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Abstract 

 

Research using microalgae Chlorella vulgaris was conducted in order to determine the 

maximum CO2 concentration under which algae can grow, within the emission range from oil and 

natural gas burning plants (0-20%). 

 

After choosing the optimal CO2 percentage, pH and alkalinity were determined; and 

finally, an electrochemical (EC) batch reactor connected to DC current was applied to achieve 

algae cell annihilation, and therefore, facilitate anaerobic digestion, methane production and 

energy recovery. 

 

It was determined that algae can grow under 20% CO2, being 15% CO2 the most effective 

(pH of 6.64 and alkalinity of 617.5 mg/L CaCO3). 

 

Electroporation using an electrochemical batch reactor is effective in breaking cells 

membranes, which simplifies anaerobic digestion process and methane production.  

 

The parameters found effective for completely breaking the algae cell are: detention time 

of 1 ± 0.5 minutes, and minimum voltage and current of 65 
Volts

285 ml
 and 3.9 

Amps

285 ml
, respectively. 

 

 

 

 

 

 

Keywords: Algae, Chlorella vulgaris, CO2 emissions, biomass, biofuel, electroporation, cell wall, 

CO2 neutralization, CO2 recycling, electrocution of algae cells, algae cell membrane fracture, algae 

biofuel, electrochemical algae treatment. 
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Chapter I 

Introduction 

 

 

One of the biggest threats hanging over our planet is climate change, caused primarily by 

the emission of greenhouse gases, which come mainly from fuels (oil, gas and coal) burned in 

electric power generation, heating, cooling, and transportation. Of all greenhouse gases being 

generated, the most important one is CO2, which comes from emissions from large industry and 

deforestation of tropical and subtropical forests by the irrational expansion of agricultural, agro-

industrial and forestry activities (Madrid, 2009). 

 

Studies indicate that between 1990 and 2012 has been an increase of 67% in CO2 

emissions from coal (EIA, 2016). 

 

Meeting this increasing demand for energy without increasing CO2 emissions requires 

more than a mere increase in energy production efficiency.  The situation requires a 

comprehensive plan to more efficiently utilize all of the existing sources for energy while 

sequestering, capturing, and storing the carbon emitted through the global energy system. 

Carbon Capture and Storage (CCS) could play a major role in reducing atmospheric CO2 emissions 

through efficient and responsible fossil fuel usage and recycling (Karcher, 2010). 

 

Bioenergy production from microalgae was contemplated since the fifties. The economic 

potential of this technology was recognized by several countries such as USA, Japan and Australia 

especially after the energy crisis in 1975 (Arredondo, 1991). In the years 1990-2000 the Japanese 

government used a program to study CO2 fixation and optimization of microalgal growth. 

However, these projects were suspended in part, due to the lack of competitiveness of biofuel to 

fossil fuel prices (Malgas, 2013). 
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The use of microalgae for biodiesel production is an advantageous alternative due to the 

high lipid content and suitable profile for obtaining biofuels they offer. In addition to this, other 

attributes of microalgae are its high photosynthetic efficiency, their ability to grow both in marine 

and brackish water, fresh water, and wastewater, and its relatively high rate of growth and ease 

to control carbon emissions by absorbing and fixing large amounts of CO2 during cultivation. 

Based on mass balance, the carbon dioxide sequestration value can be quantified as follows: for 

every kg of algae biomass created, 1.83 kg of CO2 are sequestered (Chisti, 2007). 

 

However, systems of cultivation of microalgae currently have certain limitations such as 

the lack of information for scaling, difficulty maintaining monocultures, high operating costs for 

the production and harvesting of the biomass of microalgae, among others (Malgas, 2013). 

 

  Today, it is possible to dry the biomass of algae and burn it directly for heat and electricity 

generation, or to perform high temperature and high pressure processes, such as pyrolysis, 

gasification and hydrothermal improvement (HTU) to produce fuel in the form of gas or liquid, 

respectively. These processes require dry biomass. The drying process requires a lot of energy, 

which has a negative effect on the energy balance of the process and the costs of the necessary 

equipment (Wijfells, 2010). 

 

A biochemical technology to process biomass is anaerobic digestion. This produces biogas 

from wet stream and requires less energy than thermochemical processes. The biogas contains 

between 55 and 75% of methane, which can be burned for heat and/or electricity, and can be 

upgraded to replace natural gas (Garcia, 2010). 

 

Methane generation from waste CO2 emissions is an attractive alternative to recover fuel 

for gas-fired power plants.  Energy recovery from waste CO2 emissions combined with municipal 

wastewater would help reduce traditional fuel consumption, and would result in the reduction 

of conventional wastewater treatment needs, and recycling spent CO2. Methane reuse as a fuel 

by gas-fired power plants would also translate into lower greenhouse gas (GHG) emissions. 
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 Although conversion of harvested algae to methane by anaerobic digestion was 

suggested in the late 1950s (Golueke, 1956), it was found that the algae cell wall remained intact 

after anaerobic digestion, which resulted in lower methane yield.  If this objection could be 

removed by achieving algae cell destruction through electro-coagulation/electro-annihilation 

(ECE), high-rate anaerobic digestion of harvested algae becomes an effective option for energy 

recovery. ECE offers many advantages over conventional chemical coagulation, including the 

destruction of algal cells by the electro-chemical processes taking place in the EC batch reactor. 

 

Anaerobic digestion is a robust and well developed technology. This technology is applied 

to wastes containing organic compounds, with the very low price of raw materials. Given the 

limitations of other processes of cell treatment, anaerobic digestion appears more feasible (FAO, 

2009). 

 

For this research, the microalgae Chlorella vulgaris was chosen due to several 

characteristics of this algae species: its high lipid percentage, its easy reproduction and growth, 

adaptation to any media, its high percentage of absorption and fixation of CO2 and its ability to 

work under a wide range of temperature and pH. The initial objective of this research is to 

determine the maximum CO2 concentration that can be added to the suspension of algae by 

growing them in a medium containing a CO2 range of 0 to 20% for several weeks; this range was 

chosen because petroleum-burning plants emit a maximum of 15% CO2, and plants that burn 

natural gas (methane), emit less than half, i.e., between 6 and 7% (EIA, 2016); therefore, all CO2 

emissions ranges that can be sequestered, are being studied. 

 

The next objective is to define the optimal pH and alkalinity for maximum growth, and 

finally, apply electrochemical processes using an EC batch reactor to achieve algae cell 

annihilation, which facilitates the process of anaerobic digestion by wastewater treatment plants 

and makes it more effective for methane production, which in turn leads to efficient energy 

recovery. The electrochemical cell configuration and detention time required for irreversible 

electroporation of cell membrane were also determined.  
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Chapter II 

Literature Review 

 

 

The purpose of this chapter is to provide the theoretical foundations on which this 

research is based. First, a discussion about the microalgae used, their growth, cultivation 

techniques, different types of existing systems and principal factors affecting their growth are 

discussed. Then, an analysis of the buffering capacity of the water and the effect that CO2 has in 

both the pH and the growth of algae is also presented. The chapter continues with a detailed 

analysis of the complete process of transformation of CO2 to biomass and then to biofuel, with 

emphasis on the cycles and processes necessary to perform it. Finally, the economic viability of 

microalgae biofuel and wastewater treatment using algae is briefly introduced.  

 

Chlorella Vulgaris 

 
Chlorella vulgaris is a unicellular green alga belonging to the protist kingdom. It is 

spherical, with a diameter of 2 to 10 μm, it has no flagellum and it is present in most freshwater 

bodies. Chlorella contains the green photosynthetic pigments, chlorophyll a and b in its 

chloroplast. Through photosynthesis it multiplies rapidly, requiring only sunlight, carbon dioxide, 

water and small amounts of minerals dioxide (Safi, 2014). 

 

Chlorella Vulgaris is probably one of the first organisms that arose on Earth, dating back 

at least 540 million years ago. Their cells have the ability to adapt to major climate changes and 

can grow in different environments of pH and temperature. His remarkable survival is due to one 

fundamental characteristic: 

 

- Almost unbreakable cell wall which is able to coexist in places with high concentrations of 

pesticides, toxins and heavy metals. 
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Chlorella took a boom in the 40s due to its high proportion of protein and other essential 

nutrients for humans. The most recognizable feature is its very comparable photosynthetic 

efficiency with other highly efficient crops. In addition, when dried contains about 45% protein, 

20% fat, 20% carbohydrate, 5% fiber, 10% minerals and vitamins (Safi, 2014). 

 

The use of microalgae for the purification of wastewater has been promoted since the 

late fifties by Oswald (1957). Likewise, in the 70s, open microalgae culture systems for 

wastewater treatment were developed in the US in which the biomass obtained was transformed 

to methane (Ugwu, 2008). However, this treatment system has been hampered due to the large 

area of land needed and the use of other treatment systems such as activated sludge. 

 

Stabilization ponds are used today in many parts of the world for wastewater treatment, 

especially in developing countries (Mara, 1998). The ability of the algae to remove both nitrogen 

and phosphorus from wastewater, among others, represents a real possibility for removing 

nutrients from wastewater, showing that phosphorus removal can be as efficient as the 

conventional chemical treatment (Hoffman, 1998). Its main advantages are lower cost, since 

chemicals are not necessary, and the recovery of nutrients in form of biomass which can be used 

as fertilizer. 

 

 
Figure 1. Chlorella vulgaris. SOURCE: www.harmonicarts.ca 
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There is a great potential in the combination of processes involving microalgae, such as 

obtaining biodiesel from microalgae, or anaerobic digestion of the microalgae for obtaining 

methane (Malgas, 2013). Combining the production of microalgae and wastewater treatment, 

significant savings in the consumption of nutrients occurs.  

Kinetics of growth 

Algae, as well as many other microorganisms, grow following several phases (see figure 

2) (Karcher, 2010): 

 

 Lag phase (1): Algae adapt to new medium. Growth progresses slowly. 

 Exponential or logarithmic phase (2): Algae have adapted to their surroundings. The 

increment in algal biomass per time is proportional to the biomass in the population at 

any given point in time according to the equation: 

 

dn

dt
= rN 

(1) 

 

the solution to which is:  

 

Nt = Noert (2) 

 

where r is the exponential growth rate of the population, Nt is the population at time t, and No 

is the initial population. 

 

 Declining growth phase (3): Growth has occurred to such an extent that superposing of 

cells occurs and nutrients become limited.  This effect reduces the growth rate and the 

increase in algal biomass becomes linear.  This phase concludes when respiration 

outweighs photosynthesis, nutrients become deficient, or toxic waste buildup in the 

sample becomes significant. 
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 Stationary phase (4): Rate of growth is equal to the rate of dead. Maximum attainable 

concentration of algal biomass in the specified closed system. Dead algae serve as food. 

 Death phase (5): Mark increasing cell death and disappearance of cells. 

 

 
Figure 2. Growth phase diagram. SOURCE: www.fao.org 

 

Logistic growth curve 

 

Logistic growth curve is an S-shaped (sigmoidal) curve that can be used to model functions 

that increase gradually at first, more rapidly in the middle growth period, and slowly at the end, 

leveling off at a maximum value after some period of time. The initial part of the curve is 

exponential; the rate of growth accelerates as it approaches the midpoint of the curve. At the 

midpoint, the growth rate begins to decelerate but continues to grow until it reaches an 

asymptote, Xmax which is called the "Carrying Capacity" for the environment. 

 

This type of curve is frequently used to model biological growth patterns where there is 

an initial exponential growth period followed by a leveling off as more of the population is 

infected or as the food supply or some other factor limits further growth. 

The equation of the logistic growth curve is the following: 
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𝑋 =
𝑋𝑚𝑎𝑥

1 + 𝑚𝑒−𝑛𝑡
 

(3) 

Where: 

X = Predicted Y value. 

Xmax = Maximum attainable concentration of algal biomass (Asymptote). 

m = Parameter that defines the curvature of the logistic growth curve. 

n = Rate of growth. 

R2 = Degree of goodness of fit. 

 

The values of the best-fit parameters, Xmax, m, and n, were found using Excel Solver, by 

minimizing the sum of the squares of the residuals, defined by Eq. 4: 

 

SSres = ∑(yi − fi)
2

i

= ∑(ei)
2

i

 (4) 

 

The value of the coefficient of determination, R2, was found using Eq. 5: 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

(5) 

Where: 

SStot = ∑(yi − y̅)2

i

 (6) 

Batch Culture Techniques for algae cultivation 

When bio-fuels production or maximum carbon sequestration is the goal, maintenance 

of the algal suspension in the exponential growth phase is critical, because this is the phase where 

growth rate is calculated.  The increment in algal biomass per time is proportional to the biomass 
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in the population. As Becker (1994) describes, during this phase a steady-state continuum is 

observed and the plot of the logarithm of cell mass yields a linear increase with time.  

 

There are multiple ways to accomplish this task; however, they all involve replacement 

with fresh medium.  The method has been practiced since culturing began and is generally 

accepted as the standard method.  It involves culturing the suspension into the exponential 

growth phase, then removing a portion of the culture and replacing with fresh medium. Wood et 

al. (2005) describe this simple process, the goal of which is to ensure the medium remains fresh 

and the algae in the culture never have to compete with each other for resources.  This allows 

for continuous exponential growth and harvesting of cells (Karcher, 2010). 

Microalgae Culture Systems 

Microalgae culture systems are usually classified according to their configuration and type 

of operation: 

a. Open systems 

 

They can be classified in turn as natural surface water (ponds, lagoons and lakes) and 

artificial ponds. Artificial systems have different designs: inclined (thin film), circular carousel 

ponds or channels (raceway ponds). 

 

The channels or "raceway ponds" generally are concrete shallow oval channels (15-20 

cm), in form of a closed circuit, where the crop is recirculated and mixed to promote the 

stabilization of growth and productivity of microalgae (see figure 3). Due to the shallow depth of 

the channels, diffusion from the atmosphere allows algae to obtain the CO2 needed for growth. 

 
Production through ponds or lagoons is cheaper compared with the photobioreactors 

(discussed later), both in investment and in maintenance and energy consumption during 

operation method. 
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However, in a system of open culture it is difficult to maintain a single species of 

microalgae, due to the ease of biological contamination, which can even assume that crop 

infection by bacteria or other microorganisms (Malgas, 2013). 

 

 
Figure 3. Raceways ponds. SOURCE: www.aban.com 

 

b. Closed systems 

 

Closed systems are in total isolation with the outside environment and therefore without 

direct contact with the atmosphere. This total isolation from the external environment 

represents a total reduction of pollution, greater control of growing conditions and generally 

higher returns (Malgas, 2013). 

 

Algae Chambers 

 

Algae chambers are closed systems of small-scale production (Figure 4) in which the 

culture volume increases. Containers of various sizes are used to maintained the culture under 
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very controlled conditions of temperature, light, among others. Temperature control is 

performed by means of thermostats (Malgas, 2013). 

 

 
Figure 4. Algae chamber. SOURCE: www.flickr.com 

 

Photobioreactors 

 

A photobioreactor is a tightly closed system for obtaining further growth of the desired 

microalgae. Photobioreactors are characterized by the regulation and control of the most 

important parameters of growth, while reducing the risk of contamination and loss of CO2 

diffusion. 

