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ABSTRACT 

 

When new populations are first identified in a region there are multiple potential sources: 

introduction of a non-native species, extra-range expansion of a nearby population, or 

demographic growth of a previously unnoticed species.  Red foxes were absent or rare in the 

mid-eastern portion United States until the late 1800s.  Their origins potentially include natural 

population increase/expansion, translocations from Europe, and, eventually, 20th century fur 

farming.  In this study I attempt to identify the relative impact of native expansion versus human 

mediated introductions of both colonial era European foxes and early 20th century fur-farm foxes 

on the establishment of red foxes in the mid-Atlantic region of the United States.  I subsequently 

address the potential impacts of hybridization and nuclear introgression between previously 

separate sister taxa.  Through analysis of mitochondrial DNA, I identified indigenous haplotypes, 

two European haplotypes, and fur-farm haplotypes; another set of haplotypes were potentially 

indigenous or native. In addition, I found European Y-chromosome haplotypes.  Most European 

and fur-farm haplotypes were found near the densely human-populated coastal plain and Hudson 

River lowlands; most red foxes of the Appalachians and Piedmont had native eastern haplotypes.  

However, nuclear data does not support this division showing low genetic structure despite the 

broad geographic scale of our study area, attributable both to range expansion and admixture.  

Admixture has not had the same impact on the nuclear genome as it has in mitochondrial 

haplotypes leading to mito-nuclear discordance across the region.  I also found evidence for 

differential patterns of expansion related to habitat.  Specifically, the Appalachian Mountains 

acted as a corridor for gene flow from the northern native source into the southern Mid-Atlantic 

region. 

Keywords: Vulpes vulpes, invasive species, population genetics, expansion, introgression 
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Invasive species 

Humans have affected the environment in various ways.  Among the most impactful of 

these is the redistribution of species. Species that have spread into novel environments either 

from an introduction site or a nearby habitat are considered “invasive alien species” (IAS) and 

can severely threaten native flora and fauna (Richardson et al 2011).  The establishment of these 

species is cited as a leading cause of biodiversity decline (Genton et al 2005; Ricciardi 2007; 

Kirk et al 2011; LeRoux et al 2011).  In addition, a 2005 study estimated IAS cause $120 billion 

in annual losses in the United States (Pimental et al 2005).  Though this estimate could be 

considered spurious and does not include the benefits of certain IAS (i.e. European honeybees), 

it demonstrates the magnitude of the impact (Pejar and Mooney, 2009).  In addition to 

transcontinental introductions, humans have affected the distribution of native species through 

habitat conversion resulting in range expansions.  Spatial expansion is the extension of a 

population into an area that was previously uninhabited by that population.  Expansions can 

occur naturally along an environmental gradient or follow the artificial introductions of 

individuals into new habitats (Estoup et al 2004).  For some species, particularly vertebrates, 

successful range expansion is strongly associated with humans (Sakei et al 2001). 

Although biological invasions and expansions are not uniquely caused by humans, 

modern rates of each are several orders of magnitude greater than prehistoric rates (Allendorf 

and Lundquist 2003; Ricciardi 2007; Wilson et al 2009; Richardson et al 2011).  Whereas 

historical invasions are the result of infrequent, long-distance dispersal, human globalization has 

increased frequency and effectively decreased the difficulty imposed by long distance dispersal.  

International commerce has facilitated the spread and distribution of millions of individuals 

worldwide (Wilson et al 2009; Genovesi et al 2015).  This can be intentional for economic 
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purposes or unintentional such as through ballast water in marine transport.  The result is the 

buildup of invasive potential that can increase the likelihood of an introduction turning into an 

invasion.  European colonization of the Americas brought with it massive changes in the land, 

which in turn altered the relative abundances and community composition of species (Pimm et al 

1995).                                                                            

New populations of species, whether they are from introductions or natural expansions, 

can significantly impact the evolutionary pathway of native species through competitive 

exclusion, niche displacement, hybridization, introgression, predation, and extinction (Mooney 

and Cleland 2001).  While the unprecedented rate of invasion poses threats to native biota, it also 

creates opportunities to study ecological and evolutionary theories (Allendorf and Lundquist 

2003).  Molecular analyses of IAS allow researchers to understand mechanisms of growth and 

population dynamics (Richardson et al 2011).  We can study the relationship between genetic 

diversity at onset of introductions versus performance.  In addition, we can examine molecular 

evolution in the face of hybridization.  Finally, comparing introduction histories and success can 

yield biogeographical insights important for understanding impacts of climate change (LeRoux 

et al 2011; Moran and Alexander 2014). 

 

Population growth and expansion 

When populations expand, either from a source population or from introduced colonies, 

they face genetic bottlenecks because a limited sampling of the population is relocating 

(Allendorf and Lundquist 2003).  This, in turn, is expected to create patches of lower diversity.  

However, low diversity is rarely a characteristic of successful invaders (Parker et al 2013).  Strict 

spatial expansion of native populations can similarly leave a distinct signature on genetic 
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structure (Ray et al 2003, Excoffier 2004).  These consequences vary from the creation of sectors 

of lower genetic diversity to high frequency of random alleles due to genetic surfing (Excoffier 

et al 2009).  Both carry different genetic signatures that make it possible to distinguish between 

them.   

In successful invaders, reduced genetic variability due to low heterozygosity is often 

overcome by repeat introductions from different source populations (Sakei et al 2001; Kowarik 

2003; Allendorf and Lundquist 2003; Le Roux et al 2011).  This can often times cause higher 

diversity in newly founded populations than in the source populations and strong differentiation 

if independent introductions occur across a landscape.  Newly founded populations with higher 

genetic diversity are less likely to go extinct because they are more able to evolve adaptive traits 

necessary to survive in the new environment (Agash et al 2011).  Furthermore, bottlenecks can 

purge deleterious recessive alleles thus reducing inbreeding depression (Moran and Alexander 

2014).  Invasive populations also benefit from low population density allowing for exponential 

growth.  The effects of drift and selection are likely to vary between colonies and while long-

distance dispersal events across the landscape can facilitate gene flow between colonies, strong 

differentiation between colonies with high heterozygosity and gene diversity is expected.   

Natural range expansions most often occur in a stepwise pattern with genetic 

differentiation increasing from the source (Schrey et al 2014).  The result then is a series of 

founder effects along the expansion front and reduction in average heterozygosity (Slatkin and 

Excoffier 2012).  Genetic drift in these colonies reduces overall allelic diversity along the axis of 

the expansion front, but also increases the frequency of some rare alleles, a process dubbed ‘gene 

surfing’ (Excoffier and Ray 2008; Hallatschek and Nelson 2008).  Essentially, alleles on the 

fringe of the range disperse beyond it as the leading edge of the expansion.  The low population 
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size allows genetic drift to drive some alleles that were rare in the original population to high 

frequencies.  Reduced intraspecific competition from low population density then allows these 

few individuals to increase exponentially, also increasing the frequencies of those alleles.  When 

colonization is the result of long distance dispersal events, gene surfing can cause increasing 

genetic differentiation of populations along the expansion front from the source population 

(Hallatschek and Nelson 2008).  The result is still clinal variation with increasing differentiation 

from the source population.  While strong gene flow between the colonies can erase some of the 

differentiation, reduced gene flow to and from the source population will maintain discrete 

differentiation between the source and new portion of the range (Hagen et al 2015; Norén et al 

2015).   

 

Hybridization and admixture 

As populations expand and previously isolated lineages come into contact with one 

another, hybridization and admixture can occur.  This type of genetic restructuring can have 

positive and negative effects.  The extinction of native genotypes and disruption of local 

adaptations can limit a species ability to thrive in its habitat or tolerate environmental shifts.  If 

the introduced population is the result of human breeding, it may introduce traits that were bred 

for anthropogenic existence and be detrimental in the wild (Kidd et al 2009; Dierking et al 2014).  

Indeed, human induced hybridizations have contributed to the decline and extinction of many 

plant and animal species (Kovach et al 2015).  Additionally, the global redistribution of species 

and subsequent admixture of genes continues the homogenization of Earth’s biota. 

However, hybridization and admixture can benefit populations.  The introduction of new 

alleles can increase overall diversity of a population.  These alleles could also be beneficial for 
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the existing population.  Hybridization may contribute to speciation by creating new hybrid taxa, 

or promoting adaptive divergence thereby facilitating speciation (Abbott et al 2013).  It is also 

important to consider the extent to which hybridization and introgression occurs naturally.  It is 

estimated 10-30% of multicellular plant and animal species regularly hybridize (Mallet, 2005).  

The impacts of hybridization and subsequent admixture are varied and investigation into the 

degree to which sister taxa do interbreed furthers our evolutionary understanding and provides 

insights for management. 

 

Molecular markers 

Because range expansion and non-native introductions can generate distinct geographic 

patterns of genetic diversity, use of multiple genetic markers can help to differentiate these 

demographic processes (Hagen et al 2015; Norén et al 2015).   Additionally, advances in 

population genetics now allow better resolution of taxonomic issues, elucidate geographic 

origins of invaders, track dispersal, and detect admixture (Kirk et al 2011).  Furthermore, 

improvements in technology result in more efficient and cheaper techniques (Geraldes et al 

2008; Peres-Espona et al 2010; Chang et al 2011; Sastre et al 2011). It is particularly important 

when studying populations that are either recently derived or have a likelihood of admixture to 

perform a comprehensive, multiple gene analysis that includes mitochondrial and nuclear loci 

(Geraldes et al 2008). 

Mitochondrial DNA has been used for determining historical patterns of population 

structure and population origins since Avise and Ellis (1986) introduced it as a molecular 

marker.  Since then it has revolutionized phylogeography by allowing examination of 

intraspecific genealogies (Avise et al 1989).  Mitochondrial DNA has several characteristics 



  

7 
 

which makes it ideal for phylogenetic analysis.  First, it rapidly evolves through base 

substitutions making it easy to track changes through lineages (Avise et al 1989).  Despite its 

rapid evolution it is highly conserved in size, content and arrangement allowing inter and 

intraspecific comparison (Avise and Ellis, 1986).  Mitochondrial DNA is maternally inherited 

meaning it is effectively haploid, non-recombining, and can trace a single maternal lineage 

(Avise and Ellis, 1986; Avise et al 1987).  Several successful phylogenetic studies have been 

performed on red foxes using mitochondrial DNA.  The two markers most frequently used are 

the cytochrome b gene and the D-loop control region (Frati et al 1998; Inoue et al 2007; Aubry et 

al 2009, Statham et al 2012, 2014; Teacher et al 2011)).  Given their nearly global distribution 

red foxes provide an interesting model for phylogeographic analysis.  . 

The Y-chromosome is somewhat unexplored in population studies outside of model 

organisms.  This is because it can be very difficult to isolate markers (Petit et al 2002; Greminger 

et al 2010).  However, it has the potential to be as significant in population studies as 

mitochondrial DNA.  The mammalian non-recombining Y region (NRY) on the Y-chromosome 

is analogous to mtDNA in that is present as a single copy within the cell and lacks recombination 

(Greminger et al 2010).  While this creates a potentially useful marker for studying paternal 

lineages, there are several road blocks limiting its’ use.  During analysis, Y-markers tend to have 

lower genetic diversity because they are haploid and have a smaller expected effective 

population size (Wandeler and Camensich 2011).  Mutation rates are higher than in the rest of 

the genome because of the accumulation or replication errors during gametogenesis (Greminger 

et al 2010).  Higher mutation rates mean that the Y-chromosome is faster evolving and since it 

does not recombine it provides a paternal measure of gene flow (Clare 2011).  In most 

mammalian species, males are the dispersing sex therefore mtDNA does not give a 
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comprehensive view of demographic history.  Since the focus of this project is on the recent 

history of red foxes in North America, Y-chromosomal data is expected to be more informative 

than mitochondrial data. 

Several types of markers can be isolated from the Y-chromosome including single 

nucleotide polymorphisms (SNPs) and microsatellite repeat motifs.  Each of these markers can 

give different information regarding population histories.  However, microsatellites are better for 

identifying intra-species variation and Y-microsatellites can be incorporated to existing 

genotyping for autosomal microsatellites (Wandeler and Camensich 2011).  While these markers 

may be more difficult to isolate than their autosomal counterparts, fewer are necessary to 

describe paternal genetic diversity (Greminger et al 2010).  For example, only two diagnostics 

SNPs were necessary to show the extent of admixture between two subspecies of rabbits 

(Geraldes et al 2008).   

The most popular marker for population genetics analyses are microsatellites because 

they are multi-allelic, co-dominant, abundant, reproducible, have a characteristic mutational 

behavior, and can be used in high-throughput genotyping (Kelkar et al 2010; Guichoux et al 

2011).  Traditionally microsatellites have been used to study contemporary admixture but 

because of recombination it is difficult to use them to look at historical admixture.  

