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Abstract

A real-time simulator (RTS) with digital and analog input/output modules is used to conduct

hardware-in-the-loop simulations to evaluate performance of power system equipment such as pro-

tective relays by exposing the equipment to the simulated realistic operating conditions. This work

investigates the use of RTS to test relays with single-pole-switching (SPS) feature. Single-pole

switching can cause misoperations due to fault arc during reclosing of the breakers. Through this

investigation, a test procedure appropriate for the testing SPS relays has been developed. The

test procedure includes power system modeling for real time simulation, relay test setup, and test

plan. HYPERSIM real-time simulator was used to model an actual power system. Transmis-

sion lines, three-winding transformers, and induction motor were modeled with actual parameters.

Models for fault arc in HYPERSIM real time simulator were developed. Test set-up for evaluating

relay performance and wiring drawings for connecting relay in closed-loop to the simulator were

developed.

KEY WORDS: HYPERSIM, Relay Testing, SPS, Real-Time Simulator, Independent Pole.
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Chapter 1

Introduction

This chapter summarizes the background of this work and presents a literature review on protective

relay testing using real-time modeling and simulation. The chapter concludes with the scope of

work for the thesis.

1.1 Overview of Real Time Digital Simulators

“Real time digital simulator (RTS) applied for power systems provide power systems simulation

technology for fast, reliable, accurate and cost-effective study of power systems. The RTS is a full

digital electromagnetic transient power system simulator operates in real time, tests physical devices

and performs studies quickly” [9]. In RTS, computer models of the power system are simulated in

real-time to analyze the hardware-in-the-loop performance of the power system components under

more realistic conditions [10]. The following are the major applications of RTS mentioned in [11].

• Specification study

• Verification of design

1



• Protective relays and power semiconductor equipments (HVDC and FACTS devices) pre-

commissioning and performance analysis.

[10] The benefit of performing hardware-in-the-loop simulations of power system equip-

ment is increased efficiency in the conduct of the tests and it is required for evaluating the perfor-

mance of the equipment. The following are the situations where hardware-in-the-loop simulation

is required.

1. Relays in fast re-closing & single pole auto-reclose of transmission lines.

2. Relays for out-of-step protections & distribution feeders with reclosure.

3. Relays responding to frequency excursions.

4. Power system stabilizers for excitation control system of generators.

5. Special breaker controllers.

[10] Dynamics caused in the power system due to tripping and re-close actions of relays

can be captured and analyzed by hardware-in-the-loop testing of relays. Hardware-in-the-loop

simulation of stabilizer determines its effectiveness on power system stability and simulations for

controlled opening and closing of individual breaker poles are advantageous in reactor switching

and capacitor switching respectively.

1.1.1 History of Real-Time Simulator

The early RTS [7] used digital technology utilizing power system and fault modeling capabilities of

electromagnetic transient programs to implement protective relay testing simulators. This approach

is flexible to the user to model the system accurately. These simulators are advantageous in meeting

complex relay testing requirements, however they lack in providing meaningful interaction between
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the relay and the simulator. In the later years, a new real-time simulator was developed for real

time testing of protection relay to evaluate relay’s performance and also to determine which relay

suites best for a given application. Table 1.1 [7] summarizes application requirements that the

simulator design required to meet for testing relays.

Table 1.1: Application Requirements for Relay Testing [7]

Applications Requirements

Parallel Lines
Three terminal simulator configuration and

coupled RL branches modeling

Series compensated long lines Modeling of distributed and frequncy dependent parameter lines

MOV and arrester protection Modeling for short line representation

Close-in and Far-end faults PI circuit modeling for short line representation

Single-pole auto reclosing Real-time interaction, modeling of circuit breakers and switches

Different fault cases Selection of fault type, resistace, incidence angle and location

Influence of relaying transformers Accurate modeling of CCVT and CT transient response

Timing sequence of circuit breakers Modeling of circuit breaker timing logic

The following are the commercially available RTS in today’s market [9]:

• RTDS developed by RTDS technologies Inc.

• HYPERSIM developed by Hydro-Quebec.

• eMEGAsim developed by OPAL-RT Technologies Inc.

1.2 A Review of Real Time Digital Simulator for Relay Testing

Many research papers [10]-[12], published on testing relays using RTS, evaluating the performance

of relays and determining best protection principles. A numerical distance relay incorporated with

new positive sequence directional element was tested with RTDS for verifying the operation of

directional element incorporated in the relay in [13]. In [14], Numerical Distance relay performance

was validated by developing models of a Chinese 500kV dynamic network and conducting tests using
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the RTDS. The results of these digital simulations are compared with dynamic simulation results

for validation of high performance relays. Line protection relays and transformer protection relays

were tested and evaluated using the RTS, ARENETM for fault cases applied on the protected line

between the two series capacitor banks in [15]. In [10], Test setup for hardware-in-the-loop testing

of a feeder relay, a power system stabilizer, and a circuit breaker controller were described. In [16],

tests on the existing line relays were carried out to obtain settings for the relays for all the possible

operating conditions and to determine deficiency in the performance of the relay.

The work published in [17] compared the performance of different line protection systems

on Hydro-Quebec series compensated network to determine the best protection principles. A dis-

tance relay and a PCM current differential relay tested using the RTDS for verifying the scenarios in

which relay fails to operate as desired in [18]. Relay configured for over-current scenario was tested

and analyzed for closed loop performance using RTDS in [19]. In this publication, effect of CT sat-

uration on closed loop performance of relays was also analyzed. Performance of Numerical Distance

Relay using RTDS was evaluated in paper [20]. Different scenarios including fault types, positions,

inception angles and fault resistances were used for evaluating relay transient performance. An

actual relay was tested using automatic testing procedure and manual testing procedure in [21].

This publication identified which approach is best suited for testing and analyzing the performance

of relays for a particular fault scenario of interest.

M. Kezunovicl and M. McKenna in [7] tested RTS for accuracy of producing and speed

of calculating fault transients. A full and reduced models of series capacitor power system network

were developed. A single phase to ground fault was applied and the relay was tested for accuracy

and speed for both the models. EMTP and RTS waveforms were compared for the same fault event

to determine the accuracy of simulation. Time step required to carry out simulations in real-time

evaluated the speed of computation.
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Most of the relays tested with RTS use lumped parameter line models for transmission

lines in the power system networks. In publications [7] and [17], distributed frequency dependent

line model was used for transmission lines in the power system network. In papers [7], [17], [13] and

[15], the test system modeled and simulated for testing relays includes a series capacitor. Effect of

CT and CVT on the performance of relays was analyzed in [14] and [20]. Load was modeled as

constant impedance and motor load in [17] and as an inductive motor load in [14]. In majority of

the research publications, sources were modeled as constant voltage sources behind impedance’s.

In [14], source was modeled as generator. Effect of shunt compensation on the performance of

relays was analyzed in papers [17], [13] and [14]. In [17], power system network used for studying

the performance of line protection system consists of equivalents for voltage levels below 315kV.

Network simulation in [17], include transformer saturation and the power system network in [13]

has three-winding transformer model.

1.3 Overview of Single Pole Switching

Single pole switching (SPS), which is a combination of single-pole tripping (SPT) and single-pole

reclosing (SPR) is a feasible approach to the operation of power systems. According to [22], SPS

application on transmission lines is a useful and feasible means to improve power system reliability.

In [23] SPT is defined as “Opening of faulted phase due to single line to ground fault” and SPR

as “re-closing of the faulted phase following a single pole trip”. SPS applications on transmission

line open a single pole of the transmission line breakers in the event of fault keeping the other two

poles intact. The two ends of the transmission line are metallically connected via other two poles

allowing transfer of power and reduce the possibility of loosing synchronism [24]. SPS application

improves power system stability and in [25] it was shown that the stability is maintained due to

flow of synchronizing power which reduces the rate of rotor angle drift between the synchronous
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machines. In [26], it was shown that SPS application on transmission lines for all temporary single-

line-to-ground faults, automatic generator shedding and automatic load shedding conditions were

prevented and voltage stability margins were also improved during single pole open period due to

flow of smaller amount of reactive power from the system.

Majority of faults occurring on HV transmission lines are single line to ground faults,

SPAR takes advantage of this fact. Table 1.2 [8] shows the statistics of percent of different types

of faults occur on HV transmission lines.

Table 1.2: Relative Number of Different Types of Faults on HV transmission lines [8]

Fault type Percent

LG 70

LL 15

LLG 10

3L 5

Total 100

The spacing between conductors on EHV/UHV lines is more, therefore the percentage

of multi-phase faults is less. Table 1.3 [8] shows the statistics of percent of different types of faults

that occur on a 525 kV transmission lines.

Table 1.3: Relative Number of Different Types of Faults on 525 kV transmission lines [8]

Fault type Percent

LG 93

LL 4

LLG 2

3L 1

Total 100
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The following are the benefits of SPS application on transmission lines listed in [23]:

• Transient state stability improvement.

• System reliability improvement and availability of system with one or two transmission lines.

• Switching over voltages reduction.

• Shaft torsion oscillations reduction.

In spite of benefits associated with SPS schemes [26], some utilities still do not apply this technology

for the following reasons:

• Additional expense for breakers.

• Added complexity in the protection scheme.

• Presence of secondary arc.

• Added stress to the generating units.

The dynamic interaction between a fault arc and the power system is extremely impor-

tant to determine the instant of successful reclosure of a faulted system [5]. The success of SPS

application depends on a number of parameters such as secondary arc current, recovery voltage

across the arc path, arc location and meteorological conditions.

[26] A single line to ground fault results in the formation of primary arc between the

faulted phase and ground. The fault is isolated by the line protection system by tripping the single

pole of the breaker in SPS applications, there by extinguishing the primary arc. The two ends of

the transmission line are metallically connected by the other two healthy phases during the single

pole open period. Voltage is induced in the open phase conductor due to capacitive and inductive

coupling between the healthy phase conductors and open phase conductor. As the air is already

ionized from the primary arc, the induced voltage creates secondary arc.
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For successful reclosure, it is essential to detect extinction of secondary arc. In case of

500kV lines, special compensation schemes become necessary to limit the secondary arc current and

recovery voltage to ensure successful high speed re-closing. The published literature [27] says that

the behavior of secondary arc current can be studied through simulation or by means of recording

naturally occurring or staged faults. Naturally occurring faults are unpredictable and staged fault

tests are expensive and complex to perform. Real time simulation with a RTS can overcome many

of these problems.

1.4 A Review on Single Pole Switching Studies

Research on single pole switching focuses on advantages of having SPS schemes, challenges with

SPS applications. [8], [22], and [27] - [28] presented findings on SPS applications on power systems.

According to published literature [29] majority of faults occurring on a 132kV line were

single phase to ground faults and successful single pole tripping and re-closing was recorded for

most of the cases. Also [29] discusses the advantages of having single pole tripping over multi-pole

tripping in that better system stability and minimization of overall system disturbances during fault

clearing operations. In [30] Reactor compensation makes the extinction of secondary arc possible by

reducing the phase to ground fault current in the open phase of the line. The degree of compensation

required to limit the secondary arc current to a level that can be extinguished depends on the length

of the line. Greater the length of the line greater the degree of compensation. Affects of shunt

reactor compensation on successful reclosure, secondary arc extinction and stability of the power

system during SPS operation on 500 kV system were verified by conducting staged fault tests in

[31]. Transient stability limit and critical clearing time are compared for single pole switching and

three pole switching in paper [32]. The problems with implementing single pole switching (SPS)

schemes were addressed in papers [28], [33] and [34]. The major problem addressed is tripping of
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one pole of circuit breakers at both ends of a transmission line for clearing single line to ground

fault produces high negative sequence current in nearby generators.

Single pole opening induces voltage across secondary arc path after the extinction of

primary arc. The induced voltage is called as Recovery Voltage. [35] [36] [37] discuss this recovery

voltage. In [35], the transient recovery voltages of a transposed transmission system with neutral

reactor and un-transposed system during single-pole switching operation were compared. In [36],

maximum possible transient recovery voltage for a transmission system during SPS operation was

determined by varying fault application time, position and duration of faults. In [37], it was shown

that magnitude of secondary arc current and recovery voltage determines the success of re-close

operation on 765 kV system. [38] and [39] discuss the methods to minimize the secondary arc

current.

In [27],[40],[41],[42] and [43], modeling and simulation of primary and secondary arc using

various modeling softwares were published. Realistic arc models were developed and incorporated

in EMTP in [42] based on mathematical models developed by A.T. Johns, R.K. Aggarwal and

Y.H. Song [40]. [42] investigated single phase re-closing using arc model on single and double

circuit transmission line to determine the characteristics of secondary arc current for single phase

to ground faults. Realistic arc models are developed using FORTRAN statements and incorporated

in ATPDraw in [43] based on mathematical models developed by M. Kizilcay, G. Ban, I. Prikler, P.

Handl [41]. [43] validated primary and secondary arc models and implemented on a power system

to verify the settings for SPAR protection scheme. Arc models developed and simulated in real

time in [27] to determine the response of relays with secondary arc detection and to identify the

extinction of secondary arc.
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1.5 Scope of Work

The work done in this thesis is continuation of work published in [12] and [44]. [12] focused on

evaluating performance of various digital line protection relays using a closed-loop real-time power

system digital simulator called ””HYPERSIM”” to determine the best suited protection scheme

for a series capacitor line. An equivalent test system was modeled in HYPERSIM and distance

relays of two different manufacturers and a differential relay were connected in closed loop with the

real-time simulator at each end of the line. Different fault scenarios were performed and relays were

tested to verify their expected performance. Distance relays were found to have deficiencies and

differential relay successfully cleared all internal faults. The test results concluded that for series

capacitor lines dual primary differential relays with back up distance and over-current elements

to be used with Zone 1 distance elements turned off. The study continued in [44] by replacing

the existing relays with two dual primary differential relays in loop with the real-time simulator

and tested with the same scenarios for evaluating the performance of these new relays. The tests

performed on the system concluded that the relays did not operate as intended in a few scenarios.

This thesis is part of an investigation of Single Pole Switching (SPS) in commercial

protective relays used in electrical system protection scheme. The main objective of this work is

to create a test plan to evaluate the performance of two different digital line differential protection

relays that are configured to control IPO breakers modeled in real-time simulator. The second

objective of this work is to design a test setup, including necessary signals appropriate for capturing

the performance of SPS operation.

The following tasks were performed to achieve the two objectives:

• A portion of a power system which is two-bus deep from the protected series capacitor line

is modeled using a real time digital simulator called HYPERSIM. The power network used
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comprises of the study area with detailed parameters for accurate line models, motor load

models, two-winding and three-winding transformer models, series capacitor with surge ar-

rester and shunt capacitor components. The rest of the power network is equivalenced in

ASPEN to voltage sources, transformers and π lines.

• Investigation on implementation of fault arc models in HYPERSIM real time simulator is also

carried out in this thesis. Arc models would help capture the effect of the remaining active

phases when only single phase is tripped in SPS operation.

• Systematic study is performed to select the worst case switch timings for the faults that result

in the worst fault currents. The selected faults are performed on a line with series capacitor

connected at one end and high capacity motor connected at the other end. Close-in faults

(close to series capacitor bus), faults at middle of line, and remote faults (close to motor bus)

are applied automatically at different incidence angles for each scenario in order to determine

the worst case switch time.

