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ABSTRACT 

In this thesis, combustion processes in a laboratory-scale methane based low pressure 

rocket motor (LPRM) is studied experimentally and numerically. Experiments are conducted 

to measure flame temperatures and chamber temperature and pressure. Single reaction-four 

species reacting flow of gaseous methane and gaseous oxygen in the combustion chamber is 

also simulated numerically using a commercial CFD solver based on 2-D, steady-state, 

viscous, turbulent and compressible flow assumptions. LPRM geometry is simplified to 

several configurations, i.e. Channel and Combustion Chamber with Nozzle and FWD. Flow 

in a Bunsen burner is simulated inside Channel geometry in order to validate the reaction 

model. Grid independence study is also conducted for reacting as well as non-reacting flows. 

Numerical model is calibrated based on experimental results. Results of the computational 

model are found in a good agreement with the experimental data after calibrating specific 

heats of the products. Parametric study is conducted in order to investigate the effects of 

different mass flow rates and chamber pressures on flow and combustion characteristics of a 

LPRM to provide insight to future studies. 

Keywords: Low Pressure Rocket Motor, Methane oxygen combustion 
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1. INTRODUCTION 

Methane has been one of the most widely used fuel since Industrial Revolution. With 

the recent advancements in the rocket engine technology, combustion of methane seems to 

remain as an important research area. SpaceX is developing a methane-based rocket engine 

for the spaceship, called Mars Colonial Transporter (MCT) [1], [2]. 

In the present study, combustion processes inside a laboratory-scale low pressure 

rocket motor (LPRM) is studied both experimentally and numerically. The existing low 

pressure hybrid rocket motor setup [3] which is developed for combustion studies at the 

University of New Orleans Combustion Laboratory is used for the present study after the 

combustion chamber was modified in order to carry on the experiments for methane – based 

LPRM. 

The aim of this study is to develop a mathematical model for the reacting flow of 

methane and oxygen inside a combustion chamber of LPRM and calibrate this model based 

on the experimental data. The calibrated computational model will provide insight to the 

future studies. 

The reacting flow of methane and oxygen is modeled as a steady state, compressible, 

viscous and turbulent. Governing differential equations are solved using the CFD code 

provided by ANSYS Fluent. 
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2. LITERATURE SURVEY 

Methane combustion has been the subject of many research areas including energy 

production for rocket propulsion. Both experimental and numerical studies are widely found 

in the literature [4]–[6]. In these studies, methane oxidation is modeled with the intermediate 

steps. 

One of the oldest and most effective apparatus for obtaining laminar flames is Bunsen 

burner [7], [8]. Premixed combustion characteristics in Bunsen burner have been widely 

studied for years [9]–[13] for both turbulent and laminar flows. Bennett et al. [14] studied 

partially premixed flames including non-premixed combustion case. 

Methane is also used as a preheater gas in hybrid rocket motors. Previously, Akyuzlu 

et al. [15]–[17] and Antoniou et al. [18] conducted several studies on combustion processes 

inside hybrid rocket motors. The authors aimed to develop a mathematical model in order to 

predict regression rate and to capture the physical mechanisms which contribute to the motor 

instabilities. These studies lead to the present study, that is, the study of combustion in 

methane – based low pressure rocket motors. 
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3. DESCRIPTION OF PHYSICAL MODEL 

The Low Temperature Pressure Rocket Motor (LPRM) consists of oxygen plenum 

(FWD), combustion chamber (CC), mixing chamber (AFT) and a nozzle as presented in 

Figure 1. 

 

Figure 1. Physical model of the LPRM 

Fuel (methane) enters to the system through 0.125 inch – diameter tube while oxidizer 

(oxygen) is supplied to the CC after straightened in FWD section. FWD section is not 

modeled in detail in the present study for simplicity. Cross sections of fuel and oxidizer tubes 

are first transformed to rectangular-shape by keeping inlet area same therefore flow variables, 

i.e. velocity and mass flow rate do not change. Width of the LPRM is 1.5 in. so aspect ratio is 

3. Then the cross section of LPRM on x-y plane is considered as 2-D physical model of 

LPRM. 

Reaction is initiated by ignition element at the outlet of fuel line. Assuming full 

combustion of fuel, oxygen and products flow through CC and exit from nozzle. 

FWD CC AFT Nozzle 

0.5 in 

2 in 
0.125 dia. 0.75 dia. 

Oxidizer 

Fuel 

y 

x 0 

0.5 in 
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Following assumptions are made in order to develop the mathematical model: 

1. The flow of oxygen and products are viscous, turbulent, subsonic, compressible and 

steady-state.  

2. LPRM walls are adiabatic with an emissivity of 1. 

3. Turbulent flow is formulated based on a two equation standard k-ε model. 

4. Radiative heat transfer is modeled by P-1 Radiation model. 

In order to simulate the reacting flow, the geometry of the combustion chamber of the 

LPRM is simplified. Several flow geometries are constructed to understand the characteristics 

of flow and reaction. First, a channel model (Ch) is developed as presented in Figure 2. 

Figure 2. Simplified geometry, Ch, for the present study 

In geometry Ch, fuel is supplied at x = 0 and oxidizer feeds reaction. Reaction occurs 

around x = 0 and oxidizer and products leave combustion chamber at x = L = 2 in. In this 

simplified model, FWD is considered to be a 2-D, constant area channel and AFT and Nozzle 

are not included in this configuration. 

H = 0.5 in  height of LPRM 

hox,i = 2 x 0.125 in. height of oxidizer inlet 

hf,i = 0.01 in  height of fuel inlet 

ho  = 0.375 in  height of outlet 

L 

H 

x 

y 

hox,i 
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The other simplified model, CCNF, is the most comprehensive model consisting 

FWD, CC, AFT and converging part of nozzle as presented in Figure 3. 

 

Figure 3. Schematic of simplified model, CCNF 

The real LPRM geometry allows oxidizer flow at x < 0. Because of the transformation 

to two dimensional plane geometry, the fuel pipe acts as a restriction to oxidizer. Therefore, a 

secondary oxidizer inlet is added in order to simulate the 3-D effects at the combustion 

chamber inlet, although there is no secondary oxidizer inlet in the actual LPRM. 