 

They can be classified according to their design and mode of operation (Malgas, 2013): 

 
- From the point of view of design, the photobioreactors can be classified as: (a) flat or tubular, 

(b) horizontal, vertical, inclined or spiral, (c) coils (pipe bends, serial flow) or (d) multiple (parallel 

flow from a delivery collector at a collector). 
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- From the point of view of the operation mode, the photobioreactors can be classified as: (a) 

driven agitated by air or pumps, (b) reactors phase (gas exchange occurs in a separate chamber) 

or (c) two phase reactors (there is gas exchange chamber, but it is produced throughout the 

reactor). 

 

Closed photobioreactors that are being highly investigated for application to the 

commercial production of algae with high added value include: 

 

- Tubular photobioreactors: one of the most suitable photobioreactors for cultivation outdoors, 

because of their high ratio lit are/reactor volume (Figure 5). Mass transfer and the degree of 

agitation in the tubular photobioreactors are limited, causing high concentrations of O2. 

 

 
Figure 5. Tubular photobioreactor. SOURCE: www.bbi-biotech.com 

 

- Flat walls photobioreactors, inclined or vertical: formed by two sheets of transparent materials 

generally plastic (rigid or flexible) vertical or inclined, between which the culture is stirred by 

mechanical or pneumatic systems. 
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The space between the plates is usually between 1 and 20 cm, and the height thereof up 

to 2 m. They have the advantage of enabling large crop areas exposed to light per unit area of 

land. Dissolved O2 concentrations are low and photosynthetic efficiencies that are achieved are 

high (Malgas, 2013). 

 

- Vertical column photobioreactors: consist of a standpipe height generally between 1 and 3 m, 

and a diameter ranging between 5 and 500 cm, wherein air is bubbled from the bottom (Ugwu 

C. A., 2007) as agitation system. They are compact and inexpensive, and very easy to sterilize 

(Figure 6). 

 

 
Figure 6. Vertical photobioreactor. SOURCE: University of Kentucky. Center for Applied Energy Research 

(CAER). Department of Biosystems & Agricultural Engineering (BAE).  

 

- Photobioreactors internally illuminated: interior lighting of photobioreactors can be natural, 

by using fiber optics and solar collectors that collect sunlight outside and transferred into the 

reactor, or may be artificially by fluorescent lamps (Figure 7) (Malgas, 2013). 
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Figure 7. Photobioreactor internally illuminated. SOURCE: American Society of Mechanical Engineers 

(ASME). 

 

c. Hybrid culture systems 

 

 Hybrid culture systems combine different stages of growth in photobioreactors and open 

lagoons or ponds. Generally, these systems consist of a first stage of production of biomass in 

photobioreactors, where greater control of environmental conditions, minimizing contamination 

and maximizing cell division take place. In the second stage, microalgae are grown in open ponds 

for accumulation of the products induced by nutrient deficiency in the system, like wastewater 

effluents from pig farms and municipal waste, or in some cases, seawater or water with high 

salinity (Brendan, 2010). 

 

d. Heterotrophic culture systems 

 

A significant number of microalgae is able to grow in the absence of light, using organic 

carbon substrates, such as glucose. Algae cultivation is performed in stirred closed bioreactors, 
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in an adaptation of fermentation technology. These are systems that allow easy change of scale 

and generate the highest density of biomass produced. Also, they provide a high degree of 

growth control and reduced harvest costs, but have a higher energy consumption (Borowitzka, 

1999). 

Factors influencing the growth of microalgae 

 

The following factors have been identified to influence microalgae growth (Malgas, 2013): 

a. Light 

 

The availability of light is the main limiting factor of microalgae growth. Inorganic 

nutrients, and even CO2, can be incorporated into the culture medium in excess, so that they will 

never be growth limiting. 

 

Photosynthetic organisms employ only the fraction of the sunlight spectrum that is 

photosynthetically active, that is, between 350 and 700 nm. Microalgae have shown light- 

biomass conversion efficiencies between 1 and 4% in open systems such as ponds and even 

greater in closed photobioreactors (Stephens, 2010). 

 

Light duration and intensity affect directly algal growth and microalgae photosynthesis. 

Microalgae needs a light/dark regime for productive photosynthesis; they, needs light for a 

photochemical phase to produce adenosine triphosphate (ATP), nicotinamide adenine 

dinucleotide phosphate-oxidase (NADPH), and also needs darkness to synthesize essential 

molecules for growth (Cheirsilp, 2012). 

 

Experimental investigations reveal that the increase in light duration is directly 

proportional to increase in number of cultivated microalgae as well as the increase in the light 

intensity (Al-Qasmi, 2012). 
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Khoeyi Z., et. al., (2011), used three different algae samples placed in different light 

conditions, and found a huge difference in algal growth; the maximum biomass production was 

achieved when using 16:8 light/dark photoperiod duration. 

 

When algae are incubated under blue-red light, growth rate is doubled when compared 

to the growth under white light (Rochet, 1986). Therefore, artificial lighting can contribute to 

continuous production. 

 

b. Nutrients 

 

The main mineral nutrients that microalgae take from environment and needs for 

development are the following (Malgas, 2013): 

 

 Carbon: Autotrophic microalgae can use as carbon source, either the CO2 present in the 

atmosphere or in exhaust gas. Chlorella is able to tolerate up to 400,000 ppmv of CO2. 

Carbon needs can be calculated stoichiometrically knowing the composition of the 

biomass, resulting in a minimum of 1.85 g CO2/g biomass. Furthermore, to ensure that 

microalgae will take the CO2, the carbon dioxide partial pressure in the liquid must be 0.1-

0.2 kPa.  

 

 Nitrogen: is one of the essential macronutrients in the growth of microalgae. The nitrogen 

content of the algal biomass can be assumed from 1% to more than 10%, depending on 

the availability and type of nitrogen source. 

  

 Phosphorus: is taken from the medium as orthophosphate (P-PO-3), whose concentration 

in equilibrium with the protonated forms depends on the pH of the medium. Factors such 

as excessively high or low pH, or absence of ions such as potassium, sodium or 

magnesium, makes phosphate absorption by microalgae, very slow. 
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 Microalgae require, other macro and micronutrients (Richmond, 2004) for their growth. 

Apart from C, N and P, other elements are necessary for the cultivation of microalgae, 

both macronutrients (S, K, Na, Fe, Mg, Ca) as micronutrients or trace elements (B, Cu, Mn, 

Mo, Zn, V and. 

 

Bristol's medium is recommended for Chlorella by Flinn Scientific Inc., because includes 

all nutrients necessary. 

 

c. pH 

 

The pH of the medium, affect the CO2 chemical equilibrium species, and hence the 

alkalinity of the medium. Each species of microalgae has a pH range in which growth is optimal, 

depending on which chemical species are more accustomed to assimilate. The pH in most 

microalgae is between 7 and 9, with an optimum between 8.2 to 8.7 (Malgas, 2013) 

 

The photosynthetic fixation of CO2 process causes a gradual increase in pH in the medium 

due to the accumulation of OH-. pH control is achieved by aeration or controlled injection of CO2, 

but also by adding acids or bases. 

 

Alkalinity is related to the pH of a solution, (its basicity) but measures a different 

property. Roughly, the alkalinity of a solution is a measure of how strong the bases are in a 

solution, whereas the pH measures the amount of chemical bases.  

 

Alkalinity is the capacity of water to accept protons (acid neutralizing capacity). In natural 

water, main sources of alkalinity are HCO3
-, CO3

2- and OH-.  

 

Total alkalinity is defined using H2CO3* as PRL. 

https://en.wikipedia.org/wiki/PH
https://en.wikipedia.org/wiki/Basicity
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Figure 8. H2CO3* PRL 

  
And the proton condition is: 

 

[H+] = [HCO3
−] + 2[CO3

2−] + [OH−] (7) 

 

Where the left hand side has proton excess species, and the right-hand side has proton 

deficiency species. 

 

Alkalinity is defined as net proton deficiency, therefore: 

 

[Alk] = [HCO3
−] + 2[CO3

2−] + [OH−] − [H+] (8) 

 Consequently, if a substance, component of the PRL is added, the PC does not change, 

i.e., adding or removing H2CO3* or CO2 (aq) does not affect the total alkalinity. 

 

At neutral pH values: 

 

CO2 + H2O → HCO3
− + H+ 

(9) 

At high pH values: 

 

CO2 + H2O → CO3
2− + 2H+ 

(10) 



 

19 

 

d. Agitation 

 

Agitation facilitates transport efficiency, preventing sedimentation of algae and its 

adhesion to the reactor walls, homogenized pH and ensures the distribution of gas and light. With 

proper agitation algae is subjected to rapid mixing cycles. 

 

e. Temperature 

 

Temperature is an important factor to consider in the growth of microalgae, since it 

influences the biosynthetic reaction rate coefficients (Richmond, 1986). The relationship 

between temperature and growth rate increases exponentially until the optimum temperature 

is reached. 

 

Although a variety of microalgae are able to develop in a wide temperature range, such 

as the Chlorella species that can grow between 5 and 42ᵒC, all exhibit a range outside of which 

their growth is inhibited or even die. 

 

Kitaya Y., et. al., (2009), investigated the effects of temperature on cellular multiplication 

of microalgae, where the results demonstrated that the highest multiplication rate was at 

temperature between 27-31ᵒC. 

Effect of CO2 on pH 

Carbon dioxide is an important gas in the medium, especially because it is essential for 

photosynthesis of algae and aquatic plants. The dissolved CO2, however, also affects the pH of 

the medium. Changes in the concentration of CO2 will cause the pH to vary. 

 

When carbon dioxide dissolves in the medium, largely reacts with water molecules to 

form carbonic acid. Carbonic acid lowers the pH of the medium. If no other factors involved, the 
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level of CO2 in the atmosphere and the level of CO2 dissolved in the medium, eventually reach an 

equilibrium where atmospheric CO2 dissolves as fast as dissolved CO2 escapes. When equilibrium 

is reached, the dissolved CO2 concentration remains constant. 

 

Equation 8 can be rewritten as: 

 

[𝐴𝑙𝑘] = 𝐶𝑇𝐶
∗ (𝛼1 + 2𝛼2) + [𝑂𝐻−] − [𝐻+] (11) 

 Where Ctc is the total concentration of carbonic species and α1, α2, [OH−] and [H+] are 

pH-dependent parameters. 

 

When CO2 is added, alkalinity remains constant and Ctc decreases due to algae 

consumption (for photosynthesis), therefore, pH increases. 

 

 
Figure 9. Log concentration diagram of a 10-3CO2 solution. SOURCE: www.chem.libretexts.org 

 

As shown in figure 9, for a pH range between 6 and 8 (pH range for algae growth), the 

carbonic species predominating is HCO3
-. 
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Effect of CO2 in algal growth 

Some green algae are reported to easily grow at very high CO2 concentration. The 

Chlorella species is commonly used for carbon sequestration. It is a fresh water, single cell 

organism containing chlorophyll a and b, and it has a high photosynthetic efficiency to convert 

CO2 to O2 (Singh, 2014). 

 

Chinnasamy (2009) studied the frowth of C. vulgaris under ambient (0.036%) and elevated 

(20%) CO2 partial pressures at different temperatures, and found an increase in biomass and 

chlorophyll concentration at 6% CO2. No growth was obtained at ambient or elevated CO2 levels. 

 

Bittencourt (2009) observed that the CO2 fixation rate of C. vulgaris is 251.64 mg/L/day 

and 86.68% biomass was produced. 

   

Chlorella   species   are   not limited by nitrogen or phosphorus but most likely by low 

dissolved organic carbon availability (Gilles, 2008). C. vulgaris could grow on autotrophic, 

mixotrophic and heterotrophic medium (Heredia, 2011). 

 

Chlorella species showed 46% mean CO2 fixation efficiency, at input CO2 concentration of 

10% (Ramanan, 2010). 

 

The effect of CO2 concentration on lipid metabolism was observed by Norihiro (2003), 

who found that higher unsaturation levels in low-CO2 cells promotes the desaturation of pre-

existing fatty acids, rather than up-regulation of desaturation activity. 

 

Therefore, it has been demonstrated that CO2 concentration plays an important role on 

algal growth, because there is no growth when CO2 level are too low or extremely high, while at 

intermediate level CO2 increases biomass generation and also has an important effect on lipids 

production. 
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Buffering capacity of water 

The buffering capacity of water is a measure of how well it resists changes in pH. 

 

In natural waters this buffering capacity is attributable mainly to the presence of carbonic 

acid species. Bases such as HCO3
-, CO3

2-, and OH- give the water the ability to resist changes in pH 

when a strong acid is added. Acids like H2CO3 (primarily CO2), HCO3
- and H3O+ provide buffering 

against the addition of strong bases. 

 

 
Figure 10. Buffer capacity of a natural water with total carbonic species concentration of 

0.01 mol/L. SOURCE:  Dr. Enrique La Motta’s ENCE 6313 class notes. 
 

Figure 10 clearly shows that in the pH range 6 - 8, buffer capacity is predominantly 

provided by bicarbonates.   

Recuperation, fixation and transformation of CO2 into biomass 

One of the largely considered methods for CO2 mitigation is the use of microalgae in 

biomass conversion in photo bioreactors (Fulke A. M., 2010). Microalgae, namely Cyanobacterial 
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(Cyanophyceae) and eukaryotic microalgae, green algae (Chlorophyta) and diatoms 

(Bacillariophyta) have been used to capture CO2 from three different sources: atmospheric CO2, 

CO2 emission from power plants and industrial processes, and from soluble carbonate (Fulke A. 

C., 2013). In this context, the transfer of CO2 from the atmosphere to the microalgae through 

photosynthesis is a fundamental route for CO2 capture (Fulke A. M., 2010). In contrast, CO2 

capture from flue gas emissions from fossil fuel based power plants achieves better biomass 

recovery (Bilanovic, 2009). However, only a small number of algae are tolerant to the high levels 

of SOx and NOx present in flue gases. Furthermore, these gases need to be cooled down prior to 

injection into the growth medium. Some microalgae species can assimilate CO2 from soluble 

carbonates such as Na2CO3 and NaHCO3 leading to high pH of the medium because of conversion 

of carbonate/bicarbonate alkalinity to hydroxyl alkalinity. Such a condition tends to control 

invasive species since only a very small number of algae can grow in such extreme conditions 

(Wang, 2008). 

 
CO2 fixation is a process resulting from the photosynthesis produced by plants, by which 

carbon dioxide is absorbed and transformed into organic material or biomass. 

 

 
Figure 11. Light-dependent reactions harness energy from the sun to produce ATP and NADPH. SOURCE: 

"The Calvin cycle: Figure 1," by OpenStax College, Concepts of Biology CC BY 4.0 

http://cnx.org/contents/s8Hh0oOc@9.10:TX-MUd_w@10/The-Calvin-Cycle
https://creativecommons.org/licenses/by/4.0/


 

24 

 

The Calvin Cycle is the most common method of carbon sequestration (Figure 11). This 

cycle, also known as the Calvin-Benson Cycle or " CO2 fixation phase of photosynthesis," consists 

of biological and chemical processes that take place in the stroma of chloroplasts of bodies 

performing photosynthesis. 