Microsatellites are still a popular marker in population analyses and are useful for looking at 

current gene flow (Kelkar et al 2010).  They promote detection of low levels of introgression and 

recent temporal resolution (Perez-Espona et al 2010).    
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Red Foxes in North America 

In North America there are at least nine subspecies of Vulpes vulpes, eight of which are 

endemic: V.v. alascensis, V.v. abietorum, V.v. regalis, V.v.rubricosa, V.v. macroura, V.v. 

cascadensis, V.v. necator, and V.v. patwin (Churcher 1959; Aubry 1983; Kamler & Ballard 

2002, Aubry et al 2009, Sacks et al 2010).  Vulpes v. macrura, cascadensis and necator are 

found in the western mountains of the United States, namely the Rocky, Cascade, and Sierra 

Nevada Mountains, respectively (Aubry 1983, Kamler and Ballard 2002).  The Sacramento 

Valley red fox, V.v.patwin, was recently identified as distinct (Sacks, 2010).  The remaining four 

are found in the boreal forests of Alaska and Canada with V.v rubriscosa found in Central and 

Eastern Canada (Kamler and Ballard, 2002). 

Red foxes initially colonized North America during the Illinoian Glaciation via the 

Bering Land Bridge between 300,000 and 100,000 years before present.  They expanded during 

the Sangamon interglacial period throughout the western United States and Canada but were 

isolated during the Wisconsin glacial period (Aubry et al 2009).  At the time of European 

colonization red foxes were primarily a boreo-montane species found in the western mountains 

of the United States, in Alaska, and in Central and Eastern Canada (Churcher, 1959; Kamler and 

Ballard, 2002; Aubry et al 2009; Statham et al 2012).  They were believed to occur above 40-

45oN latitude and were “scarce or absent from the unbroken mixed hardwood” where grey foxes 

occurred (Churcher, 1959).  However, discoveries of late-Holocene faunal sites along the 

Appalachian Mountains suggest red foxes existed south of this point prior to European 

colonization (Statham et al 2012).  Subsequently, red foxes either disappeared or remained 

scarce and undetected (Frey 2013). 
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The spread of agriculture and habitat change coincided with the appearance of red foxes 

south of Pennsylvania (Audubon and Bachman 1849; Rhodes 1908; Churcher 1959).  The 

changing habitat allowed the red fox to partially displace the native grey fox in the southern 

portion of the continent (Churcher 1959).  Concurrently, red foxes were reported to have been 

introduced into the colonies from Europe for sport hunting with the earliest introductions into 

New York, Pennsylvania and Virginia in the mid-18th century from Scandinavia, France, and 

Great Britain. (Kamler and Ballard 2002).  They were said to have been introduced specifically 

due to the paucity of natural populations (Churcher 1959).  From then on it was assumed that the 

red foxes now seen in the former southern colonies were European in origin, or at the most “a 

mongrel species” (Rhoads, 1903).  However, the sources of these reports were second hand 

hearsay with no scientific evidence supporting the claim (Frey 2013). 

Beginning in the 19th century red fox populations appeared in central and western states 

such that by the 1920’s red foxes were present in Texas, Oklahoma, Kansas and Nebraska.  This 

expansion continued until red foxes reached California towards the end of the twentieth century 

(Kamler and Ballard, 2002).  Prior to this range expansion, red foxes from the East were being 

transported to California, Washington, and areas of the Midwest through the fur farm trade 

(Aubry, 1983; Lewis et al 1999; Statham et al 2012).  As is common with fur farms, individuals 

escaped from captivity and formed feral populations (Aubry, 1983; Lewis et al 1999; Zalewski et 

al 2011; Statham et al 2012).  Currently red foxes are prevalent throughout the United States and 

most of Canada.   

Given the reports of red foxes in the east as descendants of introduced European red 

foxes, and the documented expansion throughout the central and western United States, it is not 

surprising the red fox was designated an “invasive species”. The first attempt at determining the 
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source of the Eastern red fox was by Churcher in 1959.  He performed a comprehensive 

morphological analysis of red foxes from Europe, Asia, Alaska and Eastern Canada and 

determined they were the same species.  Since his samples were from Eastern Canada, in the 

historically native range of North American red foxes, this did not address the status of the 

south-eastern red fox.  More recently, a study by Statham et al (2012) sampled individuals from 

Georgia, West Virginia, Arkansas, North Carolina, Oklahoma, and Texas and found no evidence 

of European matrilineal ancestry, refuting the claim that red foxes in the United States are 

European invasives.  However, their study did not include a thorough sampling of the mid-

Atlantic region which was the primary region for introductions.  Thus, the status of the Eastern 

red fox remains unknown.   

 

Goals and Questions 

The global decline in biodiversity has numerous causes, invasive species being among 

the most severe with significant resources spent on managing their impacts (Genovesi et al 

2015).  However, the establishment of new populations or species is not exclusively attributable 

to introductions and invasions.  Range expansions of nearby native species reflect healthy biotic 

functioning, a necessary feature in a time of rapid climate change (Hewitt 2000).  For the sake of 

scientific resource management, it behooves researchers to differentiate between potentially 

harmful invasive populations and naturally established native ones, something which can be 

difficult for cryptic or interbreeding species (Devillard et al 2014).   

Even if invasive species are introduced, this does not guarantee their success (Parker et al 

2013).  Typically, a successful invasion requires multiple introductions from multiple source 

populations over an extended period of time (Wilson et al 2009).   
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Specifically, the questions addressed in the framework if this dissertation are: 

1.  What are the origins of the red fox in eastern United States? 

2.  What is the geographic extent of introduced European foxes? 

3.  Has native range expansion or human-mediated introduction played a bigger part in 

the establishment of red foxes in eastern United States? 

4.  How has the landscape, specifically the Appalachian Mountain Range, impacted the 

distribution of red foxes in eastern United States? 

5.  What is the extent of nuclear introgression from British red foxes? 

My dissertation uses multiple molecular approaches to answering these questions in three 

chapters.  In the second chapter I identify the origins of red foxes in different regions throughout 

eastern United States.  I use mitochondrial markers and Y-chromosome markers to trace 

maternal and paternal lineages and incorporate historical and international samples to identify the 

sources.  Chapter three focuses on the connectivity red foxes in eastern North America.  I use 

population genetics to discriminate between natural range expansion and human mediated 

population growth as the cause of red fox persistence in the region.  Additionally, I incorporate 

resistance modeling and landscape genetics to explore the impacts of the Appalachian Mountains 

on dispersal and distribution.  In chapter four I explore the degree of influence introduced red 

foxes have had on the nuclear genome and the level of introgression that has occurred.  Finally, 

in chapter five I address all of the questions in light of the results and acceptance of the 

hypothesis that red foxes in eastern United States are native.  
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ABSTRACT 

Red foxes were absent or rare in the southeastern United States until the late 1800s.  Their 

origins potentially include natural population increase/expansion, translocations from Europe, 

and, eventually, 20th century fur farming.  Previous studies have found no European haplotypes 

in North America, but few samples were sourced from the Atlantic coastal plain, closer to the 

source of putative introductions.  Through analysis of mitochondrial DNA in 584 red foxes from 

this region, we identified indigenous haplotypes in >35% of foxes, one of two European 

haplotypes in 17% of foxes, and fur-farm haplotypes in >13% of foxes; another 35% of foxes 

had haplotypes potentially indigenous or native. In contrast, only 3 of 135 (2%) male foxes 

carried a single European Y-chromosome haplotype.  Most European and fur-farm haplotypes 

were found near the densely human-populated coastal plain and Hudson River lowlands; most 

red foxes of the Appalachians and Piedmont had native eastern haplotypes.  Our findings suggest 

that the more remote, upland populations primarily reflect indigenous red fox matrilines, whereas 

urban-associated populations in and around the mid-Atlantic coastal plain and Hudson lowlands 

reflect an admixture of native and nonnative maternal sources.  Autosomal markers are needed to 

further elucidate the extent of European and fur-farm introgression in the Appalachians and 

further west.  

 

Keywords:  

Eastern United States, European red fox, mitochondrial DNA, phylogeography, population 

genetics, red fox, Vulpes fulva, V. vulpes, Y chromosome 
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INTRODUCTION 

Humans affect the distributions of species in a variety of ways, ranging from direct 

translocations between continents to conversion of habitats, which, in turn, can facilitate range 

expansions of native species.  The establishment of nonnative species from intercontinental 

translocations is typically harmful to native communities and has been cited as a leading cause of 

biodiversity decline (Genton et al 2005; Ricciardi 2007; Kirk et al 2011; LeRoux et al 2011).  In 

contrast, range expansions of native species, even if prompted by anthropogenic landscape 

changes, can reflect a healthy level of biotic functioning, which is necessary for the resilience of 

native communities in the face of changing climates and environments (Hewitt 2000; Valladares 

et al 2014; Gimona et al 2015). Differentiating between these sources of origins of recently 

established species is therefore important and not always obvious, such as when distinctions 

between different species are morphologically cryptic or when native and nonnative species can 

interbreed (Devillard et al 2014). 

Red foxes (Vulpes spp.) in the eastern United States represent such a case where origins 

remain unclear. Early naturalists believed that red foxes did not occur south of New York State 

at the time of European colonization (Audubon and Bachman 1849; Churcher 1959).  

Subsequent discoveries of late-Holocene faunal sites along the Appalachians and adjacent 

Piedmont as far south as Georgia, however, suggest that red foxes occurred in these areas prior to 

European colonization, after which time they either disappeared or remained scarce and 

undetected (Statham et al 2012; Frey 2013).  It is possible that the range extent of the red fox 

along the Appalachians (and further north) was dynamic during the late Holocene, e.g., 

depending on climatic fluctuations, and/or that clearing of forests for agriculture encouraged 

population increase or expansion of native red fox populations in the Atlantic coastal plain 

(Churcher 1959).   
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Today, red foxes are abundant throughout the Appalachians and eastward continuously to 

the coast.  In addition to uncertainty about the pre-European range and early range expansions of 

native red fox, the origins and composition of these modern eastern red foxes are obscured by 

putative introductions of foxes from Europe in the 1800s to coastal regions, such as Delaware or 

New Jersey (Kamler and Ballard 2002; Frey 2013).  Complicating the issue further, fox farms 

composed of individuals derived ultimately from eastern Canadian and Alaskan populations, but 

selectively bred in captivity, proliferated throughout North America in the early to mid-1900s, 

providing yet a third potential source (Statham et al 2011, 2012).  We refer to these farm-derived 

foxes as “feral” to indicate their derivation from captive-bred stock (Sacks et al 2011).  

Understanding the contribution of European ancestry to contemporary populations is particularly 

important in light of recent evidence for species-level divergence between Eurasian and North 

American red foxes (Statham et al 2014), but the potential contribution of fur-farm foxes to 

contemporary wild populations also has implications for their characterization as a natural or 

anthropogenic population (Sacks et al 2011). For example, interbreeding with escaped mink from 

fur farms has been identified as a threat to the viability of wild mink in eastern Canada (Kidd et 

al 2009). 

Hypotheses for the ancestral composition of contemporary eastern red foxes have 

spanned the extremes.  One review concluded that all modern red foxes in the eastern United 

States, as well as in the Midwest and Canada, were of European ancestry (Kamler and Ballard 

2002).  Conversely, a subsequent review suggested the possibility that European red foxes were 

never imported to the continent in the first place (Frey 2013).  More consistent with the latter 

hypothesis, prior to our study, mitochondrial sequences from many red foxes from throughout 

the United States and Canada had yet to include a single European haplotype (e.g., Perrine et al 
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2007; Aubry et al 2009; Sacks et al 2010; Statham et al 2012, 2014; Langille et al 2014).  

However, only a small number of red foxes from the eastern United States had been sequenced 

and most of these were from the Appalachians and vicinity, where origination by natural means 

was most likely (Statham et al 2012; Frey 2013).  In particular, the distribution of late-Holocene 

faunal remains suggest that red foxes occurred naturally, if episodically, within what Merriam 

(1898) termed the “Transition zone,” corresponding primarily to the Appalachian Mountains, 

and the “upper Austral zone,” corresponding primarily to the Piedmont (Frey 2013).  Therefore, 

it remains possible that eastern red foxes in lowest-elevation regions, such as the Atlantic coastal 

plain, contain European ancestry (Aubry et al 2009; Statham et al 2012).  Secondly, 1 of 3 red 

foxes sequenced from the coastal plain contained an Alaskan haplotype known to be associated 

with fur farming, indicating at least some contribution of fur farm stock to modern eastern red 

foxes (Statham et al 2012). 