• Test setup includes the design of line differential relays protection schematics to include

breaker trips, breaker status, breaker close and breaker fail logic’s for testing the protection

scheme of series capacitor line. AUTOCAD is used to design the protection schematics.
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Chapter 2

Mathematical Formulation

The previous chapter has already given some idea on relay testing and single pole switching ap-

plications. Reminding once again, the main objective of this work is to come up with a power

system model suitable for testing relays in hardware-in-the-loop for single pole switching applica-

tions. In view of this, this chapter discusses mathematical modeling of power system components

in the model developed in this thesis and background of power system components modeling in

HYPERSIM real time simulator software. Background of mathematical models and HYPERSIM

models of power system components used in this thesis are illustrated in section 2.1 to section 2.4.

2.1 Transmission Lines [1]

A Transmission line is characterized by four distributed parameters: series resistance, series in-

ductance, shunt conductance, and shunt capacitance. Magnetic and electric effects around the

conductor are represented by series inductance and shunt capacitance and leakage current along

insulator strings and ionized pathways in the air is represented by shunt conductance. In this thesis,

transmission lines are modeled as distributed parameter lines. Let us look into the mathematical

equations representing the distributed line model.
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2.1.1 Mathematical Model of Transmission Line

The per phase circuit diagram of a transmission line is shown in Figure 2.1. l be the length of the

transmission line, V1, I1 be the sending end bus voltage and current, V2, I2 be the receiving end

bus voltage and current, z be the series impedance per meter, and y be the shunt admittance per

meter to neutral. z, y are represented by equations Equation 2.1 and Equation 2.2.

z = r + jωl (2.1)

y = g + jωc (2.2)

Figure 2.1: Distributed Transmission Line [1]

The relation between sending end and receiving end of transmission line is represented

by Equation 2.3 and Equation 2.4.

V1 = V2 cosh γl + ZcI2 sinh γl (2.3)

I1 = I2 cosh γl +
V2

Zc
sinh γl (2.4)
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where

γ =∆
√
yz (2.5)

is called the propagation constant.

Rewriting Equation 2.3 and Equation 2.4 as Equation 2.6 and Equation 2.7 respectively.

V1 = AV2 +BI2 (2.6)

I1 = CI2 +DV2 (2.7)

where

A = cosh γl (2.8)

B = Zc sinh γl (2.9)

C = cosh γl (2.10)

D =
V2

Zc
sinh γl (2.11)

Rearranging Equation 2.6 and Equation 2.7 in matrix form, we get Equation 2.12

V1

I1

 =

A B

C D


V2

I2

 (2.12)

T =

A B

C D

 (2.13)

where T is called transmission matrix.
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2.1.2 HYPERSIM Model of Transmission Line [2]

The equivalent circuit representing a single mode of a transmission line is shown in Figure 2.2.

2 - 10

Trapezoidal integration

and past currents at both terminals. Equivalent at each terminal can therefore be
calculated in parallel.

Model for frequency dependent lines uses the same philosophy but with a more
complex equivalent.

Each half (left and right) of the line equivalents will be converted from mode to phase
form and incorporated into the corresponding substation equation to be solved with
other elements.

2.3 Substation modelling
In each substation, there are passive components interpreted as RLC elements which
can be linear or non-linear, circuit-breakers, different kinds of generation interpreted
as voltage and current sources equipped with control systems. Machines and motors
are considered as sources with control systems.

Beside control systems, other equipments are power elements working at the power
system level voltages and currents. Power elements of a substation are interconnected
together via nodes. Power elements are not simulated sequentially one by one but
rather simultaneously all together in a single equation call the node equation:

(9)
where Y is the substation admittance matrix, V is vector of node voltages and I is
vector of node currents (currents injected to nodes).

Control systems are modeled using the bloc diagram principle, either under graphic
form (Hypersim bloc diagram and Simulink bloc diagram) or coded in C/C++. Their
inputs can be node voltages and currents while their outputs can be used to control
sources and switches.

2.3.1 RLC ELEMENT

Trapezoidal integration

Hypersim, as EMTP, uses the trapezoidal integration technique, it means that

JmK JmM
Zc

RT
4------

+ Zc
RT
4------

+

ImK

VmK
+

-

K M

VmM

ImM

+

-

Figure 2  : Equivalent circuit of one mode of a transmission line

YV I=

Figure 2.2: Equivalent circuit of One Mode of a Transmission Line [2]

A single mode line model is represented at each terminal (sending end and receiving

end) as an equivalent circuit composed of a current source in parallel with a resistor. The current

source at terminal K is given by Equation 2.14.

JmK =

(
1− h

2

)(
VmK(t− τ)

Req
+ hImK(t− τ)

)
+

(
1 + h

2

)(
VmM (t− τ)

Req
+ hImM (t− τ)

)
(2.14)

where

Req = Zc +
RT

4
(2.15)

h =
Zc −RT /4

Zc +RT /4
(2.16)

Zc is the line characteristic impedance.

τ is the transmission delay along the line.

RT is the line loss.

We can also have a similar expression for JmM , the current source at terminal M.
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2.2 Mathematical Model of Three-Winding Transformers [3]

The section 2.1 summarized mathematical model and HYPERSIM model for representing trans-

mission lines and in this section, mathematical model and equations representing three-winding

transformers shall be discussed. A single phase equivalent circuit of a three-winding transformer

with all the physical quantities is shown in Figure 2.3. The subscript p, s and t represent to

primary, secondary and tertiary quantities respectively. The transformer is represented by three

equivalent impedance’s connected in star to a fictitious point unrelated to system neutral. The

effect of magnetizing reactance is neglected in this equivalent circuit. The difference between the

ratio of actual turns and base voltages is represented by off nominal turns ratio (ONR) and values

of equivalent impedance’s (Zp, Zs and Zt) are obtained by performing short circuit test on the

three-winding transformer.

Figure 2.3: Equivalent Circuit of Three-Winding Transformer [3]
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From the short circuit test, parameters Zps, Zpt, and Zst are obtained. Equation 2.17 to

Equation 2.19 represent expressions for Zps, Zpt, and Zst.

Zps = Zp + Zs (2.17)

Zpt = Zp + Zt (2.18)

Zst = Zs + Zt (2.19)

Rearranging and solving Equation 2.17 to Equation 2.19 yields Equation 2.20 to Equa-

tion 2.22

Zp =
1

2
[Zps + Zpt − Zst] (2.20)

Zs =
1

2
[Zps + Zst − Zpt] (2.21)

Zt =
1

2
[Zpt + Zst − Zps] (2.22)

Where

Zps = Leakage impedance measured in primary with secondary shorted and tertiary

open.

Zpt = Leakage impedance measured in primary with tertiary shorted and secondary

open.

Zst = Leakage impedance measured in secondary with tertiary shorted and secondary

open.

17



2.3 Mathematical Model of Induction Motors [4]

In section 2.2, mathematical model for three-winding transformer was reviewed and in this section,

mathematical model for three-phase induction motor shall be reviewed.

Idle running and blocked-rotor tests made on induction motor provides equivalent circuit

parameters. Equivalent circuit of a three-phase induction motor is shown in Figure 2.4.

Figure 2.4: Equivalent Circuit for Three-Phase Induction Motor [4]

2.3.1 No-Load Test

Equivalent circuits of three-phase induction motor under no-load conditions are shown in Figure 2.5

and Figure 2.6.

Figure 2.5: No-Load Test Equivalent Circuit-1 for Three-Phase Induction Motor [4]
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Figure 2.6: No-Load Test Equivalent circuit-2 for Three-Phase Induction Motor [4]

Let

V0 = Rated line-to-line voltage.

I0 = Line current

P0 = Power input.

r1 = Stator resistance in ohms per phase.

From Figure 2.6,

V =
V0√

3
(2.23)

z0 =
V

I0
(2.24)

P0 = 3I2
0r0 (2.25)

where

r0 = r1 + rM (2.26)

x0 ' x1 + xM (2.27)

x0 =
√
z2

0 − r2
0 (2.28)
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2.3.2 Locked-Rotor Test

The parameters x1, x2 and r2 are obtained from the locked-rotor test. Equivalent circuit under

locked-rotor condition is given in Figure 2.7. Simplified equivalent circuit applied to locked rotor

conditions by making s=1 is given in Figure 2.8

Figure 2.7: Locked-Rotor Test Equivalent Circuit for Three-Phase Induction Motor [4]

Figure 2.8: Simplified Equivalent Circuit for Three-Phase Induction Motor Under Load [4]

Let

VL = line-to-line voltage.

IL = Line current

PL = Power input.
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Impedance of the motor is given in Equation 2.29, equivalent resistance and reactance

expressions are given in Equation 2.30 and Equation 2.31 respectively.

zL =
VL√
3IL

(2.29)

rL = r1 +R2 =
PL

3I2
L

(2.30)

xL = x1 +X2 =
√
z2
L − r2

L (2.31)

Proportions of induction motor leakage reactances depends on the classification of motor.

When the classification of the motor is not known it is assumed that x1=x2=0.5xL.

From Figure 2.7 and Figure 2.8,

R2 + jX2 =
(r2 + jx2)jxM
r2 + j(x2 + xM )

(2.32)

Rearranging Equation 2.32 and equating real parts yields Equation 2.33,

R2 =
r2x

2
M

r2
2 + (x2 + xM )2

(2.33)

Since r2 � (x2 + xM ), Equation 2.33 can be approximated to Equation 2.34.

R2 '
r2x

2
M

(x2 + xM )2
(2.34)

And the rotor resistance referred to stator is given in Equation 2.35.

r2 = (rL − r1)

(
x2 + xM
xM

)2

(2.35)
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2.4 HYPERSIM Models for Power System Components in Sub-

station [2]

In section 2.2 and section 2.3, the mathematical equations and circuits pertaining to transformers

and induction machines (Machines & Motor) were discussed. In this section, HYPERSIM modeling

of power system components in a substation shall be reviewed.

A substation comprises of passive elements (Resistor, Inductor and Capacitor), Circuit

breakers, Generation equipment represented as voltage and current sources with control system,

Machines and Motors considered as sources with control systems. Control systems are modeled

using the block diagram principle whose inputs are node voltages and currents and outputs are

used to control sources and switches. All power elements are interconnected via nodes working

at power system level voltages and currents. These power elements are simulated simultaneously

using a single equation called the node equation.

Y V = I (2.36)

where Y is the substation admittance matrix, V is vector of node voltages and I is vector of node

currents.

The following sections illustrate mathematical background of modeling power system

components in a substation in HYPERSIM Real-Time Simulator software.
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2.4.1 RLC Element Model

HYPERSIM, as EMTP uses trapezoidal integration technique in modeling lumped components.

General equation for trapezoidal integration technique is given in Equation 2.37

y(t) =

∫ t

0
x(t)dt (2.37)

Equation 2.37 is evaluated as

y(t) = y(t− T ) +
T

2
[x(t) + x(t− T )] (2.38)

where T is the calculation time step.

Applying the rule, the derivative part dy(t)
dt approximated as a difference equation on

Equation 2.38 yields Equation 2.39.

y(t)− y(t− T )

T
=

1

2
[x(t) + x(t− T )] (2.39)

In the following sections, voltage across an inductor and current through a capacitor are

illustrated by using trapezoidal integration technique.

Inductor Branch

Voltage across the inductor connected between nodes k and m as shown in Figure 2.9 is defined by

Equation 2.40.

v = L
di

dt
(2.40)
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Figure 2.9: Inductor Branch [2]

After applying trapezoidal integration technique on Equation 2.40 yields Equation 2.41.

ikm(t) =
vk(t)− vm(t)

Req
+ ihist(t− T ) (2.41)

Where

Req =
2L

T
(2.42)

ihist(t− T ) = ikm(t− T ) +
vk(t− T )− vm(t− T )

Req
(2.43)

Equivalent circuit of L branch using the trapezoidal rule is shown in Figure 2.10.

Figure 2.10: Equivalents of Inductor Branch using the Trapezoidal Rule [2]
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Capacitor Branch

An expression similar to current passing through inductor branch can also be derived for current

passing capacitor branch.

Current through the capacitor connected between nodes k and m as shown in Figure 2.11

is given by Equation 2.44.

Figure 2.11: Capacitor Branch [2]

i = C
dv

dt
(2.44)

After applying trapezoidal integration technique on Equation 2.44 yields Equation 2.45.

ikm(t) =
[vk(t)− vm(t)]

Req
+ ihist (2.45)

Where

Req =
T

2C
(2.46)

ihist = −ikm(t− T )− 2C

T
[vk(t− T )− vm(t− T )] (2.47)
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Equivalent circuit of capacitor branch using the trapezoidal rule is shown in Figure 2.12.

Figure 2.12: Equivalent of Capacitor Branch using the Trapezoidal Rule [2]

Note 1:According to Equation 2.41 and Equation 2.45, an inductor and a capacitor

branch is equivalent to a resistor Req in parallel to a current source ihist whose values depends only

on the values of voltages and current of the previous time step.

2.5 Mathematical Model of Fault Arcs [5]

The section 2.1 to section 2.4 reviewed mathematical background of power system components

and their HYPERSIM Real-Time Simulator models. The previous chapter has already provided

some idea of fault arc scenarios during single pole switching applications. This section illustrates

mathematical equations required for modeling primary and secondary fault arcs in HYPERSIM.

2.5.1 Primary Arc Model

The solution of the Equation 2.48 presented by Kizilcay [45] gives dynamic primary arc conductance.

dgp
dt

=
1

Tp
(Gp − gp) (2.48)
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where gp is the primary arc conductance and Gp is the stationary primary arc conductance evaluated

by Equation 2.49

Gp =
|i|
VpLp

(2.49)

where ”i” is the fault current, Vp is the arc voltage gradient whose average value for the currents

in range of 1.4kA to 24kA is given in Equation 2.50 and Lp the arc length.

Vp = 15V/cm (2.50)

The time constant Tp in Equation 2.48 is empirically obtained by fitting with the exper-

imental volt-ampere cyclograms.

Tp =
αIp
Lp

(2.51)

With α = 2.85× 10−5, Ip is the peak value of arc current under bolted fault conditions.

2.5.2 Secondary Arc Model

The dynamic behavior of secondary arc conductance is governed by Equation 2.52.

dgs
dt

=
1

Ts
(Gs − gs) (2.52)

and the expression for Gs is given in Equation 2.53

Gs =
|i|

Vs × ls(tr)
(2.53)
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Expression for the constant voltage gradient can be approximated by Equation 2.54 for

the currents in the range of 1A to 55A.

Vs = 75I−0.4
s (2.54)

Secondary arc length for low wind velocities is a function of time spent from the initiation

of secondary arc (tr), i.e. the moment at which breaker trips. An empirical expression is given in

Equation 2.55.

Ls(tr)/Ls0 =


10.tr, tr > 0.1s

1, tr ≤ 0.1s

(2.55)

Where Ls0 is initial arc length equal to the primary arc length.

An empirical expression is given in Equation 2.56 for time constant Ts in Equation 2.52.