 

In photosynthesis, there is a phase known as light or photochemical, where the light 

energy is stored in simple and unstable organic molecules, which provide energy to make the 

process (ATP) and have the ability to donate electrons (reducing power) to another molecule as 

nicotinamide adenine dinucleotide phosphate or NADPH+H*. 

 

As explained by Rodriguez (2009), in the Calvin cycle, carbon dioxide inorganic molecules 

integrate and convert into simple organic molecules from which the remaining biochemical 

compounds making up living beings will be formed. This process can also, therefore, referred to 

as carbon assimilation. 

 

In the Calvin-Benson Cycle the first enzyme involved in fixing the CO2 from the 

atmosphere by attaching it to an organic molecule, ribulose-1-5-bisphosphate, is called or known 

as RuBisCo (Ribulose Bisphosphate Carboxilasa-Oxygenase). 

 

For a total of 6 molecules of CO2 fixed, the final stoichiometry of Calvin cycle can be 

summarized in the equation: 

 

6CO2 + 12NADPH + 18ATP → C6H12O6P + 12NADP + 18ADP + 17Pi (12) 

  

Where NADPH is nicotinamide adenine dinucleotide phosphate (in its reduced form), ATP 

is adenosine triphosphate, NADP is nicotinamide adenine dinucleotide phosphate (in its oxidized 

form), ADP is adenosine diphosphate and Pi is phosphate ion. 
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It would represent the formation of a sugar-phosphate molecule to 6 carbon atoms 

(hexose) from 6 CO2 molecules.  

 

The Calvin-Benson cycle has three phases (Figure 12): CO2 fixation, reduction and 

regeneration. 

 
In the first phase of CO2 fixation, "the Rubisco catalyzes the reaction between ribulose 

bisphosphate (a pentose, is a monosaccharide 5C, RuBP) with CO2, to create one molecule of 6 

carbons, which since is unstable ends by separate into two molecules containing 3 carbon atoms 

each, the phosphoglycerate (PGA). The importance of Rubisco is indicated by the fact that the 

most abundant enzyme in nature" (Rodriguez, 2009). 

 
In the second stage, ATP and NADPH are used to convert the 3-PGA molecules into 

molecules of a three-carbon sugar, glyceraldehyde-3-phosphate (G3P). This stage gets its name 

because NADPH donates electrons to, or reduces, a three-carbon intermediate to make G3P.  

 
In the las stage, some G3P molecules go to make glucose, while others must be recycled 

to regenerate the RuBP acceptor. Regeneration requires ATP and involves a complex network of 

reactions (Koning, 1994). 

 
Figure 12. Calvin-Benson cycle.  "The Calvin cycle: Figure 2," by OpenStax College, Concepts of Biology CC 

BY 4.0 

http://cnx.org/contents/s8Hh0oOc@9.10:TX-MUd_w@10/The-Calvin-Cycle
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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In order for one G3P to exit the cycle (and go towards glucose synthesis), three 

CO2 molecules must enter the cycle, providing three new atoms of fixed carbon. When 

three CO2 molecules enter the cycle, six G3P molecules are made. One exits the cycle and is used 

to make glucose, while the other five must be recycled to regenerate three molecules of the RuBP 

acceptor (OpenStax, 2013). 

Electroporation 

Several methods based on the use of electric fields, heating, or other means to free oil 

from algae, without having to harvest the algae, are being developed. The premise of those 

methods is to supply energy to an algal culture to rupture (lyse) the cells. Lipids in the cells then 

spontaneously separate from the biomass, rising to the surface while the biomass sinks. The 

anticipated result is a solid sediment, an aqueous layer, and a free oil layer so that simple, cost-

effective, and energy-efficient gravity separation recovers the oil. These systems offer the 

promise of substantial reduction in energy use and the elimination of solvent use (Biofuels, 2012). 

 

a. Basics and mechanisms  

 

Electroporation is a method of cell membrane permeabilization that is today widely used. 

It is alternative method for water sterilization and food preservation (Teissie, 2002), and it is a 

prerequisite for cell electrofusion (Zimmermann, 1982). The phenomenon of electroporation can 

be described as a dramatic increase in membrane permeability caused by externally applied short 

and intense electric pulses.  

 

Various theoretical models were developed to describe electroporation, among which the 

transient aqueous pore model is the most widely accepted. According to this model, hydrophilic 

pores are formed in the lipid bilayer of a cell membrane when it is exposed to external electric 

pulses. In the cell membrane, hydrophobic pores are formed by spontaneous thermal 

fluctuations of membrane lipids. In a cell exposed to an external electric field, the presence of an 

induced transmembrane potential provides the free energy necessary for structural 
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rearrangements of membrane phospholipids and thus enables hydrophilic pore formation 

(Neumann, 1989). 

 
Hydrophilic pores form only in a small fraction of the membrane exposed to electric field. 

Even though some attempts to visualize the changes in the membrane structure caused by 

electric pulse application were made (Stenger, 1986), the structural reorganization and creation 

of hydrophilic pores has so far not been directly observed (Rols, 2006). 

 

Cell membrane electroporation takes place because the cell membrane amplifies the 

applied external electric field, as its conductivity is several orders of magnitude lower than the 

conductivities of extra cellular medium and cell cytoplasm.  

 

The theoretical description of the transmembrane potential induced on a spherical cell 

exposed to electric field is known as Schwan’s equation (Neumann, 1989). The induced 

transmembrane potential for a spherical cell can be calculated as:  

 

UT1 = −1.5rEcosφ (13) 

 
Where r is the radius of the cell, E is the strength of applied electric field, and is the angle 

between the direction of the electric field and the selected point on the cell surface.  

 
The induced transmembrane potential and therefore maximum electroporation occur at 

the poles of the cell exposed to the electric field facing the electrodes (Figure 13).  

 

 
Figure 13. Cell in an electric field. (Electroporated area is presented with dashed line). SOURCE: 

(Kanduser, 2009) 
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Electroporation can be either reversible or irreversible, depending on parameters of the 

electric pulses. It is a threshold phenomenon: the induced transmembrane voltage imposed by 

external electric field should reach a critical value to trigger formation of transient aqueous pores 

in the cell membrane (Kinosita, 1979). The threshold membrane potential that needs to be 

reached in the cell membrane is between 200 mV and 1 V (Zimmermann, 1982). When the critical 

value is exceeded, irreversible electroporation takes place, resulting in cell membrane 

disintegration and loss of cell viability (Hamilton, 1967). 

 

b. Irreversible Electroporation  

 

Irreversible electroporation is the membrane rupture directly caused by electric pulse 

application (Weaver, 1996). Irreversible electroporation and Joule heating are an integral part of 

electrical injury, which affects especially nerve and muscle cells due to their size. Release of 

intracellular components from affected cells cause acute renal failure due to deposition of iron-

containing molecules such as myoglobin. Successful treatment of electroporated membranes 

with nontoxic polymers can reduce tissue injury produced by irreversible electroporation due to 

sealing of electroporated cell membranes (Lee R. D., 2003). Irreversible electroporation is the 

desired result when it is used for microbial deactivation in water and food treatment. The applied 

electric pulses should cause irreversible damage of treated cells (Teissie, 2002).  

 

For effective treatment, critical electric field parameters should be chosen properly. 

Typical pulse amplitude for microbial deactivation in water and liquid food is between 20 and 35 

kV/cm; pulse duration, from micro-to milliseconds, and pulse number varies from ten to hundred 

pulses (Zhang, 1995). The main problem is the choice of optimal treatment parameters that 

would require minimal power consumption and would effectively disintegrate treated cells 

(Lebovka, 2002).  
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Figure 14. Irreversible electroporation. SOURCE: www.intechopen.com 

 

Figure 14, shows that when external applied electric field reaches to the threshold values 

of the cell membrane, then cell membrane can permeabilized to deliver protein, small and large 

molecules inside the cell. When two single cells are closed to each other, then cell fusion can 

occur. Due to high electric field strength, which exceeds the critical value of cell membrane, 

irreversible electroporation can occur, resulting in cell membrane rapture (Santra, 2013). 

 

Conversion of algal biomass to biofuel 

 

One of the main concerns worldwide is searching for alternative or complementary 

sources to petroleum energy, given the forecast of depletion of existing oil sources in the planet 

and the problems arising from its use as greenhouse gas emissions, rising prices, and unstable 

markets for energy dependence on producing countries. 

 

Biomass, within the group of renewable energy source is most commonly being used in 

the world: 4.8 quadrillion Btu, which is around 5% of world energy consumption (data from 2015). 

Figure 15, shows that petroleum, consumed the highest energy percentage (36%), followed by 

natural gas (29%) and coal (16%). 
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Figure 15. US energy consumption by energy source, 2015. SOURCE: U.S. Energy Information 
Administration, Monthly Energy Review, Table 1.3 and 10.1 (April 2016), preliminary data. 

 

From the energy point of view, one of the advantages of biomass is the ability to meet all 

the energy needs of humanity, from transportation to the production of electricity, heat or raw 

materials for industry. Indeed, while most renewables only provide heat or electricity, through 

biomass can get a variety of gaseous solid or liquid fuels. 

 

Current research on microalgae is mainly focused on obtaining cultures with high lipid 

content for biodiesel production. There are, however, in addition to such conversion, other 

possible energy exploitation of microalgae, similar to the use of other currently existing biomass 

(forest residue, urban organic waste, etc.) by thermochemical conversion, chemical or 

biochemical (Garcia, 2010). 

 

Microalgae have great potential as a renewable source of biofuels, due to its rapid growth 

and lack of need for fertile land and fresh water for cultivation; these are two of the main 

disadvantages of the production of biofuels from terrestrial energy crops, such as rapeseed, 

palm, and others. Microalgae can double their mass several times a day and can yield more than 
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fifteen times the production of biofuel per hectare, which is obtained with traditional terrestrial 

energy crops. 

 

Unfortunately, at present biomass production from microalgae is more expensive than 

with other crops. The temperature must remain between 20 and 30°C. To minimize expense, 

biodiesel production must rely on freely available sunlight, despite daily and seasonal variations 

in light levels (Kin, 2010). 

 

A culture medium for algae must provide the inorganic elements that constitute the cells 

of algae. These key elements are: nitrogen, phosphorus, iron and silicon in some cases. 

 

The biomass of microalgae contains approximately 50% carbon by dry weight. Carbon 

dioxide must be supplied continuously during daylight hours. Biofuel production can use some of 

the emissions of carbon dioxide that is released by power plants burning fossil fuels (Rodriguez, 

2009). 

 

a. Lipids 

 

Lipids are one of the main components of the microalgae; depending on the species and 

growing conditions, lipids can be between 2-60% of the total dry matter as membrane 

components, storage products, metabolites and energy conservation (see table 1). 

 

Triglycerides and free fatty acids (a portion of total lipid content) can be converted to 

biodiesel. 
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Table 1. Oil content of some microalgae species. SOURCE: (Malgas, 2013) 

 
 

In order to efficiently produce biodiesel from algae, the choice of strains with high growth 

and high oil content is recommended (FAO, 2009). 

 

Lipid accumulation in algae usually occurs during periods of environmental stress, or what 

is often referred cultivation is under poor nutritional conditions. This means giving up something; 

rapid growth carries a low lipid content in optimal nutritional conditions, or conversely, a 

decrease in growth or zero growth leads to increased lipid under poor nutritional conditions 

(FAO, 2009). On the other hand, a peculiar result contributed by Rodolfi et al., (2009), showed an 

almost constant productivity and almost twice the lipid content up to 60%, after changing poor 

nutritional conditions in a pilot bioreactor abroad under natural light (Garcia, 2010). 
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b. Stages of biomass production 

 

The production of biodiesel from microalgae is a process that consists, broadly, of the 

elementary stages of production of biomass rich in lipids, recovery or harvesting of biomass, lipid 

extraction and transesterification. 

 

Water, nutrients, CO2 and light, are provided to cropping systems (open, closed or hybrid) 

for biomass production of microalgae rich in lipids. The supplied CO2 can come from the 

environment, or air, cropping systems can be coupled rich in this gas flows from industrial 

emissions, such as generating power plants (Garibay, 2009). 

 

Once the microalgae biomass is produced, beginning is given to the stage of harvest, 

whose purpose is to remove water and concentrate the microalgal cells for further processing. 

This stage, greatly influences the production costs of biodiesel, so selecting a collection technique 

efficient and low cost is paramount. Centrifugation, sedimentation, filtration and flocculation, 

either individually or in combination, are the procedures most common crop, whose application 

depends on the properties of the kind of microalgae cultivation (particular morphologies, 

presence of vacuoles soda, etc.), as some have features that facilitate collection (see table 2), 

(Lee, 2009). 

 

Table 2. Characteristics of Microalgae Harvesting Techniques. SOURCE: (Biofuels, 2012) 
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Once the algal biomass has been harvested, oil needs to be extracted. For processing 

methods that use whole cells, harvest might be all that is required for the next stage of fuel 

production. Biodiesel production is a technology that in most variants requires collection of the 

algal lipids for post processing.  

 

Extraction of oil from biomass has proven algal to be difficult, however, it can be 

performed with or without breaking the cells previously. The cell disruption may be performed 

by conventional method, such as using the French Press that uses high pressure, or by a method 

most modern as is electroporation, in which an electric field is applied to cells to achieve 

perforation in their cell wall (Biofuels, 2012). 

 

Oil extraction can be done with dried algae or with the wet paste from harvest. Drying is 

energy intensive, but yields a material that can be mechanically treated to open up access for oil 

extraction (Viswanathan, 2011). Once dried, oils are extracted (see figure 16 for a summary of 

the complete process).  

 

 
Figure 16. Process of obtaining oil from microalgae. SOURCE: (Malgas, 2013). 
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c. Economic Feasibility of microalgae biodiesel 

 

The feasibility of producing biodiesel from microalgae depends on its competitiveness 

with fossil fuels, so that production costs are decisive. The viability estimation of this technology 

is possible through an analog evaluation made by Chisti, in which the maximum algae biomass 

production cost is estimated.   

 

The calculation is based on the amount of biomass that provides an amount of energy 

equivalent to a barrel of oil (159 L). According to OPEC (OPEC Annual Report, 2008), in 2008 the 

average cost of a barrel of oil was US $94.45. In order to compete with this price, spending on 

obtaining microalgal biomass with a lipid content of 55% (g lipids/100 g biomass) must be less 

than US $323 per ton biomass (Chisti, 2008). Recently, microalgal biomass production companies 

have reported production costs of US $370 per ton of biomass or lower, hence the current 

technology could be economically viable (Schenk, 2008). However, fluctuations in the price of oil 

should be considered because in the course of 2009, the cost of a barrel has significantly 

decreased (OPEC Basket Price, 2008), a situation that demands the reduction of production costs 

of microalgal biomass about one half of the value previously estimated for 2008 (US $142 per ton 

of biomass) (Garibay, 2009). 

 

The current price of WTI crude oil as of October 27, 2016 is $49.89 per barrel, which made 

the production of biodiesel from microalgae unfeasible, unless the following steps are 

implemented: 

 

- Select the best microalgae strains, in terms of maximum lipid content and maximum 

productivity. 

