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Abstract 

      Seismic inversion using a global optimization algorithm is a non-linear, model-driven process. 

It yields an optimal solution of the cost function – reflectivity/acoustic impedance, when prior 

information is sparse. The inversion result offers detailed interpretations of thin layers and internal 

stratigraphy as well as improved interpretations of lateral continuity and connectivity of sand 

bodies. This study compared two stable and robust global optimization techniques, Simulated 

Annealing (SA) inversion and Basis Pursuit Inversion (BPI), as applied to post-stack seismic data 

from the Gulf of Mexico.  

 

       Both methods use different routines and constraints to search for the minimum error energy 

function. Estimation of inversion parameters in SA is rigorous and more reliable because it 

depends on prior knowledge of subsurface geology. The BPI algorithm is a more robust 

deterministic process. It was developed as an alternative method to incorporating a priori 

information. Results for the Gulf of Mexico show that BPI gives a better stratigraphic and 

structural actualization due to its capacity to delineate layers thinner than the tuning thickness. The 

SA algorithm generates both absolute and relative impedances, which provide both qualitative and 

quantitative characterization of thin-bed reservoirs.  

 

 

 

Keywords: Seismic Inversion, Reflectivity, Impedance, Thin-bed reservoirs, Global Optimization, 

Simulated Annealing Inversion, Basis Pursuit Inversion  
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1.0 INTRODUCTION 

 Seismic inversion has been used over the years by geoscientists as a critical tool in reducing 

risks associated with exploration, development, and production of oil and gas. It is used primarily 

for reservoir characterization and petro-physical studies because layer information at well 

locations is extended throughout the seismic volume, leading to the delineation of the true 

subsurface geology. 

 

 In seismic inversion, global optimization techniques are employed to combat the problem of 

solutions being trapped within local minima. This is done by estimating the smallest possible misfit 

between the model (objective function) and the seismic data. We state that the inversion process 

is model-driven because the observed seismic data can be considered as a forward model in which 

the seismic wavelet is convolved with the earth’s reflectivity series. This process can be considered 

to place in either stochastic or deterministic space.  

 

 When these techniques are applied to post-stack seismic data, measurable true model 

parameters of the subsurface rock properties (earth models) such as impedance, compressional 

velocity (Vp), and reflectivity can be generated with all local minima being accounted for without 

any loss of information, thereby leading to an acceptable global optimum solution. 

 

 Generally, these procedures help remove the effects of the wavelet, solve the problem of 

tuning, and enhance quantitative characterization of sand bodies, fluids mapping, volumetric 

estimation, recovery of thin-bed stratigraphy, and seismic data de-noising. Inversion results from 
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global methods can offer high resolvability and a better link between seismic data and lithology 

(Li, 2001; Sacchi and Ulrych, 1995). 

 

1.1 Objectives and Motivation 

 In this study, we test the robustness and computational efficiency from two model-driven 

global optimization techniques, Simulated Annealing (SA) and Basis Pursuit Inversion (BPI) as 

applied to post-stack seismic data from the Gulf of Mexico. 

The main objectives of the research are as follows: 

1. Explore and test the robustness and computational efficiency of both algorithms. 

2. Invert for reflectivity and impedance using both BPI and SA methods of inversion. 

3. Use results from both inversion techniques to determine reservoir stratigraphy and reservoir 

connectivity. 

 

 In general, seismic inversion is a tedious and iterative process. It comes with some pitfalls that 

must to be overcome in order to achieve a reliable solution. These include but are not limited to: 

non-uniqueness, existence, stability, robustness, inversion interval, and absolute impedance. Our 

motivation, therefore, is to examine how the proposed techniques attempt to solve these problems 

and discuss the results in comparison with one another. 
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1.2 Study Area and Geological Setting of GOM 

 The study area (Figure 1) is a portion of the offshore Louisiana Mississippi canyon (MC 13-

Q) survey acquired by WesternGeco in 2003. The survey contains 3D post-stack seismic data from 

the Viosca Knolls and Mississippi canyon area of the Northern part of offshore the Gulf of Mexico 

basin. The Viosca knoll is part of the northeastern Mississippi fan (upper fan) known as the 

channel-levee-overbank system (Bouma et al., 1985). Knolls (small natural hills up to 15-m high) 

are formed as a result of an increase in the deposition of limestones over the sandy bottom in the 

shallow marine areas. The area is characterized by the distribution of deep-sea coral and Lophelia 

species. 

 

The Gulf of Mexico (GOM) is ranked the ninth largest water body in the world with area 

coverage of 1542985 square kilometers and maximum depth 4023 meters. GOM basin is nearly 

closed in by the United States, Mexico and the Island of Cuba to the North, West and Southeast, 

respectively (Figure 1).  

 

GOM basin formation began in late Triassic as a result of a plate tectonic process called rifting. 

The interplay of high sedimentation and salt tectonics led to the establishment of the basin during 

late Triassic and Jurassic. Potential for hydrocarbon accumulation on the continental shelf is a 

consequence of sediment deposition on the outer shelf and upper slope of the northern GOM 

(Bormann et al., 2006). In general, the depositional patterns of the GOM are due to a combination 

of regional and local tectonics, sea level fluctuations, subsidence, and varying sediment supply 

(Posamentier et al., 2003). 
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The GOM experienced a large amount of subsidence during its relatively short geologic 

history. This results in massive accumulation of sediments, which in turn, led to huge salt 

diapirism in the basin. 

 

 

 
Figure 1: Map view of Viosca Knolls and Mississippi canyon area of the Northern part of 

offshore Gulf of Mexico basin. Modified from http://soundwaves.usgs.gov. 
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1.3 Research Dataset 

 Seismic data and well logs are the geophysical data used for this study. WesternGeco provided 

the seismic data, including stacking velocity and processing report, while well data were obtained 

from Stone Energy. The  seismic  data  are  3-D,  Random  Noise  Attenuation (RNA), and 

Kirchhoff pre-stack time migrated, and covers 100 square miles of the Mississippi Canyon 13-Q.  

 

Due to the high computational demand of the seismic inversion algorithms, a sub-volume as 

shown in the small box (red) in Figure 2 was created from the study area. Inversion techniques 

used in this study were applied to the sub-volume and one 2D line extending throughout the study 

area.  Figure 2 shows location of acquired well data in reference to the seismic dataset.  Four out 

of seven wells were used. Data from four wells included a suite of logs: gamma ray, resistivity, P-

wave, density, caliper, and sonic and neutron porosity logs. Post-stack seismic data have a record 

length of 10 seconds, sample rate of 2ms, and are 64 fold. Table 1 and Table 2 show detailed 

processing sequence, and acquisition parameters of the seismic data respectively. 

 

 Matlab® and the IHS Kingdom software (including the newly developed seismic inversion 

plugin) were used for data analysis, processing and interpretation. 
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Figure 2: The extent of the acquired 3D seismic data (~100 square miles) with location of wells. 
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Table 1: Processing Flow of Seismic Survey utilized in this study. 

 
 

 

Table 2: Acquisition Parameters of Seismic MC 13-Q, the 3D seismic utilized in this study. 

Table&A2."Processing"Flow"of"
Seismic"Survey"MC"139Q""
Group"forming"

Navigation"merge"

CMS"designature"

Receiver"motion"correction"

Noise"attenuation"

IMP/SRMA"demultiple"

Data"reduction"6.25"m"to"12.5"m"

Radon"demultiple"

Water"velocity"correction"

Q"compensation"(phase"only)"

Interpolation"in"crossline"to"12.5"m"spacing"

Kirchhoff"

p

r estack"time"migration"

CMS"whitening"

Stack"

Poststack"processing"

Final"cell"size:"12.5"x"12.5"m"

Final"fold:"64"

Final"record"length:"10"s"

Final"sample"rate:"2"ms"

Processing"completed"September,"2004"

Table&A1."Acquisition"Parameters"of"Seismic"Survey"MC"139Q""

Recording"System" Q9Marine*"(Mark"of"Schlumberger)"

Energy"Source" Dual"airgun"arrays;"5085"in.3"

Line"Orientation" NW/SE"

Source"Separation" 50"m"

Source"Depth" 5"m"

Shot"Interval" 31.25"m;"62.5"m"per"source;"flip9flop"

Streamer"Depth" 6"m"

Streamer"Length" 8000"m"

Streamer"Separation" 100"m"

DGF"Group"Interval" 12.5"m"

Sample"Rate" 2"ms"

Record"Length" 12"s"

Number"of"DGF"Channels"640"per"streamer"

Nominal"Fold" 64"

Final"Bin"Size" 6.25"x"25"m"

Survey"Acquired" August,"2002"
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2.0 METHODS 

1.2 Background for Model-Driven Seismic Inversion 

Seismic data inversion is a form of inverse modelling used to develop models that describe 

the true subsurface geology with primarily seismic data as input. Model-driven seismic inversions 

start with a forward model of the subsurface earth, with parameters describing the model derived 

from well logs. The forward model can be written as a convolution of the seismic wavelet and 

reflectivity series with added noise (Figure 3a).  

 

𝑠(𝑡) = 𝑤(𝑡) ∗ 𝑟(𝑡) + 𝑛(𝑡),      (2.1) 

 

where s(t) is the seismic trace, w(t) is the wavelet, r(t) is the  reflectivity series and n(t) is the 

random noise. The rock property can be obtain from equation (2.1) by inverse modelling (Figure 

3b). 