The equation is determined according to the rate of rise of the secondary arc voltage.

Ts =
βI1.4

s

Is(tr)
(2.56)

Where β = 2.51 × 10−3. An empirical expression to represent the arc re-ignition voltage is given

in Equation 2.57.

Vr(tr) =
[
5 +

1620× Te
2.15 + Is

]
× (tr − Te)× h(tr − Te)× Is(tr)[kV ] (2.57)
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Chapter 3

HYPERSIM Modeling and Relay

Design

This chapter explains HYPERSIM environment, methodology to build power system model suitable

for closed loop simulations and relay testing in HYPERSIM environment and illustrates protective

relay scheme for series capacitor line.

Figure 3.1 illustrates the objective of this work. Closed loop simulations with relay

hardware-in-the-loop for analyzing its performance necessitates power system model and relay

set-up. Power system components shown in Figure 3.1 are modeled to develop test system for

performing simulations and analysis. Each power system component is modeled in HYPERSIM

according to the application requirements for relay testing shown in Table 1.1. Relay set-up includes

design of protective scheme and determination of signals required for line differential relays and

over current relays. The protective relay scheme designed in this thesis for the series capacitor line

is capable of testing two different line differential relays connected at each end of the line. Power

system model together with relay set-up simulate fault conditions, trip, status, close and breaker

fail conditions for the relay hardware and breaker models in HYPERSIM.
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Figure 3.1: Methodology

3.1 HYPERSIM Hardware & Software Environment [6]

In this section, the environment in which power system model built will be discussed. “HYPERSIM

is primarily a software that runs over a Real-Time OS base of Linux for performing hardware-in-

the-loop simulations. Simulation can be off line simulation executed in differed time on a parallel

computer or on a multiple core type (PC, SGI or OPAL-RT) or Real time simulation achieved on

SGI or OPAL-RT computer type (1 sec of simulation = 1 sec on a clock)”.
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3.1.1 HYPERSIM Hardware Environment

Hardware topology of HYPERSIM includes the following:

• REAL-TIME (LINUX) dedicated simulator for simulating at real time using parallel process-

ing.

• HOST PC (LINUX) for modeling and control of the simulation running on the REAL-TIME

simulator.

3.1.2 HYPERSIM Software Environment

Software topology of HYPERSIM includes the following:

• HYPERSIM: “HYPERSIM is the primary software of the suite used as modeling tool for the

simulation. It controls both offline and Real-Time simulations”.

• ScopeView: “Scopeview is the visualization software of the simulation. It is a graphic tool

that let the user to view everything during the simulation. Also, it allows advanced studies

directly from the data collected”.

• HyperView: “Hyperview is the communication server between HYPERSIM, ScopeView and

TestView. It also offers advanced features such as load flow calculations, a line programming

tool and a transformer programming tool”.

• TestView: “Testview is the test automation center that let the user configure the system to

run multiple test without human intervention and generate the final report”.
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3.2 Power System Model

In this section, modeling of major power system elements in HYPERSIM will be discussed. Fig-

ure 3.2 illustrates series of steps involved in developing power system model for simulation and

analysis.

Figure 3.2: Work Flow

An original ASPEN equivalent power system model of an electric utility is used in

this thesis. This ASPEN model consists of study area and equivalence area with all components

shown in Figure 3.1. Study area is two bus deep from series capacitor line with actual power

system components and equivalence area is rest of the power system with equivalent lines and

equivalent transformers connected between boundary buses of study area. Equivalent sources are

connected to boundary buses in study area. Study area is modeled with bus information, equipment
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information and traveling wave line information. Equipment information is available in the form of

data sheets and from the data sheets parameters required for modeling the power system elements

in HYPERSIM are calculated. Sensitivity analysis is performed in ASPEN to remove equivalent

lines and equivalent transformers whose presence does not impact fault current passing through

series capacitor line.

The transmission lines data is available in T-Line geometry (Figure 3.3). These lines

are modeled in HYPERSIM as Frequency distributed parameter line model, Constant distributed

parameter line model and π line model. Lines whose length is less than 15KM are modeled as π

lines. For modeling a traveling wave line in HYPERSIM, minimum length must be 15KM for a time

step of 50µs. In addition to lines, study area also consists of generators with step-up transformers,

induction motor, series capacitor with surge arrester and bypass breaker in parallel and shunt

capacitors. Generators are modeled as voltage sources and step-up transformers are modeled as

two-winding transformers using the data from ASPEN/PSSE. Induction motor parameters are

calculated using the data from the manufacturer’s datasheet and entered into induction motor

element control panel in HYPERSIM. Equivalent lines and equivalent transformers are modeled in

HYPERSIM using the data from ASPEN/PSSE power system model. After developing the model

with the above mentioned elements, faults at different locations and different incidence angle are

applied for capturing the worst fault scenarios to test relays.

HYPERSIM provides a fairly large library of models for power elements and control

blocks. The subsection 3.2.1 to subsection 3.2.3 explains the details of modeling lines, induction

motor and three winding transformer.
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3.2.1 Modeling of Transmission Lines

Two types of traveling wave line models are considered in this thesis; Constant distributed param-

eter line and Frequency distributed parameter line. JMARTI frequency distributed parameter line

line model is suitable for switching transient studies [8]. Electrical parameters into HYPERSIM

”transmission line” and ”JMARTI” model can be entered in two different ways; Hyperline Line

data module in Hyperview and load file function with EMTP files. All transmission lines in this

thesis are modeled using the load file function in HYPERSIM line control panel. The punch file

generated in EMTP is loaded into HYPERSIM line element control panel.

T-Line geometry shown in Figure 3.3 includes configuration, conductor type, sag, bun-

dled conductor spacing and separation angle, number of shields, and their type. This data is

available in an excel file. A python code parses the excel file and outputs data required for gener-

ating punch files, to a text file. An example of the python output is shown in Figure 3.4.

Figure 3.3: T-Line Geometry
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STR-207A - STR-301 : Length of Line [km] = 24.6711822

Structure Type = HORIZONTAL

Conductor Type = 795 ACSR "Condor"

Shield Type-1 = 5/16 EHS Steel

Shield Type-2 = 5/16 EHS Steel

Phase DC Resistance Outside Horizontal Vertical Ht. Vertical Ht.

Number Ohm/Km Diameter[cm] distance[m] at tower[m] at Midspan[m]

1 0.08003 2.77368 -8.5344 12.4968 7.9248

2 0.08003 2.77368 0 12.4968 7.9248

3 0.08003 2.77368 8.5344 12.4968 7.9248

0 4.1197 0.79248 -7.0104 16.82496 15.30096

0 4.1197 0.79248 7.0104 16.82496 15.30096

No. of Conductors in Bundles = 2.0

Bundle Conductor Spacing[cm] = 30.48

Separation Angle[deg] = 180.0

Figure 3.4: Python Output of Transmission Line of Figure 3.3

Data from the text file when entered into EMTPs line data block, creates punch files.

Punch file for each section of transmission line in the study area is created. For a multi-section

line, punch file of the longest section is used to represent the entire line. The length of the line

is the sum of lengths of individual sections. In this way, punch files for Constant parameter (CP)

type and Frequency Distributed (FD) type are created in EMTP for all transmission lines in study

area. Series capacitor line on which faults will be applied is modeled as Frequency distributed

parameter line, Lines whose length is less than 15KM are modeled as π lines and all other lines

are modeled as Constant distributed parameter line. Transmission line element in HYPERSIM

is used to model Constant distributed parameter lines and J-Marti line element is used to model

Frequency distributed parameter lines in HYPERSIM. Punch files created in EMTP for CP and

FD type lines can be loaded directly into control panels of ”transmission line” and ”J-Marti”line

elements in HYPERSIM respectively. Control Panels for an unTransposed Line and J-Marti FD

line are shown in Figure 3.5 and Figure 3.6.
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Figure 3.5: Control Panel of an Untransposed Line

3.2.2 Modeling of Induction Motor

In this section, modeling of Induction motor element in HYPERSIM will be discussed. An induction

motor is connected at the end of series capacitor line via power transformer. Induction motor and

its power transformer being part of study area, accurate modeling of these components is required.

The general parameters of induction motor are provided in a data sheet. This datasheet

includes no-load and locked rotor test results and also specifications of the Induction Motor. From

the data, the stator resistance and inductance values and rotor resistance and inductance values are

calculated. These calculations are performed with reference to mathematical equations of no-load

and locked rotor tests in [4].
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Figure 3.6: Control Panel of a J-Marti Line

Calculation of Induction Motor Parameters

The constant values of induction motor are:

Applied Voltage = 6600V (line-line)

Applied Phase Voltage vph = 3810.62V (line-neutral)

No Load Current I0 = 96.2A
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No Load PF = 0.0048

Locked Rotor Current Isc = 3156A

Locked Rotor PF = 0.118

No load parameters r0 and x0 are determined using Equation 3.1 to Equation 3.6.

cosφ0 = 0.048 (3.1)

φ0 = 87.240 (3.2)

Im = I0 sinφ0 = 96.08A. (3.3)

Ic = I0 cosφ0 = 4.63A. (3.4)

x0 = Vph/Im = 39.65Ω (3.5)

r0 = Vph/Ic = 823.004Ω (3.6)

Locked rotor parameters rl and xl are determined using Equation 3.7 to Equation 3.11:

cosφsc = 0.118 (3.7)

φsc = 83.220 (3.8)

zsc = vph/Isc = 1.207Ω (3.9)

rl = zsc cosφsc = 0.142Ω (3.10)

xl = zsc sinφsc = 1.198Ω (3.11)
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Stator parameters rs, xs and rotor parameters rr, xr are determined by Equation 3.12 to Equa-

tion 3.14

xs = xr = 0.5xl = 0.599Ω (3.12)

xm = x0 − xs = 39.051Ω (3.13)

rs = rr = (rl − rs)
[
xr + xm
xm

]2

== 0.072Ω (3.14)

The stator and rotor resistance’s and reactances along with general parameters are en-

tered into induction motor control panel in HYPERSIM shown in Figure 3.7.

Figure 3.7: Control Panel of an Induction Motor
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The p.u resistance and reactance values of two-winding transformer connected to the

induction motor are available in the ASPEN equivalent. These values along with primary and sec-

ondary voltages and type of transformer are entered into control panel of two-winding transformer

element in HYPERSIM. Control panel is shown in Figure 3.8.

Figure 3.8: Control Panel of a Two-Winding Transformer
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3.2.3 Modeling of Three-Winding Transformer

In this section, another major power system element; three-winding transformer modeling in HY-

PERSIM will be discussed. These transformers are to be accurately modeled for capturing the

exact transient phenomenon. The original equipment manufacturers data for these transformers is

available in datasheets and are modeled in EMTP using ”BC-Tran block”. The data sheet contains

all the data needed for modeling the transformers except the zero-sequence test data. According to

the EMTP theory book [46], a good approximation is to take zero sequence test results as equal to

the positive sequence test results. The transformers modeled have a delta tertiary winding which

causes the excitation test to be equivalent to a short circuit test.

When all the required data entered into respective fields, EMTP generates output files.

The .pun and .out files are of interest to us. The .out file contains all the data that was entered

during the process and also the output parameters that are calculated. The .pun file contains the

calculated parameters, i.e., the resistances and the reactances of the windings. The .pun file has the

resistance R in ohms and reactance ωL in ohms. The three-winding transformer element model in

HYPERSIM accepts the winding resistance in ohms, Ω and inductance in Henry, H. The resistance

values can be obtained directly from the .pun file and the inductance of the windings is calculated

using Equation 3.15 with ω being the angular frequency and f = 60Hz the system frequency.

L =
X

ω
(3.15)

ω = 2πf (3.16)

Figure 3.9 shows the parameters window for entering the data from the .pun file into

HYPERSIM. The data in the .pun file is in R (Ω) and X = ωL (Ω) format. The data for the

transformer element in HYPERSIM is in R and L matrices format.
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Figure 3.9: Control Panel of a Three Winding Transformer

3.2.4 Miscellaneous

All other power system components (Generators, shunt capacitor, series capacitor and MOV) in

study area are modeled using the data from the ASPEN/PSSE equivalent file. Generators are

modeled as voltage sources. The data of each component is entered into control panels of respective

power system elements in HYPERSIM. In addition to these, breaker/bus configurations at each

end of series capacitor line are also modeled in HYPERSIM.

3.2.5 Equivalent Area

Equivalent two winding transformers and equivalent π lines are connected between the boundary

buses in study area. The total number of equivalent π lines and equivalent transformers are initially

17 and 20 respectively. Sensitivity analysis is performed in ASPEN to remove some equivalent lines
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and equivalent transformers whose presence does not impact fault current value. The criteria

followed for performing sensitivity analysis is illustrated in Figure 3.10. A single line-to-ground

and three-phase-to-ground faults were applied at each terminal bus of series capacitor line. Fault

current through the line, voltages at the terminal buses of series capacitor line are captured. The

scenario is repeated by removing one equivalent line at a time and compared with values when

there is no line removed. The criteria followed for removal of an equivalent line is as follows:

1. Change in voltage is less than 1 Volt

2. Change in current is less than 10 A

3. Change in angle is less than 1 degree

This process eliminated 17 equivalent components (lines & transformers). π line and two winding

transformer elements in HYPERSIM are used to model remaining equivalent π lines and equivalent

two winding transformers using the data from ASPEN/PSSE. Because of presence of some lines &

transformer elements in HYPERSIM, four transmission lines sending and receiving end buses are

terminated on same station. To overcome this, decoupling inductor element is connected at one

end of each of these four lines. Presence of decoupling inductors made the power system unable to

produce signals at buses in the model. Different values of inductance were tried for this decoupling

inductor until signals are available at buses.

3.3 Modeling of Fault Arc

In section 3.2, modeling of power system elements in HYPERSIM was discussed. This section

discusses modeling of fault arc phenomenon in HYPERSIM. In this thesis realistic arc models

are developed and incorporated in HYPERSIM based on mathematical models developed by A.T.

Johns, R.K. Aggarwal and Y.H. Song [40]. Literature shows that fault arc was represented as a
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Figure 3.10: Sensitivity Analysis FLowchart
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time varying resistor. This element is readily available in EMTP whereas in HYPERSIM, it is

required to build this time varying resistor element. To build a time varying resistor element in

HYPERSIM, User Code Model (UCM) component is used to develop this element.

UCM component is composed of a power part and a control part. The power part has

external nodes to which other power system elements are connected and control part node accepts

signals from external control blocks to perform user defined functions. A script should be developed

to build this UCM component for using it to perform user defined functions.

Fault arc phenomenon in this thesis is modeled using UCM time varying resistor and

an ideal switch. UCM time varying resistor element simulates fault arc and ideal switch is used to

simulate arc extinction and re-strike. The control node of UCM resistor element is connected to

external control blocks. These control blocks update the value of resistance in UCM time varying

resistor element for every time step.

The block diagram shown in Figure 3.11 computes primary arc resistance value. In

Figure 3.11 |i| is fault current, g is primary arc conductance and rp is primary arc resistance.

The descriptions of blocks k1 and k2 are given in Equation 3.17 and Equation 3.18 respectively.