  

X

Y

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

H = 0.5 in  height of LPRM 
h

ox,i 
= 2 x 0.125 in. height of oxidizer inlet 

h
f,i

 = 0.01 in  height of fuel inlet 

h
o 
 = 0.125 in  height of outlet 

LCC = 2 in  Length of CC 

LAFT = 0.5 in  Legth of AFT 

 

Secondary Oxidizer 

Fuel 
Primary Oxidizer 

Outlet 

LCC L
AFT

 



6 

 

4. EXPERIMENTAL STUDY 

4.1. Description of the Experimental Setup 

The experimental test setup consists of methane (CH4), gaseous oxygen (GO2) and 

gaseous nitrogen (GN2) supply tanks, the test stand, a series of pipes, fittings and valves, 

pressure gauges, pressure and differential pressure transducers, thermocouples, the LPRM 

and Data Acquisition (DAQ) system. Test setup is presented in Figure 4 and Figure 5. 

 

Figure 4. LPRM Test Stand, Gas Supplies and DAQ System 



7 

 

 

Figure 5. Low-Pressure Rocket Motor (LPRM) 

Methane and oxygen are supplied from the pressurized supply tanks by regulating the 

flow with control valves. Methane flows through the middle pipeline and temperatures and 

pressures are measured by thermocouples and pressure transducers respectively and recorded 

by DAQ system. Flow rates of methane and oxygen are adjusted using needle valves located 

at the upstream of the LPRM. 

LPRM consists of an oxygen plenum (FWD), combustion chamber (CC), a mixing 

chamber (AFT) and a nozzle (N). Methane enters LPRM through CC and oxygen enters 

FWD sections. Combustion takes place downstream of methane line in the CC, where 

ignition is accomplished by electric igniter. Combustion products and oxidizer exits LPRM 

through the nozzle. Gaseous nitrogen is used for purging. 
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LPRM is made of alumina silicate ceramic because of its high corrosion resistance 

and low thermal expansion. Stainless steel sheets are used in order to secure mechanical 

stability and reduce vibration. LPRM consists of one pressure transducer and four K-type 

thermocouples (three for the flame and one for the chamber). In Figure 6, inside of LPRM 

(top view) is presented indicating different sections of motor and thermocouples. 

 

Figure 6. Inside view of LPRM and locations of thermocouples 

Quarter inch quartz viewports are located at the both side of the LPRM to observe the 

flame. 

Piping and instrumentation diagram of the test setup is presented in Figure 7. 

Instruments used in the experiments are listed in Appendix I. 

T/C 1 
T/C 2 

T/C 3 

0.25" 

FWD CC AFT Nozzle 

viewports 
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Figure 7.Piping (and Instrumentation) diagram of the test setup 

4.2. Experimental Procedure and Operating Conditions 

Before starting the experiment, the pressure transducers at the methane inlet and 

combustion chamber are calibrated. Calibration curves are presented in Appendix II. 

Experimental procedure is listed below: 

1. Thermocouples, pressure and differential pressure transducers and DAQ system are 

checked and calibrated. LPRM is purged with gaseous nitrogen. 

2. Methane tank pressure is set to the operating pressure value. 

3. DAQ system is started. 

4. Methane and oxygen are injected to LPRM by adjusting their flow rate values to 

operating conditions by the needle valves separately. 
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5. Methane is ignited by the electric igniter. If methane is not ignited, LPRM is purged 

with nitrogen. 

6. After a course of time (see operating conditions), needle valves are shut down and the 

system is cooled down. 

7. DAQ is stopped and the system is purged. 

4.3. Data Analysis 

Mass flow rate of methane is calculated using the change of pressure measured by the 

differential pressure transducer. These calculations are based on Equations presented in 

Appendix III.  
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5. NUMERICAL STUDY 

In this chapter, the mathematical model of the LPRM which is used in the numerical 

simulations is presented. Governing differential equations and boundary conditions for the 

proposed mathematical model are presented in Section 5.1 based on the assumptions listed in 

Chapter 3. Solution technique is discussed in Section 5.2. ANSYS Fluent is used as a solver. 

5.1. Mathematical Formulation 

The governing differential equations for viscous, turbulent, compressible, unsteady 

flow of a Newtonian fluid in 2–D planar Cartesian coordinates are presented below. Vector 

form of the equations are presented in Appendix IV. 

Continuity equation is given by: 

  0( u ) ( v )
t x y


 

  
  

  
      (1) 

The momentum equation in the x- and y-direction become: 

   
2

2
3

0

eff

eff

p u
( u ) uu uv V

t x y x x x

u v

y y x

   



       
       

       

    
    
    

 (2)

2
2 0

3

eff

eff

p v u
( v ) ( vu ) ( vv )

t x y y x x y

v
V

y y

   



        
      

        

   
      
   

 (3) 

respectively. 

where µeff is the effective viscosity and defined as µeff = µ + µt and µt is the eddy viscosity 

which can be found using Standard k – ε model as: 
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2

t

k
C 


  (4) 

where k and ε are turbulence kinetic energy and turbulence dissipation rate respectively and 

Cµ is a constant. Transport equations for the Standard k – ε model are given as: 

     

2 0

t t

k k

t

k k
k uk vk

t x y x Pr x y Pr y

S

 
    

 

            
                          

  

 (5) 

     

2
2

1 2 0

t t

t

u v
t x y x Pr x y Pr y

C S C
k k

 

 

  
      

 
 

            
                          

  

 (6) 

where Prk and Prε are turbulent Prandtl numbers for k and ε, Cε1 and Cε2 are constants 

respectively. For this model, constants have the following values [19]: 

Prk = 1.0, Prε = 1.3, Cε1 = 1.44 and Cε2 = 1.92 

S is the modulus of the mean rate of strain tensor, which is defined as: 

2 ij ijS S S  

The energy equation is given by: 

     

0

p p p eff eff

r gen j

T T
c T c uT c vT k k

t x y x x y y

Q Q D

  
        

      
         

    

 (7) 

where 
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cp is the specific heat of the mixture which is found as: 
p i p,i

i

c Y c and specific heats of 

individual species are calculated using 4th order polynomials [20]. 

keff is the effective thermal conductivity and defined as: 
p t

eff

t

c
k k

Pr


   

Φ is the viscous dissipation term 

rQ  is the radiative heat transfer which is found using P-1 Radiation model ([21], [22]) as: 

2 44rQ aG an T    (8) 

where G is the incident radiation and can be found from the following equation: 

 
2 41

4 0
3 s s

G aG an T
a C


 

 
         

 (9) 

where a is the absorption coefficient, n is the refractive index of the medium and σ is Stefan-

Boltzmann constant. 

genQ is the source of energy due to chemical reaction which is defined as: 

j

gen j

j j

H
Q R

M
   (10) 

where Hj is the enthalpy of formation of species j and Rj is the rate of creation of species j. 