We sought to resolve the origins of red foxes in the eastern United States through 

analysis of matrilineal and patrilineal markers of 584 individuals collected from several eastern 

states (Fig. 1).  Specifically, we investigated 1) the extent to which red foxes in eastern United 

States reflected European versus North American ancestry, and 2) the extent to which North 

American ancestry reflected natural populations versus escape or release of captive-reared fur-

farm foxes. We also investigated population genetic structure with particular attention to whether 

the populations in the Appalachian and less human-dominated adjacent regions were distinct 

from those of the more densely human-dominated coastal plain and Hudson River lowlands 

(hereafter Hudson lowlands).   We sequenced mitochondrial DNA and genotyped 2 

microsatellite loci from the Y chromosome, and compared these to published sequences and 

genotypes from throughout the global range of the red fox to assess continental origins.  The use 
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of maternally and paternally inherited markers also enabled us to directly assess interbreeding 

between European and North American ancestors and male versus female introgression.   

 

MATERIALS AND METHODS 

 

Study area and sample collection. 

The study area encompassed a combination of less human-dominated natural areas 

associated with the Appalachians and Piedmont and high human-density regions of the Atlantic 

coastal plain, particularly along the “I-95 corridor” linking New York and Washington D.C., and 

Hudson lowlands (Fig. 1).   

We collected a total of 584 tissue samples during 2010–2013, which are currently 

archived in the sample collection at the Mammalian Ecology and Conservation Unit at the 

University of California at Davis.  Most samples were contributed by trappers in the form of 

muscle tissue samples (~2 g preserved in 95% ethanol; n = 69) or dried skin snips (n = 498), but 

we also collected muscle samples from 17 carcasses discovered opportunistically (e.g., road 

kills). Samples were collected from Vermont (n = 26), New York (n = 138), New Jersey (n = 

66), Pennsylvania (n = 120), Delaware (n = 48), Maryland (n = 105), Virginia (n = 79), and 

North Carolina (n =2).  Additionally, we included 17 previously published mtDNA sequences, 

including 2 collected in New York State in 1856 (before the advent of fur-farming) and 12 

collected from Georgia (n = 9, 1931–1933), West Virginia (n = 1, 1938), and Maine (n = 2, 

1923), also less likely than modern samples to contain fur-farm ancestry, and 3 modern samples 

collected from coastal North Carolina (Statham et al 2012).  We grouped samples into 

geographically proximate clusters or, where sparse, mapped individual samples (Fig. 1).   
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Figure 1: Map of the study area and locations of red fox samples collected during 2010–2013, along with four sites 

of previously published historical (1856–1938) samples from the Appalachian (dark grey) and Piedmont (light grey) 

regions (Statham et al 2012).  Sampling locations are abbreviated as Eastern Shore (ES), Chesapeake (CHS), North 

Pennsylvania (PAN), Central Pennsylvania (PAC), New Jersey (NJ), New York (NY), Southern Virginia and 

western North Carolina Piedmont (SO), Northern Virginia (NVA), Southern Maryland (SMD), Vermont (VT), 

Historical Maine (HME), Historical New York (HNY), Historical West Virginia (HWV), Historical Georgia (HGA), 

and coastal North Carolina (NCC).  The samples for the present study emphasized the more densely human-

dominated lowland regions of the mid-Atlantic coastal plain and Hudson lowlands portion of New York State. 
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We extracted DNA from tissue using a DNeasy Blood and Tissue Kit (Qiagen, Inc., 

Valencia, California) following manufacturers recommendations. We amplified and sequenced 

697 base-pairs (bp) of mitochondrial DNA including 354 bp of the cytochrome-b (Cytb) gene 

using primers RF14724 and RF15149 and a 343 bp of the control region using the primers 

VVDL1 and VVDL6 that were previously analyzed in > 1,000 samples from throughout the 

worldwide range of the red fox (Perrine et al 2007; Aubry et al 2009; Statham et al 2012, 2014).  

We conducted polymerase chain reaction (PCR) in 25 μl reactions under the following 

conditions: 1 μl template DNA, 0.5 μM of forward and reverse primer, and One Taq 2X master 

mix used according to manufacturer’s instructions (Applied Biosystems, Foster City, California).  

The thermocycler profile included an initial denaturation step at 94oC for 30 s, 30 cycles at 94oC 

for 30 s, 45oC for 60 s, and 68oC for 60 s, and a final extension step at 68oC for 5 min.  We 

sequenced cleaned PCR product from both forward and reverse primers of both fragments using 

BigDye Terminator Cycle Sequencing Ready Reaction Kit v 3.1 (Applied Biosystems), cleaned 

sequences using ExoSAP-IT (Affymetrix, San Diego, California), and electrophoresed them with 

an Applied Biosystems 3130XL capillary sequencer.   

We PCR-amplified 2 Y-chromosome markers that produced haplotypes directly 

comparable to previous ones typed in European, Asian, and North American foxes (Statham et al 

2014).  We used the primers reported in Statham et al (2014): Y29-Fox (F2: 

AGTGCTTAGGCTCAGGATGC, R1: TCCAGGTTTTATTTAGGGTCTT) and Y30-Fox (F2: 

TCCTTTCCATTTTCAGAAAGC; Y30_Dog R: AGAGAGGTAAGGCATAGTTTG).  We 

fluorescently labeled forward primers of both loci with 6-FAM on the 5’ end.  These loci were 

amplified together in a single 10 µl reaction using a Qiagen Multiplex kit with Q-solution 

according to manufacturer’s instructions (Qiagen, Inc.) with an annealing temperature of 60oC.  
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We electrophoresed PCR products using an ABI 3730 capillary sequencer (Applied Biosystems) 

and scored alleles relative to an internal size standard, Genescan 500 LIZ (Applied Biosystems), 

using STRand software (Toonen and Hughes 2001). 

 

Data analyses 

To address our first objective, characterizing matrilines and patrilines as to their 

continental origins, we compared mtDNA and Y-chromosome haplotypes from this study to 

published ones and evaluated origins based on both identity and phylogenetic clustering.  The 

mitochondrial haplotypes could be unambiguously assigned to North America or Europe (Aubry 

et al 2009; Statham et al 2014).  Although the Y-chromosome haplotypes were based on only 

two microsatellite loci, continental differences, possibly related to indels in the flanking regions, 

rendered these loci used in tandem also to be diagnostic.  In particular, locus Y30 was 

monomorphic in North America (387 bp) and distinct from the size range over most of Europe 

(393–405 bp); the exception was in Scandinavia (as with Asia), where some haplotypes also had 

the 387 bp allele at this locus.  However, in such cases, the other locus (Y29) had alleles ranging 

156 to 166 in Eurasia and 170 to 178 in North America (Statham et al 2014).  Therefore, our 

basic approach was to construct phylogenetic trees and networks consisting of the haplotypes in 

this study and representative reference haplotypes.   

For mitochondrial data, we read, aligned, and edited sequences in Geneious v6.0 

(Drummond et al 2014).  We concatenated Cytb and control-region fragments into composite 

mtDNA haplotypes for analysis because no recombination occurs on the mtDNA genome.  For 

novel sequences, we used the Basic Local Alignment Search Tool (BLAST) to search the 

nucleotide database in GenBank (Benson et al 2013).  We follow the naming conventions of 
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previous studies (e.g., Statham et al 2014), whereby the name of the Cytb fragment (beginning 

with or consisting of a letter) is followed by a dash and then the control-region fragment (a 

number); Y-chromosome haplotypes are named based on the fragment size of the two 

microsatellite loci. For mitochondrial data, we estimated maximum likelihood (ML) trees with 

nodes assessed from 1,000 bootstrapped trees in Paup* v. 4 (Swofford 2003).  We used 

JModelTest to determine the best-fit model of evolution for each gene (Darriba et al 2012) and 

used Akaike information criterion (AIC) to select the model most compatible with PAUP* v. 4.  

We only used one individual per haplotype per population from the study sample, along with all 

previously published haplotypes from North America and a subset from Europe, that 

encompassed all haplotypes from Britain, Ireland, Sweden, Norway, and countries of Central 

Europe (Statham et al 2014), all areas putatively sourcing introductions of red fox to North 

America (Kamler and Ballard, 2002; Long 2003; Statham et al 2012; Frey 2013).  We visualized 

the tree in FigTree (Rambaut and Drummond 2012).  To test alternative phylogenetic 

hypotheses, we ran an approximately unbiased (AU) test using PAUP*v.4.0 (Shimodaira 2002; 

Swofford 2003).   

To explore the phylogenetic affinities of the Y-chromosome markers we combined 

alleles from the two linked loci into haplotypes and compared these to a global dataset to assess 

continental origins (Statham et al 2014).  Specifically, we added our new haplotypes to a 

haplotype network initially created using Network 6.0 (Bandelt et al 1999) on which haplotypes 

were previously clustered into exclusively North American or Eurasian haplogroups (Statham et 

al 2014).  

To address the contributions of fur-farm ancestry in our study area, we relied on two 

indicator haplotypes, G-38 and N-7, that were ultimately derived from, and rare in, Alaskan red 
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fox populations (Aubry et al 2009) but are common in fur farms and “feral” populations (i.e., 

populations derived from fur farms) throughout the United States (Perrine et al 2007; Sacks et al 

2010, 2011; Statham et al 2011, 2012).  Other common fur-farm haplotypes were derived from 

eastern Canada and were therefore potentially the same ones that could have colonized the 

eastern U.S. naturally (Statham et al 2012).  Therefore, we considered eastern Canadian 

haplotypes previously associated with fur farm ancestry to be of ambiguous origin. The only 

previous study to use the Y-chromosome markers did not include fur-farm derived or sufficient 

numbers of native North American foxes to enable us to differentiate paternal ancestry within the 

continent. 

Our final objective was to explore geographic patterns of haplotype distribution to assess 

the possibility of differentiation among populations corresponding to different historical origins.  

We estimated haplotype diversity (h) for both mtDNA and Y-chromosome haplotypes and 

nucleotide diversity (π), Tajima's D, and Fu's Fs for mtDNA in Arlequin v3.5 (Fu 1997, Tajima 

1989, Excoffier Lischer 2010). We visualized haplotype relationships using a haplotype network 

created with Network 6.0 and bases corresponding to the Cytb portion weighted twice that of the 

control-region bases (Sacks et al 2010).  To assess isolation by distance, we performed a Mantel 

test in Arlequin (Excoffier and Lischer, 2010).  We then used a spatial analysis of molecular 

variance (SAMOVA) in the program SAMOVA 2.0 to identify patterns of hierarchical structure 

corresponding to K = 2 – 6 groupings among 10 spatial units on the basis of pairwise distance 

among sequences (Dupanloup et al 2002).   
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RESULTS 

 

Origins of eastern red fox lineages 

We successfully amplified both the Cytb and control-region mitochondrial DNA 

fragments in 566 individuals.  Despite the large number of samples from an extensive region, we 

identified only 15 distinct haplotypes.  Of these, all but one, A-269 (GenBank Accession No. 

KP860297), had been previously described. However, these haplotypes reflected multiple 

phylogenetically distinct lineages associated with divergent origins (Fig. 2).  The Shimodaira AU 

test supported previous analyses indicating distinct “Nearctic” and “Holarctic” clades, with a 

North American subclade (H III Alaskan—Statham et al 2014) nested within the otherwise 

Eurasian Holarctic clade (Appendix 1).   

 

Fig 2. Maximum likelihood tree of 697-bp concatenated cytochrome-b and control-region sequences from red foxes 

of the Eastern United States (starred), shown in relation to previously published sequences from the Holarctic and 

Nearctic red fox clades (Statham et al 2014).  The tree was created under an HKY+I model with 1,000 bootstrap 

replicates.   Some branches of European haplotypes within the Holarctic clade were removed for clarity.
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Table 1 Distribution of 15 mitochondrial haplotypes among 583 red foxes from 18 modern and 4 historical sampling locations, including indigenous eastern 

haplotypes not previously associated with fur farms (native) or also found in fur-farm foxes (ambiguous native), non-indigenous haplotypes associated with fur 

farms (fur-farm), and non-indigenous haplotypes from Europe.  Sampling locations are abbreviated as Eastern Shore (ES), Chesapeake (CHS), North 

Pennsylvania (PAN), Central Pennsylvania (PAC), New Jersey (NJ), New York (NY), Southern Virginia and western North Carolina Piedmont (SO), Northern 

Virginia (NVA), Southern Maryland (SMD), Vermont (VT), Historical Maine (HME), Historical New York (HNY), Historical West Virginia (HWV), Historical 

Georgia (HGA), and coastal North Carolina (NCC).  Spatial units refer to samples used in the SAMOVA.  Samples in parentheses were excluded from the 

SAMOVA due to low sample size. 