- Establish appropriate cultivation strategies that allows maximum lipids productivity and 

algal biomass. 

- Achieve the use of wastewater, avoiding contamination and toxic levels of concentration. 
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- Select the most suitable type of reactor or combination of reactors, which allow maximum 

biomass production at minimum cost. 

- Minimize or eliminate the collection costs. 

- Achieve lipid extraction and subsequent conversion to biodiesel by minimum cost 

strategies. 

 

Wastewater treatment using microphytes and macrophytes 

 

Wastewater with high concentrations of pollutants, such as nitrogen, phosphorus and 

heavy metals, depending on the NPDES discharge permit, must be removed before they are 

discharged to public water, in order to avoid problems that can lead to degradation of 

environmental quality. Currently, there are effective processes for removing these contaminants 

from wastewater, but these technological processes have a number of disadvantages of its high 

cost and complexity of operation, the generation of waste (sludge) or high energy consumption. 

 

Bioremediation is one of the techniques used for the purification of waste water, in which 

living organisms from any realm are used. Phytodepuration is the use of green plants 

(macrophytes or microphyte) for purifying liquids and/or gaseous effluents. 

 

Phytodepuration allows the simultaneous removal of pollutants from wastewater, for 

plants can be nutrients, and CO2 from the atmosphere, using metabolism green plants and sun 

energy. As a result of metabolism, pronounced increased in biomass is produced, depending on 

the plant species that is used as biofilter, and existing conditions of sunlight, temperature and 

concentrations of nutrients in the wastewater. 

 

As an advantage over other techniques of wastewater treatment, constructed wetlands 

can take advantage of the ability of green plants to metabolize pollutants with the help of solar 

energy. Therefore, the energy consumed for depurating is free. 



 

37 

 

 Another advantage of phytodepuration is the fact that plants need atmospheric CO2 to 

absorb water pollutants, setting both in its tissues biomass and releasing oxygen (O2). Therefore, 

implementing a phytodepuration system not only polluted water is purified, but also helps to 

mitigate the greenhouse effect (Malgas, 2013). 

 

Another type of wastewater treatment and algae production systems, are the Advanced 

Integrated Wastewater Pond Systems (AIWPS), which are potentially feasible for application in 

the developing world (Oswald W. J., 1990). 

 

Although AIWPS may appear to be an adapted traditional pond system, each AIWPS 

facility is uniquely designed and incorporates a series of low-cost ponds or earthwork reactors. 

Depending on specific effluent characteristics, regulatory requirements, human resources, and 

local climatic conditions, a typical AIWPS facility consists of at least four ponds in series (Figure 

17): 

 

- An advanced facultative pond with fermentations pits. 

- Algal high rate pond where photosynthetic oxygenation, oxidation, and nutrient 

assimilation occurs (with pedal wheel). 

- Algal settling ponds. 

- A maturation pond where final effluent storage and further natural disinfection occurs. 

 

AIWPS facilities are designed to minimize the accumulation of sludge and to maximize the 

production of oxygen through algal photosynthesis. Algal biomass is produced and can be used 

as a nitrogen-rich fertilizer, or as protein-rich animal or fish feed (for further cultivation of high 

protein foodstuffs). 

 

They are cost-effective, require little maintenance and have generally performed well in 

terms of BOD5 and solids removal. Moreover, AIWPS require similar land area to conventional 

lagoons, virtually eliminate sludge disposal, produce less odor, and may be adapted to energy 
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(methane) recovery. However, AIWPS cost about $15,000 to set up, and $100 a year to power 

the paddle wheel and the algal settling pond needs to be desludged once to twice a year. In 

addition, note that this type of technology is not energy cost free. 

 

 
Figure 17. AIWSP system. SOURCE: www.stabilizationponds.sdsu.edu 

 

Other studies have been made regarding the use of algae to treat wastewater, one of 

them is the study of Van Den Hende (2014), in which microalgal bacterial flocs in sequencing 

batch reactors (MaB-floc SBRs) were used to represent a novel approach to wastewater 

treatment. In that approach, mechanical aeration was replaced by photosynthetic aeration and 

MaB-floc settling separated the treated wastewater from the produced biomass. As a result, a 

high MaB-floc production was obtained, ranging from 0.14 to 0.26 g total suspended solids 

Lreactor-1 day-1.  

 

A major advantage of MaB-flocs was the harvesting via a filter press with a large pore size 

of 200 μm, resulting in MaB-floc recoveries of 79 – 99% and cakes containing 12–21% dry matter. 

The results obtained may contribute to evolving MaB-floc SBRs as a valuable remediation 

strategy, especially for aquaculture and food-processing wastewaters. 
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Another study made by Dalrymple (2013), showed that microalgae feedstock production 

can be integrated with wastewater and industrial sources of carbon dioxide. This study analyzed 

algae growth on wastewater and algal production based on anaerobic digestion. 

 

It was demonstrated that a mixed culture of wild algae species (Scenedesmus sp. and 

Chlorella sp.) could successfully be grown on wastewater nutrients and potentially scaled to 

commercial production.  

 

An analysis was performed to determine the mass of algae that can be supported by the 

wastewater nutrients (mainly nitrogen and phosphorous) available. In that analysis, nutrients and 

light were assumed to be limited, while CO2 was abundantly available. The results obtained 

suggested that an excess of 71 metric tons per hectare per year of algal biomass can be produced. 

Two energy production options were considered; liquid biofuels from feedstock with high lipid 

content, and biogas generation from anaerobic digestion of algae biomass. The total potential oil 

volume was determined to be approximately 337,500 gallons per year, and the potential biogas 

production was estimated to be above 415,000 kg/yr. 

 

Current production methods for liquid biofuel production from microalgae produce 

approximately 60 – 70% residual biomass that is currently a byproduct. Anaerobic digestion 

provides biogas, but it can also provide essential nutrient recovery from lipid extracted 

microalgae biomass. The biogas produced from the anaerobic digestion process can be used to 

generate on site electrical power or thermal heat to offset biomass processing and extraction 

processes. When both of these processes are integrated and operated simultaneously, the 

benefits to microalgae biofuel production and wastewater treatment derived energy production 

are increased significantly (Ward, 2014). However, a pretreatment to break the algae cell wall 

has to be done in order get a high production of biogas and therefore of energy (Golueke, 1956).   
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Chapter III 

Laboratory Equipment and Experimental Set-up 

 

 

Laboratory equipment 

a. Shaking water bath 

 

The water bath used in this research was purchased from General Laboratory Supply, Inc. 

of Pasadena, Texas. This equipment has a capacity of 18 liters and includes a universal tray to 

hold up to 4, 1000 ml flasks and a polycarbonate lid that limits evaporation and conserves energy 

(Figure 18). 

 
Figure 18. Shaking water bath. 

 
The dimensions of the water bath are 420 x 235 mm, the temperature range is ambient 

+5 to 99ºC and the linear shaking speed range from 20 to 200 rpm (depending on load). Thus, it 

is possible to change the temperature and the shaking speed. 
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For the first part of the research, two types of 1-L flask and 1-L bottle were used. (Figure 

19a) For the second part, a 5-gallon bottle was used. (Figure 19b) Each flask and bottle had a 3-

hole rubber stopper for the connections between them, the air supply and the CO2. 

 

 
Figure 19. Flasks used in the experiments. (a) Experiment 1, (b) Experiment 2. 

 

The flasks and bottles were placed inside the tray (Figure 20) to stand firm and keep 

constant temperature.  

 

 
Figure 20. Flask arrangement (first part). 
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b. Electrochemical batch reactor 

 

The reactor used in this research was purchased from Ecolotron Inc. of Seabrook, TX. Its 

design is property of Gavrel et al. under US Patent No.: 7087176 B2, registered on August 8th, 

2006. This unit includes a plate and frame design and can be tightly closed mechanically. The 

spacer plates, which are sealed and non-electrical, completely enclose and isolate all fluids, 

electrical contacts and electrodes within the reactor structure. This reactor design has the 

advantage of being versatile enough to allow for modifications of its original configuration. Thus, 

it is possible to vary the number of cells, electrode material, dimensions and even the positioning 

of the plates using the same frame (Rincon, 2013). 

 

 
Figure 21. Electrochemical batch reactor. 

 

For this research, spacer plates with insulator seal on both sides and titanium electrodes 

coated with iridium oxide were used. Dimensions are shown in Figure 22. 
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Figure 22. Electrode and spacer dimensions. SOURCE: (Rincon, 2013). 

 

The electrodes were placed inside the reactor horizontally,  parallel and with their 

openings opposite to each other as shown in figure 23. 

 

 
Figure 23. Cell arrangement. SOURCE: (Rincon, 2013). 
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The reactor was modified by Luis De Grau in (2015), so all the gases (oxygen and 

hydrogen) could freely escape. The modification consisted in perforating a hole in one of the 

spacer plates (Figure 24). Before this modification, gases accumulated inside the reactor, 

occupying a significant volume, therefore reducing the amount of sample being treated and 

causing the flow that exited the reactor to be variable. With this modification, this problem was 

solved.  

 

 
Figure 24. Opening for gas exit. SOURCE: (De Grau, 2015) 

 

Laboratory methods 

 

A detailed explanation of each of the following methods is presented in Appendix A. 

 

a. Medium preparation for algae growth 

 

10 ml of Bristol’s medium were added to the beaker and then was filled with deionized 

water until 1-L mark. After that, 2 pinches of soil, 20 mg of Calcium Carbonate and 250 mg of 

Sodium Bicarbonate were added and mixed until homogeneous mix was achieved (see appendix 

A for details). 
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b. pH 

 

pH was measured using Thermo Scientific Orion Star Plus Meter and Thermo Orion pH 

meter.  

 

Each pH meter was calibrated (using 4, 7 and 10 Acros buffer solutions), rinsed with 

deionized water, dried and placed into a well-mixed sample to take measurements (see appendix 

A for details). 

 

c. Conductivity 

 

Conductivity was measured using Thermo Scientific Orion Star Plus Meter. 

 

Orion Star Plus meter was calibrated (using 3163 and 3161 YSI calibrator solutions), rinsed 

with deionized water, dried and placed into a well-mixed sample to take measurements (see 

appendix A for details). 

 

d. Alkalinity 

 

Alkalinity was measured by titrating the sample with sulfuric acid following HACH method 

8221 (see appendix A for details). 

 

e. Calcium 

 

Calcium was measured by titrating the sample with EDTA following HACH method 8222 

(see appendix A for details). 
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f. Turbidity 

 

Turbidity was measured using HF Scientific Micro 100 turbidimeter. 

 

Turbidimeter was calibrated (using 1000, 10 and 0.2 NTU calibration solutions). Each 

sample was poured into a clean cuvette three times to rinse it. After this, the cuvette was filled 

with the sample, covered with a cap and dried, then was placed in the optical well and indexed 

to the lowest reading (see appendix A for details). 

 

g. Chlorophyll A 

 

Chlorophyll A was measured using Eppendorf centrifuge 5810 R and DR 5000 HACH 

spectrophotometer, following the Wegmann-Metzner method using 90% acetone (see appendix 

A for details). 

 

h. Cell wall break 

 

For cell wall break experiment, Ecolotron reactor, BK Precision High Current DC Regulated 

Power Supply (Model 1791), OMANO OMFL400 Fluorescence Compound Microscope, Jenoptik 

ProgRes CapturePro 2.5 Camera and titanium electrodes coated with iridium oxide, were used. 

Spacers and electrodes were placed in such a way that the reactor had one cell with a volume of 

285 ml. 

 

The power supply was connected to each electrode and the experiment was performed 

by applying constant voltage and constant current to achieve algae cell wall annihilation (see 

appendix A for details). 

 



 

47 

 

Experiment design 

The experimental phase of this research was conducted at The University of New Orleans, 

in the Center for Energy Resource Management (CERM), New Orleans, Louisiana. The algae used 

in this research was Chlorella Vulgaris Size 100, which was purchased from Flinn Scientific, Inc.  

 

 
Figure 25. Chlorella Vulgaris culture. 

 
The algae (Figure 25) were cultured in Bristol’s medium, whose concentration in g/L is: 

Calcium chloride, CaCl2˙2H2O, 1 g, Sodium chloride, NaCl, 1 g, Magnesium sulfate, MgSO4 ˙7H2O, 

3 g, Sodium nitrate, NaNO3, 10 g, Potassium phosphate, monobasic, KH2PO4, 3 g, Potassium 

phosphate, dibasic, K2HPO4, 3 g, and other solutions as: Pringsheim’s soil-water, 40 mL, Iron(III) 

chloride solution, 1%, < 1 mL. However, since the medium was corrosive for the algae to grow, 

20 mg/L of Calcium carbonate and 250 mg/L of Sodium bicarbonate were added to get an 

alkalinity around 200 mg/L as CaCO3. This amount of chemicals needed were calculated using 

RTW4 (With corrected Ks, modified 7-21-16) spreadsheet. 

 

a. Experiment 1: Algae cultivation under a range of CO2 concentrations from 0 to 20%. 

 

10 ml of algae were taken from the culture using Pasteur pipets into a 1-L flasks (and 

bottles) containing 500 ml of Bristol’s medium. Flasks were fitted with 3-hole rubber stoppers for 
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connecting the air supply, the different percentages of CO2 (0, 5, 10, 15, 20) and interconnect 

with the other flasks to prevent evaporation and ensure the same air flow was supplied to each 

flask. Cultures were grown on the water bath at temperatures of 25 ± 1ºC with an illumination 

period of 16:8 (Light/Dark) using Hgrope 5W Blue-Red Light LED Grow Plant Lamp. The agitation 

provided by the bubbles to the culture ensures continuous mixing that under normal conditions 

prevents settling of the culture suspension to the flask bottom and cell adherence to the flask 

walls.  

 

The air flow supplied was 10 L/min, from that, each CO2 percentage and flow rate was as 

follows:  

Table 3. CO2 percentage and flow rate.  

Flaks number Air CO2 % CO2  

(L/min) (L/sec) (L/min) (L/sec) 

0 10 0.17 0 0 0 

1 10 0.17 5 0.5 0.0083 

2 10 0.17 10 1.0 0.017 

3 10 0.17 15 1.5 0.025 

4 10 0.17 20 2.0 0.033 
 

 It is important to highlight, that since the percentage of CO2 in the air is 0.002%, it was 

neglected in the calculations. 

 

The CO2 and air flow rate, were measured every day using OMEGA 5 L/min and 25 L/min 

air flow rotameters, to ensure that the correct flow was going to each flask. Since the rotameters 

were only for air flow, the following formula was used to correct the lecture for CO2 

measurements: 

 

SCFMco2
=

SCFMAir

√SG ∗ To ∗ 14.7
1.0 ∗ 530 ∗ Po

 
(14) 
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Where: 

 
SG = Specific gravity CO2 = 1.5189 

To = Temperature at operating conditions, Rankine = 527.67ᵒR 

Po = Pressure at operating conditions, psia = 14.7 psia 

 

Therefore, the following readings (table 4) were used for each flask to get the desire CO2 

flow rate: 

 
Table 4. Readings using air flow rotameter to get desired CO2 flow rate. 