Dj is equal to j j jj
D h J which represents the energy transfer due to species diffusion 

where Jj is the diffusion flux of species j which is defined for turbulent flows as: 

t
i i ,m i T ,i

T
J D Y D

Sc T




 
     

 
 (11) 
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where Dm,i and DT,i are mass and thermal diffusion coefficients respectively and Sc is the 

Schmidt number which is defined as t

t

Sc
D




 . 

And transport of species is modeled as 

1

0

t i

m,i T ,i

t i

m,i T ,i i

( Y ) ( uY ) ( vY ) Y Ti i i D D
t x y x Sc x T x

Y T
D D R

y Sc y y

   





      
      

       

   
      
    

 (12) 

where Yi is the mass fraction of ith species. Ri is the net rate of production of species i by 

chemical reaction. There are several models to describe rate of production. In this study, 

Laminar Finite Rate Model (LFRM) and Eddy-Dissipation Model (EDM) are compared and a 

solution procedure is suggested which utilizes both reaction models. 

LFRM computes the species source terms using Arrhenius chemical kinetics. The net 

source of species i due to reaction is calculated as: 

 
1

j
N

p r

i i i i f j

j

R M k C


 


 
     

 
  (13) 

where 

Mi is the molecular mass of species i 

r

i  and p

i  are the stoichiometric coefficients for reactant and product respectively, 

kf is the Arrhenius reaction rate and defined as: 

rE / RT

f rk A e  where Ar is the pre-exponential factor, Er is the activation energy for the 

reaction and R is the universal gas constant and 
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Cj is the molar concentration of each reactant and product species j. 

EDM calculates Ri by taking the minimum value of the following two expressions: 

r R
i ,r i i R r

i ,R R

P
r P

i ,r i i N
p

j j

j

Y
R M A min

k M

Y

R M AB
k

M


 




 



 
  

 






 (14) 

where A and B are empirical constants and equal to 4.0 and 0.5 respectively. 

Combustion of methane takes place according to single reaction four species assumption: 

4 2 2 22 2CH O CO H O    

Then the production rate of fuel, methane becomes: 

 0 2 1 3. .

f f f f oxR M k C C  using LFRM. The reaction rate by EDM changes according to 

Equation 14. 

Boundary conditions for the GDE are provided to Fluent solver as follows: Mass flow 

rate of fuel and oxidizer are given at inlets. Prescribed oxidizer mass flow rate is determined 

to provide a stoichiometric value for oxidizer to fuel mass ratio. Additionally, temperatures 

are prescribed at inlets. Mass fraction of methane at fuel inlet is defined as 1.0 and mass 

fraction of oxygen at oxidizer inlet(s) are defined as 0.7 except for Bunsen burner 

simulations. In Bunsen burner simulations, air (YO2 = 0.23) is taken as oxidizer. At outlet, 

pressure is given as the boundary condition. LPRM walls are modeled as adiabatic. All the 

walls and inlet and outlet are considered as radiative surfaces with an emissivity of 1.0. 
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5.2. Solution Technique 

The governing equations are solved in 2-D planar space by pressure based solver 

provided by ANSYS Fluent. Coupled scheme is used for pressure-velocity coupling and 

spatial discretization is done based on second – order upwind scheme.  

In order to simulate viscous, turbulent, compressible, unsteady reacting flow of a 

Newtonian fluid, the following models by ANSYS Fluent are used: Energy, Turbulence – 

Standard k-epsilon, Radiation – P1, Species – Species Transport. 

False (Pseudo)-transient under-relaxation method is also used for more robust 

solutions. 

Summary of the solver and calculation settings and solution methods are presented in 

Table 1. 

Table 1. Solver settings, solution methods and calculation methods for the present study 

Solver Settings  

 Pressure – based 

2 – D Planar 

Steady 

Solution Methods  

 Scheme – Coupled 

Gradient – Least Squares Cell Based 

Pressure – 2nd Order 

Discretization – 2nd Order Upwind 

 Pseudo – Transient 

Calculation Settings  

 Residual Criteria: 10-15 for Non-Reacting 

                             10-9  for Reacting 

 

For the numerical simulations of steady-state reacting flows, modeling ignition is very 

difficult because the nature of chemical reactions is unsteady. ANSYS Fluent provides 

Patching option which imposes certain conditions to specific locations in the domain. These 
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imposed conditions are utilized as the initial guess of the iterative calculations. Ignition is 

simulated by imposing high temperature (~1750 K) on a specified region close to fuel inlet (x 

= 0 – 0.15 in, y = 0.245 – 0.255 in) as the initial guess. Convergence is another problematic 

aspect of the reacting flow simulations. For this purpose, a solution procedure is utilized 

which requires an iterative reduction of the assumed value of the fuel inlet temperature by the 

user. 

1. Initialize the simulation for non-reacting cold flow of fuel and oxidizer. Run until 

convergence is attained. 

2. Once Step 1 is complete, update fuel inlet boundary condition: Tfi = 1500 K. Run 

until solution converges. 

3. Turn on Reaction – LFRM, patch 1750 K to fuel inlet. Run until solution converges. 

4. Update boundary condition for fuel inlet: Tfi = 1200 K. Patch 1750 K to the same 

region. Run until convergence is achieved. 

5. Repeat Step 4 for Tfi = 900, 600, 300 K. 

6. Once a converged solution is obtained at Step 5, turn reaction model to EDM without 

initializing or patching and run until solution converges. 
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6. RESULTS 

In this chapter, results of the experiments and the computational simulations are 

presented. Results include the experiment results, simulation of benchmark cases, grid 

independence study as well as comparison of the experimental and computational study and 

finally the results of the parametric study. 

6.1. Results of the Experiments 

In the present study, the operating conditions in Table 2 are used for hot test runs. 

Table 2. Operating conditions for the experiments 

 Gas 
Supply Tank 

Regulator Setting 

Needle valve 

Ignition Setting 

Needle valve Steady 

State Setting 

Fuel Methane 40 psig 10° 10° 5° 

Oxidizer Oxygen 40 psig 20° 20° 10° 

Purge Nitrogen 40 psig 0° 0° 0° 

 

Additionally, the experimental matrix is presented in Table 3. 