Using the values given in Equation 3.19 and Equation 3.20, k1 and k2 are computed and used for

modeling primary arc phenomenon in HYPERSIM.

k1 1
s

1
g

g

k2

|i| + rp

−

Figure 3.11: Primary Arc Block Diagram
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k1 =
1

αVpIp
(3.17)

k2 =
Lp

αIp
(3.18)

α = 2.81× 10−5, Vp = 15V/cm (3.19)

Lp = 100cm (3.20)

The block diagram shown in Figure 3.12 computes secondary arc resistance value. In

Figure 3.12 |i| is fault current, g is secondary arc conductance and rs is secondary arc resistance.

The descriptions of blocks k3 and k4 are given in Equation 3.21 and Equation 3.22 respectively.

Using the values given in Equation 3.23, k3 and k4 are computed and used for modeling secondary

arc phenomenon in HYPERSIM.

k3 1
s

1
g

g

k4

|i| + rp

−

Figure 3.12: Secondary Arc Block Diagram

k3 =
1

75βIs
(3.21)

k4 =
1

βI1.4
s

(3.22)

β = 2.51× 10−3 (3.23)
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UCM time varying resistor element in HYPERSIM is updated with either primary arc re-

sistance value or secondary arc resistance value depending on the status of series breaker. Flowchart

shown in Figure 3.13 illustrates the condition to output primary arc resistance value or secondary

arc resistance value to UCM time varying resistor element. The decision block in Figure 3.13 out-

puts primary arc resistance value until the series breaker opens and outputs secondary arc resistance

value after series breaker opens.

rp

Is−CB−Open rs

UCM −
Resistor

yes-rs

no-rp

Figure 3.13: User Code Module Simulation Flowchart

The status (open/close) of control switch simulates arc extinction and re-strike phe-

nomenon. Flowchart shown in Figure 3.14 illustrates the condition for opening or closing of the

control switch to simulate arc extinction and arc re-strike respectively. Voltage impressed across

the arc path is compared against re-ignition voltage. When the former is less than the later, control

switch opens simulating arc extinction phenomenon and when the former is greater than the later,

control switch closes simulating arc re-strike phenomenon. When the re-ignition voltage is perma-

nently greater than recovery voltage, control switch remains open simulating permanent extinction

of fault arc.
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Control −
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Figure 3.14: Switch Simulation Flowchart

3.4 Systematic Study Using Testview

In this section, automatic simulations of power system models using Testview software in HY-

PERSIM will be discussed. TestView is a simple powerful graphical interface designed for users

to perform automatic test sequences, automatic data analysis and graph generation [47]. It can

find automatically worst case. Testing relay for faults at different locations and different point of

incidences is a tedious process to do manually. This process can be automated in HYPERSIM

using Testview software. In Testview, scripts can be developed for applying different types of faults

at different locations and different point of incidences. Also the software outputs result in excel

format which can be used later.

Using the TestView software of HYPERSIM, a script is developed to apply faults au-

tomatically. User can define different times for switching breakers. The type of switching used is

”Uniform Type” in which user defines minimum and maximum time in seconds with reference to

t=0 of the POW for opening or closing at some random timings between specified minimum and

maximum times.
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3.5 Design of Protection Philosophy

The first part of this research work (section 3.2 to section 3.4) describes building of a power system

model suitable for testing relays used in SPS applications. Now the second part of this research

work deals with design of a protection scheme for series capacitor line to test the performance of

SPS relays. In the following sections, Protection scheme description for series capacitor line, Relay

test set-up description, and relay signals required for testing SPS relays will be discussed.

3.5.1 Protection Scheme

The topology of protection scheme for series capacitor line is shown in Figure 3.15. This topology

includes two sets of two-line differential relays and two overcurrent relays. Each set is connected in

closed loop to local bus and remote bus of series capacitor line model in HYPERSIM Real-Time

Simulator. Line differential relays are tested for analyzing their performance for both temporary

and permanent single-line to ground faults at local end, middle and remote end of series capacitor

line. The topology also includes breaker configuration connected at each end of series capacitor line.

This breaker configuration includes independent pole operated (IPO) breakers. For all temporary

single-line to ground faults, single pole of these IPO breakers are opened by line differential relays

and close signal is sent to these IPO breakers by overcurrent relays. The IPO breakers connected

to local bus receive/send digital signals from/to relays connected at the local end of series capacitor

line and IPO breakers connected to remote bus of series capacitor line receive/send digital signals

from/to relays connected at the remote end of series capacitor line.

3.5.2 Relay Test Set-up

Figure 3.16 illustrates the overview of relay test set-up for testing relays using HYPERSIM Real-

Time Simulator.
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Figure 3.15: Relay Topology

The Relay test set up includes the following items:

• Workstation with HYPERSIM Software.

• Real-Time Simulator.

• Input/Output (I/O) Module.

• Amplifiers.

• Line Relay Panel 1 & 2.

The Real-Time Simulator with HYPERSIM software acts as a power system for perform-

ing digital simulations and testing relays. During simulations, the real-time simulator together with
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Figure 3.16: Relay Test Setup

I/O module outputs low level analogue signals to voltage and current amplifiers. These amplifiers

are used to bring the simulators low level analogue signals up to values normally seen by the relays

under testing. The simulator also has output contacts so that breaker status can be provided to

the line differential and overcurrent relays at the auxiliary voltage level. To close the test loop,

the trip signals from line differential relay output contacts and close signals from overcurrent relay

output contacts are connected to the simulator.

3.5.3 Relay Design

All relays in line relay panels are interconnected with each other and with HYPERSIM I/O module.

Each relay performs specific functions according to the design. Determination of these functions

performed by each relay is illustrated in the following sections. Each line relay panel includes input
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signals to the line relay panel from HYPERSIM, output signals from line relay panel to HYPERSIM

and interface signals required for the protecting series capacitor line. These signals are determined

for one-line relay panel and they are identical for other line relay panel.

Relay Inputs

Relay inputs include Breaker fail DTT send, Close status of independent pole operated (IPO)

breaker model & series capacitor bypass breaker model in HYPERSIM and Series capacitor DTT

receive.

• DTT Send Breaker 1 or Breaker 2 fail: This input contact initiates direct transfer trip (DTT)

from line differential relays in the event of breaker failure.

• IPO Breaker Status: The status (open/close) of individual pole of IPO Breaker-1 & IPO

Breaker-2 models in HYPERSIM is provided to both line differential relays and also to each

IPO breakers respective overcurrent relays.

• Series Capacitor DTT Received: This input contact initiates series capacitor by-pass breaker

close signal from line differential relays.

• Bypass Breaker Status: The status (open/close) of series capacitor by-pass breaker model in

HYPERSIM is provided to each overcurrent relay in the line relay panel.

• DFR: All the relay inputs are provided to DFR for event recording.

Relay Outputs

Relay outputs include single pole and three pole trip signals, Breaker fail protection trip signal,

pole disagreement trip signal, and close signal to IPO breaker models in HYPERSIM.
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• Trips: Line differential relays send single pole trip and three pole trip signals to IPO Breaker-1

& IPO Breaker-2 models in HYPERSIM.

• Protection trips close by-pass breaker send DTC: In the event of fault, the series capacitor is to

be by-passed. When fault occurs, close by-pass breaker signal is sent by each line differential

relay to series capacitor by-pass breaker model in HYPERSIM.

• Breaker Fail Protection: In the event of fault, when a particular line differential relay fails

to trip IPO breakers or fails to clear the fault, then a direct transfer trip signal is sent to all

IPO breakers connected to series capacitor line.

• Pole Disagreement: Circuit Breaker can get different states even when there is no fault.

This conditions is defined as Pole Disagreement. If there is a Pole Disagreement condition,

overcurrent relays send trip signals to IPO breaker models in HYPERSIM.

• Breaker Close: Three phase close signal is sent by each overcurrent relay to its respective IPO

Breaker model in HYPERSIM.

• DFR: All the relay output signals are provided to DFR for event recording.

Interface Signals

Relay interface signals include close input, re-close initiate, re-close drive to lockout and breaker

failure.

• Close Input: A close signal is send by overcurrent relay to its respective IPO Breaker model

in HYPERSIM only when its close input is initiated.

• Re-close initiate: In the event of fault, when the line differential relay trips IPO breaker model

in HYPERSIM, overcurrent relay re-close initiate input is initiated.
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• Re-close Drive to Lockout: If fault still persists when IPO Breaker models in HYPERSIM

receive close input from overcurrent relays, then re-close drive to lockout is initiated and

re-closing relay goes into lockout state.

• Breaker failure: Breaker failure condition is a situation in which breaker fails to trip or fails

to clear the fault. Each overcurrent relay receives individual pole breaker failure input and

three pole breaker failure input from each line differential relay and breaker fail input signal

from adjacent overcurrent relay. Each individual pole and three pole breaker failure input

initiates when IPO breaker fails to trip or fails to clear the fault.
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Chapter 4

Test System

Figure 4.1: Test System
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Figure 4.1 shows a Test System that is a portion extracted from an actual power system

of an electric utility. Zoomed-in portion of an area within the test system is shown in Figure 4.2

to show the series-capacitor line where SPS relays will be connected to. Magenta and Red colored

lines represent study area and Green colored lines represent equivalent system. Magenta colored

lines represent 230kV system and Red colored lines represent 138kV System.

Figure 4.2: Main Study Area

The study area has a total of 11 transmission lines out of which 2 lines are modeled as

frequency distributed parameter line, 6 lines are modeled as constant distributed parameter line

and 3 lines are modeled as π line since the length of these lines is less than 15KM. Test system

also consists of 4 generators with step-up transformers, 1 motor with step down power transformer,

2 three winding transformers, 1 series capacitor with MOV and by-pass capacitor, and 3 shunt

capacitors. The equivalent area has 11 equivalent transformers and 9 equivalent π lines connected

between boundary buses of study area. Equivalent area also consists of 9 equivalent voltage sources

behind source impedance connected to boundary buses in study area. This chapter will give the

information about the test system in the form that HYPERSIM can accept the data.
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4.1 Transmission Lines

HYPERSIM accepts transmission line data file in .pun format (EMTP Generated Punch file).

This file can be loaded directly into HYPERSIM control panel. This .pun file contains the T-line

geometry data, Resistance, Reactance, Time constant, and length of line (KM) for each conductor.

This .pun file when loaded into HYPERSIM control panel, distributed line parameters R, L, and

C are calculated internally and the line is modeled. There are 8 lines that are modeled as either

frequency-dependent or constant parameters lines. The data for these 8 lines are available in form

of EMTP punch files as shown in Figure 4.3 to Figure 4.14 .

The data for the lines modeled as π lines in HYPERSIM is shown in Table 4.1. The

resistance and reactance values are shown in per unit.

Table 4.1: π Line Data

From Bus Voltage (KV) To Bus Voltage (KV) R (p.u) X (p.u) L (p.u)

1054 138 5 138 0.003010 0.012610 3.3E-05

5 138 1051 138 0.000380 0.001650 4E-06

1054 138 1733 138 0.007990 0.036700 5.43E-05

3969 138 1054 138 0.004450 0.020470 0.0009739
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C LINE DATA, FD, 3

C 49 51

C LINE-MODEL FD-LINE QREAL LOG .1 10

C METRIC

C 1 0 .08003 4 1 2.77368 -8.5344 12.4968 7.9248 30.48 180

C 2 0 .08003 4 1 2.77368 0 12.4968 7.9248 30.48 180

C 3 0 .08003 4 1 2.77368 8.5344 12.4968 7.9248 30.48 180

C 0 0 4.1197 4 1 .79248 -7.010416.8249615.30096

C 0 0 4.1197 4 1 .79248 7.010416.8249615.30096

C LINE LENGTH = 2.0000E+02 KM

C TRANSFORMATION MATRIX AT F = 3.1866E+03 HZ

C

-1 1. -2 3

18 3.95844711035017610357E+02

3.458355398665487996D+02 2.900735979086096904D+03 5.260910306700055372D+01

-2.999521943219614514D+03 1.991527455296327389D+03 3.132881287760129041D+01

1.308680045677391945D+03 3.461765990033239291D+02 2.690297369989512390D+03

1.296307383999570993D+04 6.816469435256467841D+04 8.238203372163459426D+04

1.090934247758720157D+05 5.665724429722789209D+05 9.858302050088434480D+05

1.010683702102121152D+07 2.343216527501228079D+07 1.184202058933565319D+08

3.067392614550738372D-03 1.342032356115794300D+00 1.714518577171198155D+00

2.013368286817659225D+00 2.049433904906219350D+00 2.983146671678443163D+00

1.059001719179910062D+01 1.273750287141770521D+01 6.722683459246186999D+01

3.048242816100787422D+02 8.372039096968387639D+02 1.495959233065443414D+03

4.115936361698758446D+03 3.909658949250712612D+04 7.386986649398213194D+04

3.862770257879370474D+05 1.887247950127611868D+06 9.855233026304205880D+06

18 7.39265390954845663142E-04

3.889052128835382080D-05 1.316656004094743024D-03 3.482711981282741575D-03

1.984793406131558826D-03 1.742828091351101075D-02 4.224220311155034435D-02

6.572663515857608552D-01 2.705019809486663096D+00 1.804512533764377480D+01

1.396387652130218271D+02 6.417095932661301561D+01 1.736369360299376652D+01

1.619273957144955034D+02 1.869425359742170713D+03 9.334778219683666248D+04

5.389763492443760624D+05 -5.757504349928350747D+07 5.694044536776406318D+07

1.984970202116298835D-02 1.839395552918146493D+00 2.442264171646232995D+00

2.822174666768035411D+00 1.223885434976141795D+01 2.940585590142360672D+01

1.103594013805059859D+02 2.207318807964325913D+02 5.891637332165220187D+02

9.480797226129560613D+02 1.138148183454426544D+03 1.209519015508982420D+03

2.418460485812771367D+03 8.791182994582006359D+03 3.001312253135938954D+04

3.867127105109208787D+04 4.161879965143619484D+04 4.166002731395767478D+04

-2 1. -2 3

Figure 4.3: Punchfile of Transmission Line Section BUS-1047 - BUS-6999 Part 1
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14 3.12559171637259169074E+02

