the recovery period (T3), with sprint speeds mea-
sured immediately after heat exposure (T2) generally being
intermediate (Table 1). The exception was at BC, for which
sprint speeds decreased significantly between T1 and T2 and
did not decrease further from T2 to T3 (Table 1). Lizards in
the control treatment ( from each site) were handled inN p 5
an identical manner to experimental lizards except that they
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Figure 3. Hsp70 expression in Sceloporus occidentalis from differing
regions and elevations of collection. a shows a representative Hsp70
western blot. Lanes 2–9 contain hind-limb muscle samples from dif-
ferent lizards; lanes 1 and 10 contain known amounts of human Hsp70.
b and c show relative Hsp70 expression (�SEM) for heat-treated and
control lizards, respectively. Hsp70 expression was calculated relative
to the mean Hsp70 expression for all control lizards. d illustrates the
interaction between treatment and region of collection in relative ex-
pression of Hsp70. Letters denote significance differences between
groups. See Table A3 in the online edition of Physiological and Bio-
chemical Zoology and the text for statistical analysis.

were held at 22�C for 4 h in place of the heat treatment. There
were no differences in sprint speeds among T1, T2, and T3 for
control lizards, indicating that the procedures and handling did
not adversely affect sprint speed independent of the heat treat-
ment (Table 1). Lizard Tb varied little within sites between T1
and T3 when lizards had been held at 22�C. However, Tb did
vary among sites at T1 and T3 (Table 1; and 0.0011P p 0.0283
for T1 and T3, respectively). Using post hoc tests, at T1 we
did not find specific differences among sites, yet at T3, BC and
KHS lizards had a higher Tb after the recovery period than TM
and LV lizards. While statistically significant, this difference in
Tb was less than 1�C.

Because starting sprint speeds (T1) differed according to
elevation (see above), we expressed the change in sprint speed
after experimental treatment as the sprint speed at T3 divided
by the sprint speed at T1. In addition, Tb was similar in lizards
at T1 and T3, removing the potentially confounding effect of
variable Tb on maximum sprint speed. The ratio of speeds at
T3/T1 was then analyzed for variation due to collection site
region and elevation (Fig. 2; see Table A2 in the online edition
of Physiological and Biochemical Zoology). For lizards subjected
to 40�C for 4 h followed by 1 h of recovery at 22�C, the pro-
portion of speed remaining at the end of the experiment varied
from about 0.45 to 0.90, and this proportion was strongly af-
fected by both region ( ) and elevation ( );P ! 0.0001 P p 0.0011
maximum sprint speed was more dramatically reduced by heat
treatment in lizards collected from northern or high-elevation
sites compared with southern or low-elevation sites (Fig. 2a;
Table A2). Lizards that were not subjected to the 40�C heat
treatment (controls) had maximum sprint speeds at T3 that
were of sprint speeds at T1 (mean � 1 SEM,0.915 � 0.055

); furthermore, speeds did not vary among control liz-N p 20
ards from the four study populations (Fig. 2b; Table A2).

Hsp70 Expression and Correlation with Sprint Speed Reduction

Quantitative western immunoblotting of total Hsp70 protein
expression (constitutive � inducible isoforms) from hind-limb
muscle revealed considerable variability (Fig. 3a). When heat-
treated and control animals were analyzed separately, there were
no differences in Hsp70 expression among sites (Fig. 3b, 3c;
see Table A3 in the online edition of Physiological and Bio-
chemical Zoology). However, when Hsp70 expressions in heat-
treated and control lizards were analyzed together, there was a
significant effect of treatment (heat vs. control) on Hsp70 ex-
pression (Table A3; ) and a significant interactionP p 0.0131
between treatment and region of collection on Hsp70 expres-
sion (Table A3; Fig. 3d; ). The effect of heat treat-P p 0.0234
ment on total Hsp70 expression differed by region. For lizards
collected from the two northern sites, the mean Hsp70 ex-
pression was nearly twice as high in heat-treated lizards as in
control lizards. For the southern collection sites, however,
Hsp70 protein expression was intermediate in concentration
and did not differ between heat-treated lizards and control
lizards.