Table 3. Experimental matrix 

Chamber Pressure 
Chamber 

Temperature 

Flame Temperatures 

1, 2,3 

Mass Flow Rate of 

Fuel 

M M M C 

M: measured, C: empirically calculated 

Two different runs are conducted with the same operating conditions. In this section, 

results of the Run 1 are presented. Results of Run 2 are presented in Appendix VI. In Table 4, 

results of Run 1 are tabulated and through Figure 8 to Figure 10, mass flow rate of methane, 

chamber pressure, temperature of gases inside chamber and temperature of flame at the 

locations specified in Figure 6 versus time are plotted, respectively. 
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Table 4. Chamber pressure, temperature, flame temperatures and mass flow rate of methane 

 

Chamber 

Pressure 

Chamber 

Temperature 

Flame Temperature  

Time 
T/C 1 T/C 2 T/C 3 

Mass flow 

rate of fuel 

(hh:mm:ss) [psig] [ᵒC] [ᵒC] [ᵒC] [ᵒC] [kg/s] 

13:27:20 0.078 22.25 23.38 24.75 24.59 0 

13:27:34 2.026 542.80 791.66 1090.40 1209.01 0.0001718 

13:28:09 2.470 937.16 663.71 868.31 1066.80 0.0001487 

13:28:51 0.886 478.33 713.26 1259.40 1364.75 0.0000701 

13:29:05 0.074 285.41 592.18 635.59 578.80 0 

13:30:00 0.076 68.07 291.61 195.63 188.24 0 
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Figure 8. Mass flow rate of methane versus time for Run 1 
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Figure 9. Recorded chamber pressure (Pt) for Run 1 
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Figure 10. Registered temperatures (T/C) for Run 1 

In addition to the experimental data presented above, pictures of the flame can be 

found in Figure 11 and Figure 12. 
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Figure 11. Picture of the flame from Run 1 at Valve Setting 1. 

 

Figure 12. Picture of the flame from Run 1 at Valve Setting 2 

6.2. Results of the Computational Model 

In this section, results of the CFD simulations are presented. First, computational 

model is validated using Benchmark case studies. Validation is done based on non-reacting 

channel flow [23]  and reacting flow in Bunsen burner. Additionally, simulations are verified 

to be independent of mesh size in Section 6.2.2. In the Section 6.3, computational and 
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experimental results are compared and following that results of the parametric study are 

introduced. 

Operational parameters used in the computational studies are presented in Table 5. 

Table 5. Operational Parameters in the simulations 

Parameter Symbol Value Unit 

Inlet mass flow rates    

 Fuel fm  * kg/s 

 Oxidizer oxm  * kg/s 

Inlet Mass Fraction    

 Fuel Yf,in 1.0 - 

 Oxidizer Yox,in * - 

Inlet Temperature Tin 300 K 

Outlet Pressure` Po * kPa 

*Variable. See corresponding sections. 

 

6.2.1. Validation of Computational Model 

6.2.1.1. Flow Characteristics 

In order to validate the computational model, the study of Morihara et al. [23] is 

selected as a benchmark case. The authors presented the numerical solution to the flow in the 

entrance region of a semi-infinite parallel channel for various Reynolds numbers. Solutions 

for Re = 20, 200, and 2000 are considered as the benchmark case for the present study. A 

semi-infinite plate with a 0.05 m height is modeled and results are nondimensionalized in 

order to compare them. 



25 

 

In Table 6, the results of the present study and results of the benchmark case are 

tabulated. In Figure 13, these tabulated results are plotted. 

 

Table 6. Non-dimensional centerline velocities of present study and Morihara et al. 

Re 20   200   2000   

x' B.C. P.S. % Dev. B.C. P.S. % Dev. B.C. P.S. % Dev. 

0 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 

0.005 1.01 1.006 -0.40 1.07 1.09 1.87 1.167 1.16 -0.60 

0.01 1.03 1.022 -0.78 1.18 1.172 -0.68 1.23 1.233 0.24 

0.015 1.05 1.048 -0.19 1.23 1.23 0.00 1.283 1.289 0.47 

0.02 1.085 1.082 -0.28 1.28 1.276 -0.31 1.323 1.332 0.68 

0.025 1.12 1.123 0.27 1.32 1.315 -0.38 1.361 1.367 0.44 

0.03 1.18 1.165 -1.27 1.35 1.346 -0.30 1.389 1.394 0.36 

0.035 1.22 1.208 -0.98 1.375 1.372 -0.22 1.414 1.415 0.07 

0.04 1.26 1.249 -0.87 1.395 1.393 -0.14 1.431 1.431 0.00 

0.06 1.37 1.376 0.44 1.45 1.447 -0.21 1.473 1.469 -0.27 

0.08 1.44 1.443 0.21 1.47 1.471 0.07 1.485 1.484 -0.07 

B.C.: Benchmark case of Morihara et al., P.S.: Present study 
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Figure 13. Comparison of non-dimensional centerline velocities predicted by the present 

study and by Morihara et al. for Re = 20,200, and 2000 

6.2.1.2.  Reacting Flow 

Before carrying out the simulations of combustion inside LPRM model, flow in a 

Bunsen burner in Ch geometry is simulated. Results are obtained for three different oxidizer 

mass flow rates. Additionally, two different reaction models provided by ANSYS Fluent are 

utilized. 

In Table 7, operating conditions and general results for the Run Ch-R-I are presented. 
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Table 7. Operating conditions and results for Run Ch-R-I 

Run Number: Ch-R-I RESULTS 

mf mo Po Pin mo Vo To 

kg/s kg/s kPa kPa kg/s m/s K 

0.0008 0.01 0 0.0018 0.01008 2.4 819 

0.0008 0.02 0 0.0037 0.02008 3.4 624 

0.0008 0.04 0 0.0085 0.04008 5.3 472 

 

 
 (a) (b) (c) 

Figure 14. Temperature distribution (in Kelvins) for Bunsen burner inside Channel simulation 

with Eddy – Dissipation Reaction model for different mass flow rates of oxidizer: (a) oxm = 

0.01 kg/s, (b) oxm = 0.02 kg/s, oxm = 0.04 kg/s 

Bunsen burner is also modeled with LFRM without employing Step 5 of the solution 

procedure. As can be seen in Figure 15, LFRM over-estimates the flame temperature. 
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Therefore, for the other reacting flow simulations, all the steps of solution procedure, which 

involve ED reaction model, are followed exactly. 

 

Figure 15. Temperature distribution (in Kelvins) inside Channel for Bunsen Burner 

simulation with Laminar Finite Rate Reaction model 
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Table 8. Properties of different meshes 

Mesh 
Number of Cells along 

x and y direction 
Stretching 

1 105 x 72 Only y - direction 

2 140 x 80 x and y direction 

3 150 x 88 x and y direction 

4 160 x 94 x and y direction 

 

Figure 16. Mesh 1 

 

Figure 17. Mesh 2, 3 and 4 
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6.2.2.1. Non-Reacting Flow 

In order to check that accuracy of the predictions and convergence of solutions are 

independent of the selected grid size, simulations of non-reacting flows are considered. For 

this purpose, mixing flow of methane and oxygen is simulated inside the Channel 

configuration. Results are compared based on velocity and methane mass fraction profiles 

along centerline and along a vertical line near the fuel inlet. 