CO2 % Air reading  CO2  

(L/min) (L/sec) (L/min) (L/sec) 

0 0 0 0 0 

5 0.6 0.01 0.5 0.0083 

10 1.2 0.02 1.0 0.017 

15 1.8 0.03 1.5 0.025 

20 2.4 0.04 2.0 0.033 
 

In this experiment, temperature, conductivity, pH and turbidity, were measured daily 

during 40 days.  The main objective of this first experiment was to determine the maximum CO2 

concentration that can be added to an algal suspension (within the emission range from industrial 

plants) and the optimum pH and alkalinity to maximize algal biomass. 

 

 
Figure 26. Experiment 1 set up, showing the connections between the flasks, air supply and CO2 cylinder. 
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b. Experiment 2: Growth of a large volume of algae using the optimum CO2 concentration 

found in experiment 1 (15%). 

 

Once the optimum operating conditions were defined (temperature of 25ᵒC, light/dark 

period of 16:8 hours, air flow rate of 10 L/min and 15% CO2), the culture that showed better 

growth was poured into a 19 L (5-gallon) bottle containing 10 L of Bristol’s medium (Figure 27). 

The same procedure as in experiment 1 was followed for four weeks, to get a large amount of 

culture in preparation for the electroporation treatment. 

 

 
Figure 27. Experiment 2 set up, showing the bottle inside the water bath and the flasks interconnected to 

prevent evaporation. 

 

Algae growth was determined by measuring turbidity values every day. 

 

To prevent evaporation in both experiments, a 2-L flask and 3, 250 ml flasks filled with 

water were connected in between the air supply and the reactors.  
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c. Experiment 3: Irreversible electroporation of algae cell wall. 

Once a significant amount of algae was produced, the electroporation experiment began. 

For that, samples from the 15% flask were taken using pipettes and poured into the reactor using 

a funnel. Effluent was collected in a tray placed under the reactor after releasing the hydraulic 

jack. 

 

Inside the reactor a total of two electrodes and two spacers were used. The electrodes 

were connected with DC current to BK Precision High Current DC Regulated Power Supply, Model 

1791. Once the electric charge was applied to the electrodes, the entire volume had to be 

discarded after sampling. Consequently, the reactor volume (285 ml) was small in order to save 

algal culture. Figure 28 shows that the reactor had one cell. 

 

 
Figure 28. One cell batch reactor. 
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Chapter IV 

Results and Data Analysis 

 

 

The algae culture was grown for six weeks. Temperature, pH, conductivity and turbidity 

were measured every day and alkalinity and calcium were measured at the beginning and end of 

the experiment. Three experiments are presented in this chapter: in experiment 1, algae 

suspension was grown under established parameters of temperature, light period, alkalinity, air 

flow rate and different CO2 concentrations; in experiment 2, once the optimal growth parameters 

were defined, a large algae volume was grown; and finally, in experiment 3, electroporation 

treatment using an EC batch reactor connected to DC current was done in order to break the cell 

membrane and determine the effective parameters to achieve a complete breaking.   

Experiment 1 

a. Turbidity 

 
The information presented in Table 5 corresponds to the turbidity (main factor in 

determining the rate of growth of algae) for each CO2 percentage. 

 
Table 5. Turbidity results. 

 Turbidity 

Days 
Flask 0 

(0% CO2) 
Flask 1 

(5% CO2) 
Flask 2 

(10% CO2 

Flask 3 
(15% 
CO2) 

Flask 4 
(20% CO2) 

0 5.4 -  - -  -  

1 3.11  - -  -  -  

2 5.22 3.19 3.87 3.58 3.94 

3 6.09 2.61 3.36 4.4 4.49 

4 8.57 6.02 6.05 6.49 6.5 

5 11.5 5.61 4.64 10.2 6.98 

6 15.6 15.4 5.05 12.8 8.55 

7 22.4 8.29 5.75 17.3 13.4 

8 27.4 7.15 7.13 23.3 29.4 
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(Table 5 continued) 

Days 
Flask 0 

(0% CO2) 
Flask 1 

(5% CO2) 
Flask 2 

(10% CO2 
Flask 3 

(15% CO2) 
Flask 4 

(20% CO2) 

9 46.4 10.4 8.6 27.1 46.1 

10 41.6 11.5 8.75 29.6 23.3 

11 39 16.9 13.9 70.7 80.6 

12 33.2 22 19.2 70.8 64.6 

13 26.8 36.9 35 75.2 83 

14 34.7 37.7 44.5 82.2 48.6 

15 12.1 94 48.2 91.9 66.4 

16 20.7 40 39.4 92.3 82.2 

17 12.6 50.3 37.3 103 73.3 

18 11.7 62.5 43.8 125 92 

19 19.4 51.1 46 119 96.1 

20 10.1 58.7 56.7 118 69.1 

21 6.79 53.7 44.8 148 81.7 

22 14.2 46.7 35.4 174 90.2 

23 17.1 54.2 43.5 199 106 

24 11.1 55.8 41.1 192 131 

25 8.85 67.8 37.6 220 124 

26 6.83 49.1 36.5 219 164 

27 13.9 52.1 36.1 215 176 

28 15.1 61.6 46.8 294 233 

29 12.8 83.6 57.4 294 291 

30 18 33.2 30.1 224 164 

31  - 69.1 38.4 258 256 

32  - 75.6 49.5 304 251 

33  - 80.9 36.5 319 128 

34  - 57.8 45.3 241 262 

35  - 85.1 52 282 362 

36  - 83 38.9 241 236 

37  - 97.1 45.3 260 273 

38  - 128 57.5 305 320 

39  - 95.3 44.3 186 343 

40  - 125 52 195 279 
 (NOTE: 0% CO2 experiment was stopped at 30 days because algae were not growing). 

 

Total suspended solids (TSS) are particles that are larger than 2 microns. Most suspended 

solids are made up of inorganic materials, though bacteria and algae also contribute to the total 

solids concentration (Kentucky Water Watch). 
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Turbidity measurements are often used to estimated total suspended solids. The turbidity 

is based on the amount of light scattered by particles in the water column. The more particles 

that are present, the more light that will be scattered (Perlman, 2014). 

 

When turbidity is low, more light can penetrate through the water column. This creates 

optimal conditions for algal growth. In return, growing algae create a turbid environment (CEES, 

n.d.). 

 

Therefore, as algae are growing turbidity increases. Consequently, as shown in Table 5, 

turbidity in flask 3 increased with time, indicating progressive algae culture growth. 

 

Also, to determine the maximum CO2 concentration that can be added to the algal 

suspension within the emission range from thermoelectric plants, a non-linear regression 

analysis to build the logistic growth curve for each CO2 percentage was made, using turbidity 

values and equations 3 to 6. 

 
The following results were obtained: 

 
- Flask 0 (0% CO2) 

 
Figure 29. Non-linear regression plot for flask 0. 
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Although the experiment lasted 40 days, only the first 9 days were taken into account for 

the analysis, because a perfect fit to exponential growth curve was observed during this period. 

However, this gradual increase in turbidity was due to the presence of soil from the culture 

medium and not from algae growth. As shown in Figure 29, no growth was observed during the 

experiment, the sample color remained the same from start to end.  

 

 
Figure 30. Algae growth from start to end for flask 0.  

- Flask 1 (5% CO2) 

 
Figure 31. Non-linear regression plot for flask 1. 
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As shown in Figure 31, for 5% CO2, the values obtained led to a perfect fit to s-shaped 

logistic growth curve using the same model. However, it is noted that the culture reached 

stationary phase, i.e., the maximum concentration possible was obtained at a very low value of 

57.2 μg/L, even though the rate of growth was moderately slow. 

 

 
Figure 32. Algae growth from start to end for flask 1. 

 

 
Figure 33. Clumps in the bottom of flask 1 for days 21 and 40. 
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Figure 32 shows the change in color (due to chlorophyll and algae concentration) from 

start to end of flask 1. Figure 33, shows that for days 21 and 40, a lot of clumps were observed at 

the bottom of flask 1, which perfectly adapts to the beginning and end of the stationary phase 

because algae death is increasing during this time. 

 

- Flask 2 (10% CO2) 

 
Figure 34. Non-linear regression plot for flask 2. 

 

The logistic growth curve for flask 2 shows a prolonged stationary phase at very low Xmax 
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Figure 35. Algae growth from start to end for flask 2. 

 

 
Figure 36. Clumps in the bottom of flask 2 for days 16 and 30. 

 

Figure 35 shows the change in color, due to chlorophyll and algae concentration, from 

start to end of flask 2. Figure 36, shows that for days 16 and 30, a low amount of clumps was 

observed at the bottom of flask 2, which adapts to the beginning and end of the stationary phase. 

The change in color is due to the lack of chlorophyll, due to algae death. 
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The light green color present in flasks 1 and 2, was due to low algae growth, therefore, 

low chlorophyll concentration. However, based on the results obtained, adding 5% CO2 leads to 

better final concentration results than adding 10% CO2. 

 
- Flask 3 (15% CO2) 

 
Figure 37. Non-linear regression plot for flask 3. 

 
Figure 37, shows a fairly close fit in the first phase of growth, this means that algae 

adapted perfectly to the medium and grow gradually as time passes. The exponential phase in 

this sample had a duration of approximately 18 days, in which a significant increase in algal 

biomass was observed. 

 
Although the Xmax value under this CO2 percentage was high (295 μg/L) and its rate of 

growth was slow, it is observed that the curve was starting to reach its stationary phase, that is, 

under present conditions of the medium volume, no significant growth will be observed. 

 
As shown in figure 38, an important difference from start to end was observed in flask 3, 

since it reached a dark green color, which represents high chlorophyll concentration. 
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Figure 38. Algae growth from start to end for flask 3. 

 

- Flask 4 (20% CO2) 

 
Figure 39. Non-linear regression plot for flask 4. 

 
As shown in figure 39, only two phases of growth can be observed, lag and exponential 

phase. In the first phase, a duration of approximately 20 days was observed, indicating that it was 
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difficult for the algae to adapt to the environment under this CO2 concentration; and in the 

second phase, it is observed that although it took more time and had the highest Xmax (402 

μg/L), algae could continue to grow, as the stationary phase had not been yet reached at the end 

of this experiment. 

 
Figure 40 shows the change in color from beginning to end of flask 4, due to increasing 

chlorophyll and algae concentration. 

 

 
Figure 40. Algae growth from start to end for flask 4. 

 
Consequently, from Figures 29 to 40, it can be noted that, for 0% CO2, there was not 

growth; for 5 and 10% CO2, the maximum concentration was reached very fast; for 15% the algae 

concentration increased at a high paced and for 20% CO2 both adaptation and growth takes 

longer. Therefore, the maximum CO2 concentration that can be added to a Chlorella vulgaris 

suspension, based on the emission range from thermoelectric plants, was 20%. 

 

b. pH 

 
In order to determine the pH of the culture, an average of the activity of the hydrogen ion 

was calculated using the pH values of flask 3 (culture that showed better growth) and equation 

15. 
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{H+} = 10−pH (15) 

 

Once the average was calculated, the pH was obtained using equation 16. 

 

pH = log
1

{H+
Avg}

 
(16) 

 

The pH of flask 3 was 6.64. 

c. Alkalinity measurements 

 
The alkalinity of wastewater at Marrero, LA, wastewater treatment plant, is between 100 

to 200 mg/L CaCO3  (De Grau, 2015). Since the initial alkalinity of the algal growth medium was 

10 mg/L CaCO3, it was necessary to add of 20 mg/L of calcium carbonate and 250 mg/L sodium 

bicarbonate, in order to increase alkalinity and to provide sufficient buffering capacity. 

 

The amounts of chemicals to be added were calculated using the spreadsheet RTW4, 

using the following measured initial values: 

 

 TDS, mg/L = 403.84 

 Temperature, ᵒC = 18.2 

 pH = 6.3 

 Alk, mg/L CaCO3 = 10 

 Ca, mg/L CaCO3 = 6 

 

The results obtained after the addition of chemicals were: 

 

 Alk, mg/L CaCO3 = 180 

 Precipitation potential, mg/L = -0.63 

 Langelier index = -0.03 
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Alkalinity was measured at the end of experiment 1. Results of titration with sulfuric acid 
and EDTA are: 

 
Table 6. Alkalinity results. 

%CO2 
Volume spent 
(Sulfuric acid) 

Volume spent (EDTA) 
Alk  

(mg/L CaCO3) 
5 25.9 4.3 647.5 

10 12.6 2.5 315 
15 24.7 2.5 617.5 
20 38 5.1 950 

 

As shown in table 6, alkalinity increased significantly for each CO2 percentage. Therefore, 

in order to determine what was the factor that produced this change, an alkalinity test to the 

medium was performed at different stages of preparation, obtaining the following results: 

 

Table 7. Alkalinity trial. 

Type of medium 
No soil or 
chemicals 

No soil with 
chemicals 

With soil and 
chemicals 

Alk (mg/L CaCO3) 13.3 130 163.3 

 

From table 7, it can be seen that, as stated before, the addition of calcium carbonate and 

sodium bicarbonate significantly increased alkalinity, however, the small amounts of soil added, 

as recommended by Flinn Scientific Inc., also increased alkalinity. This is because these chemicals 

and the soil components, are not part of the proton reference level, and consequently, they 

produce a change in the total alkalinity. 

 

Such a large increase is because the medium was replaced constantly throughout the 

experiment, to ensure that it was kept fresh and that algae never had to compete for resources 

(Wood, 2005). 

 

d. Chlorophyll A measurements 

 
Using the Wegmann-Metzner method for chlorophyll determination (Eq. 17), a volume of 

culture of 0.005 L and a light path length of 1 cm, the following results were obtained: 
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Table 8. Chlorophyll concentration. 

%CO2 λ663 λ644 λ750 
Volume of 

extract (ml) 

Relative 
concentration of 

Chlorophyll A 

Pigment concentration 
per volume of culture 

(μg/L = mg/m3) 

5 0.177 0.058 0.002 3 1.751092 1050.6552 

10 0.223 0.14 0.071 3 1.502258 901.3548 

15 1.015 0.427 0.085 3 9.265044 5559.0264 

20 0.863 0.303 0.003 3 8.5826 5149.56 
 

As shown in table 8, flask 3 had the highest chlorophyll concentration at the end of the 

experiment, 5559.03 μg/L, which explains the dark green color obtained at the end of the 

experiment. This value adapts to the conclusion made by Chinnasamy in 2009, which state: “An 

increment in CO2 levels greater than 6% decreases the concentration of chlorophyll and biomass 

to less than 11 and 210 μg/ml, respectively”. 

 

e. Correlation between turbidity and chlorophyll a concentration  

 

 
Figure 41. Correlation between turbidity and chlorophyll a concentration. 
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As shown in figure 41, the curve is not perfectly suited to the experimental values as R2 is 

0.75. However, from a statistical point of view there is a dependency between turbidity and 

chlorophyll concentration, therefore, the maximum concentration values obtained in the non-

linear regression analysis can be expressed in terms of chlorophyll concentration, i.e., μg/L. 