 

 The primary goal of post-stack seismic inversion is to invert s(t) to obtain r(t) in equation 

(2.1). Using r(t), we can deduce layer properties, which give a more detailed and accurate 

representation of the earth than the geologic section from seismic (Figure 4a). The earth reflectivity 

series r(t) provides interface information between geologic layers. Mathematically, r(t) is related 

to acoustic impedance as follows: 

𝑟𝑖(𝑡) =
𝑍𝑖+1−𝑍𝑖

𝑍𝑖+1+𝑍𝑖
  ,       (2.2) 

where layer i overlies layer i+1 and 𝑍𝑖 is the acoustic impedance in the ith layer. 
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 The impedance of each layer can be estimated as a product of the density and the 

compressional velocity of sound waves traveling through the layer: 

𝑍𝑡 = 𝑣𝑡 x 𝜌𝑡,   (2.3) 

where 𝑍𝑡 is the acoustic impedance, 𝑣𝑡 is the sound velocity and ρt is the density at a given two-

way time t. 

 

Equation 2.2 is the basis for recursive inversion (Russell, 1988). This is valid for small 

contrast in the impedance trend between adjacent layers such that reflectivity must be less than 

or equal to 0.1.  By linearization, equation 2.2 can be reduced to the equation: 

 

𝑟𝑖(𝑡) ≃
∆𝑍𝑖

2𝑍𝑖
= 0.5∆ 𝑙𝑛𝑍𝑖(𝑡),                    (2.4) 

The above expression can now be written as: 

𝑍𝑚(𝑡) = 2𝑍0(𝑡) ∫ 𝑟(𝑡)
𝑚

0
𝑑𝑡,   (2.5) 

 

Where Zm (t) is the acoustic impedance for the earth model, 𝑍0(t) is the acoustic impedance for 

the initial model (low frequency impedance model) and 𝑟(𝑡) is the reflectivity. 

 

 Figures 3 (a) and (b) show the relationship between forward modelling and inversion in 

seismic processing. When the effect of the wavelet is properly removed from the convolution 

model in Figure 4b a true subsurface geology (inversion) is realized, as seen in Figure 4a. 
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Figure 4: Relationship between rock property and convolution model. Modified from Keary et al., 

2002. 
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Figure 3: Relationship between forward and inverse modeling using the convolutional 

model.  (a) Takes earth model from well logs, and convolves with wavelet to produce 

synthetic seismic trace. (b) Takes seismic trace and deconvolves wavelet to generate 

earth model. Modified from Oil Review, 2008. 
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1.3 Basis Pursuit Inversion (BPI) 

 Reflectivity inversion using basis pursuit was adapted from the work of Chen et al. (2001) on 

atomic signal decomposition for compressive sensing. It is a convex global optimization method 

of decomposing a signal into an “optimal” superposition of dictionary elements (from over-

complete dictionaries), where “optimal” means having the smallest Ll norm of coefficients among 

all such decompositions.  

 

Prior to this technique, there were several other methods for optimizing signals, one of which 

is matching pursuit. Matching pursuit (MP) algorithm decomposes a seismic trace into a series of 

wavelets that match their respective time-frequency signature. The process is highly iterative and 

depends heavily on the orthogonality of the dictionary. When the dictionary is not orthogonal, the 

process becomes significantly prone to errors. It was shown from the work of Chen et al. (2001) 

that basis pursuit decomposition has the potential to resolve interference between dictionary 

elements better and is therefore computationally efficient. Unlike matching pursuit decomposition 

(MPD), introduction of a sparsity norm and a regularization parameter into the cost function 

ensures lateral stability, even when dictionary elements are not orthogonal.   

 

 Zhang and Castagna (2011) used the same algorithm developed for compressive sensing to 

invert for the reflection coefficient; it is called Basis Pursuit Inversion (BPI). This was achieved 

by decomposing seismic traces with a non-orthogonal dictionary of seismic reflection responses, 

the odd and even thin layer responses. The reconstructed reflectivity series is a summation of this 

dipole pair. For over-complete dictionaries, a wedge model is used. This is called sparse layered 

inversion because the dictionary of basis functions is taken to be a wedge model of reflection 
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coefficients pairs convolved with the extracted seismic wavelet. This algorithm was adapted to 

geophysical inversion in order to resolve the problem of lateral instability by spectral 

decomposition and inversion using trace by trace matching pursuit decomposition (Wang, 2010; 

Nguyen and Castagna, 2010). 

  

When compared to conventional sparse spike inversion (SSI), it has been shown, using 

synthetic test that BPI can better resolve thin bed stratigraphy than SSI and also gives a better 

correlation to known reflectivity when an optimal regularization parameter is used for both 

methods (Zhang and Castagna, 2011).  

 

In addition to its potential to de-tune and de-noise seismic data, BPI provides an alternative 

method for incorporating a priori geologic or geophysical information. The algorithm has been 

further extended to pre-stack seismic data using angle versus offset (Zhang, 2014). However, our 

goal is to apply the BPI technique to a post-stack seismic dataset and compare it with another 

global optimization technique known as Simulated Annealing. 

 

 The algorithm for basis pursuit decomposition has been discussed in details by Chen et al. 

(2001). A detailed description of the mathematics of the BPI as applied to post stack seismic data 

can be found in the work of Zhang and Castagna., 2011. It can be summarized as follows. 

 

Equation 2.1 can also take the form: 

 

𝑑 = 𝐺𝑚 + 𝑛  (2.6), 
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where d is the data vector (seismogram), m are the model parameters, G is the Kernel matrix and 

n is the noise.  In order to solve for the model parameters (m) in equation 2.4, basis pursuit 

simultaneously minimized both the L2 norm of the error term and the L1 norm of the solution as 

shown below: 

𝑚𝑖𝑛 [||𝑑 − 𝐺𝑚||
2

+  𝜆||𝑚||
1

],   (2.7) 

where 𝜆 is the regularization parameter. 

  

Creating the wedge dictionary is very critical for BPI. A seismic layer can be defined by its 

top and bottom boundary, known as a reflector pair. Dipole decomposition is applied to separate a 

reflector pair into its constituent even and odd parts, as shown in Figure 5a. However, it is very 

difficult to deduce time separation between the top and bottom er in thin beds (which are normally 

obscured on seismic). Hence the need for a wedge dictionary.  

 

 When dipole decomposition is applied, each reflector pair is separated into odd and even parts 

as shown in Figure 5a. Any arbitrary pair of reflection coefficients r1 and r2 can be represented as 

the sum of an even and odd function. The ideal dictionary elements in Figure 5b, have a major 

problem of orthogonality. 
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Figure 5: (a) Dipole pairs for the wedge model. (b) Synthetic (bottom) & ideal basis functions (top) 

of the BPI dictionary elements using a ricker wavelet of 30Hz. Modified from Zhang and Castagna, 

2008 

 

 Parameter 𝜆 in equation (2.7) acts as a trade-off between noise and reflectivity, and between 

sparsity and accuracy, as seen from synthetic results carried out by Zhang and Castagna (2011). 

There is maximum correlation between true reflectivity and inverted reflectivity at 𝜆=2.2 (Figure 

6), from 𝜆=0.001 to 0.1, noise is greatly amplified, and true reflectivity is completely distorted by 

noise. When 𝜆 is between 0.1 and 2, noise is significantly reduced, and sparser layers are possibly 

recovered with minimal distortion in reflectivity. There is relative correlation between true and 

inverted reflectivity when 𝜆 is between 2 and 2.6. BPI begins to drastically lose sparse layers as 𝜆 

increase from 3 to 300.  

         (b)          (a) 
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Figure 6: (a) Synthetic seismogram with 40 Hz ricker wavelet and 10% random noise; (b) true 

reflectivity; Consider (c) to (n) show BPI results with varying λbpi value; (c) λbpi =0.01; (d) λbpi = 

0.1; (e) λbpi = 2; (f) λbpi = 3; (g) λbpi = 500; (h) λbpi = 600; (i) λbpi = 2.1; (j) λbpi = 2.2; (k) λbpi = 2.3; 

(l) λbpi = 2.4; (m) λbpi = 2.5; (n) λbpi = 2.6.         Zhang and Castagna, 

2008 

 
 
 

2.3 Simulated Annealing (SA) Inversion 

 Simulated annealing is a global, stochastic optimization algorithm that is analogous to the 

process of thermal cooling, known as annealing in solid state physics. In solid state annealing, we 

heat the subject solid material to a very high temperature to perturb it, and then allow it to go 

through a cooling schedule for the atoms to slowly realign until a perfect crystal emerges. We say 

the newly emerged crystal is in the ground state, corresponding to the global optimum solution in 
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our optimization problem. A metastable state known as a local optimum results if the cooling 

process is not slow enough or too fast for perfect realignment of the atoms. 

 

 There are many variants of the algorithm since Kirkpatrick et al. (1986) first applied the 

Metropolis algorithm (Metropolis et al., 1953) to solve the combinatorial optimization problem by 

taking a random walk through the model space (Corana et al., 1987; Sen Stoffa, 1991; and Goffe 

et al., 1994). This includes fast simulated annealing (FSA), very fast simulated annealing (VFSA), 

etc. Details can be found in Zhu and Hartley (1987), Ingber (1989) and Sen and Stoffa (1995), 

respectively. 

 

  Rothman (1985, 1986) was the first to use the standard SA algorithm in geophysical 

exploration problems by estimating residual static corrections. Mosegaard and Vestergaard (1991) 

used the SA algorithm to solve seismic trace inversion problems by determining the two-way travel 

time and reflection coefficients. Ma (2001) adopted the optimized version of standard SA by 

Corana et al. (1987) and Goffe et al. (1994) to invert a 1-D model of the earth’s acoustic 

impedance. 