Table 9. Operating parameters and results for Run Ch-NR-I 

Run Number: Ch-NR-I RESULTS 

Mesh mf mo Po Pin mo Vo 

 kg/s kg/s kPa kPa kg/s m/s 

Mesh 1 0.00066 0.01056 0 0 0.01122 1.02 

Mesh 2 0.00066 0.01056 0 0 0.01122 1.04 

Mesh 3 0.00066 0.01056 0 0 0.01122 1.08 

Mesh 4 0.00066 0.01056 0 0 0.01122 1.07 

 

Axial velocity distribution along centerline is tabulated in Table 10 and plotted in Figure 18. 
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Table 10. Axial velocity along centerline using different meshes 

x [m] Velocity [m/s] 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

0.000 3.689 3.868 4.010 4.022 

0.005 1.597 1.667 1.735 1.744 

0.010 1.389 1.436 1.475 1.480 

0.015 1.294 1.329 1.356 1.359 

0.020 1.231 1.261 1.281 1.284 

0.025 1.182 1.208 1.225 1.227 

0.030 1.138 1.162 1.177 1.179 

0.036 1.100 1.121 1.134 1.135 

0.041 1.068 1.086 1.097 1.098 

0.046 1.059 1.073 1.083 1.083 

0.051 1.181 1.189 1.192 1.193 
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Figure 18. Axial velocity along centerline of Ch using different meshes 

 

Mass fraction of methane along centerline is tabulated in Table 11 and plotted in 

Figure 19. 
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Table 11. Mass fraction of methane along centerline using different meshes 

x [m] Mass fraction of methane [] 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

0.000 1.0000 1.0000 1.0000 1.0000 

0.005 0.2256 0.2389 0.2567 0.2587 

0.010 0.1643 0.1728 0.1825 0.1835 

0.015 0.1354 0.1416 0.1480 0.1486 

0.020 0.1168 0.1217 0.1264 0.1269 

0.025 0.1032 0.1073 0.1109 0.1113 

0.030 0.0928 0.0962 0.0990 0.0993 

0.036 0.0847 0.0874 0.0897 0.0899 

0.040 0.0783 0.0804 0.0822 0.0824 

0.046 0.0734 0.0750 0.0763 0.0764 

0.051 0.0693 0.0704 0.0714 0.0715 
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Figure 19. Mass fraction of methane along centerline using different meshes 

 

In addition to centerline, a vertical line near fuel inlet (x = 0.00127) is also taken into 

account. Axial velocity distribution is tabulated in Table 12 and plotted in Figure 20. 
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Table 12. Axial velocity along vertical axis at x = 0.00127 m 

y [m] Axial velocity [m/s] 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

0.000 0.000 0.000 0.000 0.000 

0.001 0.382 0.369 0.370 0.369 

0.003 0.781 0.801 0.805 0.806 

0.005 0.874 0.867 0.870 0.871 

0.008 0.874 0.867 0.870 0.871 

0.010 0.781 0.801 0.805 0.806 

0.011 0.382 0.369 0.370 0.369 

0.013 0.000 0.000 0.000 0.000 

 

Figure 20. Axial velocity along vertical axis at x = 0.00127 m 
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Axial velocity distribution along x = 0.00127 m is tabulated in Table 13 and plotted in 

Figure 21. 

Table 13. Mass fraction of methane along vertical axis at x = 0.00127 m 

y [m] Mass fraction of methane [ ] 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

0.000 0.0000 0.0000 0.0000 0.0000 

0.001 0.0000 0.0000 0.0000 0.0000 

0.003 0.0000 0.0000 0.0000 0.0000 

0.005 0.0017 0.0003 0.0002 0.0002 

0.006 0.4492 0.4681 0.5159 0.5221 

0.008 0.0017 0.0003 0.0002 0.0002 

0.010 0.0000 0.0000 0.0000 0.0000 

0.011 0.0000 0.0000 0.0000 0.0000 

0.013 0.0000 0.0000 0.0000 0.0000 
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Figure 21. Mass fraction of methane along vertical axis at x = 0.00127 m 
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Table 14. Operating conditions and results for Run Ch-R-II 

Run Number: Ch-R-II RESULTS 

Mesh mf mo Po Pin mo Vo To 

 kg/s kg/s kPa kPa kg/s m/s K 

Mesh 2 0.0009 0.026 10 10.0 0.0269 11.3 1639 

Mesh 3 0.0009 0.026 10 10.0 0.0269 11.7 1784 

Mesh 4 0.0009 0.026 10 10.0 0.0269 11.6 1765 

 

Comparison of these three grids are done based on the axial velocity and temperature 

along centerline. 

Axial velocity along centerline is tabulated in Table 15 and plotted in Figure 22. 

Table 15. Axial velocity along centerline for Run Ch-R-II 

x [m] Velocity [m/s] 

 Mesh 2 Mesh 3 Mesh 4 

0.000 5.37 5.37 5.35 

0.005 5.64 5.57 5.58 

0.010 6.09 5.89 5.88 

0.015 6.87 6.56 6.53 

0.020 7.74 7.36 7.32 

0.025 8.58 8.17 8.13 

0.030 9.34 8.94 8.89 

0.036 10.00 9.64 9.59 

0.041 10.50 10.26 10.23 

0.046 11.16 11.04 11.02 

0.051 13.85 13.78 13.78 
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Figure 22. Axial velocity along centerline for Run Ch-R-II 

Temperature along centerline is tabulated in Table 16 and plotted in Figure 23. 
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Table 16. Temperature along centerline for Run Ch-R-II 

x [m] Temperature [K] 

 Mesh 2 Mesh 3 Mesh 4 

0.000 328.0 308.1 306.2 

0.005 1163.9 1049.3 1038.9 

0.010 1514.7 1378.5 1364.7 

0.015 1770.8 1620.8 1604.6 

0.020 2001.3 1845.9 1827.4 

0.025 2205.8 2068.8 2050.5 

0.030 2362.9 2261.3 2246.7 

0.036 2463.4 2400.8 2391.0 

0.041 2448.8 2472.5 2471.7 

0.046 2358.4 2417.8 2425.2 

0.051 2226.4 2289.1 2297.5 
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Figure 23. Temperature along centerline for different meshes 

Based on the results presented in Sections 6.2.2.1 and 6.2.2.2, Mesh 3 is decided to be 
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cp,CO2 = 1000 J/kg-K and cp,H2O = 1000 J/kg-K for  300 < T < 1000 K 

cp,CO2 = 2000 J/kg-K and cp,H2O = 5500 J/kg-K for 1000 < T < 5000 K 

Although constant specific heat is not very reasonable approach for reacting flows, it 

provides idea about modifying specific heats. The specific heats of all species must be 

modified. Here, the results based on the proposed modified specific heats are presented. 