 

Experiment 2 

 
In order to obtain a large volume of culture, flask 3 was chosen to further develop of more 

algae (under same conditions), because under this CO2 percentage (15%), algae best adapted to 

the medium and had a high chlorophyll and biomass concentration. It is important to highlight 

that fuel-burning electric powers plants, emit only between 3 and 15% CO2, which means that 

100% of the emissions from such a source would be taken advantage of by algae growth, with 

the subsequent benefit of energy conversion. This would result in a decrease in the 

concentrations of CO2 in the atmosphere, which means a significant reduction of global warming. 

 

Table 9 shows the exhaust gases composition by volume (%v/v) from different fuel-

burning electric powers plants; from this table it can be seen that CO2 emissions ranges from 3% 

(gas fired) to 15% (coal firing). 

 

Table 9. Exhaust gases composition by volume (%v/v). SOURCE: (The k2p blog, 2013) www.ktwop.com 
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Experiment 3 

 

The cell wall of Chlorella Vulgaris microalgae, is considered one of the strongest, since it 

is able to coexist in places with high concentrations of pesticides, toxins and heavy metals in 

addition to resist fermentation processes. 

 

For energy production through algae biomass digestion, one of the most feasible process 

is anaerobic digestion, as this produces biogas from wet stream and requires less energy than 

thermochemical processes. In addition to this, the biogas produced contains between 55 and 

75% methane, which can be burned to produce heat and/or electricity. However, to carry out 

this process, it is necessary an effective pretreatment to break the algae cell walls so the biomass 

is made available during digestion. The premise of such treatment is to supply energy to an algal 

culture to rupture (lyse) the cells. 

 

a. Electroporation experiment using constant voltage 

 

A constant voltage of 30, 47.5 and 65V, was applied to the algae sample during different 

detention times; the following results were obtained: 

 

Table 10. Constant voltage mode results. 

Constant voltage mode 

Voltage 
(Volts) 

Time 
Current 
(Amp) 

Conductivity 
(μS/cm) 

Cell wall 

30 1 min 1.5 1557 
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(Table 10 continued) 

Voltage 
(Volts) 

Time 
Current 
(Amp) 

Conductivity 
(μS/cm) 

Cell wall 

30 2 min 1.5 1559 

 

30 5 min 1.7 1559 

 

 

47.5 1 min 3 1564 
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(Table 10 continued) 

Voltage 
(Volts) 

Time 
Current 
(Amp) 

Conductivity 
(μS/cm) 

Cell wall 

47.5 3 min 3.3 1564 

 

47.5 5 min 3.6 1554 

 

 

65 
30 

secs 
3.9 1557 
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(Table 10 continued) 

Voltage 
(Volts) 

Time 
Current 
(Amp) 

Conductivity 
(μS/cm) 

Cell wall 

65 
1 

min 
3.9 1562 

 

65 
2 

min 
5 1560 

 

65 
3 

min 
5.1 1560 

 

65 
4 

min 
7.6 1560 

 

65 
5 

min 
8.9 1560 
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From Table 10, it can be seen that for 30 volts and a short detention time, of 1 to 2 

minutes, the cell wall remained intact, however, when the detention time increased to try to 

achieve a rupture, there was a small break only in some cell’s membranes. 

 

The same applies when the voltage increased to 47.5 volts, when detention time reached 

3 minutes, a small opening in the cell wall was observed, however, for 5 minutes, most of the 

cells remained intact, except a few, where the wall was completely broken. 

 

When a voltage of 65 volts was applied to the sample, it was observed that the wall 

remained intact for the first 30 seconds, however, for a detention time of 1 minute, a complete 

break was observed, which increased with detention time. After 5 minutes, a complete 

destruction of the cell wall in conjunction with the spread of protoplasm was observed. 

 

b. Electroporation using constant current 

 

A constant current of 5.4 and 10.8 Amp, was applied to the algae sample during different 

detention times; the following results were obtained: 

 

Table 11. Constant current mode results. 

Constant current mode 

Current 
(Amp) 

Time 
Voltage 
(Volts) 

Initial 
Conductivity 

(μS/cm) 

Final 
Conductivity 

(μS/cm) 
Cell wall 

10.8 
1 

min 
38.7 1572 5660 
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(Table 11 continued) 

Current 
(Amp) 

Time 
Voltage 
(Volts) 

Initial 
Conductivity 

(μS/cm) 

Final 
Conductivity 

(μS/cm) 
Cell wall 

10.8 
2 

min 
36.4 1582 5300 

 

10.8 
4 

min 
32 1580 5230 

 

 

5.4 
1 

min 
29.1 1580 5730 
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As shown in Table 11, for a current of 5.4 and 10.8 amperes, and short detention time of 

around 2 minutes, the cell wall suffered no break. However, when the detention time increased 

to 4 minutes, it was observed that a few cells, suffered a small break. 

 

- Temperature test 

 

In table 12, an increment in the temperature of more than double was observed when 

constant current was used; also, under this mode, for any detention time, gases and water vapor 

escaped from the reactor (Figure 42), and the cell wall breaking only worked for a few cells using 

the highest current and detention time. Therefore, the constant current was not considered an 

effective treatment for breaking the cell wall of algae. 

 

Table 12. Temperature results. 

Time  
Voltage 
(Volts) 

Current 
(Amp) 

Initial 
temperature 

(ᵒC) 

Final 
temperature 

(ᵒC) 

Initial 
Conductivity 

(μS/cm) 

Final 
Conductivity 

(μS/cm) 

1 min 65 3.9 18.9 23 1633 1886 

5 min 65 8.9 18.9 27 1800 1671 

1 min 38.7 10.8 19.5 54 1553-5180 5000 

4 min 32 10.8 19.5 56.2 1553-5180 4984 
 

 
Figure 42. Gases and water vapor. 
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The most feasible and economic treatment is the one that meets the objective of breaking 

the cell wall permanently of all the algae present in the sample, with less energy used and the 

shortest detention time, therefore, as shown in table 10, the best arrangement was to use a 

constant voltage of 65 volts with a current of 3.9 amps for a period of 1 minute. 

 

It is important to highlight, that cell wall break was due solely to electricity (using titanium 

electrodes coated with iridium oxide). No chlorine generation was possible because the growth 

medium did not have any chlorides. 
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Chapter V 

Conclusions and Recommendations 

 

 

Conclusions 

 

As part of research looking into using algae as source of biomass for energy production, 

the growth of microalgae Chlorella vulgaris was studied in this research. This was done by using 

a shaking water bath for 10 weeks to grow the algae under different CO2 percentages. A batch 

reactor (with titanium electrodes) connected to a direct current (DC) power supply was used for 

the subsequent electroporation of their cell wall. Temperature, conductivity, pH, turbidity and 

alkalinity were measured during all phases of experiment. 

 

CO2 concentration is one of the fundamental factors affecting algae growth. Therefore, 

as shown in Figures 29 to 40, for 0% CO2 no growth was observed, for 5 and 10%, growth rate 

was high with a very low maximum concentration; for 15% CO2, growth was slow but had a high 

chlorophyll and population concentration, and for 20%, growth was progressive but took longer. 

 

Therefore, the maximum CO2 concentration that can be added to a suspension of 

Chlorella vulgaris within the emission range from thermoelectric plants, was 20%. However, the 

optimal dose for highest algae and chlorophyll concentration was 15% CO2, under a pH of 6.64 

and a final alkalinity of 617.5 mg/L as CaCO3. 

 

In order for algae to be suitable for use as biomass for energy, pretreatment to break its 

cell wall is necessary; for that reason, an electrochemical batch reactor equipped with titanium 

electrodes and current supplied by a DC regulated power supply was used, which has a high 

efficiency under the study conditions. 
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After analyzing the data obtained in tables 10 and 11, the following parameters 

demonstrated to have a relationship with the reactor efficiency: 

 

- Detention time of 1 ± 0.5 minutes. 

- Minimum voltage of 65 
Volts

285 ml
  

- Minimum current of 3.9 
Amps

285 ml
 

 

The combination of the three recommended parameters yielded visible and permanent 

cell wall break. The energy input is very small and has the capability to become self-sustained if 

renewables energies are implemented. 

 

 The electrochemical batch reactor caused a significant increase in temperature when 

constant current was applied, as opposed to slight temperature increase with constant voltage. 

Table 12 and Figure 42 show an increase of more than double and the production of large 

amounts of gases and water vapor, respectively.  

 

Algal breakage under constant voltage was due to electrocution only, because the growth 

medium lacked chlorides, so chlorine generation was not possible. 

 

Recommendations 

 

- Based on the results of this research, it is recommended to not interconnect the bottles 

to each other to prevent evaporation of the sample, since not only the air is being 

transmitted between them, but also CO2.  

 

- For better results, it is recommended to previously mix the CO2 with the air, and inject 

the mixture of both, to each sample.  
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- In order to obtain a more precise estimate of algae concentration without sample 

wasting, it is recommended to measure its absorbance.  Due to the presence of 

photosynthetic pigments, it is important to conduct the measurement outside of the 

range of wavelengths where these pigments absorb, that is, at 550 nm (Becker, 1994). 

 

- When evaporation in the culture is present, the amount spent should be replaced with 

water and not with medium, as the chemical components thereof greatly increase the 

alkalinity. 

 

- For a further analysis of energy production through algae biomass treatment using 

anaerobic digestion, it is necessary to use a continuous flow reactor; for this, the 

cultivation of a large volume of algae for obtaining a minimum flow rate of 17.1 L/h or 

4.75x10-6 m3/s within the reactor, is recommended. 

 

- Measure dissolved solids to determine what causes the increase and decrease in 

conductivity when applying constant voltage. 

 

- Establish a correlation between chlorophyll concentration and turbidity, and another 

correlation between absorbance and chlorophyll concentration, to determine which of 

the two parameters is more representative in the estimation of chlorophyll concentration 

and therefore in algae growth. 
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Chapter VII 

Appendix 

 

 

Appendix A: Detailed explanation of laboratory methods. 

 

a. Medium preparation for algae growth 

 

Laboratory equipment: 

 
- OHAUS Precision Standard Balance 

- Fisher Scientific Thermo® Stirrer Model 120S magnetic stirrer 

- Magnetic stir bar 

- Graduated cylinder 

- Aluminum petri dish 

- 1 L Beaker 

 
Reagents: 

 
- Flinn Scientific Inc., Bristol’s algae media concentrate 100 X 

- EM Calcium carbonate GR 500 g 

- EMD® Sodium bicarbonate GR ACS 500 g 

- Unfertilized soil 

- Deionized water 

 
Procedure: 

 

10 ml of Bristol’s medium (Figure 43) were added to the beaker, then was filled with 

deionized water until 1-L mark and added 2 pinches of soil. Then, 20 mg of Calcium Carbonate 
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and 250 mg of Sodium Bicarbonate were measured in the precision balance and added to the 

mix. 

 
Figure 43. Bristol’s Algae Media. 

 

The stir bar was added to the beaker, and placed on top on a magnetic stirrer, mixed until 

homogenous mix was achieved (Figure 44). 

 

 
Figure 44. Well-mixed medium. 
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b. pH and Conductivity  

 

Laboratory equipment: 

 

- Thermo Scientific Orion 5 Star™ Plus Meter 

- Thermo Orion pH meter model 410 

- Fisher Scientific Thermo® Stirrer Model 120S magnetic stirrer 

- Magnetic stir bar 

- Different capacity beakers 

 

Reagents: 

 

- Acros, Buffer solution – pH 4.0 color coded red  

- Acros, Buffer solution – pH 7.0 color coded yellow  

- Acros, Buffer solution – pH 10.0 color coded blue 

- YSI 3163 Conductivity Calibrator 

- YSI 3161 Conductivity Calibrator 

- Deionized water 

 

Procedure: 

 

pH  

 

For pH measurements two different pH meters were used. The first step was calibrating 

each pH meter. For pH calibration of Orion Star™, the arrow icon must be pointed to pH in the 

screen. Then, the “Calibrate” button was pressed. The electrode must be rinsed with deionized 

water, dried with a tissue, and then placed in a 4.0 buffer solution.  

 



 

84 

 

A few time had to be allowed so the AR icon in the display became stable. If the pH reading 

was out of range, the correct number was entered manually. After this, the “calibrate” button 

was pressed again to continue with the following calibration point. The electrode was removed 

from the 4.0 buffer solution, rinsed with deionized water, dried with a tissue and placed in a 7.0 

buffer solution. The procedure is the same for the remaining buffer solution. 

 

 
Figure 45. Buffer solutions for pH meter. 

 

In order to take actual measurements in the Orion Star™ Plus Meter (Figure 46), the 

electrode was rinsed with deionized water, dried with a tissue, and placed into the sample. To 

make a reading, it is necessary to press “Line Select” until the arrow icon points to the pH icon, 

and then press “Measure Save/Print”. 

 

 
Figure 46. Orion Star™ Plus Meter. 
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A beaker containing a magnetic stirrer and the sample to be analyzed was placed on a 

magnetic plate, so the solution was well mixed and the pH reading was accurate.  

 

For pH calibration of Thermo Orion, the electrode was connected to the meter, rinsed 

and placed in the buffer. The “mode” button was pressed until “CALIBRATE” was displayed. The 

last buffer sequence used was displayed, then the “yes” button was pressed to use that sequence 

(the “no” button can be pressed to scroll through choices). 

 

Buffer indicator along bottom of the display indicated the buffer chosen. P1 was displayed 

in lower display field and buffer reading was displayed in the main field. When “READY” was 

displayed, indicating electrode stability, the “no” button was pressed to change each digit until 

the correct pH value was displayed then “yes” was pressed to accept.  

 

The temperature corrected value for that buffer was automatically entered into the 

memory of the meter. P2 was displayed in the lower display field indicating the meter was ready 

for the second buffer. The buffer indicator along the bottom of the display indicated the second 

buffer of the calibration sequence selected.  

 

The previous steps were repeated for each buffer. After the buffer value for the last buffer 

was entered, “measure” button was pressed. The electrode slope was displayed. “SLP” appeared 

in the lower field while the actual electrode slope, in percent, appeared in the main field. “yes” 

button was pressed; the meter was automatically advance to the measure mode. “MEASURE” 

was displayed above the main field.  

 

In order to take actual measurements in the Thermo Orion pH meter (Figure 47), the 

electrode was rinsed and placed into sample and the pH was recorded directly from the main 

meter display when “READY” was displayed. A beaker containing a magnetic stirrer and the 

sample to be analyzed was placed on a magnetic plate, so the solution was well mixed and the 

pH reading was accurate.  
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Figure 47. Thermo Orion pH meter. 

 

Conductivity 

 

For calibration of the conductivity meter, the arrow icon must be pointed to the 

conductivity icon, and then press “Calibrate” to start calibration. The conductivity probe was 

rinsed with deionized water, dried with a tissue, and placed in the conductivity calibrator solution 

1000 µS/cm. Several minutes had to be allowed so the AR icon in the display became stable. 

Afterward, the “calibrate” button was pressed to continue with the following calibration point. 

The conductivity probe was removed from this solution, rinsed, dried and placed in the 

conductivity calibrator solution 10,000 µS/cm.  