 

  The standard SA algorithm avoids being trapped in a local minima and finds an optimal 

solution for the model parameters by minimizing the error (misfit) between the model and 

observation. The new model is accepted unconditionally if the energy associated with the new 

objective function f ’ is lower (∆f = f’ − f <0). Otherwise, the new point has ∆f > 0, and the new 

model is accepted with a probability such that p = exp (−∆f/T), where T is a control parameter 

known as the acceptance temperature. The acceptance criterion is based on the Metropolis rule, 
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which is based on Monte Carlo integration over configuration space (Metropolis et al. 1953). It is 

an iterative process that stops when there is very small change in the errors after many trials (Figure 

7). Corana et al. (1987) optimized the standard SA by including a model perturbation controlled 

by step length (Figure 8). This improves the accuracy of the model parameters. The objective 

function for this SA inversion is given as: 

 

∆𝑓 = 𝑊1 ∑ |𝑆𝑜𝑏𝑠
𝑖𝑛

𝑖=1 − 𝑆𝑚𝑜𝑑
𝑖 | + 𝑊2 ∑ |𝑃𝑝𝑟𝑖

𝑖𝑚
𝑖=1 − 𝑃𝑚𝑜𝑑

𝑖 |, (2.8) 

 

where 𝑆𝑜𝑏𝑠
𝑖  is the observed seismic, 𝑆𝑚𝑜𝑑

𝑖  is the synthetic seismic, 𝑃𝑝𝑟𝑖
𝑖  is the a priori low-

frequency impedance trend, 𝑃𝑚𝑜𝑑
𝑖  is the modelled impedance, n is the number of samples in the 

seismic trace, m is the number of microlayers in the initial model, and W1 and W2 are the applied 

weights. 

 

 In equation (2.8), the misfit for the first term is computed using the L1-norm mainly because 

it does not have the problem of overweighting a large residual when compared to the L2-norm. The 

second term is a priori information derived from well logs and seismic velocity. It acts as a 

constraint that reduces the non-uniqueness problem, ensures lateral coherence of the earth models, 

and forces the model parameters solution to be in the neighborhood of the low frequency trend. In 

addition to this, the number of microlayers is set up to be more than the true earth medium. This 

is known as the over-parameterized scheme. It is a more efficient and practical approach to solving 

both interface location and impedances simultaneously during the SA inversion procedure. 
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 This procedure has been fully integrated as a package in the IHS Kingdom software. Figure 8 

shows a detailed workflow for the SA inversion. For optimal solution, a well dataset (containing 

sonic and density), seismic data and a low frequency model are required. The inversion is 

performed for a single seismic trace, after which the same inversion parameters and macro-model 

are applied to a seismic volume, 2D, and 3D (Figure 8). 

 

Figure 7: A flow diagram of an improved simulated annealing optimization routine. (Xa, 2001) 
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 The workflow for SA inversion in Figure 8 combines good well-to-seismic tie, estimated 

wavelet, macro-model, and seismic data to generate an optimal global solution of the earth model 

or objective function.   

  

Figure 8: Flow chart for seismic inversion using an optimized simulated annealing algorithm for 

IHS Kingdom software. 
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  An overview of the respective deterministic and stochastic methods used for this research 

shows that both techniques share the first three steps of the inversion procedure as seen in Figure 

9. However, in the case of basis pursuit, another inversion technique known as recursive inversion, 

is required in order to generate blocky acoustic impedance. This recursive inversion is described 

by equation (2.5). 

  
Figure 9: Flow chat for stochastic versus deterministic inversion. Modified from Zhang and Sen., 

2002  
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From Figure 9, processing steps for model-driven seismic inversion can be summarized as 

follows: 

 Proper QC, loading and pre-conditioning of input data set, i.e. Seismic and well. 

 Wavelet extraction based on zones of interest. 

 Synthetic seismogram using extracted wavelet from Seismic with well data. 

 Initiate inversion algorithm. 

 Visualize and interpret the results. 

 

2.4 Building a Macro-model for Global Methods of Seismic Inversion Techniques 

 The macro-model is also known as the initial model in various seismic inversion techniques. 

In this study, the earth model is assumed to be over-parameterized with a priori information and 

is used as the background/macro-model for two main reasons. First, it reduces the non-uniqueness 

problem by providing the bounds through which the algorithm searches through the model space, 

i.e. a constraint for generating the impedance volume. Second, it contains the low frequency 

component of the model (absolute impedance) that is missing as a consequence of seismic band-

limitation.  

 

 There are several ways to build a macro-model from a priori information (velocity or 

impedance model). Here, we used stacking velocity data and combine it with horizons within the 

interval of interest to generate the background model (Figure 10). The Hidef tools plugin is then 

used to generate a smoother and more reliable background model. The low frequency component 

is incorporated into the background model by interpolating the sonic velocity (from well logs) with 

the velocity from seismic data.  
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  BPI is a reflectivity inversion technique. In order to generate an impedance volume from 

this algorithm, the recursive relationship between impedance and reflectivity in equation (2.5) is 

used. In this case, a low frequency model is used as the macro-model, generated from interpolating 

well-log data and then low-pass filtered. A similar process can be applied to invert for reflectivity 

from the absolute impedance generated by the SA inversion algorithm. 

 

 

Figure 10: Flow chart for building a macro-model for global methods of seismic inversion 

techniques 

 

 

Map major layers (area 

above and below zone of 

interest inclusive) on 

seismic volume 

Generate a High Frequency 

component stacking velocity 

dataset 

Create a detailed background/macro-

model used to constrained the 

inversion 

Interpolate both to 

create a macro-model 

Select available well-logs 

and calibrate the Time-depth 

Chats 

Generate a low frequency 

component from sonic well 

log 



 23 

3.0 REAL DATA RESULTS 

BPI and SA inversions are tested on a 3D post-stack dataset from the Gulf of Mexico. The 

first three steps of the procedure are the same (Figure 10). After all required data have been 

carefully loaded and quality checked, proper seismic-to-well tie is required. Figure 11 shows 

synthetic tie between input seismic data and well-log data. Seismic traces used for this analysis are 

located around a well location where an acoustic impedance log is available, and penetrate through 

the area of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Seismic well tie, including gamma ray, computed impedance and reflectivity, 

along with the synthetic seismogram, composite seismic trace at the well location and 

original seismic traces near the well. Correlation coefficient R is 78%. 
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(a)                                                 (b) 

  

 Correlation coefficient value from the well-to-seismic tie in Figure 11 is 78%, which is very 

good for any high-resolution inversion procedure. Extracted wavelet is zero phase, with bandwidth 

10-35Hz and dominant frequency 15Hz. Seven horizons over 600ms interval on the seismic traces 

were mapped as the region of interest (Figure12).  

 

BPI method relies heavily on the correct estimation of the wavelet and also depends on proper 

selection of the regularization parameter value that shows the best correlation to both seismic data 

and well logs. 

Figure 12: (a) Extracted seismic wavelet at the well location using the amplitude spectrum of the 

seismic data averaged over 600ms. (b) Horizons in the area of interest plotted on seismic traces 

tied to the well. Gamma ray log on the left and resistivity on the right. 
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(a) (b) 

(c) (d)

Figure 13: (a) Original Seismic. Consider (b) to (d), BPI inverted reflectivity results with varying λbpi value for a single 2D line. (b) λbpi 

=0.1 (c) λbpi =1; (d) λbpi = 2.  Areas highlighted in yellow show the recovery of sparse layers with appropriate λ value 

1 mile 
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(a) (b) 

(c) (d) 

Figure 14: Consider (a) to (d). BPI inverted reflectivity results with varying λbpi value for a single 2D line. (a) λbpi = 2.4; (b) λbpi = 3; (c) 

λbpi = 5; (d) λbpi = 7. Areas highlighted in yellow shows the loss of sparse layers as λ value increases beyond 2.4 
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At λ= 0.1 in Figure 13b, inverted reflectivity is, but obscured by noise. There is a reduction in 

noise for λ =1 to 2. There is maximum correlation with the original seismic at λ=2.4 (Figure14a). 

Inverted reflectivity begin to dwindle in sparsity for λ= 3 to 7 (Figure14b-d). The computing time 

decreases also with an increase in the λ value. Figure 13d shows the potential of BPI technique to 

reveal layers that are below tuning. 

 

 For SA inversion, a stochastic process unlike the BPI method, estimation of the inversion 

parameter is very iterative and rigorous. The inversion was run for a 2D line covering the actual 

3D survey, and the volume inversion was for a small portion of the survey.  

 

  The macro-model is created before the estimation of the SA inversion parameters. Figure 15 

is an inline cross-section for velocity model (macro-model) generated from stacking velocity data. 

This model is not smooth and low frequency component from sonic log is missing. The Hidef tool 

is used to generate a high definition (detailed) macro-model by interpolating low-frequency 

component with stacking velocity from seismic data. The final output (Figure 16) is smoothed and 

contains more detailed information. Figure 17 shows the difference between the Hidef macro-

model and the stacking velocity from seismic data. The detailed macro-model is required for 

generating absolute impedance from the SA inversion. Figure 18 shows the plot of velocity both 

seismic and sonic log respectively. For the volume inversion in this study, there is no apparent 

difference between the macro-model and the impedance model from well-logs; however, the 

former was used for more reliable results. 
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Figure 15: A velocity model (Macro-model) from the seismic stacking velocity dataset. 

 

 

Figure 16: Detailed macro-model containing the missing low-frequency component 

1 mile 
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Figure 17: Residual difference between stacking velocity and well-logs velocity data. 