Results of the computational simulations are compared to experimental data by temperature 

taken from the specific locations in the experiments. Second phase of the Run 1 (2nd Valve 

Setting) is selected for comparison. Operating conditions and the results for the 

computational simulation is presented in Table 17. In Table 18, the comparison of 

computational and experimental results is made and plotted in Figure 24. The experimental 

values of temperature presented in this table are for time, to t = 13:28:51. 

Table 17. Operating conditions and results for CCNF-R-I 

Run Number: CCNF-R-I RESULTS 

mf mo Po Pin mo Vo RR To 

kg/s kg/s kPa kPa kg/s m/s kmol/ m3s K 

0.0009 0.026 10 10.2 0.0269 35.7 26.1 1524 

 

Table 18. Temperature values at thermocouple points 

x [m] Temperature [K] % Difference 

 CFD Exp.  

0.00635 1070.6 986.41 8.53 

0.01270 1472.3 1532.55 -3.93 

0.01905 1688.7 1637.9 3.10 
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Figure 24. Temperature histogram at y = 0.15 along horizontal axis from Run CCNF-R-I 

compared with measured data from Run 1. 

Through Figure 25 to Figure 31, temperature, pressure, density and mass fractions of 

methane and products are presented for the Base case study. 

Figure 25. Temperature distribution (in Kelvins) inside CCFN for Run CCNF-R-I 
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Figure 26. Pressure distribution (in Pascals) inside CCFN for Run CCNF-R-I 

 

Figure 27. Predicted x-velocity (in m/s) inside CCFN for Run CCNF-R-I 

 

Figure 28. Density (in kg/m3) variation inside CCFN for Run CCNF-R-I 
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Figure 29. Mass fraction of CH4 inside CCFN for Run CCNF-R-I 

 

Figure 30. Mass fraction of CO2 inside CCFN for Run CCNF-R-I 

 

Figure 31. Mass fraction of H2O inside CCFN for Run CCNF-R-I 
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reasonable results. In the following sections of this thesis, effect of the several parameters are 

investigated in order to provide data to the design of combustion experiments in the future. 

Detailed list of the parameters used in Run CCFN-R-I can be found in Appendix VII. 

6.4. Parametric Study 

In this section, effects of several parameters are investigated on flow and combustion 

characteristics in order to provide insight for the experiments to be conducted in the near 

future. These parameters are mass flow rates of fuel and oxidizer and outlet pressure. 

6.4.1. Effect of Different Mass Flow Rates 

6.4.1.1. Effect of Fuel Mass Flow Rate 

Operating conditions and results are presented in Table 19. 

Table 19. Operating conditions and results for Run CCNF-R-II 

Run Number: CCNF-R-II RESULTS 

mf mo Po Pin mo Vo RR To 

kg/s kg/s kPa kPa kg/s m/s kmol/ m3s K 

0.0005 0.026 10 10.1 0.0265 25.6 26.1 1124 

0.0009 0.026 10 10.2 0.0269 35.7 26.6 1524 

0.0015 0.026 10 10.3 0.0275 46.9 28.6 1919 

 

In Figure 32, temperature distributions inside CCNF are presented for various fuel 

mass flow rates. 
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(a) 

 

(b) 

 

(c) 

Figure 32. Temperature distribution (in Kelvins) inside CCNF for the Run CCNF-R-II. (a) 

fm = 0.0005 kg/s, (b) fm = 0.0009 kg/s, fm = 0.0015 kg/s 
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temperature inside CCNF does not change significantly, high temperature region gets bigger 

with the increasing fuel mass flow rate. 

6.4.1.2. Effect of Oxidizer Mass Flow Rate 

Operating conditions and results for Run CCNF-R-III are presented in Table 20. 

Table 20. Operating conditions and results for Run CCNF-R-III 

Run Number: CCNF-R-III RESULTS 

mf mo Po Pin mo Vo RR To 

kg/s kg/s kPa kPa kg/s m/s kmol/ m3s K 

0.0009 0.013 10 10.1 0.0139 25.7 28.8 2071 

0.0009 0.026 10 10.2 0.0269 35.7 26.6 1524 

0.0009 0.050 10 10.5 0.0509 44.6 22.6 1025 

 

In Figure 33, temperature distributions inside CCNF are presented for various 

oxidizer mass flow rates. 
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(a) 

 
(b) 

 

(c) 

Figure 33. Temperature distribution (in Kelvins) inside CCNF for the Run CCNF-R-III. (a) 

oxm = 0.013 kg/s, (b) oxm = 0.026 kg/s, oxm = 0.05 kg/s 
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6.4.2. Effect of Different Outlet Pressures 

Operating conditions and results for Run CCNF-R-III are presented in Table 21. 

Operating conditions and results for Run CCNF-R-I. 

Table 21. Operating conditions and results for Run CCNF-R-IV 

Run Number: RESULTS 

mf mo Po Pin mo Vo RR To 

kg/s kg/s kPa kPa kg/s m/s kmol/ m3s K 

0.0009 0.026 10 10.2 0.0269 35.7 26.6 1524 

0.0009 0.026 100 100.1 
0.0269 

19.8 30.6 1525 

0.0009 0.026 300 300.1 
0.0269 

9.9 32.7 1525 

 

In Figure 34, temperature distributions inside CCNF are presented for various fuel 

mass flow rates. 
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(a) 

 
(b) 

 
(c) 

Figure 34. Temperature distribution (in Kelvins) inside CCNF for the Run CCNF-R-IV. (a) 

Po = 10 kPa, (b) Po = 100 kPa, (c) Po = 300 kPa 
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7. CONCLUSIONS 

In this thesis, the reacting flow inside the LPRM is studied experimentally and 

computationally. Experiments are conducted in University of New Orleans Combustion 

Laboratory. Computational simulation has been done using ANSYS Fluent as a solver. Flow 

inside the combustion chamber is modeled as viscous, turbulent and compressible in 2-D 

planar domain. Mathematical modeling is done based on unsteady assumption. In CFD 

simulations, pseudo – transient approach is utilized to determine steady – state temperature 

distribution. Benchmark cases for non-reacting and reacting flows are considered to verify 

the accuracy of the computational model. Four different mesh sizes are used for 

determination of the most proper grid considering the accuracy of solutions and computation 

time. 