Sampling  Spatial  Nativeb  Ambiguous nativec  Fur-
farm 

 European 

 locationa n unit Regions A-
84 

A8-
84 

A-
269 

A3-
87 

F3-
9 

F4-
81 

E22-
9 

 E-
9 

E-
86 

F-
9 

F-
12 

 G-
38 

N-
7 

 U8-
157 

U8-
227 

NY1 7 A Hudson lowlands -- -- 1 -- 1 -- --  -- 1 2 --  -- --  2 -- 
NY2 16 A Hudson lowlands -- -- 1 -- 10 -- --  -- 3 -- --  -- --  2 -- 
NY3 15 A Hudson lowlands -- -- 5 -- 1 -- --  2 -- -- --  1 --  5 1 
NY4 18 A Hudson lowlands -- -- 7 -- 4 -- --  -- 3 1 --  1 --  1 1 
NY5 51 A Hudson lowlands -- -- 4 -- 6 -- --  7 24 9 --  1 --  -- -- 
NY6 9 A Hudson lowlands -- -- -- -- 2 -- --  1 4 1 --  1 --  -- -- 
NY7 8 A Hudson lowlands -- -- -- -- 1 -- --  1 5 -- --  -- --  1 -- 
NJ1 12 B Atlantic coast plain -- -- -- -- 2 -- --  -- -- -- --  6 --  1 3 
NJ2 51 B Atlantic coast plain -- -- 1 -- 11 -- --  1 7 2 --  18 --  2 9 
ES 48 C Atlantic coast plain -- -- -- -- 18 -- --  -- 1 -- --  13 --  16 -- 
CHS1 55 D Atlantic coast plain -- -- -- -- 25 -- --  -- 4 2 --  4 1  18 1 
CHS2 40 D Atlantic coast plain -- -- -- -- 16 -- --  -- 2 7 --  2 --  12 1 
SMD 50 E Atlantic coast plain -- -- 3 -- 9 -- --  -- -- 16 --  4 17  -- 1 
NVA 74 F Atlantic coast plain -- -- 3 4 29 -- --  7 -- 5 --  4 --  22 -- 
PAN 7 G Appalachian -- -- 1 -- -- -- --  -- 6 -- --  -- --  -- -- 
PAC 72 G Appalachian -- -- -- -- 24 -- --  23 25 -- --  -- --  -- -- 
VT 26 H Appalachian 2 -- -- -- -- -- --  9 7 4 2  1 1  -- -- 
HME 2 H Appalachian  -- 1 -- -- -- -- --  -- -- 1 --  -- --  -- -- 
HNY 2 H Appalachian -- -- -- -- -- -- --  2 -- -- --  -- --  -- -- 
SO  7 I Piedmont  -- -- -- -- 3 -- --  -- -- 3 1  -- --  -- -- 
HGA 9 J Piedmont  -- -- -- -- 5 -- 1  -- -- 3 --  -- --  -- -- 
(NCC) 3 -- Atlantic coast plain -- -- -- -- -- -- --  -- -- 2 --  1 --  -- -- 
(HWV) 1 -- Appalachian -- -- -- -- -- 1 --  -- -- -- --  -- --  -- -- 
Total 583 -- -- 2 1 26 4 167 1 1  53 92 58 3  57 19  82 17 

a Sampling locations refer to the following counties: Allegany (NY1); Livingston (NY2); Monroe (NY3); Wayne (NY4); Ontario (NY5); Yates (NY6); Steuben 

(NY7); Morris (NJ1), Warren (NJ2); Kent Cty, DE (ES); Cecil Cty, MD (CHS1); Lancaster Cty, PA (CHS2); Montgomery (SMD); Fairfax and Prince William 

(NVA); Bradford (PAN); Northumberland (PAC); Windham (VT); Tazewell Cty, VA  and Davidson Cty, NC (SO); Beaufort, Brunswick, and Dare Ctys, NC 

(NCC); Oxford (HME, 1923);Essex (HNY, 1856); Pendelton (HWV, 1938); Talbot (HGA, 1920-1935). 

bTwo singleton haplotypes in the historical samples differed from the nearest verified haplotypes by C-T or A-G changes consistent with post-mortem 

degradation.  A8-84 was otherwise the same as A-84 and E2-9 was otherwise the same as E-9. 
cThe control region portion of haplotype F3-76 and F-76 (i.e., 9) described by Statham et al 2012 (and Langille et al 2014) differed from haplotype 9 by the 

insertion of an additional A at the end of a poly-A repeat.  Because this insertion was recurrent in multiple lineages, we excluded it from analysis, resulting in our 

subsuming haplotypes F3-76 and F-76 in F3-9 and F-9, respectively.
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Most of the haplotypes could be directly assigned to an unambiguous source (Table 1).  

Previously characterized haplotypes native to eastern Canada and the northeastern United States 

composed 70% of the sample.  However, the subsets of these haplotypes that had not been 

previously associated with fur farms (A-84, A8-84, A-269, A3-87, F3-9, F4-81, E2-9) and which 

had been used in fur-farming (E-9, E-86, F-9, F-12) each composed 35% of the total sample.  

These frequencies imply that 35% to 70% of mtDNA haplotypes arose directly from natural 

populations.  Additionally, two haplotypes derived from Europe (U8-157, U8-227), comprised 

17% of the sample. These haplotypes belonged to Holarctic subclade IX which predominates in 

Great Britain and Ireland, while the specific haplotypes each had been found previously only 

once, specifically in Ireland (Statham et al 2014).  Lastly, 2 haplotypes deriving from Alaskan 

fur-farm stock (G-38, N-7) composed 13% of the sample.  Based on the subset of 377 foxes that 

carried haplotypes representing unambiguous origins, 54% were native eastern, 26% were 

European, and 20% were from fur farms. 

Out of 135 males that amplified both Y29 and Y30 markers, we observed 5 haplotypes 

(Table 2).  The dominant haplotype, 174/387, composed 83% (n = 114) of the total sample and 

was previously found only in North America (Table 2; Statham et al 2014). We also observed 

two previously undefined haplotypes that clustered within the North American haplogroup, and a 

third previously undefined haplotype that clustered within the European haplogroup.  

Specifically, the European haplotype grouped with others from Great Britain (Fig. 3).  In contrast 

to the mtDNA, only three individuals (2%) carried the European Y-chromosome haplotype; each 

of these individuals was sampled from a distinct population: Vermont, Central Pennsylvania, and 

Southern Maryland.  Southern Maryland was the only sampling site with both European mtDNA 

and Y-chromosome haplotypes (one each).  Conversely, none of the populations in which 
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European mitochondrial haplotypes were prevalent had European Y-chromosome markers.  In 

addition, all three males with European Y chromosomes had eastern North American 

mitochondrial haplotypes.   

 

Figure 3.  Median-joining network of 19 haplotypes composed of microsatellite loci linked on the Y chromosome, 

illustrating the phylogenetic placement of the 5 haplotypes found in 133 male red foxes from the Eastern United 

States relative to 16 previously published haplotypes from red foxes sampled throughout Eurasia and North America 

(Statham et al 2014).  Haplotypes starred and labeled correspond to those found in this study.  Three haplotypes 

newly described in this study are indicated with a dashed ring around the node, and a European haplogroup found 

previously only in Britain is indicated within the dotted-line ellipse. 

Geographic patterns 

A total of 99 individuals bearing European mtDNA haplotypes was present in 11 of the 

18 samples (Table 1).  The haplotype and nucleotide diversities were notably higher in the sites 

with European ancestry than in those with purely North American ancestry (Table 3).  None of 

the neutrality tests were significant but were generally positive, particularly in sites with 

European haplotypes.  Most of the European haplotypes occurred in the mid-Atlantic states east 

of the Appalachians but with a relatively small number (13 of 124) occurring also in the Hudson 
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lowlands of western New York (Fig. 4).  Unambiguous fur-farm haplotypes (i.e., those of 

Alaskan ancestry) were distributed similarly to European ones across sampling locations.  Native 

eastern haplotypes not previously associated with fur farming composed similar portions of all 

samples.  Notably, most (98.4%) of 126 samples from the Appalachians and adjacent Piedmont 

had haplotypes indigenous to eastern North America (i.e., native or potentially native samples). 

 We observed no significant relationship between genetic and geographic distance (Mantel 

test, r = 0.09, P = 0.29).  The SAMOVAs indicated statistically significant divisions 

corresponding to K = 2–6, but ΦCT values did not increase beyond K = 2, indicating that a single 

division into two groups was most parsimonious (Table 4). One group was composed of sites in 

the mid-Atlantic coastal plain and the other was broadly distributed north to south in or near the 

Appalachians.  Genetic distances among sampling units within these groupings varied but were 

generally much less than between groups, particularly based on ΦCT, which reflected the 

sequence divergence and was therefore affected by the high divergence between Nearctic and 

Holarctic haplotypes (Table 5). 
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Table 2.  Haplotype diversity (h) and distribution of 5 Y-chromosome haplotypes in 133 male red foxes from 16 sampling locations in the Eastern United States.   

 

a Sampling locations refer to the following counties: Livingston (NY2); Monroe (NY3); Wayne (NY4); Ontario (NY5); Yates (NY6); Steuben (NY7); Morris 

(NJ1), Warren (NJ2); Kent, DE (ES); Cecil, MD (CHS1); Lancaster, PA (CHS2); Montgomery (SMD); Fairfax and Prince William (NVA); Northumberland 

(PAC); Windham (VT); Tazewell Cty, VA  and Davidson Cty, NC (SO).  

bHaplotype 172/405 is presumed to be of European origin. 

  

   Y-chromosome haplotypes 
Sampling 
location a 

n 
h 

174/383 168/387 174/387 178/387 172/405b 

NY2 4 0.000 -- -- 4 -- -- 
NY3 7 0.000 -- -- 7 -- -- 
NY4 8 0.125 -- -- 7 1 -- 
NY5 2 0.000 -- -- 2 -- -- 
NY6 3 0.000 -- -- 3 -- -- 
NY7 5 0.000 -- -- 5 -- -- 
NJ1 2 0.500 -- -- 1 1 -- 
NJ2 24 0.121 2 -- 21 1 -- 
ES 8 0.268 -- -- 5 3 -- 
CHS1 4 0.000 -- -- 4 -- -- 
CHS2 10 0.000 -- -- 10 -- -- 
SMD 10 0.289 -- -- 8 1 1 
NVA 24 0.070 -- -- 23 1 -- 
VT 11 0.264 -- 1 9 -- 1 
PAC 8 0.429 -- -- 2 5 1 
SO 3 0.000 -- -- 3 -- -- 
Total 133 0.255 2 1 114 13 3 
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Table 3. Indices of genetic diversity within spatial red fox sampling units in the Eastern United States: nucleotide diversity (π), 

haplotype diversity (h), Tajima’s D, and Fu’s Fs.  None of the D or Fs estimates differed significantly from zero (P < 0.05). 

Spatial Unita Sampling Locations 
Included 

n π (x10-3) h Tajima’s D Fu’s Fs 

VT (H) VT, HME, HNY 32 7.9 0.766 0.16 4.84 

NY (A) NY1-8 124 11.4 0.813 1.26 12.6 

PA (G) PAC, PAN 79 2.4 0.687 -1.3 1.96 

HGA (J) HGA 9 1.1 0.639 0.19 -0.11 

SO (I) SO 7 1.2 0.714 0.2 -0.24 

NJ (B) NJ1, NJ2 63 15.4 0.772 2.2 12.1 

ES (C) ES 48 16.2 0.689 3.0 19,5 

CHS (D) CHS1, CHS2 95 14.9 0.704 2.9 16.9 

NVA (F) NVA 74 15.5 0.747 1.9 15.5 

SMD (E)  SMD 50 12.7 0.754 1.5 11.6 

 
a Sampling locations refer to standard state abbreviations except for HGA (Historical Georgia), SO (Tazewell Cty, VA  and Davidson 

Cty, NC), ES (Kent Cty, DE), CHS (Cecil Cty, MD and Lancaster Cty, PA), NVA (Fairfax and Prince William Ctys), SMD 

(Montgomery Cty). 

bHaplotype 172/405 is presumed to be of European origin. 
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Figure 4: Geographic distribution of mitochondrial haplotypes of 569 modern red foxes (top left) and 14 historically 

sampled red foxes (top right – Statham et al 2012) coded as to origins (native, ambiguous native/fur farm, fur-farm, 

or European).  Distributions illustrate the localization of European haplotypes (and the majority of fur-farm 

haplotypes) along the mid-Atlantic coastal plain and, to a lesser extent, the Hudson lowlands portion of New York 

State, with the Appalachians and Piedmont composed primarily of native or ambiguous native haplotypes.  Asterisks 

(*) indicate sites with a European Y-chromosome haplotype.  Lower left: Median-joining network of 697-bp 

mitochondrial sequences, with circle size proportional to number of individuals in this study and small filled black 

circles indicating phylogenetic positioning of a subset of previously published haplotypes.  
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Table 4. Results of SAMOVA analyses on values of K= 1–6 for red foxes of the Eastern United States.   Asterisks 

indicate statistical significance (P < 0.05). 