 

 

Figure 18: Sonic log (black) and seismic velocity (red) trend for low-frequency macro-model. 
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Details of parameter estimation can be seen in Appendix B. Next is the parameter testing 

phase. This was accomplished by applying the estimated parameters to the selected traces around 

the well location as shown in Figure 19 and Figure 20 for both the 2D line and 3D volume, 

respectively. There are two other critical parameters that are calculated at the testing phase, namely 

convergence tolerance (EPS) and initial temperature (T0), which are estimated to be 0.001 and 0.1 

respectively. 

 

Figure 19: Estimation of inversion parameters using selected traces for 2D line. 

Red: Impedance from well logs. Black: Inverted impedance. Green: background/macro-model. 

 Seismic             Synthetic           Error 
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Figure 20: Estimation of inversion parameters using selected traces for seismic volume. 

 Red: Impedance from well logs. Black: Inverted impedance. Green: background/macro-model. 

 

 

 

 

 

 

 Seismic             Synthetic           Error 
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In both Figures 19 and 20, it can be observed that the error is minimal, with a maximum 

correlation between the inverted impedance and impedance from the log, using smooth 

background velocity as a constraint. The background velocity was built using the Hidef tool in 

Kingdom suite. See Figure 8 for the workflow. 

 

The inversion is then run using the estimated parameters from Figures 19 and 20 on both the 

2D line and the 3D volume respectively. Figures 21 and 22 show a cross section view (2D) and 

map view (3D) of the both results. The inverted relative impedance (Figure 21b) shows an 

improvement in vertical resolution and lateral continuity when compared to the original seismic 

(Figure 21a). This result is crucial to enhancing qualitative interpretations of seismic data. The 

absolute impedance result (Figure 21c) gives an actual impedance trend which is essential to 

understand exact bed thickness and improves lateral continuity.  

 

A similar trend can be seen on times-slices (Figure 22) generated from the seismic volume at 

4.2secs. The absolute impedance time slice (Figure 22c) shows clearer structural and stratigraphic 

delineation of sand bodies, which is very useful when studying reservoir connectivity, and 

volumetric reserve estimations. 
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Figure 21: (a) Seismic data. (b) Inverted relative impedance. (c) Inverted absolute impedance. 

Notice the improved vertical resolution and lateral continuity of the of the layers in the 

highlighted region 

(b) 

(c) 

(a) 

f 5 miles 
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Figure 22: Time-slice at 4.2secs for (a) Original seismic data. (b) Relative impedance. (c) Absolute 

impedance. Highlighted in yellow demonstrate better stratigraphic delineation, and improved 

reservoir connectivity  

 
 
 
 
 
 
 
 
 

(a) (b) 

(c) 
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4.0 DISCUSSION 

Inversion results depend greatly on the quality of the seismic-to-well tie and log calibration. 

Wavelet estimation is also a crucial step in any inversion procedure. The latter is required in the 

forward modelling needed to generate a synthetic model that is used to drive the inversion process.  

 

The regularization parameter 𝜆  acts as the only constraint in the BPI method.  Quality time 

should be spent on estimating the correct 𝜆 value. If done properly, seismic bandwidth can be 

greatly increased, otherwise, the final output will not be a proper representation of the true 

subsurface geology. The method was developed as an alternative method to a priori information, 

hence, does not require nor depend on any form of an initial model. 

 

SA inversion on the other hand is a stochastic process that is highly independent of the a priori 

information. The a priori information in this case is the background model. This implies that one 

can generate reliable inversion results even when the initial model is not very good. This is not the 

case for the BPI inverted acoustic impedance as it is highly dependent on the initial (impedance) 

model. Since seismic data are bandlimited, therefore, low and high frequencies are missing in the 

objective function, hence, the need to interpolate the missing low frequencies into the macro-

model.  

 

Building a macro-model that contains the missing low frequencies is an important aspect of 

the model-based inversion. The model is needed to generate absolute elastic properties from 

seismic data. This was achieved by interpolating low-frequency components from the sonic well-

log with seismic velocities within our 600ms interval of interest using the Hidef tool in Kingdom. 
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The background model also can be generated from impedance using well logs but this is more 

effective in areas with non-complex geological formations. Hence, it is more effective to build a 

macro-model when inversion is applied to a 3D seismic volume. This will account for the structural 

dip and possible lateral changes in the reservoir or area of interest. 

 

Parameter estimation is a very crucial process in SA inversion. The quality of the results 

depends on how much time is devoted to this stage. These parameters are derived from a priori 

information, but the inversion algorithm itself does not use the a priori information during the 

inversion process.  

 

Two parameters that control SA inversion are the convergence tolerance (EPS) and initial 

temperature (T0). The EPS can be seen as a trigger-point where the algorithm stops on the 

assumption that a solution has been found. The time taken for the algorithm to find a solution 

depends on this number. The higher the number, the sooner it stops searching for a solution and 

vice-versa. On the other hand, T0 controls how much ‘energy’ is put into the inversion algorithm’s 

search for a solution, i.e.. energy of perturbation. The higher this value, the longer the algorithm 

will rigorously explore the search space for solutions.  

 

Once the wavelet and other parameters are estimated, the next step is to apply the SA algorithm 

to a few selected traces. Parameters to be chosen include starting models, impedance perturbation 

windows, seismic scalar, seismic and macro-model weights, SA initial temperature, convergence 

tolerance, etc. Optimal parameters are determined in such a way that the inverted impedance near 

the well shows a best match with the impedance log and that the misfit between the synthetic trace 

and seismic trace is at a minimum. 
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Although the workflow for SA inversion has been designed to be more computationally 

efficient than the standard SA algorithm, it is an iterative and time-consuming process. The 

processing time is determined by the convergence tolerance (EPS) and the initial temperature (T0). 

They both have values ranging from 0.001<= EPS => 0.1 and 0.001 < T0 <= 0.01 

 

 A major advantage of the SA algorithm is that it generates both absolute and relative 

impedance from post-stack seismic data, which provides qualitative and quantitative 

characterization of reservoirs. Unlike the BPI technique, SA inversion depends on the 

determination of many parameters before it can run, so there is a trade-off between the quality of 

earth models and the time spent computing them.  

 

Improved vertical resolution comes from the macro-model for the stochastic method and from 

the regularization parameter with a wedge model for the deterministic method. The macro-model 

and regularization parameter are based on the L1 norm error function. They also act as a constraint 

for the respective methods of inversion. The error term, i.e. the least error, between the synthetic 

model data and seismic data is based on L2 norm and the L1 norm for both the SA and BPI methods.  

Both methods can be extended to the pre-stack domain for the simultaneous inversion of acoustic 

and shear impedances from angle stack traces. 
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5.0 CONCLUSIONS 

 We have applied deterministic and stochastic global methods of inversion to invert for 

reflectivity and acoustic impedance using a 3D post-stack seismic dataset from the Gulf of Mexico. 

The BPI method is a more efficient method for removing the effects of the source wavelet and 

generating a high resolution reflectivity volume. The efficiency of the BPI method is largely due 

to the wedge dictionary used in the inversion process, producing a reflectivity volume with higher 

vertical resolution. The quality of inverted reflectivity can be greatly distorted by noise. This 

problem can be overcome with careful selection of the regularization parameter. The BPI method 

has the potential to enhance frequencies higher than the seismic bandwidth without amplifying the 

noise. This in turn implies that the algorithm can improve detectability, resolution, and lateral 

continuity of thin layers. 

 

The SA inversion uses an over-parameterized scheme, i.e., a series of micro-layers with each 

layer having the same acoustic impedance. The background model provides the bounds for the 

algorithm to search the model space. It also helps reduce the problem of seismic band-limitation 

as the low frequency component of impedance is interpolated into the a priori model. 

 

 Both algorithms are robust and can find a global solution of the earth model without being 

trapped in a local minimum. Parameter estimation is iterative and time-consuming when applied 

to a large seismic volume. Results show an improved vertical resolution, lateral continuity, and 

better reservoir connectivity, which are essential for high resolution reservoir characterization, 

volumetric estimation, and fluid mapping. 
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The SA method finds greater use in reservoir characterization because it finds missing 

impedance trends using Monte-Carlo simulation. Results from the BPI method reveal that it has 

greater potential to resolve beds below tuning. BPI shows better lateral continuity because it takes 

advantage of the gradient-oriented greedy search and applied lateral-smoothness constraint. When 

the goal is to invert acoustic impedance using both algorithms, a reliable background model is 

crucial to successful processing.  The SA inversion algorithm is very iterative and hence, 

cumbersome, while, BPI is very straightforward once the proper regularization parameter is 

determined. 

 

5.1 Future work 

Blocky acoustic impedance can be generated from BPI results by implementing the recursive 

relationship between the reflectivity series and acoustic impedance. A very good low frequency 

macro-model can be generated from interpolating well-log data and low-pass filtering.  

 

It is expected that the blocky impedance results via BPI will show a better stratigraphic and 

structural actualization due to it’s to delineate layers thinner than tuning thickness. The same 

recursive inversion technique can be used to invert the reflectivity volume from the absolute 

acoustic impedance generated from the SA algorithm. 
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Appendices 

Appendix A: Pre-inversion analysis of geophysical dataset  

 

 

 

 

Figure A2: Wavelet estimation with both amplitude and phase spectrum.  

Time Interval in the areas of interest 

Figure A1: Limit of seismic resolution and detection. Bandwidth 10-40Hz; dominant 

frequency (F) ~15 Hz 

Avg. Velocity 

(V) from Time 

to Depth Chart 

Wavelength  

λ = V/F 

7469/15 

Resolution  

λ/4 = 125 ft. 