The following conclusions were drawn from the results of the simulations: 

1. Benchmark case of flow between semi-infinite plates is taken and compared with the 

results found in the present study. Results shows that the present mathematical model 

gives accurate results for the Benchmark case considered. 

2. A special solution procedure is constructed for the numerical simulations, which 

utilizes different reaction models. Results show that this procedure provides an 

accurate prediction for the location of chemical reaction as well as a reasonable 

temperature distribution of gases inside LPRM. 

3. The computational model is calibrated in order to obtain a reasonable gas temperature 

distribution inside LPRM by modifying specific heats of products. After calibration, 

there is a good agreement between the results obtained from computational model and 

the experiments. 
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4. The results of the parametric study give idea about the effects of mass flow rates of 

fuel and oxidizer and pressure at outlet to design the future experiments for non – 

intrusive measurement of temperature with TDLAS. [24], [25] 
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8. RECOMMENDATIONS 

This thesis aimed to understand the characteristics of reacting flow of methane and 

oxygen inside a low – pressure rocket motor. To improve the present study: 

i. The base case CFD simulation is calibrated based on experimental results for 

temperature by modifying specific heats of combustion products, i.e. carbon 

dioxide and water vapor. Modification of specific heats should be according to the 

data in the literature. 

ii. CFD simulations should be repeated for unsteady reacting flow of methane and 

oxygen. 
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APPENDIX – I 

EQUIPMENT LIST USED IN THE EXPERIMENTS 

Table I.1. LPRM Test Stand Equipment List 

 

Table I. 2. LPRM Data Acquisition (DAQ) Equipment List 
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APPENDIX – II 

CALIBRATION CURVES FOR THE EXPERIMENTS 

MD2 CH0 Differential Pressure Transducer 

Table II.1:  Differential Pressure Transduer values taken to make a calibration curve. 

Valve 

(rad) 

Pressure 

Upstream 

(psig) 

Pressure 

Downstream 

(psig) 

Voltage 

(mV) 

Delta P 

(psig) 

0 40 40 0.01 0 

π 40 40 0.03 0 

2π 40 39.6 0.07 0.4 

3π 40 39.1 0.12 0.9 

4π 40 39.1 0.19 0.9 

5π 40 38.6 0.28 1.4 

6π 40 38.1 0.37 1.9 

7π 40 38.1 0.49 1.9 

8π 40 37.6 0.62 2.4 

9π 39.9 37.1 0.76 2.8 

10π 39.9 36.6 0.9 3.3 

11π 39.9 36.1 1.05 3.8 

12π 39.8 35.6 1.19 4.2 
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Figure II.1. Calibration Curve for Methane Inlet Differential Pressure Transducer. (Md. 2 Ch. 0) 

MD2 CH3 Combustion Chamber Pressure Transducer 

Table II.2:  Pressure Transduer values taken to make a calibration curve. 
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Figure II. 2. Calibration curve for Chamber Pressure Transducer (Md. 2 Ch. 3) 
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APPENDIX – III 

CALCULATION OF THE FUEL MASS FLOW RATE 

Equation ṁCH4 = KA2γ1Y√2g0(
P1-P2

γ1
) (15 can be used to determine the mass flow rate 

of methane. 

𝑚̇𝐶𝐻4 = 𝐾𝐴2𝛾1𝑌√2𝑔0(
𝑃1−𝑃2

𝛾1
) (15) 

where K is the flow coefficient and Y is the compressibility factor and defined in Equations 2 

and 3. 

  𝑌 = {(
𝑃2

𝑃1
)

2

𝑘
(

𝑘

𝑘−1
) [

1−(
𝑃2
𝑃1
)

𝑘−1
𝑘

1−(
𝑃2
𝑃1
)
] × [

1−(
𝐴2
𝐴1
)
2

1−(
𝐴2
𝐴1
)
2
(
𝑃2
𝑃1
)

2
𝑘

]}

1

2

 (16) 

𝐾 = 𝐶
1

√1−(
𝐴2
𝐴1
)
2
 (17) 

C is the discharge coefficient. 
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APPENDIX – IV 

VECTOR FORM OF THE GOVERNING DIFFERENTIAL EQUATIONS 

The continuity equation is given by: 

                   0 V
tD

D 



                                                      (IV.1) 

The momentum equations are given by: 
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                     (IV.2) 

where   

                                 jiif1

jiif0j,i { 

                                                             (IV.3) 

Transport equations for Standard k-ε model are given by: 
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          (IV.5) 

The energy equation is given by: 

 
s

D e Q
p V ( k T )

Dt t

 
       


                                               (IV.6)  

The equation of state is: 

TRp                                                                      (I.7) 

And transport equation for species transport is given as: 

 i

i i

D Y
J R

Dt


                                                    (IV.8)   
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APPENDIX – V 

LOG SHEETS OF EXPERIMENTS 

Low Pressure Rocket Motor 
Log Book 

 
Date of Experiment:  9-12-15 

 

Type of Procedure:  Hot Test 

 

Experiment Number:  Run 1 

 

Crew Present:  Dr. Akyuzlu, Paul Fuller, Mine Kaya 

 

Data Files: 

1. PC Name: 

2. Username: 

3. File Folder Location: 

 

Objective:  To measure the temperature within the combustion chamber at three separate zones of 

the methane flame. 

 

Operating Parameters: 

 Gas Tank Regulator 
Setting 

Needle Valve 
Ignition Setting 

Needle Valve 
Steady State 
Setting 

Fuel: Methane 40 psig 10° 10° 5° 

Oxidizer: Oxygen 40 psig 20° 20° 10° 

Purge: Nitrogen 40 psig 0° 0° 0° 

 

Preparation Check List: 

1. Data Acquisition System: Settings □ Logging □ 

2. Gas Line Pressurized: Fuel □     Oxidizer □ Purge □ 

3. Thermocouples: MD4 Ch0 □     MD4 Ch1 □      MD4 Ch2 □     MD4 Ch3 □     MD 4 Ch4 

□     MD4 Ch5 □    MD4 Ch6 □ 

4. Pressure Transducers: MD2 Ch0 □ MD2 Ch3 □ 

 

Time of Start: 27:01.4       End: 30:34.7 

 

Recorder: 

1. Tape Name:  Time of Start:    End: 

2. DAQ File:    Time of Start:    End: 

Observations: 

 

Remarks: 
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Low Pressure Rocket Motor 
Log Book 

 
Date of Experiment: 

 

Type of Procedure:  Hot Test 

 

Experiment Number:  Run 2 

 

Crew Present:  Dr. Akyuzlu, Paul Fuller, Mine Kaya 

 

Data Files: 

4. PC Name: 

5. Username: 

6. File Folder Location: 

 

Objective:  To measure the temperature within the combustion chamber at three separate zones of 

the methane flame. 