3.333268641041751721D+02 1.906645527373382265D+03 3.016845969075052949D+02

-5.180704109734518426D+01 4.137574529068651827D+02 -6.286152256030989065D+02

1.213204761018982208D+04 -1.023671675672115271D+04 8.443062041960916986D+02

2.974077256855056248D+02 4.835278663015885172D+02 1.829832389370962176D+02

2.084513522321321943D+04 1.727545574228869751D+07

2.942525142816906827D-03 1.257705787906041373D+00 1.613871816946121029D+00

1.988884326429332106D+00 2.516695328747037497D+00 2.548893295378801493D+00

1.151914720345485144D+01 1.210235577588838751D+01 1.294197240443434715D+01

2.443958781077420639D+01 5.211027543598430611D+01 7.709933568919377933D+01

6.989626616676497179D+03 2.921763664152513258D+06

16 6.75000455849469535585E-04

4.491808274796823961D-05 2.437289408512994734D-03 4.619985321217452007D-03

1.199488742216882169D-02 1.648330264705118176D-01 2.038664183409007435D+01

8.815525123253783022D+02 9.488164567319732669D+03 4.723629148457432893D+04

2.323636865519160929D+05 5.304886848028606037D+05 3.762550220672306061D+10

-7.561995653735737610D+10 3.799363602470868683D+10 -2.778028830475386349D+05

2.756298577780050109D+05

1.984667866497095978D-02 1.744248973287775950D+00 3.297252772612280225D+00

4.342266616665459544D+00 2.983887837688948963D+01 1.828602703412561823D+03

3.067984713020085110D+04 9.048250320207020559D+04 1.460268434736945492D+05

2.233830863429179008D+05 3.151882399168554111D+05 5.192165627044717548D+05

5.197308996243741713D+05 5.202457460474126274D+05 5.419562064100171439D+06

5.424930692644581199D+06

-3 1. -2 3

17 2.76860196601808070227E+02

3.238359461394135224D+02 1.817411586543497606D+03 1.695149658220408639D+02

1.900036587824800449D+01 3.003770736125484291D+02 -4.211348835707377134D+02

2.907377583235328075D+03 1.016535369255186670D+05 -1.019860148905655806D+05

2.150715130054545341D+02 5.143831972637475758D+01 2.776211140420326160D+02

3.344031038477415336D+02 2.827239820433609339D+02 2.274909635235861174D+02

1.807257837010769776D+02 2.855510872395917090D+02

2.860077327771865137D-03 1.261034621251599264D+00 1.606711594721633940D+00

2.014397912265156521D+00 2.615206478943999713D+00 2.728345930170970490D+00

1.099732896595146947D+01 1.271471023082610152D+01 1.271938339441311605D+01

1.546677265719338656D+01 1.759370209145505370D+01 2.620979809302523122D+01

4.304718166197337581D+01 6.725828798215215443D+01 9.975291827109188603D+01

1.499981184242850532D+02 2.336387977223178609D+02

Figure 4.4: Punchfile of Transmission Line Section BUS-1047 - BUS-6999 Part 2
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17 6.67680624999126377458E-04

4.772614644183157854D-05 2.238499758248318431D-03 3.368241183350828560D-03

1.880664913351099560D-02 1.949181641008368784D-02 3.402003346841440262D-02

4.183371826030564080D+03 1.855558449239449692D+04 7.934611636286627618D+04

3.556787889066339121D+05 1.457967602872346761D+06 4.398762096438303590D+06

4.019370080230001221D+11 -8.066000591310991211D+11 4.046567527261318359D+11

-1.946246936479042983D+06 1.930135249951983104D+06

1.984526968129588301D-02 1.736648719046103739D+00 2.625765820713696019D+00

7.144030927432226896D+00 7.820100331024580242D+00 1.348176868452481614D+01

2.888258197078077937D+05 4.995107922241432825D+05 7.829726442378211068D+05

1.188108292353657074D+06 1.742750070720160613D+06 2.517604822448275052D+06

4.192185340092204511D+06 4.196338126906732097D+06 4.200495027479812503D+06

4.503234250940705091D+07 4.507695163401123136D+07

C Q MATRIX BY ROWS (IMAGINARY PART = 0)

0.58701475 -0.70710678 0.41721038

0.00000000 0.00000000 0.00000000

0.55745449 0.00000000 -0.80736305

0.00000000 0.00000000 0.00000000

0.58701475 0.70710678 0.41721038

0.00000000 0.00000000 0.00000000

Figure 4.5: Punchfile of Transmission Line Section BUS-1047 - BUS-6999 Part 3

C LINE-MODEL CP-LINE QREAL

C METRIC

C 1 0 .09165 4 1 2.35458 -4.419613.59408 9.02208 0 0 1

C 2 0 .09165 4 0 2.35458 013.59408 9.02208 0 0 1

C 3 0 .09165 4 1 2.35458 4.419613.59408 9.02208 0 0 1

C 0 0 4.1197 4 1 .79248 -2.895621.1226419.59864

C 0 0 4.1197 4 1 .79248 2.895621.1226419.59864

C UNTRANSPOSED MODELLING. PARAMETERS AT F = 5.0106E+03 HZ

$VINTAGE,1

C R’ IN OHMS/KM, ZC IN OHMS, TAU IN SEC, LENGTH IN KM

-1 6.20488E+00 6.56154E+02 5.52173E-05-1.44841E+01 2 03

-2 9.22229E-02 3.41453E+02 4.83200E-05-1.44841E+01 2 03

-3 1.19061E-01 3.94159E+02 4.85982E-05-1.44841E+01 2 03

$VINTAGE,0

0.59585492 -0.40902575 -0.70710678

0.00000000 0.00000000 0.00000000

0.53842766 0.81571596 0.00000000

0.00000000 0.00000000 0.00000000

0.59585492 -0.40902575 0.70710678

0.00000000 0.00000000 0.00000000

Figure 4.6: Punchfile of Transmission Line Section BUS-1054 - BUS-1733
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C LINE-MODEL CP-LINE QREAL

C METRIC

C 1 0 .0671 4 1 3.03784 3.048 24.0792 19.5072 30.48 180 2

C 2 0 .0671 4 1 3.03784 3.048 19.812 15.24 30.48 180 2

C 3 0 .0671 4 1 3.03784 3.048 15.5448 10.9728 30.48 180 2

C 0 0 1.15979 4 1 1.09982 0 30.48 28.956

C UNTRANSPOSED MODELLING. PARAMETERS AT F = 3.2773E+03 HZ

$VINTAGE,1

C R’ IN OHMS/KM, ZC IN OHMS, TAU IN SEC, LENGTH IN KM

-1 4.58966E+00 6.19052E+02 1.07725E-04-2.77772E+01 2 03

-2 3.37724E-02 2.34495E+02 9.26544E-05-2.77772E+01 2 03

-3 5.19390E-02 2.89501E+02 9.27929E-05-2.77772E+01 2 03

$VINTAGE,0

0.44217667 -0.49371729 0.69708154

0.00000000 0.00000000 0.00000000

0.48861951 0.80485271 0.16658734

0.00000000 0.00000000 0.00000000

0.75165644 -0.32873387 -0.69682227

0.00000000 0.00000000 0.00000000

Figure 4.7: Punchfile of Transmission Line Section BUS-1071 - BUS-1070

C LINE-MODEL CP-LINE QREAL

C METRIC

C 1 0 .09165 4 1 2.35458 -3.04814.38656 9.81456 30.48 180 2

C 2 0 .09165 4 1 2.35458 3.04814.38656 9.81456 30.48 180 2

C 3 0 .09165 4 1 2.35458 3.04815.9715211.39952 30.48 180 2

C 0 0 4.1197 4 1 .79248 019.5986418.07464

C UNTRANSPOSED MODELLING. PARAMETERS AT F = 3.1881E+03 HZ

$VINTAGE,1

C R’ IN OHMS/KM, ZC IN OHMS, TAU IN SEC, LENGTH IN KM

-1 5.06929E+00 6.09714E+02 1.31713E-04-3.35547E+01 2 03

-2 5.34925E-02 3.03959E+02 1.12405E-04-3.35547E+01 2 03

-3 4.93599E-02 1.97157E+02 1.11944E-04-3.35547E+01 2 03

$VINTAGE,0

0.68938361 -0.80847136 -0.01405863

0.00000000 0.00000000 0.00000000

0.55958418 0.45965992 -0.67754298

0.00000000 0.00000000 0.00000000

0.45970695 0.36751723 0.73532083

0.00000000 0.00000000 0.00000000

Figure 4.8: Punchfile of Transmission Line Section BUS-1071 - BUS-1139
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C LINE-MODEL CP-LINE QREAL

C METRIC

C 1 0 .0671 4 1 3.03784 -5.4864 14.3256 9.7536 30.48 180 2

C 2 0 .0671 4 1 3.03784 0 14.3256 9.7536 30.48 180 2

C 3 0 .0671 4 1 3.03784 5.4864 14.3256 9.7536 30.48 180 2

C 0 0 4.1197 4 1 .79248 -3.9624 18.8976 17.3736

C 0 0 4.1197 4 1 .79248 3.9624 18.8976 17.3736

C UNTRANSPOSED MODELLING. PARAMETERS AT F = 3.1906E+03 HZ

$VINTAGE,1

C R’ IN OHMS/KM, ZC IN OHMS, TAU IN SEC, LENGTH IN KM

-1 3.92563E+00 5.12845E+02 3.98296E-04-1.02451E+02 2 03

-2 3.46899E-02 2.49160E+02 3.41854E-04-1.02451E+02 2 03

-3 6.88316E-02 2.99430E+02 3.45113E-04-1.02451E+02 2 03

$VINTAGE,0

0.60244209 -0.40679666 -0.70710678

0.00000000 0.00000000 0.00000000

0.52357038 0.81794413 0.00000000

0.00000000 0.00000000 0.00000000

0.60244209 -0.40679666 0.70710678

0.00000000 0.00000000 0.00000000

Figure 4.9: Punchfile of Transmission Line Section BUS-1071 - BUS-3299

C LINE-MODEL CP-LINE QREAL

C METRIC

C 1 0 .16857 4 1 1.73736 -5.486416.8249612.25296 30.48 180 2

C 2 0 .16857 4 1 1.73736 016.8249612.25296 30.48 180 2

C 3 0 .16857 4 1 1.73736 5.486416.8249612.25296 30.48 180 2

C 0 0 1.15979 4 1 1.09982 -3.962421.1226419.59864

C 0 0 1.15979 4 1 1.09982 3.962421.1226419.59864

C UNTRANSPOSED MODELLING. PARAMETERS AT F = 3.2480E+03 HZ

$VINTAGE,1

C R’ IN OHMS/KM, ZC IN OHMS, TAU IN SEC, LENGTH IN KM

-1 3.00437E+00 5.36721E+02 7.41617E-05-1.96339E+01 2 03

-2 8.48603E-02 2.66080E+02 6.55015E-05-1.96339E+01 2 03

-3 1.04966E-01 3.16792E+02 6.59034E-05-1.96339E+01 2 03

$VINTAGE,0

0.60399415 -0.40435066 -0.70710678

0.00000000 0.00000000 0.00000000

0.51997151 0.82036417 0.00000000

0.00000000 0.00000000 0.00000000

0.60399415 -0.40435066 0.70710678

0.00000000 0.00000000 0.00000000

Figure 4.10: Punchfile of Transmission Line Section BUS-2138 - BUS-5711
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C LINE-MODEL CP-LINE QREAL

C METRIC

C 1 0 .16857 4 1 1.73736 -5.486416.8249612.25296 30.48 180 2

C 2 0 .16857 4 1 1.73736 016.8249612.25296 30.48 180 2

C 3 0 .16857 4 1 1.73736 5.486416.8249612.25296 30.48 180 2

C 0 0 4.1197 4 1 .79248 -3.962421.1226419.59864

C 0 0 4.1197 4 1 .79248 3.962421.1226419.59864

C UNTRANSPOSED MODELLING. PARAMETERS AT F = 3.2480E+03 HZ

$VINTAGE,1

C R’ IN OHMS/KM, ZC IN OHMS, TAU IN SEC, LENGTH IN KM

-1 3.89200E+00 5.39669E+02 1.00325E-04-2.65380E+01 2 03

-2 8.54878E-02 2.66049E+02 8.85346E-05-2.65380E+01 2 03

-3 1.19928E-01 3.16913E+02 8.90844E-05-2.65380E+01 2 03

$VINTAGE,0

0.60336323 -0.40503536 -0.70710678

0.00000000 0.00000000 0.00000000

0.52144546 0.81969057 0.00000000

0.00000000 0.00000000 0.00000000

0.60336323 -0.40503536 0.70710678

0.00000000 0.00000000 0.00000000

Figure 4.11: Punchfile of Transmission Line Section BUS-2387 - BUS-2138

C LINE DATA, FD, 3

C 45 51

C LINE-MODEL FD-LINE QREAL LOG .1 10

C METRIC

C 1 0 .08003 4 1 2.77368 -5.4864 16.764 12.192 30.48 180

C 2 0 .08003 4 1 2.77368 0 16.764 12.192 30.48 180

C 3 0 .08003 4 1 2.77368 5.4864 16.764 12.192 30.48 180

C 0 0 1.15979 4 1 1.09982 -3.962421.1226419.59864

C 0 0 1.15979 4 1 1.09982 3.962421.1226419.59864

C LINE LENGTH = 2.0000E+02 KM

C TRANSFORMATION MATRIX AT F = 3.2467E+03 HZ

C

-1 1. -2 3

17 4.62769837016892836346E+02

3.588297213000404895D+02 1.234268858351346898D+04 -1.211216082381471278D+04

1.886311315848947288D+03 1.358151951681313676D+02 1.843515523735833995D+03

5.821378042732459335D+02 1.978593619164194388D+04 5.812103389859105846D+03

2.710430101697738064D+04 1.827513582435597709D+04 2.435516685830047572D+04

2.390051905816885119D+05 8.163501315614135237D+05 2.920249036595042795D+06

8.982209837354730815D+06 7.569164098876936734D+07

3.197558801033473577D-03 1.539327253106812066D+00 1.682626308643832891D+00

1.862776873885295892D+00 3.119862418203416699D+00 1.845380646696493443D+01

2.012533217377021444D+01 1.859045234439035426D+02 2.023236718642551466D+02

4.161488484154673415D+02 7.121399342739274516D+02 1.718542670909992694D+03

1.558782094455411061D+04 5.495505513096057257D+04 2.021039316760178481D+05

6.484158822511786129D+05 5.585686665456472896D+06

Figure 4.12: Punchfile of Transmission Line Section BUS-6999 - BUS-1071 Part 1
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19 7.05245288838394351894E-04