Detection  

λ/16 = 31 ft. 

V=7469 ft/s 

F =15 Hz λ =  

495.93 
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Figure A3: 4secs time-slice showing the extent of the acquired 3D seismic data (~100 square 

miles) with the location of wells 

3 miles 
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Figure A4: LogSeisMatch finds the best trace that correlates to the well for the purpose of 

wavelet estimation. This trace is also used in seismic scalar estimations and determination of the 

inversion parameters. The trace is selected automatically (red dot) according to the highest 

predictability value as seen on the map; but there is also an option to select the trace manually. 
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Figure A5: Detailed impedance generation (resampled) from both sonic and density log i.e Well 

log calibration. 
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Appendix A6: Seismic scalar estimation for gain control. This works out a scalar of seismic data 

by comparing the amplitudes of a synthetic trace with that of the seismic trace. The synthetic 

trace is generated using the log reflectivity and the estimated wavelet. 

 

Appendix B: SA inversion Job Parametrization 

 

Figure B1: Inversion Test phase showing strong correlation between seismic traces and synthetic 



 49 

     

Figure B2: Macro-model from impedance log with few selected traces 

 

Figure B3: Cost Function estimation (best) or SA Algorithm chart. This is required in order to select 

optimal EPS and T0 parameters for both 2D and 3D Volume. This graph shows objective function 

variations as number of iterations increases. The green curve is for all objective functions evaluated 

regardless of their acceptances or rejections. The blue curve is for those accepted which include both 

downhill and uphill moves. The yellow curve shows the best search so far within a constant temperature. 

The black curve is the temperature steps.  
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Figure B4: Overview of other selected inversion parameters for the 2D line and 3D Volume 

respectively. The difference between both are scaling factor and perturbation window. Imported 

wavelet was used for the inversion, hence, the correlation coefficient being displayed is 

unconnected to the process. 
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Appendix C: Other results using SA algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C1: Diagram: Ball on terrain example: Illustrates how global optimization method (SA) 

overcomes local minima. 

 

 

 
Figure C2: Relative impedance with selected traces. 
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Figure C3: Time-slice at 4.0secs for (a) Original seismic data. (b) Relative impedance. (c) 

Absolute impedance. Better stratigraphic delineation and improved reservoir connectivity can be 

seen in (b) and (c) 

 
 
 
 
 
 
 
 
 
 
 

3 miles 
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Figure C4: Time-slice at 3.8secs for (a) Original seismic data. (b) Relative impedance. (c) 

Absolute impedance. Better stratigraphic delineation and improved reservoir connectivity can be 

seen in (b) and (c) 

 
 
 
 
 
 

3 miles 
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C5: Detailed comparison of relative and absolute impedance. 
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Appendix D: Other results from BPI method 

 

Figure D1: Workflow for Basis Pursuit Inversion 
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Figure D2: Reflectivity volume time-slices. (a) Time-slice at 3.8secs. (b) Time-slice at 4.0secs.  

(c) Time-slice at 4.2secs.  
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Appendix E: Relevant Maps 

            

          
Figure E1: Time Grid horizons with the intervals of interest  
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Figure E2: Velocity maps generated from stacking velocity data. 
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Figure E3: Major depth maps in the areas of interest.  
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Appendix F: Matlab Codes for Basis Pursuit Inversion 

% Appendix F  

% BP Inversion for Seismic line. ProcessingLineUpsampling.m  

 

clc; 

clear all; 

close all; 

  

Directory.Input = 'C:\Users\eaadedej\Desktop\ThesisData\'; 

Directory.Output = 'C:\Users\eaadedej\Desktop\ThesisData\'; 

  

Regularization = 2.4; 

Inversion.Delta.T = 0.002; 

Inversion.Window = 1000; 

  

Wedge.Thickness.Seconds.Min = 0.002; 

Wedge.Thickness.Seconds.Max = 0.08; 

  

Limit.Y = [3.6 4.6]; 

  

%% Importing seismic wavelet data 

disp('Loading wavelet'); 

tic; 

Input.Wavelet.Filename = 'Well_VK_956_A8_ST02BP00_Wavelet_3.6-4.3Secs.txt'; 

A = importdata([Directory.Input Input.Wavelet.Filename],' ',4); 

Input.Wavelet.Time = A.data(:,1); 

Input.Wavelet.Amplitude = A.data(:,2); 

Input.Wavelet.Delta.T = roundn(mode(diff(A.data(:,1))),-3); 

clear A; 

  

if(Inversion.Delta.T == Input.Wavelet.Delta.T) 

    A = (min(Input.Wavelet.Time):... 

        Inversion.Delta.T:max(Input.Wavelet.Time))'; 

    Input.Wavelet.Amplitude = interp1(Input.Wavelet.Time,... 

        Input.Wavelet.Amplitude,A,'pchip'); 

    Input.Wavelet.Delta.T = Inversion.Delta.T; 

    Input.Wavelet.Time = A; 

    clear A; 

end; 

toc 

  

%% Importing seismic data 

disp('Loading seismic'); 

tic; 

Input.Seismic.Filename = 'Inline8180_0to10.sgy'; 

  

A = ReadSegyHeader([Directory.Input Input.Seismic.Filename]); 
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Input.Seismic.Delta.T = A.dt.*10^(-6); 

Input.Seismic.Time.Vector = A.time'; 

  

if (rem(Inversion.Window, Input.Seismic.Delta.T*1000) ~= 0) 

    Inversion.Window = round(Inversion.Window./... 

        (Input.Seismic.Delta.T*1000)).*Input.Seismic.Delta.T*1000; 

end; 

Input.Seismic.Inline = ReadSegyTraceHeaderValue([Directory.Input... 

    Input.Seismic.Filename],'key','EnergySourcePoint'); 

Input.Seismic.Crossline = ReadSegyTraceHeaderValue([Directory.Input... 

    Input.Seismic.Filename],'key','cdpTrace'); 

  

Input.Seismic.Traces = zeros(numel(Input.Seismic.Time.Vector),... 

    numel(Input.Seismic.Inline)); 

Input.Seismic.Traces = ReadSegy([Directory.Input... 

    Input.Seismic.Filename],'traces',1:numel(Input.Seismic.Inline)); 

clear A B C D E F i; 

toc 

  

%% Importing guide horizon 

disp('Loading guide horizon'); 

tic; 

Input.Guide.Filename = 'GuidedHorizonUVIG_3.dat'; 

A = importdata([Directory.Input Input.Guide.Filename]); 

Input.Guide.Inline = A(:,1); 

Input.Guide.Crossline = A(:,2); 

Input.Guide.Time = A(:,3); 

Input.Seismic.Time.Guide =  zeros(numel(Input.Seismic.Inline),1); 

j = zeros(numel(Input.Seismic.Inline),1); 

for i = 1:numel(Input.Seismic.Inline) 

    A = find(Input.Guide.Inline == Input.Seismic.Inline(i)); 

    if(isempty(A) ~= 1) 

        B = find(Input.Guide.Crossline(A) == Input.Seismic.Crossline(i)); 

        if(isempty(B) ~= 1) 

            Input.Seismic.Time.Guide(i) = Input.Guide.Time(A(B)); 

        else 

            j(i) = 1; 

        end; 

    else 

        j(i) = 1; 

    end; 

end; 

Input.Seismic.Time.Guide = 

round(Input.Seismic.Time.Guide./Input.Seismic.Delta.T).*Input.Seismic.Delta.T; 

if(sum(j) ~= 0) 

    Input.Seismic.Inline = Input.Seismic.Inline(j == 0); 

    Input.Seismic.Crossline = Input.Seismic.Crossline(j == 0); 

    Input.Seismic.Time.Guide = Input.Seismic.Time.Guide(j == 0); 

    Input.Seismic.Traces = Input.Seismic.Traces(:,j == 0); 
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end; 

clear A B i j; 

toc 

  

%% 

disp('Generating wedges'); 

tic; 

Wedge.Offset.Seconds = (Input.Wavelet.Time(end) - Input.Wavelet.Time(1))/2 - 0.04; 

Wedge.Offset.Samples = ceil(Wedge.Offset.Seconds/Inversion.Delta.T); 

  

Wedge.Thickness.Samples.Min =... 

    ceil(Wedge.Thickness.Seconds.Min./Inversion.Delta.T); 

Wedge.Thickness.Seconds.Min = Wedge.Thickness.Samples.Min.*... 

    Inversion.Delta.T; 

  

Wedge.Thickness.Samples.Max =... 

    ceil(Wedge.Thickness.Seconds.Max./Inversion.Delta.T); 

Wedge.Thickness.Seconds.Max = Wedge.Thickness.Samples.Max*... 

    Inversion.Delta.T; 

  

Wedge.Time.Samples.NumberOf = 2*Wedge.Offset.Samples +... 

    Wedge.Thickness.Samples.Max; 

Wedge.Time.Vector = (1:Wedge.Time.Samples.NumberOf)'.*... 

    Inversion.Delta.T - Wedge.Offset.Seconds; 

  

Wedge.Thickness.Samples.NumberOf = Wedge.Thickness.Samples.Max -... 

    Wedge.Thickness.Samples.Min + 1; 

Wedge.Thickness.Vector = Wedge.Thickness.Seconds.Min:... 