 

 
Figure 48. Conductivity calibration standards. 
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For actual conductivity measures, the conductivity probe was rinsed with deionized 

water, dried with a tissue, and placed into the sample (Figure 49). The “Line Select” button in the 

Orion Star™ Plus Meter was pressed until the arrow icon points to the conductivity icon, and then 

the icon “Measure Save/Print” was pressed to make a reading. A beaker containing a magnetic 

stirrer and the sample to be analyzed was placed on a magnetic plate, so the solution was well 

mixed and the pH reading was accurate. 

 

 
Figure 49. Conductivity probe. 

 

c. Alkalinity 

 

Laboratory Equipment:  

 

- Thermo Orion pH meter model 410 

- Fisher Scientific Thermo® Stirrer Model 120S magnetic stirrer 

- Magnetic stir bar 

- 50 ml Burette 
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- 100 ml beaker 

- Burette holder 

- Graduated cylinder 

 

Reagents:  

 

- HACH, Cat. 20353, Sulfuric Acid Standard Solution 0.020N, 1000 ml 

- HACH Permachem Reagents, Cat. 94399 Pk/100, Bromcresol Green-Methyl Red Indicator 

Powder. 

- Deionized water 

 

Procedure:  

 

The pH meter was calibrated, after that, 40 ml of each sample was poured into the beaker 

with a stir bar inside, and then placed on top of the magnetic plate to mix the solution at a speed 

of 370 rpm (constant). 

 

Afterwards, 50 ml of sulfuric acid solution was poured into the burette and placed in the 

burette holder above of the magnetic plate with the sample solution. Later the pH meter was 

placed inside the solution to measure at all times. Before starting the titration, 1 bag of 

Bromcresol Green-Methyl Red indicator was added to the solution. 

 

Then, the titration was started by adding 1 ml (around 3-4 drops) of titrant (H2SO4) to the 

sample (40 ml) until reached the color of the indicator (pink) at established pH (around 4.5). 

Volume of acid added and pH of sample was recorded at all times. 
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Figure 50. Alkalinity indicator end point (Pink). 

 

The following equation was utilized to calculate the test results: 

 

Alk (
mg

L
as CaCO3) =

V ∗ N

Sample volume
∗ 50000

mg CaCO3

eq
 

(17) 

 

Where: 

 

V = Volume of titrant spent, ml 

N = Normality of titrant, N 

d. Calcium 

 

Laboratory Equipment:  

 

- Thermo Orion pH meter model 410 

- Fisher Scientific Thermo® Stirrer Model 120S magnetic stirrer 

- Magnetic stir bar 
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- 50 ml Burette 

- 100 ml beaker 

- Burette holder 

- Graduated cylinder 

 

Reagents:  

 

- HACH, Cat. 205-53, TitraVer (EDTA) Standard Solution 0.010 M (0.020 N) 

- HACH, Cat 282-32H, Potassium Hydroxide Solution 8 N 

- HACH Permachem Reagents, Cat. 85299 Pk/100, CalVer 2 Calcium Indicator Powder 

- Deionized water 

 

Procedure:  

 

The pH meter was calibrated, after that, 50 ml of each sample was poured into the beaker 

with a stir bar inside, and then placed on top of the magnetic plate to mix the solution at a speed 

of 370 rpm (constant). 

 

Afterwards, 50 ml of EDTA standard solution was poured into the burette and placed in 

the burette holder above of the magnetic plate with the sample solution. Later the pH meter was 

placed inside the solution to measure at all times. Before start the titration, the pH was first 

adjusted to 10 using 1 ml of KOH and then 1 bag of CalVer 2 indicator was added to the solution. 

 

Then, the titration was started by adding 1 ml (around 3-4 drops) of titrant (EDTA) to the 

sample until reached the color of the indicator (pure blue). Volume spent and pH of sample was 

recorded. 
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The method used to calculate the calcium of the samples was HACH 8222, which states 

that calcium is calculated by multiplying the amount of titrant spent by 20, when the sample 

volume is 50 ml and the normality of the titrant is 0.02 N. 

 

 The calculation is based on an equation written as if all the hardness were due to calcium 

carbonate. The reaction is 1 mol to 1 mol. 

 

CaCO3 + EDTA4−(aq) → Ca(EDTA)2−(aq) + CO3
2−(aq) (18) 

 

 
Figure 51. Calcium indicator end point (Blue). 

e. Turbidity 

 

Laboratory Equipment: 

 

- HF Scientific Micro 100 Turbidimeter 

- Cuvettes 

- Beaker 
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Reagents: 

 

- Calibration set for Micro 100 Turbidimeter: 1000, 10 and 0.02 NTU calibration standard. 

 

Procedure: 

 

 The first step was calibrating the turbidimeter (Figure 52), for that, the “CAL” button was 

pressed; then the 1000 NTU standard was placed into the turbidimeter and finally the “Enter” 

button (arrow pointing to the left) was pressed. The same procedure was repeated using the 10 

and 0.02 NTU calibration standard solutions (Figure 53). 

 

 
Figure 52. Turbidimeter. 

 

 
Figure 53. Turbidimeter calibration set. 
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Once the last standard solution was taken from the turbidimeter, the calibration was 

done. Each sample was poured into a beaker and then poured into a clean cuvette three times 

to rinse it. After this, the cuvette was filled with the sample, covered with a cap and dried, then 

was placed in the optical well and indexed to the lowest reading. 

 

To ensure that the reading was correct, the sample was slowly rotated until complete one 

revolution (360ᵒ). 

 

Same procedure was done for all samples. 

f. Chlorophyll A 

 

Laboratory Equipment:  

 

- Eppendorf Centrifuge 5810 R 

- DR 5000™ UV-Vis HACH Spectrophotometer 

- Fisher Scientific Thermo® Stirrer Model 120S magnetic stirrer 

- Filtration Apparatus 

- 10 mm HACH Quartz Cells 

- Glass Fiber Filters 

- Conical Centrifuge Tubes  

- Magnetic stir bar 

- Pipettes 

- Aluminum Foil 

- Fridge 

 

Reagents:  

 

- Fisher Chemical Acetone Certified ACS (99.7%) 

- Deionized water 
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Procedure: 

 

For the Wegmann-Metzner method of chlorophyll determination, a 90% acetone solution 

was needed, therefore, the first step was made 50 ml of 90% acetone using 4.9 ml of deionized 

water and 45.1 ml of 99.7% acetone. 

 

Afterward, the filtering apparatus was assembled, the vacuum was turned on, the filter 

(wrinkle side up) was placed on top of the apparatus and the last part of the filtering was 

assembled (Figure 54). 

 

 
Figure 54. Filtering Apparatus completely assembled. 

 

The samples were well mixed using a magnetic stir plate, and then using a pipette, 5 ml 

were taken from each sample and filtered (separately). Each filter was placed into a 15 ml conical 

centrifuge tube containing 5 ml of 90% acetone (Figure 55). Tubes were covered with aluminum 

foil and kept in the fridge at 4 ºC for 24 hours. 

 



 

95 

 

 
Figure 55. Tubes with filter and acetone. 

 
 The next day, samples were shaken and centrifuged at 3500 rpm for 5 minutes (Figure 

56), and the extracts were read in the spectrophotometer at 750, 663 and 644 nm. 

 

 
Figure 56. Samples inside the centrifuge. 

 
   For the Chlorophyll calculations, the absorbance lectures had to be corrected for turbidity 

using the following formulas: 

E663 = E663 − E750 (19) 
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E644 = E644 − E750 (20) 

 

Where E663, E644 and E750 are the absorbance at 663, 644 and 750 nm respectively. 

 

To calculate the relative concentration of chlorophyll a, the following equation was used: 

 

CCloro a = 10.3 ∗ E663 − 0.981 ∗ E644  (21) 

 

Finally, to calculate the pigment concentration per volume of culture in μg/L or mg/m3, 

the following equation was used: 

 

Chlorophyll a (
μg

L
) =

CCloro a ∗ v

V ∗ z
 

(22) 

 

Where: 

 

v = Volume of extract, ml 

V = Volume of culture, L 

z = Light path length, cm 

 

g. Cell wall break 

 

Laboratory Equipment:  

 

- Ecolotron reactor 

- BK Precision High Current DC Regulated Power Supply, Model 1791 

- ENERPAC P39 Hydraulic Jack 
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- OMANO OMFL400 Fluorescence Compound Microscope 

- Jenoptik ProgRes CapturePro 2.5 Camera 

- Fisher Scientific, Fisherfinest Premium Cover Glass 

- VWR VistaVision Microscope Slides 

- Electrodes 

- Spacers 

- Pipettes 

- Aluminum Tray 

- 250ml flaks 

- Beaker 

- Funnel 

 

Reagents:  

 

- EMD® Magnesium sulfate GR, Powder, 500 g 

- 15% CO2 algae culture 

- Deionized water 

 

Procedure: 

 

To set up the reactor, in order from left to right, 9 spacers (so that the hydraulic jack could 

reach to pressure enough the reactor so that the sample not shed), the film that contained the 

inlet tube, an electrode (negative), a spacer, the spacer with the exhaust tube, another electrode 

(positive) and finally the film that contained the outlet tube (which was plugged to not waste 

volume) were placed inside of it. 

 

285 ml algae sample (reactor volume) were taken from the flask and poured into the 

reactor using a funnel. Using pincers, the power supply was connected to each electrode, 

negative on the left and positive on the right. 
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For power supply, BK Precision 1791 was used. Two different modes were applied: 

 

 Constant Voltage (CV) mode: 

 

The “POWER ON” switch was pressed and the “OUTPUT ON/OFF” switch was kept in the 

OFF position. Then, the “LIMIT” button switch was pressed and the voltage was adjusted; after 

that, the “OUPUT” switch was pressed to ON position and the CV LED light turned on.   

 

 Constant Current Voltage (CC) mode: 

 
The power supply was turned off, a short circuit in the output terminals of the power 

supply was done and then the supply was turned on. Then the “OUTPUT ON/OFF” switch was 

kept in the OFF position, the “LIMIT” button switch was pressed and the current was adjusted; 

after that, the “OUPUT” switch was pressed to ON position and the CC LED light turned on; finally, 

the short circuit was removed. 

 

The conductivity of the effluent of a regular wastewater treatment plant is around 1264 

μS/cm (De Grau, 2015). However, in order to work with constant current, is necessary to increase 

the conductivity of the sample to be treated. For this purpose, 1g/300ml of magnesium sulfate 

were added to the algae culture. 

 

For both modes, 30 seconds were allowed for charging the electrodes. 

 

After turning the power supply off, the hydraulic jack was released and the sample fell 

into the tray, poured into the flask and taken to further analysis in the microscope, to check if 

the algae cell wall was broken.  

 

For cell wall analysis pictures were taken at all times.  
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Figure 57. Cell wall analysis equipment. 

 
Same procedure was done, for different detention times. 

 

Appendix B: Experimental results. 

 
Table 13. pH values for flask 3. 
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Table 14. Non-linear regression on data turbidity vs. time for flask 0. 

 Flask 0 (0% CO2) 

Days Turbidity Predicted (y-f)^2 (y - yavg)^2 

0 5.4 2.018865485 11.43207061 825.1698179 

2 5.22 4.006443489 1.472719407 835.5434948 

3 6.09 5.643942331 0.198967444 786.0043564 

4 8.57 7.950670417 0.383569133 653.097341 

5 11.5 11.2000924 0.089944571 511.9254333 

6 15.6 15.77737584 0.031462187 343.2041256 

7 22.4 22.22497759 0.030632843 137.4936641 

8 27.4 31.30679352 15.26303559 45.23597175 

9 46.4 44.09839077 5.297405025 150.656741 

 16.50888889  34.1998068 4288.330946 

 
 

Table 15. Non-linear regression on data turbidity vs. time for flask 1. 

 

Days Turbidity Predicted (y-f)^2 (y - yavg)^2

0 0.469174946 0.22012513 1164.568126

2 3.19 1.001683491 4.78872914 957.0218179

3 2.61 1.458584668 1.32575727 993.2437102

4 6.02 2.116050023 15.2408254 789.9342641

5 5.61 3.053644017 6.53495591 813.1490948

6 15.4 4.373703085 121.579224 350.6544333

7 8.29 6.199108749 4.37182623 667.4869717

8 7.15 8.661510521 2.28466405 727.6921256

9 10.4 11.87440739 2.17387716 562.9121256

10 11.5 15.88916593 19.2647776 511.9254333

11 16.9 20.64344742 14.0133986 296.7271256

12 22 25.92799645 15.4291561 147.0342794

13 36.9 31.4040326 30.2056577 7.696356361

14 37.7 36.68113177 1.03809247 12.77512559

16 40 45.42170578 29.3948936 34.50658713

17 50.3 48.61915377 2.82524405 261.605741

18 62.5 51.06789673 130.692985 805.0969717

19 51.1 52.88215941 3.17609218 288.1245102

20 58.7 54.19362092 20.3074524 603.8928179

21 53.7 55.1248335 2.03015051 383.1505102

22 46.7 55.77768794 82.4044182 158.1112794

23 54.2 56.23131872 4.12625573 402.974741

24 55.8 56.54456654 0.55437934 469.7722794

25 67.8 56.75994733 121.882763 1133.953818

26 49.1 56.90760008 60.9586191 224.2275871

27 52.1 57.00861726 24.0945234 323.0729717

28 61.6 57.07763268 20.4518062 754.8333564

34.12576923 741.370649 13846.14416

Flask 1 (5% CO2)
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Table 16. Non-linear regression on data turbidity vs. time for flask 2. 

 Flask 2 (10% CO2) 

Days Turbidity Predicted (y-f)^2 (y - yavg)^2 

0   0.001638461 2.68455E-06 752.5877778 

2 3.87 0.009536704 14.90317686 555.2306778 

3 3.36 0.023002814 11.13555022 579.5253778 

4 6.05 0.055458367 35.9345294 457.2469444 

5 4.64 0.133561028 20.30799221 519.5360444 

6 5.05 0.32081546 22.36518641 501.0136111 

7 5.75 0.765802076 24.84222894 470.1669444 

8 7.13 1.801336636 28.39465325 412.2253444 

9 8.6 4.09800873 20.26792539 354.6944444 

10 8.75 8.690019973 0.003597604 349.0669444 

11 13.9 16.22534727 5.407239904 183.1511111 

12 19.2 25.32774889 37.5493064 67.78777778 

13 35 33.00071773 3.997129593 57.25444444 

14 44.5 37.73917915 45.70869852 291.2711111 

15 48.2 40.12715769 65.17078298 431.2544444 

16 39.4 41.20783446 3.268265444 143.2011111 

17 37.3 41.67298127 19.1229652 97.35111111 

18 43.8 41.86885645 3.729315402 267.8677778 

19 46 41.9505788 16.39781203 344.7211111 

21 44.8 41.99863532 7.84764405 301.6011111 

22 35.4 41.99863532 7.84764405 301.6011111 

23 43.5 42.00447887 43.61914119 63.46777778 

24 41.1 42.00690124 2.229343901 258.1377778 

25 37.6 42.00790529 0.824292013 186.7777778 

26 36.5 42.00832144 19.43329788 103.3611111 

27 36.1 42.00849391 30.34350518 82.20444444 

28 46.8 42.0085654 34.91114504 75.11111111 

31 38.4 42.00859502 22.95756165 375.0677778 

 27.43333333  548.5199334 8582.484111 
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Table 17. Non-linear regression on data turbidity vs. time for flask 3. 