3.587611164093538118D-05 1.040987124982439707D-03 1.423845888243098186D-03

3.583591424950899242D-03 1.383527012305535778D-02 2.687026893578304057D-02

5.646330605590685892D-01 2.891917487651767704D+00 1.724294361146593246D+01

-1.331031685598574654D+00 3.289647051161980329D+01 2.920934086954123927D+02

9.849090551402617848D+02 2.947180155689940875D+03 3.844167133990861203D+03

3.127837328324187183D+04 2.584528139885620028D+07 -2.593007952822408453D+07

4.539909460838253290D+04

1.985121348874332309D-02 1.650567257145291844D+00 2.259064089384510865D+00

2.862041160943454621D+00 1.100938480221625326D+01 2.126959175195089813D+01

1.068405450200238107D+02 2.269245983475600497D+02 2.801741572027170832D+02

2.894223516651977093D+02 8.722289318089367498D+02 5.184956435064764264D+03

8.327264094861953708D+03 1.465689844682732291D+04 1.833880794611891906D+04

3.489513857719091175D+04 5.117245541660551680D+04 5.122314694879723538D+04

8.189087287786658271D+04

-2 1. -2 3

14 2.52012574534457939990E+02

3.162696286650091224D+02 1.678029206770588871D+03 3.249521277219903368D+02

1.423629931359721468D+02 -2.952543669771623627D+02 -5.736067353880980590D+01

2.782567400782729237D+03 9.475210561544979555D+02 -9.308489234707145670D+02

5.411938355825004976D+01 8.637906058758029815D+01 2.590985598422423095D+02

3.383592291241468502D+02 5.624185680719493803D+02

2.798319771264327210D-03 1.263648777219529062D+00 1.650582907438595370D+00

2.114341296944423743D+00 2.476592360827428063D+00 2.763023510143975070D+00

1.170354435136610860D+01 1.348238376217778622D+01 1.421723810509717367D+01

1.620766965878715382D+01 1.882174212677081115D+01 2.753093084416484260D+01

4.593204328468901565D+01 7.241589872464759026D+01

16 6.67125754225191599373E-04

5.004221062710410942D-05 1.917693358421415422D-03 1.951275832153553458D-03

1.078669345010387429D-02 1.584379081231391748D-02 2.827148643624591284D-02

1.430613928205734520D-01 1.863348360775870560D+03 3.441486666654784494D+04

1.057927376562585123D+05 5.612569609172971686D+05 1.195378341601126827D+06

3.048824282012185082D+06 1.664178756761551369D+06 1.296091164578723431D+09

-1.282225472762602568D+09

1.984410747132010419D-02 1.673943206721950405D+00 1.771750467705296872D+00

4.797273675217018862D+00 7.121088760518894389D+00 1.270154537495968405D+01

3.232549133524074847D+01 4.045853074899736675D+05 1.628019171891246689D+06

2.552269387413735967D+06 5.447464598451180384D+06 8.058700426781466231D+06

1.593491820129632205D+07 2.085701749008598551D+07 4.853858632417216152D+07

4.873912919267771393D+07

-3 1. -2 3

Figure 4.13: Punchfile of Transmission Line Section BUS-6999 - BUS-1071 Part 2
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14 3.01017342294954346471E+02

3.306044669278208517D+02 1.848633235841846727D+03 3.670363423844374324D+02

2.031173698461694599D+01 -2.627444678685126291D+02 -6.553497270708075462D+01

2.239039060900378536D+04 -2.040573247958727370D+04 8.513828089715924534D+02

2.910389952480943521D+02 3.382439790487110258D+02 3.076465461543926949D+02

2.700143618954374460D+02 6.308138322949483991D+05

2.917444780175141878D-03 1.258737088905849566D+00 1.630483224206070947D+00

2.035337744759834422D+00 2.392708150116683807D+00 2.632968584093660525D+00

1.209649918274399560D+01 1.242300072117484611D+01 1.339372619218060478D+01

2.498728693169366011D+01 4.161549975352627229D+01 6.617067185656237882D+01

1.084001302953773802D+02 2.175848027863885509D+05

16 6.68101825401878728072E-04

4.574259588608474848D-05 2.398888624493042843D-03 2.445660352341333301D-03

1.729582783810684060D-02 2.849325465940866914D-02 5.183182193000392818D-02

1.946385585751149847D+02 3.659732580215193138D+03 1.835243973810745229D+04

3.729060147170955315D+04 1.311408662657568930D+05 1.766180096969276667D+06

9.119066785938014984D+08 -9.235221173924661875D+08 6.887050799397052526D+08

-6.790464596191515923D+08

1.984626501589444383D-02 1.811858092358326067D+00 1.926707965952382695D+00

6.670538650977436035D+00 1.107769716865604259D+01 2.027353028106880473D+01

1.793341691201518188D+04 1.157597427298790717D+05 1.989451887800806435D+05

2.532170202276949422D+05 3.999010850944787962D+05 8.350272106984579004D+05

1.303806430751867592D+06 1.305097983895411016D+06 1.596654040724424412D+06

1.598235689270412549D+06

C Q MATRIX BY ROWS (IMAGINARY PART = 0)

0.60511992 -0.40449644 -0.70710678

0.00000000 0.00000000 0.00000000

0.51734928 0.82022096 0.00000000

0.00000000 0.00000000 0.00000000

0.60511992 -0.40449644 0.70710678

0.00000000 0.00000000 0.00000000

Figure 4.14: Punchfile of Transmission Line Section BUS-6999 - BUS-1071 Part 3
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4.2 Generators

All the generators available in study area are modeled as voltage sources behind impedance’s in

HYPERSIM. The information about these generators is obtained from ASPEN/PSSE model and

the data for HYPERSIM voltage source elements, in the form that HYPERSIM accepts is shown

in Table 4.2. The voltage, resistance, reactance and inductance values in Table 4.2 are in per unit.

Table 4.2: Voltage Sources Data

Bus Bus Name Base KV V (p.u) Angle(deg) Base MVA R (p.u) X (p.u) L (p.u)

1140 BUS 1140 24 1 0 680 0.0038 0.16 0.000424628

1141 BUS 1141 22 1 0 583.2 0.0039 0.17 0.000451168

3970 BUS 3970 13.8 1 0 101.8 0.00303 0.117 0.00031051

3971 BUS 3971 13.8 1 0 101.8 0.00303 0.117 0.00031051

4.3 Two-Winding Transformers

Study area contains step-up transformers connected to generators. The information about these

step-up transformers is obtained from ASPEN/PSSE model. Table 4.3 shows the information

available in PSSE about these transformers. Resistance and Reactance values in the table are in

per unit. All transformers are star connected high voltage winding and delta connected low voltage

winding type.

Table 4.3: Two-Winding Transformer Data

From Bus Primary-KV To Bus Secondary-KV R (p.u) X (p.u) Wdg-1 Ratio Wdg-2 Ratio

1140 24 1139 230 0.0004 0.0167 1 0.975

1141 22 1139 230 0.00052 0.02037 1 0.95

3970 13.8 3969 138 0.00237 0.08997 1 1

3971 13.8 3969 138 0.00237 0.08997 1 1
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In HYPERSIM, it is required to enter data for each winding individually. According to

[48], the winding reactance of an individual winding is given by Equation 4.1.

X1 = X2/K
2 = X01/2. (4.1)

Where K is turns ratio, X01 total equivalent reactance and X1, X2 are primary, secondary windings

individual reactances. Above statement is based on a assumption that the transformers are well

designed. Table 4.4 shows the data for these transformers in the form that HYPERSIM accepts.

Subscript p represents primary side and subscript s represents secondary side values.

Table 4.4: Two-Winding Transformer Data (HYPERSIM)

From Bus To Bus Rp (p.u) Lp (p.u) Rs (p.u) Ls( p.u)

1140 1139 0.0002 2.215E-05 0.0002 2.215E-05

1141 1139 0.00026 2.70E-05 0.0026 2.70E-05

3970 3969 0.00118 1.193265E-04 0.00118 1.193265E-04

3971 3969 0.00118 1.193265E-04 0.00118 1.193265E-04

4.4 Three-Winding Transformers

Study area also contains 2 three-winding transformers. The information about these transformers

is available in datasheets. From the datasheets, only the data required for BC-TRAN element in

EMTP is extracted. The extracted data is shown in Table 4.5 to Table 4.10. Figure 4.15 and

Figure 4.16 are .pun files of three-winding transformers. These .pun files are generated by EMTP

BC-TRAN element. The resistance and reactance values from these .pun format files are entered

into HYPERSIM’s three-winding transformer element control panel.
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Table 4.5: Bus 1071 & Bus 2387 Three-Winding Transformer Excitation Data

Bus Windings per core leg Rated Frequency (Hz)

1071 3 60

2387 3 60

Table 4.6: Bus 1071 & Bus 2387 Three-Winding Transformer Positive & Zero Sequence Data

Bus Exciting Current (%) Three-Phase Power Rating (MVA) Excitation Loss (kW)

1071 0.56 300 137.879

2387 100 250 31.7

Table 4.7: Bus 1071 Three-Winding Transformer Winding Data

Winding Voltage (kV) R(Ω)

1 128.752887 0.26951

2 79.676644 0.661556

3 13.8 0.05304

Table 4.8: Bus 2387 Three-Winding Transformer Winding Data

Winding Voltage (kV) R(Ω)

1 132.794457 0.37434

2 79.6766744 0.05388

3 13.8 0.0035562

Table 4.9: Bus 1071 Three-Winding Transformer Short Circuit Data

Winding Pair P(KW) Z Pos(%) S Pos rating (MVA) Z Zero(%) S Zero rating (MVA)

1,2 145.422 3.82 180 3.82 180

1,3 38.548 3.14 29.6 3.14 29.6

2,3 43.695 2.4 29.6 2.4 29.6

Table 4.10: Bus 2387 Three-Winding Transformer Short Circuit Data

Winding Pair P(KW) Z Pos(%) S Pos rating (MVA) Z Zero(%) S Zero rating (MVA)

1,2 346.21 10.96 250 10.96 250

1,3 118.28 17.3 50 17.3 50

2,3 117.42 12.96 50 12.96 50
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C BCTRAN BRANCH DATA - RESISTANCE MATRIX (OHMS) AND REACTANCE MATRIX (OHMS) AT

C F= 60.00

$VINTAGE, 1

1HAK HAM 0.2695100000E+000.2970115712E+05

2XAK XAM 0.0000000000E+000.1837896068E+05

0.6615600000E+000.1137686971E+05

3YAK YAM 0.0000000000E+000.3183502666E+04

0.0000000000E+000.1970702317E+04

0.5304000000E-010.3418275742E+03

4HBK HBM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.2695100000E+000.2970115712E+05

5XBK XBM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.1837896068E+05

0.6615600000E+000.1137686971E+05

6YBK YBM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.3183502666E+04

0.0000000000E+000.1970702317E+04

0.5304000000E-010.3418275742E+03

7HCK HCM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.2695100000E+000.2970115712E+05

8XCK XCM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.1837896068E+05

0.6615600000E+000.1137686971E+05

9YCK YCM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.3183502666E+04

0.0000000000E+000.1970702317E+04

0.5304000000E-010.3418275742E+03

$VINTAGE, 0

Figure 4.15: EMTP Punch file for BC-Tran Three Winding Transformer At Bus-1071
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C BCTRAN BRANCH DATA - RESISTANCE MATRIX (OHMS) AND REACTANCE MATRIX (OHMS) AT

C F= 60.00

$VINTAGE, 1

1HAK HAM 0.3743400000E-010.2383800479E+03

2XAK XAM 0.0000000000E+000.1324506961E+03

0.5388000000E-010.8115746532E+02

3YAK YAM 0.0000000000E+000.1825937157E+02

0.0000000000E+000.1176262280E+02

0.3556200000E-020.2921039889E+01

4HBK HBM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.3743400000E-010.2383800479E+03

5XBK XBM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.1324506961E+03

0.5388000000E-010.8115746532E+02

6YBK YBM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.1825937157E+02

0.0000000000E+000.1176262280E+02

0.3556200000E-020.2921039889E+01

7HCK HCM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.3743400000E-010.2383800479E+03

8XCK XCM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.1324506961E+03

0.5388000000E-010.8115746532E+02

9YCK YCM 0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.0000000000E+00

0.0000000000E+000.1825937157E+02

0.0000000000E+000.1176262280E+02

0.3556200000E-020.2921039889E+01

$VINTAGE, 0

Figure 4.16: EMTP Punch file for BC-Tran Three Winding Transformer At Bus-2387

70



4.5 Load: Induction Motor with Power Transformer

Study area also contains induction motor with step-down transformer as load element. The infor-

mation about induction motor is available in a data sheet. The information required for induction

motor element in HYPERSIM is extracted and shown in Table 4.11 and Table 4.12. The induction

motor general data from Table 4.11 can be entered directly into HYPERSIM induction motor ele-

ment. The Induction motor performance data from Table 4.12 was used to calculate the induction

motor parameters i.e., resistance and reactances.

Table 4.11: Induction Motor General Data

Power (MW) Synchronous Speed(RPM) Poles Rotor Type Voltae (V) Phases Frequency (Hz)

4.9236 1800 4 1-Cage Rotor 6600 3 60

Table 4.12: Induction Motor Performance Data

Description Percent Power Factor Currents (A)

No Load 4.8 96.2

Locked Rotor 11.8 3156

Table 4.13 shows the data in the form that HYPERSIM accepts for induction motor

element. Subscript s represents stator side values and subscript r represents rotor side values.

Table 4.13: Induction Motor Data (HYPERSIM)

rs(Ω) xs(Ω) rr(Ω) xr(Ω) xm(Ω)

0.072 0.599 0.072 0.599 39.051

The information about power transformer is obtained from ASPEN model and is shown

in Table 4.14. The data for this power transformer in the form that HYPERSIM accepts is shown

Table 4.15. Subscript p represents primary side subscript s represents secondary side values and

subscript 0 represents magnetizing branch values.
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Table 4.14: Power Transformer Data

From Bus Primary-KV To Bus Secondary-KV R (p.u) X (p.u) R0 (p.u) X0 (p.u)

BUS LOAD 230 BUS MOTOR 6.9 0.02155 0.44945 0.02047 0.42698

Table 4.15: Power Transformer Data (HYPERSIM)

From Bus To Bus Rp (p.u) Lp (p.u) Rs (p.u) Ls (p.u) R0 (p.u) Lm (p.u)

BUS LOAD BUS MOTOR 0.010775 0.001192 0.010775 0.001192 0.02047 0.00113

4.6 Series Capacitor

Table 4.16 shows the information about Series Capacitor component which was obtained from

ASPEN. The data from Table 4.16 can be entered into HYPERSIM Series Capacitor element

control panel shown in Figure 4.17.

Table 4.16: Series Capacitor Data (HYPERSIM)

Bus Base KV C (F)

2387 230 0.0001087

Figure 4.17: Control Panel of Series Capacitor
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4.7 Surge Arrester

Table 4.17 shows the information about surge arrester component which was also obtained from

ASPEN. The data from Table 4.17 can be entered into HYPERSIM Non-Linear resistor element

control panel shown in Figure 4.18.

Table 4.17: Surge Arrester Data (HYPERSIM)

Vmin P Q

0.928077 0.3622 17.244

1.06066 0.036088 56.4055

1.10485 0.006829 73.101

1.1402 0.129967 50.648

1.1932 0.319977 45.5486

1.2552 74.4342 21.566

Figure 4.18: Control Panel of Surge Arrester
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4.8 Shunt Capacitor

Table 4.18 shows the information about Shunt Capacitor components which were obtained from

ASPEN/PSSE. The data from Table 4.18 can be entered into HYPERSIM Shunt Capacitor element

control panel shown in Figure 4.19.