    Inversion.Delta.T:Wedge.Thickness.Seconds.Max; 

  

Wedge.Even = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Wedge.Odd = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Synthetic.Even = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Synthetic.Odd = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Wedge.Even(Wedge.Offset.Samples,:) = 1; 

Wedge.Odd(Wedge.Offset.Samples,:) = 1; 

for i = 1:Wedge.Thickness.Samples.NumberOf 

    Wedge.Even(Wedge.Offset.Samples + Wedge.Thickness.Samples.Min +... 

        (i - 1),i) = 1; 

    Wedge.Odd(Wedge.Offset.Samples + Wedge.Thickness.Samples.Min +... 

        (i - 1),i) = -1; 

    Synthetic.Even(:,i) = conv(Wedge.Even(:,i),... 

        Input.Wavelet.Amplitude,'same'); 

    Synthetic.Odd(:,i) = conv(Wedge.Odd(:,i),... 

        Input.Wavelet.Amplitude,'same'); 
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end; 

clear i; 

toc 

  

%% 

disp('Extracting seimic window'); 

tic; 

A = Input.Seismic.Traces; 

B = Input.Seismic.Time.Vector; 

C = Inversion.Window./1000; 

Input.Seismic.Extracted.Time.Vector = (-C:Input.Seismic.Delta.T:C)'; 

D = repmat(Input.Seismic.Extracted.Time.Vector,1,numel(Input.Seismic.Inline)); 

E = repmat(Input.Seismic.Time.Guide',numel(Input.Seismic.Extracted.Time.Vector),1); 

F = E + D; 

G = round(F./Input.Seismic.Delta.T); 

H = zeros(size(G)); 

for i = 1:numel(Input.Seismic.Inline); 

    H(:,i) = A(G(:,i),i); 

end; 

Input.Seismic.Extracted.Traces = H; 

Input.Seismic.Extracted.Time.Indexes = G; 

Input.Seismic.Extracted.Time.Samples.NumberOf = numel(Input.Seismic.Extracted.Time.Vector); 

clear A B C D E F G H i; 

toc 

  

%% 

disp('Upsampling seismic data'); 

tic; 

A = min(Input.Seismic.Extracted.Time.Vector); 

B = max(Input.Seismic.Extracted.Time.Vector); 

Input.Seismic.Upsample.Time.Vector = (A:Inversion.Delta.T:B)'; 

Input.Seismic.Upsample.Traces = zeros(numel(... 

    Input.Seismic.Upsample.Time.Vector), numel(Input.Seismic.Inline)); 

for i = 1:numel(Input.Seismic.Inline) 

    Input.Seismic.Upsample.Traces(:,i) =... 

        interp1(Input.Seismic.Extracted.Time.Vector,... 

        Input.Seismic.Extracted.Traces(:,i),... 

        Input.Seismic.Upsample.Time.Vector, 'pchip'); 

end; 

Input.Seismic.Upsample.Time.Samples.NumberOf =... 

    numel(Input.Seismic.Upsample.Time.Vector); 

clear A B i; 

toc 

  

%% 

disp('Rearranging Wedges'); 

tic; 

A = size(Wedge.Even); 

B = zeros(A(1),2*A(2)); 
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C = zeros(A(1),2*A(2)); 

for i = 1:A(2) 

    B(:,1 + (i - 1)*2) = Wedge.Even(:,i); 

    B(:,2*i) = Wedge.Odd(:,i); 

    C(:,1 + (i - 1)*2) = Synthetic.Even(:,i); 

    C(:,2*i) = Synthetic.Odd(:,i); 

end 

Wedge.Combined = B; 

Synthetic.Combined = C; 

clear A B C D i; 

toc 

  

%% 

disp('Generating dictionary'); 

tic; 

A = Input.Seismic.Upsample.Time.Samples.NumberOf; 

B = size(Wedge.Combined); 

C = A + B(1) - 1; 

D = A + 2*Wedge.Offset.Samples; 

E = zeros(C,B(2)*A); 

F = zeros(C,B(2)*A); 

  

for i = 1:A 

    E(i:(i + B(1) - 1),((i - 1)*B(2)+ 1):(i*B(2))) = Wedge.Combined; 

    F(i:(i + B(1) - 1),((i - 1)*B(2)+ 1):(i*B(2))) = Synthetic.Combined; 

end; 

G = sum(E((A + Wedge.Offset.Samples + 1):end,:)); 

Wedge.Dictionary = E(1:D,G == 0); 

Synthetic.Dictionary = F(1:D,G == 0); 

clear A B C D E F G i; 

toc 

  

%% 

disp('Rescaling seismic'); 

tic; 

A = size(Input.Seismic.Upsample.Traces); 

B = size(Wedge.Dictionary); 

C = zeros(B(1),A(2)); 

C((Wedge.Offset.Samples + 1):(Wedge.Offset.Samples + A(1)),:) =... 

    Input.Seismic.Upsample.Traces; 

Input.Seismic.Upsample.Extended = C; 

D = max(abs(C)); 

Input.Seismic.Upsample.Scaling = D; 

C = C./(ones(B(1),1)*D); 

Input.Seismic.Upsample.Scaled = C; 

Input.Seismic.Upsample.Time.Extended = ((1:B(1)) - 1)'*Inversion.Delta.T +... 

    Input.Seismic.Upsample.Time.Vector(1) - Wedge.Offset.Seconds; 

clear A B C D; 

toc 
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%% 

disp('Generating Ricker wavelet'); 

tic; 

Wavelet.Ricker.Frequency = 50; 

Wavelet.Ricker.Time.Length.Seconds = 0.2; 

Wavelet.Ricker.Time.Length.Samples = Wavelet.Ricker.Time.Length.Seconds./... 

    Input.Seismic.Delta.T; 

Wavelet.Ricker.Time.Shift.Samples = round(Wavelet.Ricker.Time.Length.Samples/2); 

Wavelet.Ricker.Time.Vector = ((1:Wavelet.Ricker.Time.Length.Samples) -... 

    Wavelet.Ricker.Time.Shift.Samples).*... 

    Input.Seismic.Delta.T; 

A = - pi^2.*Wavelet.Ricker.Frequency.^2.*Wavelet.Ricker.Time.Vector.^2; 

Wavelet.Ricker.Amplitude = (1 + 2.*A).*exp(A); 

clear A; 

toc 

  

%% 

disp('Running inversion'); 

tic; 

A = size(Input.Seismic.Upsample.Scaled); 

B = size(Synthetic.Dictionary); 

Inversion.Coefficients = zeros(B(2),A(2)); 

Inversion.Trace = zeros(A); 

Inversion.Spike = zeros(A); 

Inversion.Time = zeros(A(2),1); 

Inversion.Convolved = zeros(A); 

for i = 1:A(2) 

    Solved = 0; 

    C = Regularization; 

    while(Solved == 0) 

        [D, E] = as_bpdn(Synthetic.Dictionary... 

            ,Input.Seismic.Upsample.Scaled(:,i),C); 

        if(E.stat == 0)||(E.stat == 6); 

            Solved = 1; 

        else 

            C = C*2; 

        end; 

    end; 

    Inversion.Coefficients(:,i) = D; 

    Inversion.Time(i) = E.time; 

    Inversion.Spike(:,i) = Wedge.Dictionary*D*Input.Seismic.Upsample.Scaling(i); 

    Inversion.Trace(:,i) = Synthetic.Dictionary*D*Input.Seismic.Upsample.Scaling(i); 

    clear D E; 

    F = circshift(conv(Inversion.Spike(:,i),Wavelet.Ricker.Amplitude), -... 

        Wavelet.Ricker.Time.Shift.Samples + 1); 

    Inversion.Convolved(:,i) = F(1:A(1)); 

    disp([num2str(A(2) - i) '   ' num2str(Inversion.Time(i)) '   ' num2str(C)]); 

    clear C F; 
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end; 

clear i; 

toc 

  

%% 

A = max(Input.Seismic.Time.Guide) + max(Input.Seismic.Upsample.Time.Extended) +0.1; 

B = roundn((Inversion.Delta.T:Inversion.Delta.T:A),-3)'; 

C = zeros(numel(B),numel(Input.Seismic.Inline)); 

F = zeros(numel(B),numel(Input.Seismic.Inline)); 

G = zeros(numel(B),numel(Input.Seismic.Inline)); 

for i = 1:numel(Input.Seismic.Inline); 

    D = roundn(Input.Seismic.Upsample.Time.Extended(1) + Input.Seismic.Time.Guide(i),-3); 

    E = find(B == D); 

    C(E:(E + numel(Input.Seismic.Upsample.Time.Extended) - 1),i) = Inversion.Spike(:,i); 

    F(E:(E + numel(Input.Seismic.Upsample.Time.Extended) - 1),i) = Inversion.Trace(:,i); 

    G(E:(E + numel(Input.Seismic.Upsample.Time.Extended) - 1),i) = Inversion.Convolved(:,i); 

end; 

Inversion.Export.Time = B; 

Inversion.Export.Spike = C; 

Inversion.Export.Trace = F; 

Inversion.Export.Convolved = G; 

clear A B C D E F G i; 

  

%% 

k = 1; 

%% 

figure('Visible','on'); 

set(gcf,'Position',[100 100 1600 1200]); 

imagesc(1:numel(Input.Seismic.Inline),... 

    Input.Seismic.Time.Vector,... 

    Input.Seismic.Traces); 

ylabel('Time(s)'); 

title('Input Seismic'); 

colormap(flipud(jet)); 

colorbar; 

ylim(Limit.Y); 

set(gca,'CLim',10000*[-1 1]); 

set(gcf,'PaperPositionMode','auto'); 

print('-djpeg','-r300',[Directory.Output 'Figure' num2str(k)]); 

k = k + 1; 

close all; 

  

%% 

figure('Visible','on'); 

set(gcf,'Position',[100 100 1600 1200]); 

imagesc(1:numel(Input.Seismic.Inline),... 