 Flask 3 (15% CO2) 

Days Turbidity Predicted (y-f)^2 (y - yavg)^2 

0   6.043618306 36.52532223 21870.97246 

2 3.58 8.822727515 27.4861918 20824.90807 

3 4.4 10.64345332 38.98070933 20588.91473 

4 6.49 12.82308451 40.10795947 19993.50141 

5 10.2 15.42486504 27.29921469 18958.08954 

6 12.8 18.51990053 32.71726213 18248.86997 

7 17.3 22.18668627 23.87970274 17053.32457 

8 23.3 26.50986547 10.30323636 15522.26403 

9 27.1 31.57794595 20.05199997 14589.83235 

10 29.6 37.47969691 62.08962343 13992.14046 

11 70.7 44.29899558 697.0130346 5958.045757 

12 70.8 52.10802553 349.3899096 5942.618081 

13 75.2 60.95897105 202.8069057 5283.600351 

14 82.2 70.8747124 128.2621392 4314.963054 

15 91.9 81.83947482 101.2141669 3134.698513 

16 92.3 93.79082913 2.222571503 3090.067811 

17 103 106.614736 13.06631603 2014.966513 

18 125 120.1452892 23.56821648 523.8778648 

19 119 134.1703122 230.1383726 834.5384053 

20 118 148.4429862 926.7754097 893.3151621 

21 148 162.6984432 216.0442319 0.012459386 

22 174 176.6730849 7.145383106 681.8167837 

23 199 190.1237077 78.78856554 2612.397865 

24 192 202.8435595 117.5827825 1945.835162 

25 220 214.6732257 28.37452481 5200.085973 

26 219 225.5054367 42.32070693 5056.86273 

27 215 235.284127 411.4458079 4503.969757 

28 294 243.9989893 2500.101067 21348.60597 

29 294 251.6772106 1791.2185 21348.60597 

30 224 258.3740569 1181.575789 5792.978946 

31 258 264.1636539 37.99062942 12124.56922 

32 304 269.1308551 1215.857268 24370.83841 

33 319 273.3646505 2082.585122 29279.18705 

34 241 276.9532223 1292.634191 8669.774081 

35 282 279.9805255 4.078277077 17985.92705 

36 241 282.5241555 1724.255488 8669.774081 

37 260 284.654219 607.8305145 12569.0157 

38 305 286.4329438 344.7355747 24684.06165 

 147.8883784  16678.46269 420477.828 
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Table 18. Non-linear regression on data turbidity vs. time for flask 4. 

 

 
Table 19. Correlation between turbidity and chlorophyll concentration. 

CO2 % 
Pigment concentration per volume of 

culture (μg/L = mg/m3) 
Turbidity 

(NTU) 

5 1050.6552 125 

10 901.3548 52 

15 5559.0264 195 

20 5149.56 279 

Days Turbidity Predicted (y-f)^2 (y - yavg)^2

0 11.04624928 122.019623 14860.01634

2 3.94 13.96324167 100.465374 13914.9548

3 4.49 15.6878602 125.392073 13785.49947

4 6.5 17.61581864 123.561424 13317.54467

5 6.98 19.76858882 163.548004 13206.98947

6 8.55 22.16926869 185.48448 12848.60034

7 13.4 24.84253715 130.931656 11772.61167

8 29.4 27.81455466 2.51363694 8556.558336

9 46.1 31.11279659 224.616266 5745.892669

10 23.3 34.76580558 131.464697 9722.288669

11 80.6 38.80284825 1747.00189 1705.827669

12 64.6 43.25346265 455.674657 3283.481003

13 83 48.14688375 1214.73971 1513.339669

14 48.6 53.51133826 24.1212435 5373.134336

15 66.4 59.3732047 49.3758522 3080.435003

16 82.2 65.75604267 270.403733 1576.222336

17 73.3 72.67950501 0.38501403 2362.122003

18 92 80.15815908 140.229196 894.1096694

19 96.1 88.20025745 62.4059324 665.7260028

20 69.1 96.80651366 767.650899 2788.016003

21 81.7 105.9689529 588.982073 1616.174003

22 90.2 115.6699193 648.71679 1004.995669

23 106 125.8813296 395.267267 252.8630028

24 131 136.5642599 30.9609878 82.77966944

25 124 147.6689461 560.219009 4.403002778

26 164 159.1352563 23.6657309 1772.269669

27 176 170.8936642 26.0746655 2926.629669

28 233 182.8667148 2513.34628 12342.83967

30 164 207.1190876 1859.25571 1772.269669

31 256 219.2226695 1352.57204 17982.363

32 251 231.1944643 392.259243 16666.37967

34 262 254.4149727 57.532639 19627.543

36 236 276.1965122 1615.75959 13018.42967

37 273 286.4043654 179.677013 22830.70634

38 320 296.1015336 571.136694 39242.94967

39 343 305.2600106 1424.3068 48884.473

40 279 313.8622134 1215.37392 24679.88634

121.901667 19497.0918 365681.3248

Flask 4 (20% CO2)
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Table 20. Daily measurements. 

 

Date Day Flask pCO2 Temperature (°C) Conductivity (μS/cm) pH Turbidity (NTU)

0 0 22.6 1178 8.6 5.4

1 5 18.2 1018 7 -

2 10 18.2 1018 7 -

3 15 18.2 1018 7 -

4 20 18.2 1018 7 -

0 0 23.4 1436 8.7 3.11

1 5 22.4 1192 6.6 -

2 10 22.8 968 6.1 -

3 15 22.6 1045 6 -

4 20 22.5 1062 6 -

0 0 24.9 1555 8.7 5.22

1 5 22.1 1654 6.9 3.19

2 10 22.9 1052 6.2 3.87

3 15 23.1 1091 6 3.58

4 20 23.1 1111 5.9 3.94
0 0 24.1 1946 8.8 6.09

1 5 22.1 1517 7.2 2.61

2 10 22.9 1067 6.3 3.36

3 15 23.1 1096 6 4.4
4 20 23.1 1123 5.8 4.49

0 0 24.2 1789 8.9 8.57

1 5 22.1 1869 8.7 6.02

2 10 22.6 1265 8.7 6.05

3 15 23 1213 8.5 6.49

4 20 23 1269 8.5 6.5
0 0 24 2122 8.9 11.5

1 5 24.7 1738 8.9 5.61

2 10 25.2 1253 8.7 4.64

3 15 25.4 1309 8.9 10.2

4 20 25.6 1382 8.8 6.98

0 0 24.5 2403 9 15.6

1 5 25 1753 5.9 15.4

2 10 25.5 1282 5.8 5.05

3 15 25.9 1398 5.8 12.8
4 20 25.6 1460 5.7 8.55

0 0 25 2350 9 22.4

1 5 25.6 1326 5.6 8.29

2 10 25.8 1358 5.6 5.75

3 15 25.9 1443 5.6 17.3

4 20 26 1598 5.6 13.4

0 0 24.1 2905 9 27.4

1 5 25.1 1353 8.8 7.15

2 10 25.5 1399 8.8 7.13

3 15 25.7 1523 8.9 23.3

4 20 25.8 1693 8.8 29.4

0 0 23.8 3660 9.2 46.4

1 5 24.8 1486 8.9 10.4

2 10 25.1 1464 8.8 8.6

3 15 25.2 1638 8.4 27.1

4 20 25.1 1863 9 46.1

0 0 23.8 3690 9.1 41.6

1 5 23.6 1541 8.8 11.5

2 10 24.6 1485 8.1 8.75

3 15 24.2 1745 8.1 29.6

4 20 24 2110 8.7 23.3

8/17/2016 9

8/18/2016 10

8/14/2016 6

8/15/2016 7

8/16/2016 8

8/11/2016 3

8/12/2016 4

8/13/2016 5

8/8/2016 0

8/9/2016 1

8/10/2016 2
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(Table 20 continued) 

 

0 0 24 3680 9.1 39

1 5 25.1 1649 8.4 16.9

2 10 25.3 1654 8.3 13.9

3 15 24.8 1853 8.7 70.7

4 20 24.8 2312 8.9 80.6

0 0 24.8 3460 9.1 33.2

1 5 24.9 1607 8.6 22

2 10 25.1 1645 8.6 19.2

3 15 25.3 1793 8.9 70.8

4 20 25.4 2070 8.8 64.6

0 0 23.3 4040 9.2 26.8

1 5 24 1891 8.8 36.9

2 10 24.9 1732 8.7 35

3 15 25.3 1894 9 75.2

4 20 25.2 2247 9 83

0 0 23.9 4630 9.3 34.7

1 5 25.4 1944 6.1 37.7

2 10 25.6 1794 5.9 44.5

3 15 25.8 2082 5.9 82.2

4 20 25.5 2542 6 48.6

0 0 25.4 3630 8.8 12.1

1 5 24 2795 8.9 94

2 10 25.1 2000 8.7 48.2

3 15 25.6 2260 6.5 91.9

4 20 25.6 2891 8 66.4

0 0 23.5 4980 9.3 20.7

1 5 24 2193 8.8 40

2 10 25.3 1911 8.8 39.4

3 15 25.4 2109 9 92.3

4 20 25.5 2425 9 82.2

0 0 25.4 3900 9.2 12.6

1 5 24.3 2508 8.9 50.3

2 10 25 1942 8.8 37.3

3 15 25.4 2263 9 103

4 20 25.5 2583 9 73.3

0 0 25.8 3910 8.8 11.7

1 5 24.3 2833 8.9 62.5

2 10 25.1 1990 8.8 43.8

3 15 25.3 2473 9 125

4 20 25.5 2841 9 92

0 0 23.2 4840 9.2 19.4

1 5 24.3 2729 9.1 51.1

2 10 25.1 1809 8.8 46

3 15 25.4 2168 9.1 119

4 20 25.5 2719 9 96.1

0 0 24.9 4630 9.1 10.1

1 5 24.6 2980 8.9 58.7

2 10 24.8 2014 8.8 56.7

3 15 25 2322 9.1 118

4 20 25.2 2763 9.2 69.1

8/26/2016 18

8/27/2016 19

8/28/2016 20

8/23/2016 15

8/24/2016 16

8/25/2016 17

8/20/2016 12

8/21/2016 13

8/22/2016 14

8/19/2016 11
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(Table 20 continued) 

 

0 0 24.6 4640 9.3 6.79

1 5 24.1 3100 9 53.7

2 10 25.1 1661 8.9 44.8

3 15 23.9 3080 8.1 148

4 20 24.9 2783 9 81.7

0 0 23.7 6220 9.3 14.2

1 5 24.2 1813 8.8 46.7

2 10 25.2 2803 8.9 35.4

3 15 25.6 2439 9.1 174

4 20 25.5 2923 9.1 90.2

0 0 24.1 5470 9.3 17.1

1 5 24.4 3200 9 54.2

2 10 25.2 1849 8.9 43.5

3 15 25.4 2648 9.1 199

4 20 25.5 3130 9.1 106

0 0 23.5 6880 9.4 11.1

1 5 24.1 3400 9.1 55.8

2 10 24.9 1801 8.8 41.1

3 15 24.1 3400 9.2 192

4 20 25.6 3380 9.2 131

0 0 24.4 5270 9.3 8.85

1 5 24.3 4410 9 67.8

2 10 24.6 2019 8.9 37.6

3 15 25.5 2735 9.1 220

4 20 25.4 3590 9.1 124

0 0 22.6 6230 9.3 6.83

1 5 24.2 3560 9 49.1

2 10 24.9 1860 8.8 36.5

3 15 25.5 2724 9.1 219

4 20 25.6 3800 9.1 164

0 0 23.4 7030 9.2 13.9

1 5 23.9 3590 9 52.1

2 10 24.8 1930 8.9 36.1

3 15 25.4 2848 9.1 215

4 20 25.5 4140 9.1 176

0 0 20.9 7820 9.2 15.1

1 5 23 4240 9.1 61.6

2 10 24.6 2510 8.8 46.8

3 15 25.2 3100 9.2 294

4 20 24.8 4560 9.2 233

0 0 20.7 6440 9.3 12.8

1 5 23.8 5390 8.9 83.6

2 10 24.4 2441 8.8 57.4

3 15 25.2 3330 9.1 294

4 20 25.4 4940 9.2 291

0 0 20.1 7910 9.4 18

1 5 24.2 3380 9 33.2

2 10 25.2 1866 8.7 30.1

3 15 25.6 2880 8.7 224

4 20 25.6 4510 7 164

9/7/2016 30

9/4/2016 27

9/5/2016 28

9/6/2016 29

9/1/2016 24

9/2/2016 25

9/3/2016 26

8/29/2016 21

8/30/2016 22

8/31/2016 23
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(Table 20 continued) 

 

 

 

 

 

1 5 23.9 4040 9.1 69.1

2 10 24.6 2002 8.9 38.4

3 15 25.3 3030 9.2 258

4 20 25.5 4800 9.2 256

1 5 23.1 3980 9 75.6

2 10 24.2 2097 8.8 49.5

3 15 25.1 3210 9.1 304

4 20 25.3 4710 9.2 251

1 5 24.1 3.52 9 80.9

2 10 25 2244 6.9 36.5

3 15 24.9 3580 6.3 319

4 20 25.4 5150 6.6 128

1 5 23.4 3060 9.1 57.8

2 10 23.8 1819 8.9 45.3

3 15 24.7 2990 9.3 241

4 20 25.3 5520 9.3 262

1 5 23.5 3290 9 85.1

2 10 24.6 1895 8.9 52

3 15 25.2 3070 9.3 282

4 20 25.4 6060 9.3 362

1 5 23.3 3050 9.1 83

2 10 24.8 1740 8.9 38.9

3 15 25.4 2811 9.2 241

4 20 25.6 4750 9.2 236

1 5 24.6 3350 9.1 97.1

2 10 25.1 1826 8.9 45.3

3 15 25.5 2976 9.3 260

4 20 25.6 4970 9.4 273

1 5 24.4 3730 9.2 128

2 10 25 1943 8.9 57.5

3 15 25.4 3230 9.3 305

4 20 25.6 5170 9.3 320

1 5 24.5 3160 9.2 95.3

2 10 25.1 1811 9 44.3

3 15 25.5 2522 9.3 186

4 20 25.5 5450 9.3 343

1 5 24.2 3810 9.2 125

2 10 25.3 1965 8.9 52

3 15 25.6 2699 8.9 195

4 20 25.3 5000 9.1 279

9/16/2016 39

9/17/2016 40

9/13/2016 36

9/14/2016 37

9/15/2016 38

9/10/2016 33

9/11/2016 34

9/12/2016 35

9/8/2016 31

9/9/2016 32
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Table 21. Algae culture progress. 

Week Progress 

Initial 

 
 

1 

 
 

2 

 
 

3 
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(Table 21 continued) 

Week Progress 

4 

 
 

5 

 
 

6 
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