Table 4.18: Shunt Capacitor Data (HYPERSIM)

Bus Base KV Gshunt(MW) Bshunt(Mvar)

1054 138.00 0 30.61

1071 230.00 0 81.41

1071 230.00 0 81.41

Figure 4.19: Control Panel of Shunt Capacitor

4.9 Equivalent Voltage Sources

The ASPEN power system model has 9 equivalent sources connected to boundary buses in study

area. The information about these equivalent sources is obtained from ASPEN/PSSE and the

data for HYPERSIM voltage source element, in the form that HYPERSIM accepts is shown in

Table 4.19. The voltage, resistance, reactance and inductance values in Table 4.19 are in per unit.
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Table 4.19: Equivalent Voltage Sources Data

Bus Bus Name Base KV V (p.u) Angle Base MVA R (p.u) X (p.u) L (p.u)

1051 BUS 1051 138 1 0 100 0.103337 0.364468 0.000967272

1070 BUS 1070 230 1 0 100 0.002522 0.0299 7.93524E-05

1080 BUS 1080 138 1 0 100 0.056244 0.870916 0.002311348

1139 BUS 1139 230 1 0 100 0.001116 0.015391 4.08466E-05

1733 BUS 1733 138 1 0 100 0.061917 0.364744 0.000968004

1890 BUS 1890 138 1 0 100 1E-05 1.62105 0.00430215

3298 BUS 3298 230 1 0 100 0.030877 0.121605 0.000322731

3969 BUS 3969 138 1 0 100 0.055609 0.313783 0.000832757

5711 BUS 5711 230 1 0 100 1E-05 0.094234 0.00025009

4.10 Equivalent Transformers

The ASPEN power system model has 11 equivalent transformers connected between boundary

buses. The information about these equivalent transformers is obtained from ASPEN/PSSE and

is shown in Table 4.20. The data for HYPERSIM two-winding transformer element, in the form

that HYPERSIM accepts is shown in Table 4.21. The resistance and reactance values of equivalent

transformers are in per unit. All equivalent transformers primary and secondary windings are

star-grounded type.

4.11 Equivalent π Lines

The ASPEN power system model has 9 equivalent π lines connected between boundary buses.

The information about these equivalent π lines is obtained from ASPEN/PSSE and the data for

HYPERSIM π line element, in the form that HYPERSIM accepts is shown in Table 4.22. The

resistance and inductance values of π lines are in per unit. These values can be entered into

HYPERSIM π line element control panel shown in Figure 4.20.
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Table 4.20: Two-Winding Equivalent Transformer Data

From Bus Primary-KV To Bus Secondary-KV R (p.u) X (p.u) Wdg-1 Ratio Wdg-2 Ratio

1051 138 1070 230 1.50777 2.56086 1 1

1051 138 1139 230 0.807052 1.58549 1 1

1051 138 3298 230 0.140268 0.238189 1 1

1051 138 5711 230 0.051922 0.341828 1 1

1070 230 1733 138 0.121842 0.524834 1 1

1070 230 3969 138 0.28782 1.11169 1 1

1080 138 1139 230 0.213633 1.2435 1 1

1139 230 1733 138 1 .3192 8 4.64704 1 1

1890 138 3298 230 0.020951 0.066493 1 1

3298 2 30 3969 138 0.403799 0.899047 1 1

3969 138 5711 230 0.086979 0.550353 1 1

Table 4.21: Two-Winding Equivalent Transformer Data (HYPERSIM)

From Bus To Bus RP (p.u) LP (p.u) RS (p.u) LS (p.u)

1051 1070 0.753885 0.003396446 0.753885 0.003396446

1051 1139 0.403526 0.002102821 0.403526 0.002102821

1051 3298 0.070134 0.000315908 0.070134 0.000315908

1051 5711 0.025961 0.000453363 0.025961 0.000453363

1070 1733 0.060921 0.000696083 0.060921 0.000696083

1070 3969 0.14391 0.001474425 0.14391 0.001474425

1080 1139 0.1068165 0.001649243 0.1068165 0.001649243

1139 1733 0.65964 0.006163328 0.65964 0.006163328

1890 3298 0.0104755 8.82E-05 0.0104755 8.82E-05

3298 3969 0.2018995 0.001192398 0.2018995 0.001192398

3969 5711 0.0434895 0.000729928 0.0434895 0.000729928
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Table 4.22: Equivalent π Lines Data

From Bus Voltage (KV) To Bus Voltage (KV) R (p.u) X (p.u) L (p.u)

1047 230 2386 230 0.0001 0.0001 2.65258E-07

1047 230 2386 230 0 -0.0397 -0.000105308

1051 138 1080 138 0.284179 0.710957 0.001885872

1051 138 3969 138 1.2793 3.27475 0.008686544

1070 230 1139 230 0.009303 0.054905 0.00014564

1070 230 5711 230 0.728477 3.26854 0.008670072

1139 230 3298 230 0.375677 1.32461 0.003513637

2386 230 2387 230 0.0001 0.0001 2.65258E-07

3298 230 5711 230 0.020907 0.104125 0.0002762

Figure 4.20: Control Panel of π Line
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Chapter 5

Simulation Results & Discussion

5.1 Model of IPO System

The Power system model built for fault simulation, analysis and relay testing is shown in Figure 5.1.

Model includes all HYPERSIM elements namely Frequency dependent distributed parameter lines,

Constant parameter distributed lines, π lines, Voltage Sources, Two-Winding and Three-Winding

transformers, Induction motor, Series capacitor with MOV protection, and Shunt capacitors.

Voltage sources with step-up transformers, Frequency dependent and Constant param-

eter type lines were modeled first and connected to buses in study area. Induction motor load

with step-down transformer was modeled and included in the model. Series capacitor, shunt ca-

pacitors were then included in the model. Breaker configurations with IPO breakers were modeled

and connected to series capacitor line local bus and remote bus in the model. Equivalent voltage

sources with source impedance were modeled and connected to the boundary buses in study area.

Equivalent two-winding transformers and equivalent π lines were modeled and connected between

the boundary buses in study area.
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Figure 5.1: Model of IPO System

79



After inclusion of each HYPERSIM element, the model is tested for simulation time step

and data acquisition at buses in scopeview software. Due to the presence of some power system

elements of equivalent area (equivalent two-winding transformers and equivalent π lines), four

distributed parameter transmission lines sending end and receiving terminals were terminated on

same station. Decoupling inductors were used to split these lines. The inclusion of these decoupling

inductors made the data acquisition at the buses unsuccessful as the model unable to find the point

on wave to plot signals. The inductance value of these decoupling inductors are varied until data

acquisition at buses is successful.

The series capacitor line to be protected is shown in Figure 5.2. IPO breakers are

connected to the local bus and remote bus of line. Induction motor load is connected to load bus.

Figure 5.3 and Figure 5.4 shows the breaker configuration at each end of the series capacitor line

and Figure 5.5 shows series capacitor protection arrangement.
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Figure 5.2: Series Capacitor Line
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5.2 Open Loop Simulations

Using the Testview software in HYPERSIM, a script was developed for applying faults at different

points on wave to determine worst scenarios. Fault breaker is closed 50 times at some random point

on wave in a cycle (between 0.0166s and 0.0333s) and removed at 0.05s. For each fault scenario,

time of fault application and maximum fault current were captured and presented as table out

using the Testview software.
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Table 5.1: Maximum Phase A to
Ground Fault Currents (A) for Local End
Fault (1 ∼ 25)

T1(ms) max Ia max Ib max Ic
30.562 10799 145.14e-003 155.66e-003
32.148 8173.9 89.815e-003 90.712e-003
26.162 4107.8 96.35e-003 98.487e-003
25.948 3728.8 87.505e-003 89.529e-003
17.475 8628.3 86.113e-003 88.157e-003
29.448 5500.7 89.401e-003 100.23e-003
16.948 8770.5 88.36e-003 90.411e-003
20.848 6299.1 89.756e-003 90.447e-003
21.648 5680.8 88.081e-003 89.919e-003
131.348 7386.5 88.579e-003 91.161e-003
25.562 3845.4 89.61e-003 91.766e-003
32.048 8007.1 89.61e-003 90.463e-003
25.248 3798.5 87.272e-003 89.561e-003
30.148 6220.9 88.765e-003 98.535e-003
19.748 7606.5 87.982e-003 90.214e-003
31.475 7367.2 85.442e-003 88.598e-003
26.175 4205 98.566e-003 100.72e-003
17.948 8837.2 88.311e-003 90.443e-003
30.248 6303.7 88.611e-003 97.465e-003
33.048 8761.1 88.874e-003 90.16e-003
18.548 8614.4 88.109e-003 90.35e-003
31.548 7644.4 87.802e-003 90.668e-003
29.748 5826 88.847e-003 100.49e-003
18.348 8733.1 88.102e-003 90.409e-003
20.948 6235.4 89.637e-003 90.429e-003

Table 5.2: Maximum Phase A to
Ground Fault Currents (A) for Local End
Fault (26 ∼ 50)

T1(ms) max Ia max Ib max Ic
16.948 8770.5 88.36e-003 90.411e-003
22.948 4798.2 88.432e-003 89.587e-003
27.948 4361.9 88.331e-003 90.005e-003
28.048 4389.9 88.435e-003 90.073e-003
29.262 5440.1 91.395e-003 102.24e-003
16.748 8699.7 88.237e-003 90.394e-003
27.048 3931.7 87.668e-003 89.671e-003
18.775 8959.1 92.787e-003 94.835e-003
26.948 3889.9 87.787e-003 89.636e-003
29.548 5578.9 89.355e-003 100.16e-003
19.748 7653.2 88.07e-003 90.227e-003
24.948 3875.3 87.67e-003 89.736e-003
25.148 3814.6 87.345e-003 89.584e-003
21.948 5467.4 88.431e-003 90.095e-003
28.348 4636 88.104e-003 91.161e-003
22.748 4931.2 88.118e-003 89.603e-003
31.348 7386.5 88.579e-003 91.161e-003
22.848 4879.4 88.279e-003 89.557e-003
25.362 3862.4 89.504e-003 91.779e-003
23.748 4340.6 87.602e-003 89.92e-003
25.775 3919.7 91.907e-003 94.003e-003
27.748 4268.2 87.961e-003 89.743e-003
19.448 7965.7 88.512e-003 90.308e-003
30.575 6455.3 86.766e-003 92.213e-003
31.048 7150.6 89.245e-003 91.195e-003

5.2.1 Simulation Results for Faults at Local End of Series Capacitor Line

Table 5.1 and Table 5.2 shows time of fault application and maximum values of fault current for

single-line to ground faults applied in A-Phase at local end of series capacitor line. From Table 5.1

and Table 5.2, it is observed that the worst fault current occurs for fault applied at 30.562ms.

Figure 5.6 shows plots for fault current through fault breaker and line current through local and

remote IPO breakers for single-line (Phase A) to ground fault applied at local end of series capacitor

line. The fault was applied at 0.02s and removed at 0.05s. Figure 5.7 shows plots for voltages at

terminal buses of series capacitor line for single-line (Phase A) to ground fault applied at local end

of series capacitor line. The fault was applied at 0.02s and removed at 0.05s.
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Figure 5.6: Fault & Line Currents for Phase A to Ground Faults at Local End

84



S
co

pe
V

ie
w

B
U

S
_2

38
6.

V
a

B
U

S
_2

38
6.

V
b

B
U

S
_2

38
6.

V
c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
4

−
2024

V
B

U
S

_2
38

6.
V

a
B

U
S

_2
38

6.
V

b
B

U
S

_2
38

6.
V

c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
4

−
2024

V x10E5

B
U

S
_6

99
9.

V
a

B
U

S
_6

99
9.

V
b

B
U

S
_6

99
9.

V
c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
202

V

B
U

S
_6

99
9.

V
a

B
U

S
_6

99
9.

V
b

B
U

S
_6

99
9.

V
c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
202

V x10E5

B
U

S
_2

38
7.

V
a

B
U

S
_2

38
7.

V
b

B
U

S
_2

38
7.

V
c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
4

−
2024

V

B
U

S
_2

38
7.

V
a

B
U

S
_2

38
7.

V
b

B
U

S
_2

38
7.

V
c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
4

−
2024

V x10E5

B
U

S
_6

99
9a

.V
a

B
U

S
_6

99
9a

.V
b

B
U

S
_6

99
9a

.V
c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
202

V

B
U

S
_6

99
9a

.V
a

B
U

S
_6

99
9a

.V
b

B
U

S
_6

99
9a

.V
c

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1
s

−
202

V x10E5

[H
Y

P
1]

 0
30

72
01

6_
sp

sw
ith

vo
lta

ge
so

ur
ce

sa
nd

bk
rc

on
fig

 −
 r

ts
er

ve
r_

18
2:

1 
−

 T
s:

 4
0e

−
6 

P
er

f: 
1 

D
at

a 
S

te
p:

 1
 −

 R
ea

l t
im

e 
−

 R
T

S
er

ve
r_

5_
86

 −
 2

01
6/

03
/2

2 
15

:0
8:

56
.0

00
00

0
P

rin
te

d 
fo

r 
hy

pu
sr

01
1/

1

Figure 5.7: Voltages at Terminal Buses for Phase A to Ground Faults at Local End
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Table 5.3: Maximum Phase A to
Ground Fault Currents (A) for Mid-Line
Fault (1 ∼ 25)

T1(ms) max Ia max Ib max Ic
32.862 1636.5 139.76e-003 141.9e-003
17.175 1210.8 98.29e-003 98.861e-003
21.062 915.91 95.731e-003 96.821e-003
16.975 1194.1 98.308e-003 98.839e-003
18.062 1216.1 96.464e-003 97.034e-003
19.249 1141.6 95.492e-003 95.072e-003
18.562 1139.4 90.992e-003 91.495e-003
29.375 558.61 98.89e-003 115.35e-003
32.375 1001.3 90.866e-003 107.92e-003
18.862 1129.1 90.996e-003 91.454e-003
26.562 286.99 89.051e-003 90.111e-003
18.662 1135.2 90.995e-003 91.474e-003
26.649 299.59 92.614e-003 93.72e-003
17.775 1168.3 92.803e-003 93.375e-003
20.975 958.28 97.471e-003 98.659e-003
23.562 480.36 97.049e-003 95.323e-003
32.562 1129 100.24e-003 111.33e-003
22.549 630.47 94.139e-003 96.369e-003
16.962 1098.1 90.984e-003 91.492e-003
32.962 1062.1 90.682e-003 92.133e-003
29.375 574.52 98.923e-003 115.37e-003
31.075 799.91 91.596e-003 121.69e-003
23.375 504.17 98.427e-003 97.493e-003
31.162 795.19 89.686e-003 122.05e-003
17.275 1150.6 92.789e-003 93.367e-003

Table 5.4: Maximum Phase A to
Ground Fault Currents (A) for Mid-Line
Fault (26 ∼ 50)

T1(ms) max Ia max Ib max Ic
20.162 1031.5 93.094e-003 91.193e-003
23.762 456.38 97.86e-003 94.371e-003
33.049 1125.5 94.885e-003 96.073e-003
26.175 327.91 101.61e-003 102.72e-003
26.275 292.03 90.848e-003 91.916e-003
24.462 383.26 97.282e-003 91.428e-003
24.462 387.26 97.334e-003 91.586e-003
29.375 542.51 93.395e-003 108.83e-003
21.762 714.3 90.494e-003 91.11e-003
23.675 478.29 99.481e-003 96.876e-003
18.262 1143.6 90.971e-003 91.524e-003
18.975 1142.8 92.841e-003 93.275e-003
28.262 389.45 92.749e-003 90.975e-003
19.662 1143.4 98.853e-003 96.821e-003
31.562 865.48 88.959e-003 115.17e-003
28.862 453.11 90.816e-003 99.431e-003
21.762 714.3 90.494e-003 91.11e-003
18.975 1137.2 92.91e-003 93.268e-003
30.462 689.38 91.168e-003 118.67e-003
24.062 422.83 98.114e-003 92.471e-003
26.562 286.68 89.056e-003 90.111e-003
32.949 1113.3 94.611e-003 95.91e-003
25.075 336.4 95.531e-003 91.924e-003
31.662 930.84 94.275e-003 121.79e-003
28.775 454.12 92.556e-003 100.35e-003

5.2.2 Simulation Results for Faults at Middle of Series Capacitor Line

Table 5.3 and Table 5.4 shows time of fault application and maximum values of fault current for

single-line to ground faults applied in A-Phase at middle of series capacitor line. From Table 5.3

and Table 5.4, it is observed that the worst fault current occurs for fault applied at 32.862ms.