    Inversion.Export.Time,... 

    Inversion.Export.Spike); 

ylabel('Time(s)'); 
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xlabel('Crossline'); 

title(['Spike Inversion with ' num2str(Regularization) ' regularization']); 

colormap(flipud(jet)); 

colorbar; 

ylim(Limit.Y); 

set(gca,'CLim',2500*[-1 1]); 

set(gcf,'PaperPositionMode','auto'); 

print('-djpeg','-r300',[Directory.Output 'Figure' num2str(k)]); 

k = k + 1; 

close all; 

  

%% 

figure('Visible','on'); 

set(gcf,'Position',[100 100 1600 1200]); 

imagesc(1:numel(Input.Seismic.Inline),... 

    Inversion.Export.Time,... 

    Inversion.Export.Convolved); 

ylabel('Time(s)'); 

title(['Spike Inversion + Ricker ' num2str(Wavelet.Ricker.Frequency) ' Hz with ' 

num2str(Regularization) ' regularization']); 

colormap(flipud(jet)); 

colorbar; 

ylim(Limit.Y); 

set(gca,'CLim',10000*[-1 1]); 

set(gcf,'PaperPositionMode','auto'); 

print('-djpeg','-r300',[Directory.Output 'Figure' num2str(k)]); 

k = k + 1; 

close all; 

  

%% 

WriteSegy([Directory.Output 'InversionSpikeVolume.sgy'],... 

    Inversion.Export.Spike,'dt',Inversion.Delta.T,... 

    'Inline3D',Input.Seismic.Inline,... 

    'Crossline3D',Input.Seismic.Crossline); 

WriteSegy([Directory.Output 'InversionTraceVolume.sgy'],... 

    Inversion.Export.Trace,'dt',Inversion.Delta.T,... 

    'Inline3D',Input.Seismic.Inline,... 

    'Crossline3D',Input.Seismic.Crossline); 

WriteSegy([Directory.Output 'InversionRickerVolume.sgy'],... 

    Inversion.Export.Convolved,'dt',Inversion.Delta.T,... 

    'Inline3D',Input.Seismic.Inline,... 

    'Crossline3D',Input.Seismic.Crossline); 

  

save([Directory.Output 'SeismicTestInverted' num2str(Regularization) '.mat'],'-v7.3'); 
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% Appendix F  

% BP Inversion for Seismic Volume. ProcessingVolumeUpsampling.m  

 

clc; 

clear all; 

close all; 

  

Directory.Input = 'C:\Users\eaadedej\Desktop\ThesisData\'; 

Directory.Output = 'C:\Users\eaadedej\Desktop\ThesisData\'; 

  

Regularization = 2; 

Inversion.Delta.T = 0.002; 

Inversion.Window.Up = 560; 

Inversion.Window.Down = 260; 

  

Wedge.Thickness.Seconds.Min = 0.002; 

Wedge.Thickness.Seconds.Max = 0.08; 

  

%% Importing seismic wavelet data 

disp('Loading wavelet'); 

tic; 

Input.Wavelet.Filename = 'Well_VK_956_A8_ST02BP00_Wavelet_3.6-4.3Secs.txt'; 

A = importdata([Directory.Input Input.Wavelet.Filename],' ',4); 

Input.Wavelet.Time = A.data(:,1); 

Input.Wavelet.Amplitude = A.data(:,2); 

Input.Wavelet.Delta.T = roundn(mode(diff(A.data(:,1))),-3); 

clear A; 

  

if(Inversion.Delta.T == Input.Wavelet.Delta.T)  

    A = (min(Input.Wavelet.Time):... 

        Inversion.Delta.T:max(Input.Wavelet.Time))'; 

    Input.Wavelet.Amplitude = interp1(Input.Wavelet.Time,... 

        Input.Wavelet.Amplitude,A,'pchip'); 

    Input.Wavelet.Delta.T = Inversion.Delta.T; 

    Input.Wavelet.Time = A; 

    clear A; 

end; 

toc 

  

%% Importing seismic data 

disp('Loading seismic'); 

tic; 

Input.Seismic.Filename = 'InversionSmallTest2.sgy'; 

  

A = ReadSegyHeader([Directory.Input Input.Seismic.Filename]); 

Input.Seismic.Delta.T = A.dt.*10^(-6); 

Input.Seismic.Time.Vector = A.time'; 

  

if (rem(Inversion.Window.Up, Input.Seismic.Delta.T*1000) ~= 0) 
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    Inversion.Window.Up = round(Inversion.Window.Up./... 

        (Input.Seismic.Delta.T*1000)).*Input.Seismic.Delta.T*1000; 

end; 

if (rem(Inversion.Window.Down, Input.Seismic.Delta.T*1000) ~= 0) 

    Inversion.Window.Down = round(Inversion.Window.Down./... 

        (Input.Seismic.Delta.T*1000)).*Input.Seismic.Delta.T*1000; 

end; 

Input.Seismic.Inline = ReadSegyTraceHeaderValue([Directory.Input... 

    Input.Seismic.Filename],'key','EnergySourcePoint'); 

Input.Seismic.Crossline = ReadSegyTraceHeaderValue([Directory.Input... 

    Input.Seismic.Filename],'key','cdpTrace'); 

  

Input.Seismic.Traces = zeros(numel(Input.Seismic.Time.Vector),... 

    numel(Input.Seismic.Inline)); 

Input.Seismic.Traces = ReadSegy([Directory.Input... 

    Input.Seismic.Filename],'traces',1:numel(Input.Seismic.Inline)); 

clear A B C D E F i; 

toc 

  

%% Importing guide horizon 

disp('Loading guide horizon'); 

tic; 

Input.Guide.Filename = 'GuidedHorizonUVIG_3_2.dat'; 

A = importdata([Directory.Input Input.Guide.Filename]); 

Input.Guide.Inline = A(:,1); 

Input.Guide.Crossline = A(:,2); 

Input.Guide.Time = A(:,3); 

k = zeros(numel(Input.Guide.Inline),1); 

for i = 1:numel(Input.Guide.Inline) 

    A = find(Input.Seismic.Inline == Input.Guide.Inline(i)); 

    if(isempty(A) ~= 1) 

        B = find(Input.Seismic.Crossline(A) == Input.Guide.Crossline(i)); 

        if(isempty(B) ~= 1) 

            k(i) = A(B); 

        end; 

    end; 

end; 

Input.Seismic.Inline = Input.Seismic.Inline(k(k ~= 0)); 

Input.Seismic.Crossline = Input.Seismic.Crossline(k(k ~= 0)); 

Input.Seismic.Traces = Input.Seismic.Traces(:,k(k ~= 0)); 

Input.Guide.Inline = Input.Guide.Inline(k ~= 0); 

Input.Guide.Crossline = Input.Guide.Crossline(k ~= 0); 

Input.Guide.Time = Input.Guide.Time(k ~= 0); 

Input.Guide.Time = round(Input.Guide.Time./Input.Seismic.Delta.T).*Input.Seismic.Delta.T; 

clear A B i j; 

toc 

  

%% 

disp('Generating wedges'); 
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tic; 

Wedge.Offset.Seconds = (Input.Wavelet.Time(end) - Input.Wavelet.Time(1))/2 - 0.04; 

Wedge.Offset.Samples = ceil(Wedge.Offset.Seconds/Inversion.Delta.T); 

  

Wedge.Thickness.Samples.Min =... 

    ceil(Wedge.Thickness.Seconds.Min./Inversion.Delta.T); 

Wedge.Thickness.Seconds.Min = Wedge.Thickness.Samples.Min.*... 

    Inversion.Delta.T; 

  

Wedge.Thickness.Samples.Max =... 

    ceil(Wedge.Thickness.Seconds.Max./Inversion.Delta.T); 

Wedge.Thickness.Seconds.Max = Wedge.Thickness.Samples.Max*... 

    Inversion.Delta.T; 

  

Wedge.Time.Samples.NumberOf = 2*Wedge.Offset.Samples +... 

    Wedge.Thickness.Samples.Max; 

Wedge.Time.Vector = (1:Wedge.Time.Samples.NumberOf)'.*... 

    Inversion.Delta.T - Wedge.Offset.Seconds; 

  

Wedge.Thickness.Samples.NumberOf = Wedge.Thickness.Samples.Max -... 

    Wedge.Thickness.Samples.Min + 1; 

Wedge.Thickness.Vector = Wedge.Thickness.Seconds.Min:... 

    Inversion.Delta.T:Wedge.Thickness.Seconds.Max; 

  

Wedge.Even = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Wedge.Odd = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Synthetic.Even = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Synthetic.Odd = zeros(Wedge.Time.Samples.NumberOf,... 

    Wedge.Thickness.Samples.NumberOf); 

Wedge.Even(Wedge.Offset.Samples,:) = 1; 

Wedge.Odd(Wedge.Offset.Samples,:) = 1; 

for i = 1:Wedge.Thickness.Samples.NumberOf 

    Wedge.Even(Wedge.Offset.Samples + Wedge.Thickness.Samples.Min +... 

        (i - 1),i) = 1; 

    Wedge.Odd(Wedge.Offset.Samples + Wedge.Thickness.Samples.Min +... 

        (i - 1),i) = -1; 

    Synthetic.Even(:,i) = conv(Wedge.Even(:,i),... 

        Input.Wavelet.Amplitude,'same'); 

    Synthetic.Odd(:,i) = conv(Wedge.Odd(:,i),... 