 

Operating Parameters: 

 Gas Tank Regulator 
Setting 

Needle Valve 
Ignition Setting 

Needle Valve 
Steady State 
Setting 

Fuel: Methane 40 psig 10° 10° 5° 

Oxidizer: Oxygen 40 psig 20° 20° 10° 

Purge: Nitrogen 40 psig 0° 0° 0° 

 

Preparation Check List: 

5. Data Acquisition System: Settings □ Logging □ 

6. Gas Line Pressurized: Fuel □     Oxidizer □ Purge □ 

7. Thermocouples: MD4 Ch0 □     MD4 Ch1 □      MD4 Ch2 □     MD4 Ch3 □     MD 4 Ch4 

□     MD4 Ch5 □    MD4 Ch6 □ 

8. Pressure Transducers: MD2 Ch0 □ MD2 Ch3 □ 

 

Time of Start: 39:40.7      End: 41:40.1 

 

Recorder: 

3. Tape Name:  Time of Start:    End: 

4. DAQ File:    Time of Start:    End: 

Observations: 

 

Remarks: 
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APPENDIX – VI 

RESULTS OF RUN 2 

Figure VII.1. Mass flow rate for Run 2.
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Figure VII.1. Chamber pressure for Run 2. 

 

Figure VII.1. Recorded temperatures for Run 2.  
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APPENDIX – VII 

PARAMETERS FOR THE BASE CASE (CCNF-R-I) SIMULATION 

GEOMETRICAL PARAMETERS 

Parameter Symbol Value Unit 

Height of combustion chamber H 0.5 inch 

Length of combustion chamber LCC 2 inch 

Length of mixing chamber (AFT) LAFT 0.5 inch 

Height of fuel inlet hfi 0.01 inch 

Height of oxidizer hoi 0.25 inch 

Height of outlet ho 0.125 inch 

Width w 1.5 inch 

 

OPERATIONAL PARAMETERS 

Parameter Symbol Value Unit 

Given 

Mass flow rate of fuel mf 0.0009 kg/s 

Mass flow rate of primary oxidizer mo1 0.015 kg/s 

Mass flow rate of secondary oxidizer mo2 0.011 kg/s 

Temperature of fuel and oxidizer Tin 300 K 

Calculated 

Reynolds number at fuel inlet Ref 95.7 - 

Reynolds number at fuel inlet Reox 2840 - 

Reynolds number at outlet Reo 3498 - 

Mach number at outlet Mao  0.05 - 

 

COMPUTATIONAL PARAMETERS 

Residuals Criteria (Non Reacting) 

                                     (Reacting) 

- 10-15 - 

- 10-10 - 

Combustion Chamber & FWD (CCF) 

Number of nodes in x-direction Nx 170 - 

Number of nodes in y-direction Ny 88 - 

Stretching factor SF 1.1 - 

Minimum cell length in x direction Δxmin 0.002 inch 

Minimum cell length in y direction Δymin 0.0025 inch 

Nozzle (N) 

Number of nodes Nn 2563 - 

Stretching factor SF 1.1 - 
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PHYSICAL PARAMETERS 

Physical Parameters of Methane - Oxygen Mixture 

Parameter Symbol Value Unit 

Thermal conductivity k 0.0454 W/m-K 

Viscosity µ 1.72 e-5 kg/m-s 

Mass diffusivity D 2.88 e-5 m2/s 

 

PHYSICAL PARAMETERS  

Coefficients of the Polynomial for the specific heat of substances 

(cp = C1 + C2 T + C3 T
2 + C4 T

3 + C5 T
4) 

  C1 C2 C3 C4 C5  

Methane  CH4 
403.58 9.06 -0.01443 1.58∙10-5 -6.34∙10-9 300 < T < 1000 

872.47 5.31 -0.00201 3.52∙10-7 -2.33∙10-11 1000 < T < 5000 

Oxygen O2 
834.83 0.29 -0.00015 3.41∙10-5 -2.28∙10-10 300 < T < 1000 

960.75 0.16 -3.27∙10-5 4.61∙10-9 -2.95∙10-13 1000 < T < 5000 

Nitrogen N2 
979.04 0.42 -0.00118 1.67∙10-6 -7.26∙10-10 300 < T < 1000 

868.62 0.44 -0.00017 3.00∙10-8 -2.00∙10-12 1000 < T < 5000 

Carbon 

dioxide 
CO2 

1000     300 < T < 1000 

4000     1000 < T < 5000 

Water 

Vapor 
H2O 

2000     300 < T < 1000 

5500     1000 < T < 5000 

 

TURBULENCE PARAMETERS 

Parameter Symbol Value Unit 

Turbulent viscosity coefficient Cµ 0.09 - 

Empirical constant 1 Cε1 1 1.44 - 

Empirical constant 2 Cε2 1.92 - 

Turbulent Prandtl number for k Prk 1 - 

Turbulent Prandtl number for eps Prε 1.3 - 

 

COMBUSTION PARAMETERS 

Parameter Symbol Value Unit 

Stoichiometric coefficient for CH4 νCH4 1 - 

Stoichiometric coefficient for O2 νO2 2 - 

Stoichiometric coefficient for CO2 νCO2 1 - 

Stoichiometric coefficient for H2O νH2O 2 - 

Rate exponent for methane ηCH4 0.2  

Rate exponent for oxygen ηCH4 1.3  

Pre-exponential factor Ar 2.119∙1011  

Activation Energy Er 2.03∙108 J/kg-mol 

 



69 

 

Vita 

Mine Kaya was born on July 23, 1989 in Ankara, Turkey. She completed her 

Bachelor studies in mechanical engineering at Middle East Technical University (METU) in 

2012. After working as a research and development engineer in industry for one year and a 

teaching assistant in the Department of Mechanical Engineering at METU, she was admitted 

to the Department of Mechanical Engineering at the University of New Orleans as a graduate 

research assistant. She has worked in the research project funded by NASA EPSCoR and 

Board of Regents. She received her Master of Science degree from the Department of 

Mechanical Engineering at University of New Orleans in August 2016. 


	Experimental Study and Numerical Simulation of Methane Oxygen Combustion inside a Low Pressure Rocket Motor
	Recommended Citation

	tmp.1466242295.pdf.i0VIU