Figure 5.8 shows plots for fault current through fault breaker and line current through local and

remote IPO breakers for single-line (Phase A) to ground fault applied at middle of series capacitor

line. The fault was applied at 0.02s and removed at 0.05s. Figure 5.9 shows plots for voltages at

terminal buses of series capacitor line for single-line (Phase A) to ground fault applied at middle

of series capacitor line. The fault was applied at 0.02s and removed at 0.05s.
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Figure 5.8: Fault & Line Currents for Phase A to Ground Faults at Mid-Line
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Figure 5.9: Voltages at Terminal Buses for Phase A to Ground Faults at Mid-Line
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Table 5.5: Maximum Phase A to
Ground Fault Currents (A) for Remote End
Fault (1 ∼ 25)

T1(ms) max Ia max Ib max Ic
25.362 539.73 99.398e-003 86.204e-003
24.975 417.82 69.511e-003 60.635e-003
31.362 526.46 68.611e-003 66.608e-003
29.562 372.57 69.482e-003 59.651e-003
17.662 750.72 68.691e-003 59.86e-003
18.662 798.39 68.752e-003 59.864e-003
25.749 345.87 66.831e-003 58.251e-003
22.349 644.02 71.199e-003 61.925e-003
24.275 454.79 69.728e-003 60.701e-003
26.575 332.58 69.443e-003 60.341e-003
26.449 324.45 66.809e-003 58.14e-003
17.749 742.25 67.409e-003 58.719e-003
30.349 437.51 71.286e-003 67.807e-003
23.349 510.07 67.034e-003 58.442e-003
26.449 324.45 66.809e-003 58.14e-003
19.875 815.91 70.053e-003 60.985e-003
31.562 512.32 65.085e-003 65.399e-003
19.675 771.07 66.147e-003 57.603e-003
20.149 776.26 67.427e-003 58.719e-003
18.575 812.19 70.056e-003 60.993e-003
19.362 804.06 68.76e-003 59.871e-003
33.262 682.35 69.08e-003 66.602e-003
28.062 311.16 68.04e-003 59.332e-003
30.162 415.3 68.595e-003 65.629e-003
27.349 301.07 66.79e-003 58.176e-003

Table 5.6: Maximum Phase A to
Ground Fault Currents (A) for Remote End
Fault (26 ∼ 50)

T1(ms) max Ia max Ib max Ic
22.162 648.69 68.565e-003 59.718e-003
28.962 335.27 69.228e-003 59.277e-003
30.462 426.53 68.671e-003 65.965e-003
28.649 321.6 68.045e-003 58.149e-003
27.649 317.85 70.658e-003 61.534e-003
22.649 593.1 71.154e-003 61.867e-003
26.875 318.77 69.467e-003 60.364e-003
23.549 494.19 67.16e-003 58.373e-003
30.249 408.87 67.298e-003 63.405e-003
29.549 364.61 68.188e-003 58.526e-003
21.249 729.7 67.45e-003 58.709e-003
17.349 722.43 67.39e-003 58.749e-003
26.675 324.43 69.467e-003 60.339e-003
25.262 383.95 68.327e-003 59.324e-003
27.162 308.05 68.132e-003 59.29e-003
19.749 786.63 67.452e-003 58.737e-003
21.362 740.85 68.736e-003 59.829e-003
24.149 443.64 67.237e-003 58.43e-003
27.349 301.07 66.79e-003 58.176e-003
29.049 330.82 68.051e-003 58.206e-003
23.575 511.12 69.775e-003 60.607e-003
26.949 304.89 66.888e-003 58.138e-003
26.949 304.89 66.888e-003 58.138e-003
30.949 498.3 70.593e-003 69.582e-003
19.775 817.78 70.059e-003 60.992e-003

5.2.3 Simulation Results for Faults at Remote End of Series Capacitor Line

Table 5.5 and Table 5.6 shows time of fault application and maximum values of fault current for

single-line to ground faults applied in A-Phase applied at middle of series capacitor line. From

Table 5.5 and Table 5.6, it is observed that the worst fault current occurs for fault applied at

19.775ms. Figure 5.10 shows plots for fault current through fault breaker and line current through

local and remote IPO breakers for single-line (Phase A) to ground fault applied at middle of series

capacitor line. The fault was applied at 0.02s and removed at 0.05s. Figure 5.11 shows plots for

voltages at terminal buses of series capacitor line for single-line (Phase A) to ground fault applied

at middle of series capacitor line. The fault was applied at 0.02s and removed at 0.05s.
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Figure 5.10: Fault & Line Currents for Phase A to Ground Faults at Remote End
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Figure 5.11: Voltages at Terminal Buses for Phase A to Ground Faults at Remote End
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5.3 Fault Arc Model

Figure 5.12 shows the fault arc model. This model includes fault breaker, ideal switch and UCM

controlled resistor element. Fault breaker is used to simulate fault conditions. Different types of

faults can be simulated by this fault breaker. For observing primary and secondary arc phenomenon,

single-line to ground faults are to be simulated. Ideal switch represents arc extinction and re-strike

phenomenon and UCM control resistor element represents primary and secondary arc phenomenon.

The block ”Switch Sim” lets the switch to remain in close position until primary arc extinguishes

and during the secondary arc period the switch acts according to value computed by ”SecArc”

block. The block ”Arc Controller” updates the resistance of the ”Arc resistance” UCM element

at every time step. The inputs to this block are primary arc resistance, secondary arc resistance

and breaker trip command. This block outputs primary arc resistance to UCM element until trip

command issued to line breakers and outputs secondary arc resistance to UCM Controlled Resistor”

from the moment the line breakers were tripped.

Figure 5.13 shows the primary arc model. This model simulates primary arc phe-

nomenon. The input to this model is fault current and the model computes primary arc resistance

at every time step. The model updates the UCM ”Arc Resistance” element at every time step.

92



P

Faultbkr

BUS_fltbkr

GrBT

BUS_Gnd

BUS_arcvolt

i_p Re_p

*Prim_Arc

Cmd

V_a

i_s Re_s

sw

*Sec_Arc

u1

u2

y1
C code

Switch_Sim

P

D

1

2

Switch

u1

u2

u3

y1

C code

Arc_Conntroler

Rin

V

T1

T2

Arc_Resistance

Figure 5.12: Fault Arc Model
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Figure 5.14 shows the secondary arc model. The model simulates secondary arc phe-

nomenon. This model takes the fault current as input and outputs secondary arc resistance value

and switch command signal by performing computations. The block ”Tau s” computes time con-

stant and arc length variations are computed by block ”arclength s”. The reignition voltage is com-

puted by block ”V r” and compared with the arc recovery voltage by the block ”Switch Controller”.

This block controls the ideal switch by opening it when arc recovery voltage is less than reignition

voltage representing arc extinction and closing it when arc recovery voltage exceeds the reignition

voltage representing re-strike. The model updates UCM ”Arc Resistance” element and controls

ideal switch at every item step.
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5.4 Fault Arc Model Test System and Plots

Figure 5.15 illustrates the test system used to verify the arc model. The system is an extract from

main model. Fault arc model shown in Figure 5.12 is connected at mid-point of the transmission

line. Fault was applied at 0.2s and removed at 0.7s.
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Figure 5.15: Fault Arc Model Test System

Figure 5.16 illustrates plots pertaining to primary arc simulation. Zoomed plots of

primary arc resistance and primary arc voltage are shown in Figure 5.17 and Figure 5.18. Primary

arc resistance value during the fault period is very less compared to pre-fault and post-fault periods.
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Figure 5.16: Primary Arc Plots
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Figure 5.17: Primary Arc Resistance

Figure 5.19 illustrates plots pertaining to secondary arc simulations. Zoomed plots

of secondary arc current, secondary arc voltage and switching action are shown in Figure 5.20,
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Figure 5.18: Primary Arc Voltage

Figure 5.21 and Figure 5.22. In Figure 5.19, the instant 0.2s corresponds to fault inception and

instant 0.5s corresponds to breaker open. The current through the fault breaker from instant 0.2s

to 0.5s is primary arc current. From the instant the breaker opens, the current through the fault

breaker is secondary arc current as shown in Figure 5.20. The fault was removed at 0.7s and the

secondary arc current continues to flow until arc extinguishes. Ideal switch simulates arc extinguish

and re-strike. The simulation is shown in Figure 5.22. The switch remains in close position until

the instant breaker opens and from the instant breaker opened, the switch opens when arc voltage

is less than the reignition voltage simulating arc extinguishing phenomenon and closes when arc

voltage exceeds reignition voltage simulating arc re-strike phenomenon. The arc re-strikes and

extinguishes until reignition voltage is permanently greater than the recovery voltage and indicated

by switch open condition in the plot at approximately 0.75s in Figure 5.22. From Figure 5.22, we

can say that the secondary arc extinguished with in 250ms from the instant the breaker opened.
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Figure 5.19: Secondary Arc Plots
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Figure 5.20: Secondary Arc Current
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Figure 5.21: Secondary Arc Voltage
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Figure 5.22: Switch Simulation
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5.5 Relay Wiring Drawings

Figure 5.23 shows the logic circuit diagram for all the HYPERSIM outputs. This drawing includes

logic for status of IPO breakers connected to local bus of series capacitor line and series capacitor

by-pass breaker status. These breakers status was given as inputs to relays in line relay panel-1.

Figure 5.23: Line 1 Relay Inputs from HYPERSIM
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Figure 5.24 shows the logic circuit diagram for all the HYPERSIM outputs. This drawing

includes logic for status of IPO breakers connected to remote bus of series capacitor line and series

capacitor by-pass breaker status. These breakers status was given as inputs to relays in line relay

panel-2.

Figure 5.24: Line 2 Relay Inputs from HYPERSIM
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Figure 5.25 shows the logic circuit diagram for all the HYPERSIM inputs from line relay

panel-1. This drawing includes logic for single pole and three pole trip commands to IPO breakers

connected to local bus of series capacitor line. The trip command outputs from line differential

relays of line relay panel-1 are fed to the IPO breakers. Also logic for series capacitor by pass

breaker is also shown in the drawing. The drawing also includes three pole close command logic

circuit, breaker fail trip and pole disagreement trip command logic circuits.

Figure 5.25: Line 1 Relay Outputs to HYPERSIM
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Figure 5.26 shows the logic circuit diagram for all the HYPERSIM inputs from line relay

panel-2. This drawing includes logic for single pole and three pole trip commands to IPO breakers

connected to remote bus of series capacitor line. The trip command outputs from each of the line

differential relays of line relay panel-2 are fed to the IPO breakers. Also logic for series capacitor

by pass breaker is also shown in the drawing. The drawing also includes three pole close command

logic circuit, breaker fail trip and pole disagreement trip command logic circuits.

Figure 5.26: Line 2 Relay Outputs to HYPERSIM
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Figure 5.27 shows the logic circuit diagram for interface signals from relays in line re-

lay panel-1. This drawing includes close input initiate; breaker fail initiate interface signals for

overcurrent relays in line relay panel-1.

Figure 5.27: Line 1 Brekaer Close and Fail Circuit
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Figure 5.28 shows the logic circuit diagram for interface signals from relays in line re-

lay panel-2. This drawing includes close input initiate; breaker fail initiate interface signals for

overcurrent relays in line relay panel-2.

Figure 5.28: Line 2 Brekaer Close and Fail Circuit
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Chapter 6

Summary & Future Work

6.1 Summary

This thesis presented a test plan and a test setup to test relays using real time simulator for single

pole switching studies. The test plan includes modeling in HYPERSIM software of a test system,

which is a portion of a real power network, appropriate for hardware-in-the-loop real time simulation

with actual relays. Equipment and transmission lines in the test system are modeled using their

parameters. The test setup was designed to show necessary connections between the real-time

simulator computer and the protective relays that will operate under a Single Pole Switching (SPS)

protection scheme. The input and output signals between the simulator and relays were determined

to accommodate test scenarios for SPS operation. The following tasks are completed for this thesis.

• First chapter discusses modeling requirements for relay testing using real time simulators, a

historical review of test systems and power system models used for relay testing and outcomes

of relay testing using real time simulator, background of single pole switching and historical

review on advantages, disadvantages, and challenges with single pole switching.

• The concepts of modeling power system components in HYPERSIM, mathematical equa-
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tions representing transmission lines, equivalent circuit representation of transformers and

induction motors were discussed in second chapter.

• Transmission line, BC Tran transformers, Induction motor, Fault modelling procedures in

HYPERSIM Real-Time Simulator were discussed in third chapter. Also input and output

signals between the simulator and relays were determined.

• System data for lines, Voltage Sources with Step-Up Transformers, BC-Tran three winding

transformer, Induction motor with Power Transformer, Series capacitor with MOV, Shunt

capacitors were shown in fourth chapter.

• The model built for testing relays using HYPERSIM Real-Time simulator was shown, faults

close to local end, middle of line and remote end were applied and response of line currents,

fault currents and voltages at local end and remote end buses are captured and analyzed.

Results of systematic study for identifying worst case scenarios to test relays were also shown.

AUTOCAD drawings for relays input and output signals to install and wire relay panels were

also shown in fifth chapter.

6.2 Future Work

The following items are possible future work to extend the work presented in this thesis:

• One can consider replacing voltage sources modeled in the test system with generators. Gen-

erators with exciters could be modeled to include possible effect of generator dynamics on the

performance of an SPS protective relay.

• The test system may include a more detailed modeling of line breakers in order to simulate

arc extinguishing and restrike phenomenon when it is opened by relay to replicate actual

breaker action.
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• Coupling capacitor voltage transformers (CCVT) and current transformers (CT) components

may be considered as part of the breaker configuration at the buses where SPS relays are

installed to capture the transients of the transformers that might affect the operation of the

relays.

• To implement the test plan and test setup developed in this thesis, a comprehensive set of test

scenarios needs to be determined to capture the performance of the SPS relays. For example,

a test to determine the relay response to an evolving fault scenario can be included to verify

how the relay would react when a single-line-to-ground fault evolves into a double-line-ground

fault before the single-pole breaker opens for the single-line-ground fault. Other tests may

include the bypass breaker open/close conditions, breaker failure conditions, re-closing after

single pole trip including restriking, and out of zone/in zone fault combinations.

• The power system model developed and relays input/output signals determined in this work

could be implemented to test line differential and overcurrent relays under SPS operation.

There might be additional input/output signals for different types of relays to be considered

for analyzing the performance of the relays.
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