Spatial Unit a K =2 K =3  K = 4 K = 5 K = 6 

VT (H) A A A A A 

NY (A) A A A A A 

PA (G) A A A B B 

HGA (J) A A A B C 

SO (I) A B A B C 

NJ (B) B C B C D 

ES (C) B C B C D 

CHS (D) B C C D E 

NVA (F) B C C D E 

SMD (E) B C D E F 

ɸST 0.25* 0.25* 0.21* 0.20* 0.20* 

ɸCT 0.19* 0.18* 0.18* 0.19* 0.19* 
a Spatial units refer to standard state abbreviations except for HGA (Historical Georgia), SO (Tazewell Cty, VA and 

Davidson Cty, NC), ES (Kent Cty, DE), CHS (Cecil Cty, MD and Lancaster Cty, PA), NVA (Fairfax and Prince 

William Ctys), SMD (Montgomery Cty). 

 

Table 5.  Pairwise population comparisons for the 10 spatial unitsa used in the SAMOVA for red foxes of the 

Eastern United States.  Below the diagonal are ɸST values (based on pairwise sequence divergence); above diagonal 

are conventional (frequency-based) FST, and in the diagonal are sample sizes.  Asterisks indicate statistical 

significance (P < 0.05). 

 VT (H) NY (A) PA (G) HGA (J) SO (I) NJ (B) ES (C) CHS (D) NVA (F) SMD (E) 

VT (H) 32 0.21* 0.28* 0.28* 0.25* 0.23* 0.28* 0.27* 0.24* 0.24* 
NY (A) 0.04* 124 0.25* 0.25* 0.22* 0.21* 0.24* 0.24* 0.22* 0.21* 
PA (G) 0.14* 0.12* 79 0.33* 0.30* 0.27* 0.31* 0.30* 0.28* 0.28* 
HGA (J) 0.13 0.08* 0.22* 9 0.33* 0.28* 0.33* 0.32* 0.29* 0.29* 
SO (I) 0.11* 0.07 0.25* -0.07 7 0.25* 0.30* 0.29* 0.26* 0.26* 
NJ(B) 0.28* 0.26* 0.52* 0.36* 0.35* 63 0.27* 0.26* 0.24* 0.24* 
ES (C) 0.29* 0.25* 0.54* 0.34* 0.33* 0.01 48 0.30* 0.28* 0.28* 

CHS (D) 0.17* 0.12* 0.34* 0.19* 0.18 0.10* 0.05* 95 0.28* 0.27* 
NVA (F) 0.16* 0.09* 0.33* 0.17* 0.16* 0.11* 0.06* 0.00 74 0.25* 
SMD (E) 0.18* 0.15* 0.44* 0.25* 0.23* 0.09* 0.10* 0.08* 0.08* 50 

a Spatial units refer to standard state abbreviations except for HGA (Historical Georgia), SO (Tazewell Cty, VA  and 

Davidson Cty, NC), ES (Kent Cty, DE), CHS (Cecil Cty, MD and Lancaster Cty, PA), NVA (Fairfax and Prince 

William Ctys), SMD (Montgomery Cty). 
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DISCUSSION 

Our study confirmed that European red foxes were introduced to the mid-Atlantic region 

of North America.  Moreover, both mitochondrial and Y-chromosome markers pinpointed the 

region of origin of these foxes to Britain and Ireland, which was consistent with anecdotal 

accounts (Frey 2013).  The low diversity of maternal and paternal haplotypes in this study was 

consistent with a single successful introduction of as few as three individuals.  The region-wide 

dispersion of European haplotypes and the sharing of a single Y-chromosome haplotype among 

three distinct locations further supported a many-generational timeline consistent with colonial 

origins.  The spatial distribution of European mitochondrial haplotypes supported an early 

anecdotal account that named the Eastern Shore of Maryland as the site of introduction in the late 

1700s by English foxes (Frey 2013).  We found the highest prevalence of European (i.e., British 

or Irish) haplotypes on the Eastern Shore, followed closely by the adjacent northern Chesapeake 

Bay. Thus, taken together, our findings provide the first empirical evidence to substantiate the 

conventional wisdom that red foxes were introduced from England to the mid-Atlantic region 

during colonial times. 

Given these findings, the next question arising pertains to the spatial extent of European 

introgression in North American red foxes.  Prior to this study, European mitochondrial 

haplotypes had not been discovered in North America despite sampling and sequencing of many 

hundreds of foxes (e.g., Statham et al 2014).  However, most of the sampling in North America 

occurred west of the Mississippi River and north of the Hudson River (Aubry et al 2009; Statham 

et al 2012).  Those which had been sampled from the eastern US were concentrated primarily 

along the Appalachians and adjacent area.  In the present study, we sampled no foxes between 

the Appalachians and Mississippi River, leaving a relatively wide sample gap.  Additionally, 

very few samples were obtained from the southeastern US or from New England.  Thus, on the 
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basis of empirical data alone, European haplotypes could be localized to the small region where 

we found them in this study, i.e., restricted to portions of a few mid-Atlantic states, or spread 

over an area as great as the entire eastern seaboard, as bounded by the Mississippi River to the 

west, the Great Lakes and Saint Lawrence River to the north, and the Gulf of Mexico and 

Atlantic Ocean to the south and east.  To better evaluate these potential scenarios, it is necessary 

to first elucidate the origins of North American ancestry with respect to indigenous versus feral 

fur-farm descendants.   

It is well supported that prior to the advent of fur-farming in the early 1900s, red foxes 

were established over much of the mid-Atlantic and southern portions of the east coast (reviewed 

by Frey 2013).  Given that several sampling sites in the present study had no European 

haplotypes and few to no unambiguous fur-farm haplotypes, our results support Frey’s 

conclusion that these most likely derived from indigenous foxes. Even in the populations with 

substantial fractions of European and unambiguous fur-farm lineages, these native eastern 

haplotypes occurred in significant proportions.  In particular, the F3-9 haplotype was present in 

16/18 sampling locations and composed 82% of samples with haplotypes that had not been 

previously associated with fur farm ancestry (and 28% of samples overall), suggesting its 

prominence among an early expansion.   

However, it is less clear whether such an expansion would have originated from the north 

as suggested by early naturalists (e.g., Audubon and Bachman 1849) or from a pre-existing 

southern population (e.g., Frey 2013).  On the one hand, most of the haplotype diversity found in 

the eastern US in this and previous studies was a subset of that observed in eastern Canadian or 

fur-farm-derived populations (which themselves originated from eastern Canada; Aubry et al 

2009; Statham et al 2012; Langille et al 2014). Only the F3-9 and F4-81 haplotypes were 
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potentially endemic to the eastern US, one of which differed by a single substitution from a 

widespread basal Canadian haplotype (F-9); the other haplotype was a singleton.  Therefore, we 

find little evidence to support the presence of a Pleistocene-age eastern US population distinct 

from eastern Canadian foxes.  On the other hand, the widespread nature of the F3-9 haplotype in 

eastern US samples, including historical Georgia, and its absence in samples north of the Hudson 

lowlands is consistent with a late Holocene or historical population expansion from somewhere 

south of the Hudson lowlands.  In either case, our findings suggest that red foxes were 

indigenous to the eastern US prior to or during colonial times, particularly in and around the 

Appalachian Mountains.  For example, > 98% of the samples from the Appalachians or adjacent 

Piedmont from this and a previous study (Statham et al 2012) were indigenous eastern North 

American haplotypes.  

Taken together, our findings based on maternal ancestry suggest that red foxes of the 

Appalachians and vicinity were distinct from red foxes at lower-elevation, more human-

dominated landscapes of the mid-Atlantic coastal plain and Hudson lowlands.  Although we 

found no significant isolation-by-distance relationship, the SAMOVA revealed a discrete 

subdivision between foxes of the Appalachians and vicinity ranging all the way from Georgia to 

Maine, which appeared mostly native, and those in the more densely human-dominated 

landscapes to the east in the mid-Atlantic coastal plain, which reflected an admixture of 

nonnative (European and fur-farm) and native maternal ancestry.  Although we found European 

haplotypes also in western New York, the counties sampled overlapped or were situated within 

the Hudson lowlands, a highly populated corridor spanning Buffalo in the west, through 

Syracuse, to Albany in the east, and connecting with the extremely human-dense region of the 

mid-Atlantic coastal plain between Washington D.C. and New York City.   
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These findings were similar to findings in the West, where nonnative red foxes (in that 

case, solely from fur-farms) also appear to be associated closely with human-dominated 

landscapes and, perhaps, less able to thrive in more remote habitats, where their native 

counterparts predominate (Churcher 1959, Sacks et al 2010, Sacks et al 2011, Statham et al 

2012, Frey 2013, Volkmann et al 2015).   If so, the native dominance in the Appalachians and 

inability of the nonnative red foxes to thrive in less human-dominated landscapes could serve as 

a barrier to westward expansion of nonnative haplotypes, most notably European ones, from the 

eastern seaboard.  On the other hand, the Hudson lowlands could provide a corridor for 

nonnative gene flow to the west. Future sampling west of the Appalachians but east of the 

Mississippi River is needed to better evaluate the western extent of European ancestry in North 

American red foxes. 

In light of recent evidence supporting the previous classification of European and North 

American red foxes as distinct species (Vulpes fulva—Statham et al 2014), we also sought to 

assess the evidence for hybrid compatibility of these putative species.  Our finding that 

individuals exhibiting a European haplotype (from its maternal or paternal side) also exhibited a 

North American haplotype from the other parent (in every case), clearly indicated that the two 

nominal species bred in the past and produced fertile offspring.  Interestingly, however, the 

prevalence of mitochondrial European haplotypes was nearly an order of magnitude higher than 

that of European Y-chromosomes. In principle, this pattern could reflect a greater number of 

female than male founders from Europe, e.g., if only one male was introduced with several 

females.  However, this seems unlikely based on evidence from the Australian introductions and 

anecdotes of the North American introductions (Long 2003; Frey 2013).  When foxes were 

introduced they would likely have been introduced as breeding pairs to facilitate population 
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growth.  It is possible instead that introduced males had lower fitness than the expanding 

Nearctic males due either to pre-zygotic (e.g., preference of native females) or post-zygotic 

(gametic incompatibility) causes.  European females, on the other hand, could have been more 

successful due to lower selectivity of native males or asymmetric gametic compatibility.   

The asymmetric establishment of the Y chromosome and mtDNA in the eastern US 

parallels the recently described evidence of a continental exchange of mitochondrial but not Y-

chromosome lineages from Asian to Alaskan red foxes across the Bering land bridge during the 

last Pleistocene glaciation (Statham et al 2014).  Both cases are also consistent with Haldane’s 

(1922) rule, whereby male F1 hybrids would be rare or sterile.  If so, such a pattern indicates a 

degree of reproductive incompatibility between continental forms of red fox.  Alternatively, the 

locally high frequency of European mtDNA haplotypes could reflect a selective sweep on 

particular mitochondrial mutations, in which case, these markers would provide a skewed sense 

of the amount of total European ancestry in eastern red foxes.  In the future, it will be necessary 

to investigate autosomal markers to fully understand the geographic and genomic extent to which 

European red fox genes could have infiltrated North American red foxes.  
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APPENDIX  

Table A1: Results from the Shimodaira approximately unbiased (AU) test that compared the 

likelihoods of different phylogenetic trees.  In this case, it tested the maximum likelihood tree 

with no bounds (ML) with the maximum likelihood trees with various restrictions: one in which 

all samples from this study were bound to global Nearctic samples, one with samples from this 

study bound together, and one in which samples were bound with Holarctic samples.  The results 

supported previous analyses indicating distinct “Nearctic” and “Holarctic” clades, with a North 

American subclade nested within the otherwise Eurasian Holarctic clade. 

Tree -ln L Diff –lnL AU p-value 

ML Tree  2441.37079 (best)  

Nearctic 2476.20072 34.82993 0.1010 

Samples 2618.55742 177.18663 P<0.05 

Holarctic 2641.25383 199.88304 P<0.05 
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ABSTRACT 

Identifying the natural versus anthropogenic origins of newly founded wildlife populations has 

important implications for management and conservation.  We attempted to identify the relative 

impact of native expansion versus human mediated introductions of both colonial era European 

foxes and early 20th century fur-farm foxes on the establishment of red foxes in the mid-Atlantic 

region of the United States.  We did this by characterizing the genetic structure of existing 

populations and attempting to detect genetic signatures of expansion and admixture across the 

landscape.  We found low genetic structure overall despite the broad geographic scale of our 

study area, which we attribute both to range expansion and admixture.    We also found evidence 

for differential patterns of expansion related to habitat.  Specifically, the Appalachian Mountains 

acted as a corridor for gene flow from the northern native source into the southern Mid-Atlantic 

region.     