The observation of geographic variation in the effects of heat
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Figure 4. Correlation between Hsp70 relative expression and the pro-
portion of sprint speed retained (T3/T1) for Sceloporus occidentalis
lizards exposed to 4-h heat treatment and 1-h recovery. Data points
represent individual lizards from Bishop Creek (open circles; northern,
high elevation; ), Keough Hot Springs (filled circles; northern,N p 14
low elevation; ), Table Mountain (open triangles; southern,N p 16
high elevation; ), and Largo Vista (filled triangles; southern,N p 15
low elevation; ). The line is the least squared means line forN p 15
data from all lizards ( , ). See Table A4 in the2r p 0.1607 P p 0.0139
online edition of Physiological and Biochemical Zoology and text for
statistical analysis.

treatment on both maximum sprint speed and muscle Hsp70
expression suggests that these two variables might be correlated.
Accordingly, we tested for covariation between the proportion
of sprint speed remaining at the end of the experiment (T3/
T1) and Hsp70 expression for lizards from all four collection
sites. Because there was not significant heterogeneity among
the slopes of T3/T1 versus Hsp70 expression (see Table A4 in
the online edition of Physiological and Biochemical Zoology;

), we pooled data from the four collection sites andP p 0.2554
plotted T3/T1 against Hsp70 expression (Fig. 4). When thus
analyzed, there was a significant negative correlation between
the proportion of sprint speed remaining at T3 and Hsp70
expression ( , ).2r p 0.1607 P p 0.0139

Discussion

In this study, we measured the effects of heat exposure on
maximum sprint speed and Hsp70 expression in the western
fence lizard Sceloporus occidentalis collected from high- and
low-elevation sites at two geographic regions. We refer to these
regions as northern and southern, although we recognize that
the north-south distribution of this species is approximately
four times greater than the distance between our field sites
(Buckley et al. 2010; Fig. 1a). Perhaps because of the limited
distance between our northern and southern regions, air tem-
peratures during the summer field season were similar in terms
of both daily mean temperature and daily maximum temper-

ature. In contrast, air temperatures were strongly affected by
elevation of collection site in both the northern and southern
regions: low-elevation sites were significantly warmer than
high-elevation sites. The difference in daily mean temperature
or daily maximum temperature between low- and high-ele-
vation sites ranged from 5.5� to 8.5�C for sites that differed by
approximately 900 m in elevation, which is comparable with
the standard lapse rate of 6.5�C/1,000 m (Jacobson 2005). The
number of high-temperature days (≥40�C) was also greater at
the low-elevation collection sites. Taken together, these indi-
cators of mean and extreme temperatures demonstrate that
elevation is more important than regional differences in de-
termining the thermal habitat of S. occidentalis across the sam-
pled portion of this species’ distribution.

Exposure of lizards to a temperature near or above the upper
temperatures encountered in the field (40�C for 4 h) caused
significant reduction in maximum sprint speed. In the most
adversely affected lizards, sprint speeds after heat exposure were
reduced to less than half those of the speeds before heat treat-
ment. Interestingly, the extent of this reduction differed among
lizards from the different collection sites, with both region and
elevation being significantly related to the loss of sprint per-
formance. Typically, geographic variation in physiological func-
tion within a species has been attributed to either acclimati-
zation or local adaptation, both of which enhance performance
under particular environmental conditions (Endler 1977; Ho-
chachka and Somero 2002). Because air temperatures during
the months before and during animal collection were similar
across geographic regions, acclimatization to habitat temper-
ature would not appear to account for the regional effect on
sprint speed reduction. Rather, the regional effect could be due
to some other habitat variable (e.g., availability of prey or pred-
ators), long-lasting developmental effects, or genetic differences
across this portion of the species range (S. Adolph, unpublished
data). On the other hand, acclimatization may play a role in
determining the effects of elevation on sprint speed reduction
because habitat temperatures at the low-elevation sites were
significantly warmer than the high-elevation sites and exceeded
our experimental heat treatment several times within the col-
lection season.