        Input.Wavelet.Amplitude,'same'); 

end; 

clear i; 

toc 

  

%% 

disp('Extracting seimic window'); 
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tic; 

A = Input.Seismic.Traces; 

B = Input.Seismic.Time.Vector; 

C = Inversion.Window.Up/1000; 

D = Inversion.Window.Down/1000; 

Input.Seismic.Extracted.Time.Vector = (-C:Input.Seismic.Delta.T:D)'; 

D = repmat(Input.Seismic.Extracted.Time.Vector,1,numel(Input.Seismic.Inline)); 

E = repmat(Input.Guide.Time',numel(Input.Seismic.Extracted.Time.Vector),1); 

F = E + D; 

G = floor(F./Input.Seismic.Delta.T); 

H = zeros(size(G)); 

for i = 1:numel(Input.Seismic.Inline); 

    H(:,i) = A(G(:,i),i); 

end; 

Input.Seismic.Extracted.Traces = H; 

Input.Seismic.Extracted.Time.Indexes = G; 

Input.Seismic.Extracted.Time.Samples.NumberOf = numel(Input.Seismic.Extracted.Time.Vector); 

clear A B C D E F G H i; 

toc 

  

%% 

disp('Upsampling seismic data'); 

tic; 

A = min(Input.Seismic.Extracted.Time.Vector); 

B = max(Input.Seismic.Extracted.Time.Vector); 

Input.Seismic.Upsample.Time.Vector = (A:Inversion.Delta.T:B)'; 

Input.Seismic.Upsample.Traces = zeros(numel(... 

    Input.Seismic.Upsample.Time.Vector), numel(Input.Seismic.Inline)); 

for i = 1:numel(Input.Seismic.Inline) 

    Input.Seismic.Upsample.Traces(:,i) =... 

        interp1(Input.Seismic.Extracted.Time.Vector,... 

        Input.Seismic.Extracted.Traces(:,i),... 

        Input.Seismic.Upsample.Time.Vector, 'pchip'); 

end; 

Input.Seismic.Upsample.Time.Samples.NumberOf =... 

    numel(Input.Seismic.Upsample.Time.Vector); 

clear A B i; 

toc 

  

%% 

disp('Rearranging Wedges'); 

tic; 

A = size(Wedge.Even); 

B = zeros(A(1),2*A(2)); 

C = zeros(A(1),2*A(2)); 

for i = 1:A(2) 

    B(:,1 + (i - 1)*2) = Wedge.Even(:,i); 

    B(:,2*i) = Wedge.Odd(:,i); 

    C(:,1 + (i - 1)*2) = Synthetic.Even(:,i); 
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    C(:,2*i) = Synthetic.Odd(:,i); 

end 

Wedge.Combined = B; 

Synthetic.Combined = C; 

clear A B C D i; 

toc 

  

%% 

disp('Generating dictionary'); 

tic; 

A = Input.Seismic.Upsample.Time.Samples.NumberOf; 

B = size(Wedge.Combined); 

C = A + B(1) - 1; 

D = A + 2*Wedge.Offset.Samples; 

E = zeros(C,B(2)*A); 

F = zeros(C,B(2)*A); 

  

for i = 1:A 

    E(i:(i + B(1) - 1),((i - 1)*B(2)+ 1):(i*B(2))) = Wedge.Combined; 

    F(i:(i + B(1) - 1),((i - 1)*B(2)+ 1):(i*B(2))) = Synthetic.Combined; 

end; 

G = sum(E((A + Wedge.Offset.Samples + 1):end,:)); 

Wedge.Dictionary = E(1:D,G == 0); 

Synthetic.Dictionary = F(1:D,G == 0); 

clear A B C D E F G i; 

toc 

  

%% 

disp('Rescaling seismic'); 

tic; 

A = size(Input.Seismic.Upsample.Traces); 

B = size(Wedge.Dictionary); 

C = zeros(B(1),A(2)); 

C((Wedge.Offset.Samples + 1):(Wedge.Offset.Samples + A(1)),:) =... 

    Input.Seismic.Upsample.Traces; 

Input.Seismic.Upsample.Extended = C; 

D = max(abs(C)); 

Input.Seismic.Upsample.Scaling = D; 

C = C./(ones(B(1),1)*D); 

Input.Seismic.Upsample.Scaled = C; 

Input.Seismic.Upsample.Time.Extended = ((1:B(1)) - 1)'*Inversion.Delta.T +... 

    Input.Seismic.Upsample.Time.Vector(1) - Wedge.Offset.Seconds; 

clear A B C D; 

toc 

  

%% 

disp('Generating Ricker wavelet'); 

tic; 

Wavelet.Ricker.Frequency = 50; 
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Wavelet.Ricker.Time.Length.Seconds = 0.2; 

Wavelet.Ricker.Time.Length.Samples = Wavelet.Ricker.Time.Length.Seconds./... 

    Input.Seismic.Delta.T; 

Wavelet.Ricker.Time.Shift.Samples = round(Wavelet.Ricker.Time.Length.Samples/2); 

Wavelet.Ricker.Time.Vector = ((1:Wavelet.Ricker.Time.Length.Samples) -... 

    Wavelet.Ricker.Time.Shift.Samples).*... 

    Input.Seismic.Delta.T; 

A = - pi^2.*Wavelet.Ricker.Frequency.^2.*Wavelet.Ricker.Time.Vector.^2; 

Wavelet.Ricker.Amplitude = (1 + 2.*A).*exp(A); 

clear A; 

toc 

  

%% 

disp('Running inversion'); 

tic; 

A = size(Input.Seismic.Upsample.Scaled); 

B = size(Synthetic.Dictionary); 

Inversion.Coefficients = zeros(B(2),A(2)); 

Inversion.Trace = zeros(A); 

Inversion.Spike = zeros(A); 

Inversion.Time = zeros(A(2),1); 

Inversion.Convolved = zeros(A); 

for i = 1:A(2) 

    Solved = 0; 

    C = Regularization; 

    while(Solved == 0) 

        [D, E] = as_bpdn(Synthetic.Dictionary... 

            ,Input.Seismic.Upsample.Scaled(:,i),C); 

        if(E.stat == 0)||(E.stat == 6); 

            Solved = 1; 

        else 

            C = C*2; 

        end; 

    end; 

    Inversion.Coefficients(:,i) = D; 

    Inversion.Time(i) = E.time; 

    Inversion.Spike(:,i) = Wedge.Dictionary*D*Input.Seismic.Upsample.Scaling(i); 

    Inversion.Trace(:,i) = Synthetic.Dictionary*D*Input.Seismic.Upsample.Scaling(i); 

    clear D E; 

    F = circshift(conv(Inversion.Spike(:,i),Wavelet.Ricker.Amplitude), -... 

        Wavelet.Ricker.Time.Shift.Samples + 1); 

    Inversion.Convolved(:,i) = F(1:A(1)); 

    disp([num2str(A(2) - i) '   ' num2str(Inversion.Time(i)) '   ' num2str(C)]); 

    clear C F; 

    if(rem(i,50000) == 0) 

        save([Directory.Output 'MC13-Q_Volume2_' num2str(Regularization) '.mat'],'-v7.3'); 

    end; 

end; 

clear i; 



 74 

toc 

  

%% 

A = max(Input.Guide.Time) + max(Input.Seismic.Upsample.Time.Extended) +0.1; 

B = roundn((Inversion.Delta.T:Inversion.Delta.T:A),-3)'; 

C = zeros(numel(B),numel(Input.Seismic.Inline)); 

F = zeros(numel(B),numel(Input.Seismic.Inline)); 

G = zeros(numel(B),numel(Input.Seismic.Inline)); 

for i = 1:numel(Input.Seismic.Inline); 

    D = roundn(Input.Seismic.Upsample.Time.Extended(1) + Input.Guide.Time(i),-3); 

    E = find(B == D); 

    C(E:(E + numel(Input.Seismic.Upsample.Time.Extended) - 1),i) = Inversion.Spike(:,i); 

    F(E:(E + numel(Input.Seismic.Upsample.Time.Extended) - 1),i) = Inversion.Trace(:,i); 

    G(E:(E + numel(Input.Seismic.Upsample.Time.Extended) - 1),i) = Inversion.Convolved(:,i); 

end; 

Inversion.Export.Time = B; 

Inversion.Export.Spike = C; 

Inversion.Export.Trace = F; 

Inversion.Export.Convolved = G; 

clear A B C D E F G i; 

  

%% 

WriteSegy([Directory.Output 'MC13-Q_InversionSpikeVolume2_' num2str(Regularization) '.sgy'],... 

    Inversion.Export.Spike,'dt',Inversion.Delta.T,... 

    'Inline3D',Input.Seismic.Inline,... 

    'Crossline3D',Input.Seismic.Crossline); 

WriteSegy([Directory.Output 'MC13-Q_InversionTraceVolume2_' num2str(Regularization) '.sgy'],... 

    Inversion.Export.Trace,'dt',Inversion.Delta.T,... 

                     'Inline3D',Input.Seismic.Inline,... 

    'Crossline3D',Input.Seismic.Crossline); 

WriteSegy([Directory.Output 'MC13-Q_InversionRickerVolume2_' num2str(Regularization) 

'.sgy'],... 

    Inversion.Export.Convolved,'dt',Inversion.Delta.T,... 

    'Inline3D',Input.Seismic.Inline,... 

    'Crossline3D',Input.Seismic.Crossline); 

  

save([Directory.Output 'MC13-Q_Volume2_' num2str(Regularization) '.mat'],'-v7.3'); 
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