 

 

Keywords:  

Eastern United States, European red fox, population genetics, landscape genetics, red fox, Vulpes 

vulpes, expansion 
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INTRODUCTION 

When a species is first observed in a habitat there are several potential explanations or 

sources.  They can reflect natural range expansion of a nearby population, invasion/introduction 

from an outside population, the demographic expansion of an existing, small population, or any 

combination therein.  European colonization of the Americas brought with it massive changes in 

the land, which in turn altered the relative abundances and community composition of species, 

often before biodiversity could be adequately catalogued and mapped by 19th century naturalists 

(Pimm et al 1995). Consequently, we are often left to infer pre-colonial species ranges from 

contemporary and fragmentary historical information.  For this purpose, genetic approaches have 

become useful tools as new simulation and applied studies have identified genetic patterns of 

recent expansions and invasions (Allendorf and Lundquist 2003; Excoffier 2004; Ricciardi 2007; 

Excoffier et al 2009; Slatkin and Excoffier 2012; Mona et al 2014; Hagen et al 2015).  

Over the past 300 years red foxes (Vulpes vulpes) have become established in many parts 

of the United States where they had been absent historically.  Some of these recent populations 

stemmed from expansions of native populations, whereas others derived from human 

translocations of captive-farmed or wild-caught animals (Sacks et al 2010; Statham et al 2012; 

Kasprowicz et al 2016).  The earliest such populations occurred along the eastern seaboard, and 

were thought to have originated from southward expansion from northern indigenous 

populations, introductions of European red foxes, or both (Churcher 1959; Kamler and Ballard 

2002; Statham et al 2012; Frey 2013).  The historical record suggests that red foxes occurred no 

further south than New England at the time of European colonization (Frey 2013).  On the other 

hand, late Holocene remains of red foxes occurred as far south as Georgia (Statham et al 2012; 

Frey 2013).  Thus, red foxes could have occurred historically at low numbers along the entire 
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length of the Appalachians and adjacent forests, despite the lack of historical documentation. 

Alternatively, red foxes potentially disappeared from the southern Appalachians prior to 

European colonization only to re-enter the region via range expansion from the north after 

European colonization (Statham et al 2012).   

Based on mitochondrial and Y chromosome analysis, previous studies found that 

contemporary red foxes in the eastern United States reflected multiple sources, including native 

eastern North American red foxes and introduced red foxes from captive-farmed and European 

sources (Statham et al 2012; Kasprowicz et al 2016).  Native haplotypes predominated along the 

Appalachian Mountains and adjacent piedmont, whereas nonnative (i.e., European and fur-farm) 

haplotypes were most common along the coastal plain and in the Hudson River Valley.  We 

hypothesized that the more densely human-populated lowlands favored the nonnative invasive 

foxes, whereas the less human-impacted Appalachians reflected natural habitat for native red 

foxes and, consequently, acted as a longitudinal barrier to the westward spread of nonnative 

foxes.  Although these findings generally confirmed the natural occurrence of native red fox 

ancestry along the latitudinal length of the Appalachian Range and adjacent habitats in 

contemporary populations, autosomal genetic markers would have been needed to quantify 

admixture and investigate the historical demography of the native component of the population. 

While mitochondrial DNA is exceptionally useful for tracing population divergence due 

to its ubiquity, non-recombining and haploid nature, and its mutation rate, matrilineal markers 

only provide a partial indicator of gene flow and genetic diversity (Avise and Ellis 1986; Avise 

et al 1987).  It is particularly important when studying populations that are either recently 

derived or have a likelihood of admixture to include nuclear loci (Geraldes et al 2008).  

Microsatellites (µsats), in particular, are used in population studies because they are neutral, have 
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high polymorphism even in populations with low diversity, are co-dominant, and can be 

implemented through high throughput genotyping methods (Maudet et al 2002; Kelkar et al 

2010; Guichoux et al 2011). 

Because range expansion and non-native introductions can generate distinct geographic 

patterns of genetic diversity, use of multiple genetic markers can help to differentiate these 

demographic processes (Hagen et al 2015; Norén et al 2015).  Natural range expansions tend to 

occur in a stepwise pattern with genetic differentiation increasing from the source (Schrey et al 

2014).  Typically, this expansion results in serial founder effects along the expansion fronts 

(Slatkin and Excoffier 2012).  The influence of drift on the expansion front is expected to 

increasingly reduce overall allelic diversity along the axis of the expansion front, but also to 

increase the frequency of some rare alleles, a process dubbed ‘gene surfing’ (Excoffier and Ray 

2008; Hallatschek and Nelson 2008).  When colonization distance is large relative to average 

dispersal distance, gene surfing can result in increasing genetic differentiation of populations 

along the expansion front from the source population (Hallatschek and Nelson 2008).  

Empirically, however, expansions in highly vagile organisms, such as terrestrial carnivores, tend 

to be rapidly followed by genetic homogenization across the newly colonized region, but, due to 

low gene flow back into the source population, also retain some genetic differentiation from the 

source population (Hagen et al 2015; Norén et al 2015). This results in relatively discrete 

differentiation between the original and new portion of the range and lower overall genetic 

diversity in the latter. In contrast, establishment of introduced or invasive species often entails 

genetic bottlenecks as new populations are founded by small numbers of colonists (Allendorf 

and Lundquist 2003).  In successful invaders, this is often overcome by repeat introductions from 

different source populations (Sakai et al 2001; Kowarik 2003; Allendorf and Lundquist 2003).  
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One expectation is that there is higher diversity in newly founded populations than in the source 

populations and strong differentiation if independent introductions occur across a landscape.  

In this paper we attempt to identify the relative impact of native expansion versus human-

mediated introductions on the establishment of red foxes in the mid-Atlantic region of the United 

States.  Because eastern red foxes apparently contain admixture from nonnative sources, 

especially on the coastal lowlands and Hudson River Valley (Kasprowicz et al 2016), we first 

characterized the genetic structure of existing populations with respect to native and nonnative 

admixture.  In particular, we tested the a priori hypothesis based on mtDNA that upland, 

Appalachian populations were primarily native while lowland, valley populations were most 

impacted by introduced European and farmed red fox and compared the results with mtDNA 

patterns.  We then attempted to tease apart the effects of this admixture from signatures of 

natural expansion from the north.  To investigate the hypothesis of a natural southern range 

expansion from the northern Appalachians, we tested the following predictions: (1) a genetic 

subdivision between the northern Appalachians and the putatively newly colonized southern 

Appalachians and lowlands, (2) a decline in genetic diversity with distance to the south and, 

depending on nonnative admixture, east, and (3) higher connectivity among Appalachian 

populations.   

 

METHODS  

We collected and extracted DNA from locations throughout the eastern United States 

(Fig. 1), as described previously (Kasprowicz et al 2016).  For the present study, we used a 

subset of 391 individuals.  Thirty individuals from each location were randomly selected unless n 

was <30 in which case the entire sample was used.  Vermont (VT) was the only sampling 
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location in our study where red foxes were known to occur prior to European colonization and 

therefore represented the putative source of native expansions. 

 
Figure 1: Map of 10 counties (black) where 342 red foxes were sampled during 2011–2013 in 

relation to the Appalachian Mountain Range.  The Vermont (VT) population represents the southern 

extent of the pre-European range of the red fox, whereas all other sites were potentially colonized or 

introduced subsequently.  Dashed line indicates known pre-European range.  Light grey represents the 

area classified as “Lowland” and dark grey represents “Mountain” in the resistance models.  Sampling 

locations (counties) are abbreviated as Vermont (VT), northwest New York (NY1), southwest New York 

(NY2), New Jersey (NJ), central Pennsylvania (CPA), Chesapeake (CHS), Eastern Shore/Delmarva 

Peninsula (ES), southern Maryland (SMD), northern Virginia (NVA), and southern Virginia (SO). 

We amplified 22 microsatellite loci: AHT140, Vv-C01.424, FH2004, Vv-FH2010, Vv-

FH2088, FH2289, Vv-AHTh171, Vv-CPH11, Vv-CPH18, Vv-CXX-468, Vv-CXX-602, Vv-FH 
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2848, Vv-REN54 P11, Vv-AHT133, Vv-FH2328, Vv-C08.618, Vv-FH2001, Vv-FH2054, Vv-

FH2457, Vv-CPH2 (Wandeler & Funk 2005; Moore et al 2010; Sacks et al 2011). Forward 

primers were fluorescently labeled (6-FAM, VIC, NED, PET; Applied Biosystems). We 

conducted polymerase chain reactions (PCR) in three multiplex groups as described by Moore et 

al (2010) using the Qiagen multiplex kit using “Q-solution” according to the manufacturers 

recommended protocols. All microsatellite laboratory work was performed at the Mammalian 

Ecology and Conservation Unit at the Veterinary Genetics Laboratory at the University of 

California, Davis.  Products were electrophoresed along with an internal size standard Genescan 

500 LIZ (Applied Biosystems Foster City, CA, USA) on an ABI 3730 capillary sequencer 

(Applied Biosystems).  Alleles were scored using STRand software (Toonen and Hughes 2001). 

 

Population Differentiation.  

 We examined population differentiation across the landscape to trace connectivity and 

distribution patterns.  First, we used traditional F-statistics.  We used GenePop on the Web 

(http://genepop.curtin.edu.au/; Raymond and Rousset 1995; Rousset 2008) to assess deviations 

from Hardy-Weinberg and linkage equilibrium.  We then used GenAlex (Peakall and Smouse 

2006) to calculate observed and expected heterozygosity, FIS, number of alleles, and private 

alleles.  Because sample sizes varied across sites, we used ADZE 1.0 to create rarefaction curves 

of numbers of alleles per locus and numbers of private alleles per locus standardized to the 

smallest sample size (Szpiech et al 2008).  We calculated pairwise population differentiation 

under FST and tested for significance using 10,000 permutations in Alrequin 3.5 (Excoffier et al 

2005). 

http://genepop.curtin.edu.au/
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To gain further insight into the connectivity of the sampled locations we used an 

individual-based assignment approach implemented with program Structure v2.3 to identify 

genetic clusters on the basis of minimizing departures from Hardy-Weinberg and linkage 

equilibrium and the level of admixture between them (Pritchard et al 2000).  We applied the 

correlated allele frequency and admixture models without priors of population membership 

(Falush et al 2003). Initially, we ran 10 replicates for each predetermined number of clusters (K) 

from 1–20 using 100,000 iterations following 10,000 burn-in cycles.   After determining that 

Pr(X|K) was highest for 2 < K < 9 we ran an additional 20 replicates of 750,000 (250,000 burn-

in) cycles for K, 2–9.  To enhance sensitivity to potentially weak structure, we repeated this 

analysis using the LOCPRIOR setting, which uses prior information on proximity of sampling 

locations to help identify structure (Hubisz et al 2009).  Locations corresponded to county 

centroids.  We then used the program CLUMPAK to combine and visualize the results across all 

values of K for comparison (Kopelman et al in press).  We evaluated the optimal number of 

clusters based on both the Pr(X|K) method suggested by Pritchard and Wen (2000) as well as the 

ΔK method (Evanno et al 2005).  Pritchard et al (2005) suggest using the lowest value of K with 

the highest likelihood that also makes biological sense.    

In addition to assignment methods, we used multivariate statistical analysis to build 

graphical representations of structure without a priori assumptions of Hardy-Weinberg or 

linkage equilibrium.  We performed a principal coordinates analysis (PCoA) using GenAlEx to 

project individual genotypes onto 2-dimensional space based on Nei’s D in order to visualize 

patterns of genetic relatedness among samples (Peakall and Smouse, 2012).  Multi-dimensional 

scaling methods such as this one enable the identification of relatedness between individuals 

within populations in relation to individuals across populations.   
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Expansion 

To test for a stepping-stone model of expansion, which assumes an equilibrium between 

gene flow and drift, we used GenAlex to assess isolation by distance (IBD) using a Mantel test 

on FST values as a function of straight-line Euclidean distances separating centroids of sampling 

locations.  A signature of range expansion is the presence of genetic clines with divergence 

between the source and colony (Excoffier and Ray, 2008; Ray and Excoffier 2010; 

Niedzialkowska et al 2014).  Isolation by Distance increases the genetic differentiation between 

individuals as geographic distance increases resulting in strong differentiation between the edge 

and the source (Mantel, 1967).  To test for a recent expansion, where diversity was expected to 

decline with distance from the source, we performed a linear regression on allelic richness and 

average heterozygosity against increasing distance from the VT population. 