In addition to measures of maximum sprint speed, we also
found geographic variation in the effects of temperature on
Hsp70 expression in hind-limb muscles. Specifically, heat treat-
ment caused an increase in muscle Hsp70 levels in lizards col-
lected from the northern sites, while there was no change in
lizards from southern sites. Although our measurements do not
distinguish between constitutive and inducible Hsp70, this find-
ing suggests that lizards from the northern regions may have
a lower onset temperature for inducible isoforms of Hsp70. In
this scenario, the 40�C heat treatment would have exceeded the
induction temperature in northern lizards but not in southern
ones. Geographic variation in Hsp70 induction temperature
has been previously shown in intertidal mollusks (Tomanek
and Somero 1999; Dutton and Hofmann 2009), insects (Dahl-
hoff and Rank 2000), amphibians (Sorensen et al. 2009), and
reptiles (Ulmasov et al. 1992). With minimal regional effects
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on air temperature in our study, the difference in the Hsp70
response between northern and southern collections of S. oc-
cidentalis can possibly be explained by long-lasting develop-
mental effects or local adaptation. Firm conclusions regarding
the relative contribution of short-term and long-term processes
in explaining the patterns of high-temperature effects on sprint
speed and Hsp70 expression in S. occidentalis will require
broader sampling combined with controlled laboratory expo-
sures. Notwithstanding, the important observation here is that
we documented variation in both variables despite limited geo-
graphic sampling.

While a large body of research has examined the temperature
effects on ectotherm physiology, we are aware of no previous
studies that have simultaneously measured locomotor perfor-
mance and Hsp expression after heat exposure in a vertebrate
species. Thus, a novel finding of this study is the negative
relationship between sprint speed and levels of Hsp70 after
exposure of lizards to high temperature. Albeit correlative, the
linear relationship we present suggests that 16% of the variation
in sprint speed after heat stress can be explained by variation
in Hsp70 expression. Given the integrative nature of sprint
performance, which requires several physiological systems
(neural, cardiovascular, muscular), it is perhaps surprising that
the correlation with a single index of the cellular response to
heat is this high. The negative relationship between Hsp70 ex-
pression and maximum sprint speed can be interpreted several
ways. Perhaps the most straightforward explanation is that high
temperature directly damaged the proteins that make up the
contractile apparatus of skeletal muscle, simultaneously low-
ering the lizard’s ability to sprint and promoting the synthesis
of Hsps. Another explanation is that both sprint performance
and Hsp70 expression are independently related to other phys-
iological, biochemical, or genetic characteristics of the organism
(Haag et al. 2005; Rank et al. 2007). Regardless of the possible
mechanisms underlying the correlation between sprint speed
and Hsp70 expression after high-temperature exposure, a crit-
ical observation is that the correlation is negative rather than
positive. Our data do not support the hypothesis that greater
Hsp70 levels are able to “rescue” sprint performance after heat
exposure, at least not within the time frame measured (1 h
after heat treatment). It is possible that individuals with high
Hsp70 regain sprint performance with longer recovery periods.

In summary, we have used the widespread lizard S. occiden-
talis to demonstrate geographic variation in sprint performance
and muscle Hsp70 levels after heat exposure. Some of this
variation is explained by differences in collection site elevation,
while some is related to underlying regional differences among
lizards. Pooling lizards from all collection sites, there is a neg-
ative relationship between sprint speed and hind-limb muscle
Hsp70 expression after heat exposure, suggesting that an in-
crease in Hsp70 did not compensate for the adverse effects of
high-temperature exposure, at least within the time frame as-
sessed. Further investigation is needed to elucidate the possible
mechanisms underlying this correlation as well as the environ-
mental and genetic contributions to geographic variation in
sprint speed and Hsp70 expression. Ultimately, if high-tem-

perature exposure decreases the ability of these organisms to
elude predators or capture prey, this could negatively affect
individual fitness and population viability in the face of further
increases in air temperatures due to global climate change.
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