 

Impact of the Appalachian Mountain Range  

To test the a priori hypotheses regarding the distribution of native and introduced red  

foxes, we performed analyses of molecular variances (AMOVA) based on F-statistics (Excoffier 

et al 2005).  The first hypothesis used the groupings that a SAMOVA on mtDNA identified as 

maximizing genetic variance between groups of populations (Kasprowicz et al 2016).  The 

second AMOVA compared sites with European mtDNA to those with exclusively native 

mtDNA.  The final AMOVA tested whether habitat significantly explained differentiation by 

comparing sites that are geographically within the Appalachian Range versus those that were 

lowland regardless of mitochondrial haplotypes present.  Additionally, we applied a spatial 

analysis of molecular variance (SAMOVA) to assess population structure without a priori 

constraints (Dupanloup et al 2002).   
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Landscape resistance 

 To test our hypothesis that the Appalachians facilitated movement among native red 

foxes and inhibited movement of lowland red foxes, we created two opposing landscape 

resistance surfaces, each of which we tested against the corresponding populations.  The first 

surface treated the Mountain zones as low resistance and the Lowland zones as high resistance 

and was tested against the Mountain sampling sites (Fig. 1).  The second surface treated the 

Lowland zones as low resistance and the Mountain zones as high resistance and was tested 

against the Lowland sampling sites (Fig. 1).  We applied circuit theory to assess the relationship 

between genetic differentiation and landscape resistance using the program Circuitscape (Shah 

and McRae 2008).  We created hypothetical resistance surfaces using ArcGIS version 10.3 

(ESRI, Redlands California).  We used the USGS habitat map and reclassified each region into 

its binary classification based on the USGS definition of each region.  This resulted in the 

following categorization of sample sites: VT, NJ, CPA, NVA, and SO were considered Mountain 

and NY1, NY2, CHS, SMD, and ES were considered Lowland (Fig. 1).  To tune our surfaces, we 

tested three ratios of resistance between high and low: 1:10, 1:5, and 1:2.  We then performed 

partial Mantel tests in R using the VEGAN package (Oksanen et al 2015) to compare genetic 

distance to resistance distance while controlling for geographic (Euclidian) distance. 

 

RESULTS 

Summary Statistics  

 We successfully amplified >20 loci in 342 individuals.  All loci were polymorphic but 

genetic diversity varied across sites (Table 1).  Although several loci were significantly out of 

Hardy-Weinberg equilibrium (HWE) in some sampling sites, no particular locus consistently 
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deviated from HWE across sites (Supporting Information Table S1).  Likewise, only 5 of 2100 

comparisons for LD were significant after sequential Bonferroni correction.  

Table 1: Summary statistics by sampling site based on genotypes of 342 red foxes sampled in the eastern 

United States 2011–2013.  Sampling locations are abbreviated as Vermont (VT), northwest New York 

(NY1), southwest New York (NY2), New Jersey (NJ), central Pennsylvania (CPA), Chesapeake (CHS), 

Eastern Shore/Delmarva Peninsula (ES), southern Maryland (SMD), northern Virginia (NVA), and 

southern Virginia (SO).  For each site the number of individuals included (n), the average number of 

alleles (NA), allelic richness (Ar), observed heterozygosity (HO), expected heterozygosity (HE), and 

inbreeding coefficient (FIs).  Allelic richness was standardized for n = 23, which was the smallest n when 

the SO population was removed. 

 
Sampling Site  n NA Ar HO HE FIs 

VT  23 5.33 4.57 0.606 0.626 -0.005* 

NY1   58 7.14 5.31 0.700 0.707 -0.002* 

NY2  23 5.91 5.12 0.686 0.681 -0.032 

NJ  53 6.91 5.26 0.640 0.688 0.059* 

CPA  29 6.33 5.34 0.665 0.698 0.026 

CHS  46 6.91 5.29 0.682 0.706 0.024* 

ES  30 5.71 4.80 0.687 0.698 -0.001* 

SMD  30 5.76 4.88 0.679 0.701 0.013* 

NVA  44 6.05 4.94 0.660 0.698 0.044* 

SO  6 5.81 --- 0.690 0.708 -0.077 

Total/Average  342 6.07 5.04 0.67 0.691 0.005 

 

Population Structure 

 For the Structure analysis with no prior information, each method used to assess the 

“best” number of discrete subpopulations (K) indicated a different optimum (Fig. 2).  At all K, 

VT contained the highest frequency of assignments with q > 70%, and these were almost all 

>90% (Fig. 3A).  Regardless of K, however, few individuals in the other populations assigned to 

any subpopulation with q > 70% indicating high levels of admixture.  Therefore, we present K 

ranging 2–10 (Fig. 3A).   
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Figure 2:  Graphs to determine optimal value of clusters (K) based on (A) the log probability of the data 

[LnP(D)] and (B) the ΔK method.  Blue lines/dots represent simulations with no prior information while 

orange represents those run with a location prior added to the model. 
 

 When the LocPrior setting was used, both methods supported K = 5 as the optimal value 

of ΔK (Fig. 2).  Nevertheless, as with the analysis with no prior information, qualitative patterns 

of admixture were similar regardless of K (Fig. 3B).  At K = 6, only 14% of individuals could be 

assigned to a group with q > 70%.  Again, VT was the most distinguishable site.  However, NVA 

also became distinct in this set of analyses, as did NJ at K > 5.  All individuals in VT were 

assigned to one cluster at q > 90% and all but one of the NVA foxes was assigned to another 

cluster at q > 90%.  
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Figure 3:  Results of Structure analysis of the genotypes of 342 red foxes sampled in the eastern United States 2011–2013, where each vertical 

line represents the genetic composition of one individual within the labeled sample locations.  Results without location prior (A) and results with 

location prior (B).   
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 Similarly to the Structure analyses, the SAMOVAs indicated statistically significant 

divisions corresponding to K = 3–9 and FCT values increased with increasing K (Fig 4).  

Importantly, the highest FCT corresponded to K = 9, which distinguished all sampling sites 

except SO and NY2, which were grouped together.  These two sites were far apart in terms of 

geographic distance but both occurred within the Appalachian Mountains.  The VT site was 

distinct from all others at K = 2, 6–9, whereas the NVA site was distinct at K = 3–9.  Although 

iterations corresponding to increasing K were not perfectly nested, CHS and SMD tended to 

cluster together as did SO, NY, and NY2.  Lastly, CPA and NJ clustered together for K < 7. 

 

  * p < 0.05 

 

Fig.  4 The results of SAMOVA analyses of the genotypes of 342 red foxes sampled in the eastern United 

States 2011–2013, based on optimal groupings at each given value of K that maximally differentiates each 

group. 

 

 The AMOVA results showed only 4% of the genetic variation was due to differences 

across locations, 5% among individuals, and 91% within individuals.  Two of the hypothesis 

driven AMOVAs were significant, but generally of low explanatory value (Table 2). The 

SAMOVA comparison at the same level of K (i.e., K = 2) indicated greater support than any of 

these a-priori groupings, in particular, for VT vs. all other populations. 
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Table 2: Hypothesis- driven AMOVA’s based on a priori information from landscape data and mtDNA 

groupings from a previous study (Kasprowicz et al 2016) tested with genotypes of 342 red foxes sampled 

in the eastern United States 2011–2013: “K2 SAMOVA” was created on distribution of populations from 

the optimal K = 2 SAMOVA analysis in Kasprowicz et al 2016; “European” divides sites between those 

with European mitochondrial haplotypes versus those without; “Mountain/Lowland” compared 

populations defined in the text as ‘Mountain’ or ‘Lowland’. 

 

 All but 7 pairwise FST comparisons between individual sites were significant, but with 

low to moderate differentiation across most sites (0.016–0.092, Table 3).  Each of the non-

significant comparisons involved the SO population which had a small sample size (n = 7).  Both 

FST and comparisons based on Nei’s D identified VT as strongly differentiated from all other 

sites.   

 The PCoA similarly revealed the VT site was distinct as well and revealed additional 

differentiation among sites.  Specifically, VT clustered with CPA and SO, the two other 

populations that were included within the Appalachian system.  (Fig. 5)

  FST FSC FCT 

K2 SAMOVA 1: NJ, ES, CHS, 

SMD, NVA, 

2: NY, NY2, 

CPA, VT, SO 

0.038* 0.031* 0.007* 

European 1: CPA, VT, SO 

2: NY, NY2, NJ, 

ES, CHS, 

SMD,NVA 

0.042* 0.031* 0.012* 

Mountain/Lowland 1: VT, NJ, CPA, 

NVA, SO 

2:  NY1, NY2, 

CHS, ES, SMD 

0.034* 0.035* -0.002 
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Table 3 – Pairwise genetic distances between locations based on genotypes of 342 red foxes sampled in the eastern United States 2011–2013.  

Above the diagonal are Nei’s DA estimates.  Below the diagonal are FST estimates.  
 

 CHS CPA ES NJ NVA NY NY2 SMD SO VT 

CHS - 0.102 0.084 0.064 0.080 0.063 0.110 0.039 0.059 0.229 

CPA 0.037* - 0.102 0.081 0.115 0.082 0.100 0.112 0.043 0.161 

ES 0.032* 0.041* - 0.074 0.128 0.045 0.086 0.079 0.055 0.104 

NJ 0.026* 0.034* 0.032* - 0.076 0.043 0.062 0.048 0.040 0.104 

NVA 0.030* 0.047* 0.051* 0.032* - 0.066 0.085 0.057 0.029 0.208 

NY 0.023* 0.033* 0.019* 0.019* 0.027* - 0.017 0.061 0.00 0.098 

NY2 0.041* 0.043* 0.036* 0.027* 0.036* 0.007* - 0.092 0.00 0.061 

SMD 0.016* 0.044* 0.033* 0.021* 0.023* 0.024* 0.037* - 0.045 0.215 

SO 0.020* 0.011 0.018 0.015 0.009 0.000 0.000 0.016 - 0.072 

VT 0.091* 0.075* 0.051* 0.074* 0.090* 0.047* 0.033* 0.092* 0.037* - 

* P < 0.05 (FST estimates only) 
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Figure 5: Principal Coordinates Analysis (PCoA) of the genotypes of 342 red foxes sampled in the eastern United States 2011–2013.  Orange 

markers represent sites that were previously classified based on mtDNA (Kasprowicz et al 2016) as “mostly native” while blue are locations are 

those that are more strongly influenced by introduced (European or fur-farm) haplotypes. 
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Expansion 

 A simple Mantel test of genetic versus Euclidian distance was not significant (r = -0.181, 

P = 0.22).  Further, we observed no correlation between genetic and geographic distances when 

examined separately within Mountain and Lowland sites (Fig. 6a).  Of the two diversity 

measures, only Ar was significantly correlated with distance from the VT site (r = -0.72, P = 

0.044; Fig. 6b).  However, the VT site had the lowest Ar overall, possibly because it was least 

affected by nonnative admixture (AR = 4.57).  We observed no significant relationship between 

HO or HE and distance from VT (rHo = 0.011, PHo = 0.588; rHe = 0.012, PHe = 0.597). 

 

Resistance surface models 

 Plots of genetic distance on resistance distance suggested a weak positive relationship for 

the Mountain dataset but none for the Lowland dataset (Fig. 7).  The partial Mantel tests for 

isolation by resistance indicated a strong relationship for the Mountain comparisons when 

controlling for Euclidian distance (rresist = 0.92, P < 0.05).  The converse relationship, genetic 

distance versus Euclidean distance, holding resistance distance constant, was not significant 

(rgeog = -0.899, P = 0.967).  Neither partial Mantel test was significant for the Lowland model 

(rresist = -0.123, P = 0.575; rgeog = 0.246, P = 0.242).   
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Figure 6 Graphs of (A) genetic distance (FST) versus geographic distance and (B) allelic richness (AR) 

versus Euclidean distance from VT 342 red foxes sampled in the eastern United States 2011–2013.  

Comparisons between Lowland sites are in blue and between Mountain sites are in orange, with 

corresponding trend lines similarly colored. 
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Figure 7: Graph of genetic distance (FST) versus resistance distance, based on genotypes of 342 red foxes 

sampled in the eastern United States 2011–2013.  The Mountain model is represented in orange while the 

lowland model is represented in blue. 

 

 

DISCUSSION 

In this study we sought to understand the ascendance of red fox populations in the eastern 

United States.  The increase in distribution and abundance of red foxes corresponded in time 

with European (human) colonization (Statham et al 2012; Frey 2013).  The result was ambiguity 

as to the source of these red foxes.  Previous mitochondrial analyses identified both native and 

nonnative haplotypes, indicating that both natural expansion and introduction of foreign foxes 

contributed (Kasprowicz et al 2016).  The nuclear genetic results of the present study indicated 

differential patterns of native vs. nonnative expansion related to habitat.  In particular, the 

Appalachian Mountains served as a corridor facilitating southward gene flow from the northern 

native source.   
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Expansion and Admixture   

 The relatively low genetic structure despite geographic distance and potentially impactful 

landscape features is suggestive of either a recent expansion or strong admixture due to high 

gene flow.  Vermont was the only site included in this study that was known to be a part of the 

historic range (i.e., pre-colonial) of eastern red fox populations, and, therefore, hypothesized to 

represent the source of natural range expansion.  As predicted, VT was discretely differentiated 

from all the sites in the newly colonized portion of the range, a pattern expected under range 

expansion (Excoffier and Ray 2008; Hallatschek and Nelson 2008).  Indeed, all Structure 

analyses grouped VT as its own cluster, even when prior information of sampling location was 

disregarded, while failing to identify any other consistent cluster.  The VT location also had the 

lowest number of distinct alleles across sites but the highest number of private alleles.   

 In contrast, we observed a lack of clear structure among all other locations.   Although 

this pattern was potentially explained by high contemporary gene flow, a more likely explanation 

was that they became established from a recent expansion, after European colonization, in which 

case time might not have been sufficient for gene flow and drift to reach equilibrium.  The 

reduction in allelic richness with increasing distance from VT also supports a recent expansion, 

as dispersing alleles undergo bottlenecks which reduce the overall number of alleles.  

 However, the genetic patterns suggested that red fox range expansion was a much more 

complex and dynamic process than what is expected under a simple model of natural range 

expansion.  In particular, non-native admixture clearly was a significant part of the equation.  In 

general, non-native populations can be introduced into two basic scenarios: 1) habitats without 

conspecifics and 2) habitats with conspecifics.  The first scenario would result in founder effects 

and strong genetic drift resulting in reduced genetic diversity.  Assuming introduction to multiple 
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different locations, drift would likely result in strong differentiation among sites (Sacks et al in 

review).  With the second scenario, we would expect high admixture, outbreeding, and an 

increase in genetic diversity.  Structure among multiple populations would depend on the pre-

existing differentiation and levels of gene flow.  In our study, genetic diversity was highest at 

mid-latitudes probably due to having the highest admixture among the three sources (native, 

European, fur-farm).  The three populations with greatest distance from VT and lowest AR were 

ES, SMD, and NVA.     Throughout sites south of VT, individuals were assigned to multiple 

genetic groups with admixture proportions ranging 20–80%.  Thus, as indicated previously with 

mitochondrial DNA (Kasprowicz et al 2016), introductions from Europe and fur farms 

apparently also increased the nuclear genetic diversity of the Eastern red fox south of the known 

historical range.    

 

The Appalachian Mountains 

 It was unclear from the data whether the Appalachian population extended to southern 

Virginia before or after European colonization, but was apparent that the Appalachians acted as a 

conduit for native gene flow at least in the contemporary if not historical population.  Landscape 

fragmentation can subtly affect genetic patterns of expansion (Mona et al 2014).  For the most 

part, it decreases the number of observed haplotypes, thus overall diversity, through increased 

genetic drift.  However, this is not as obvious at the landscape level as it is at the deme or patch 

level (Mona et al 2014).  Our results support the hypothesis that red foxes along the Appalachian 

Mountain range, which had been shown to be predominantly native in origin (Statham et al 2012; 

Kasprowicz et al 2016), experienced a higher connectivity to each other than to those found in 

the surrounding lowland habitats.  Whereas a Mantel test did not detect isolation by distance, we 
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found a significant correlation between genetic and resistance distance (i.e., isolation by 

resistance) consistent with higher connectivity across sampling sites within the Appalachian 

range.    Despite large geographic difference, the VT site was most closely related to the location 

furthest from it, SO, also within the Appalachians.  Thus, in conjunction with the mitochondrial 

results showing strong influence of native red foxes throughout the east coast (Kasprowicz et al 

2016), the present findings support a southern expansion of native red foxes initiating in 

northeastern North America. 

Although the Appalachians apparently served to facilitate native gene flow, we found no 

evidence that these mountains served as a barrier to non-native gene flow.  For example, the 

landscape resistance model was not a significant predictor of genetic distance among lowland 

populations.  More directly, the AMOVAs that predicted a division between mountain and 

lowland populations were not significant and admixture profiles were nearly identical between 

central latitude sites in and out of the Appalachians. Interestingly, the picture provided by the 

nuclear genetic analysis in the present study contrasts somewhat with that found based on 

mitochondrial DNA (Kasprowicz et al 2016).  This distinctiveness was evident also in a direct 

comparison of mitochondrial haplotypes compared to admixture profiles (Fig. 8).  In particular, 

the mitochondrial patterns showed a much stronger division between Appalachian and lowland, 

human-dominated landscapes.  One of the implication of these findings taken together is that 

male-mediated gene flow is primarily responsible for the admixture of nonnative and native 

populations.  This has also been found in other nonnative red fox metapopulations, which show 

much greater structure in mitochondrial than nuclear markers (Sacks et al in review).   

However, it is unclear to what extent the homogenization was driven by native gene flow 

into the lowlands versus nonnative gene flow into the Appalachians.  More importantly, we were 
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unable to identify the relative contribution from European versus fur-farm sources of nonnative 

admixture.  A previous survey found European red fox Y chromosomes to be an order of 

magnitude less prevalent than European red fox mtDNA haplotypes in the eastern United States 

(Kasprowicz et al 2016), which implied either selection against European Y chromosomes (or 

males) or selection for European mitochondria.  Thus, it remains unclear the extent to which 

European red fox nuclear ancestry has infiltrated eastern North American red fox populations.  

Given the recent evidence for species-level divergence between North American and European 

red foxes, this question remains important to address in future studies (Statham et al 2014).  In 

particular, identification of diagnostic autosomal nuclear alleles (e.g., SNPs, microsatellites) 

would enable quantification of European admixture in eastern and other North American red fox 

populations. 
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Figure 8 Bar plots from A) microsatellite STRUCTURE analysis at K = 5 using the Location prior and corresponding B) mitochondrial 

haplotypes for each sampling location, color coded in terms of origin from native, fur-farm, ambiguous (native or fur-farm), or European source 

based on genotypes of 342 red foxes sampled in the eastern United States 2011–2013.   Groupings have been rearranged from previous figures to 

highlight the mitochondrial differentiation. 
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CONCLUSIONS 

We suggest that the most parsimonious explanation to explain the sum total of our 

findings is the following scenario: red foxes were absent south of New England at the time of 

European colonization and, because of this vacuum, and changes in the colonial landscape (e.g., 

removal of wolves, reduction of gray-fox favored habitat, climatic cooling), native red foxes 

expanded south along the Appalachian Range.  It is unclear to what extent the admixture evident 

in contemporary eastern red foxes, both in the Appalachians and in the Atlantic coastal plain, 

reflects European versus fur-farm admixture.  Regardless, however, the relatively wide 

contemporary hybrid swarm stands in contrast to the narrow hybrid zones observed when 

nonnative foxes come into contact with long-established native populations (e.g., Sacks et al 

2011), which appears to describe well the interface between the recently formed hybrid swarm 

and the New England (represented in our study by VT) native population.  In the future, 

identification of specific nuclear alleles from the putative source populations in eastern Canada 

and Great Britain would enable a clearer understanding of the relative movements of native 

American versus European genes across the eastern landscape.   
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Appendix 1 Locus specific FIS by population and loci not meeting Hardy Weinberg 

Expectations at the p < 0.05 level based on genotypes of 342 red foxes sampled in the eastern 

United States 2011–2013. 

 

 CHS CPA ES NJ NVA NY1 NY2 SMD SO VT Mean  

 FIS FIS FIS FIS FIS FIS FIS FIS FIS FIS FIS SE 

AHT140 -0.031 -0.188 0.126 -0.089 -0.007 -0.101 -0.034 0.012 0.345 -0.026 0.001 0.046 

c01.424PET -0.131 0.077 0.284* 0.139 -0.056 -0.162 -0.123 0.125 0.355 -0.173 0.034 0.060 

FH2004 0.056 -0.192 0.112 0.151 -0.138 0.165 -0.091 -0.242 0.172 -0.037 -0.004 0.049 

FH2010 -0.049 0.158 -0.035 0.033 -0.101 0.001 -0.043 0.004 0.143 -0.150 -0.004 0.031 

FH2088 0.125 0.188 0.171 0.354* 0.103 0.098* 0.127 -0.041 -0.091 0.256 0.129 0.041 

FH2289 0.152 -0.055 0.028 0.159 0.052 0.002 0.129 0.033 -0.714 -0.146 -0.036 0.081 

FH2380 -0.105 -0.083 0.038 -0.018 0.160 -0.075 0.203 -0.029 -0.429 0.237 -0.010 0.061 

AHT133 0.027 0.057 0.133* 0.104* 0.071 0.135 -0.159 0.093 -0.297 -0.129 0.003 0.046 

FH2328 0.024 0.010 0.009 -0.039 0.021 0.044 -0.017 0.159 -0.180 -0.003 0.003 0.026 

RF08.618 -0.081 0.129 0.065 0.049 -0.001 0.048 0.187 0.235 -0.154 -0.060 0.042 0.038 

RF2001Fam 0.093 -0.030 0.192 0.058* -0.070* 0.032 -0.030 -0.002 0.265 -0.019 0.049 0.034 

RF2054 0.133 -0.211 0.015 0.095 0.002 0.081 -0.047 0.094 -0.034 0.057 0.019 0.032 

RF2457 -0.018 -0.198 0.134 0.005* 0.060* 0.028 0.116 -0.005 -0.286 -0.037 -0.020 0.041 

RFCPH2 -0.026 -0.037 -0.055 0.038 0.154 -0.002 -0.008 -0.004 0.172 -0.055 0.018 0.026 

AHTh171 0.064 0.205 0.252* -0.081 -0.211 -0.078 0.054 -0.023 -0.538 0.040 -0.032 0.071 

CPH11 -0.075 0.093 -0.076 0.036 -0.089 0.088 -0.219 0.327 0.467 0.174 0.073 0.066 

CPH18 -0.049* -0.046 0.113 -0.025 -0.045 -0.048 -0.051 -0.232 -0.333 -0.114 -0.083 0.039 

CXX-468 0.132 0.048 -0.072 0.027 -0.053 0.033 0.049 -0.140 -0.200 -0.065 -0.024 0.032 

CXX-602 0.009 -0.018 0.278* 0.023 0.244 -0.051 0.000 -0.070 -0.067 -0.011 0.034 0.039 

FH2848 0.008* -0.071 0.032 0.007 0.004 -0.010 -0.039 0.141 -0.067 0.124 0.013 0.023 

REN54P11 0.242* 0.060 0.108 -0.035 -0.058 0.119 -0.005 0.162 -0.154 0.035* 0.047 0.037 

Average 0.024 0.026 -0.001 0.059 0.044 -0.002 -0.032 0.013 -0.077 -0.005 0.005  

SE 0.021 0.031 0.027 0.017 0.031 0.018 0.030 0.018 0.067 0.026 0.010  

*p < 0.05 
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Chapter 4 

The extent of European introgression in native red fox populations based 

on nuclear markers. 
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INTRODUCTION 

Hybridization is often a natural event in the history of interactions among species.  It is 

not natural, though, when these events are caused by humans through habitat modifications, 

climate change, and translocations (Wilson et al 2009; Kovach et al 2015).  In these scenarios, 

there is considerable concern that native species will be deleteriously impacted (Kovach et al 

2015) so studying the dynamics of an introduced species and its interactions with previously 

isolated populations provide opportunities to study introgression and admixture (Sax et al 2007; 

Darling et al 2014).   A major concern with introgression is that it is asymmetrical and it will 

lead to the invasive or introduced population genetically swamping the native resulting in a loss 

of unique genetic diversity or even genetic extinction (Orive and Barton 2002; Nussberger et al 

2014).  Introgression can also result in the extinction of local genotypes, loss of local adaptation, 

and homogenization of species (Kovach et al 2015).  The concern is heightened when the source 

is anthropogenic where gene flow from a domestic population can affect the fitness of wild 

populations (Kidd et al 2009).  However, admixture may have a positive impact through 

restoration of genetic variation, increase of genetic variation, creation of novel genotypes, and 

heterosis (Bermond et al 2012).  In addition, the impact of invaders on native genomes may be 

overstated.  Recent studies have shown that local species have the upper-hand when it comes to 

nuclear introgression.  In a series of simulation studies, Currat et al (2008) demonstrated that 

nuclear introgression will occur almost exclusively in the direction of native to invader with the 

result that the invaders genome becomes swamped and eventually eliminated in the admixed 

population. 

Red foxes (Vulpes vulpes) are a geographically diverse taxon, present natively across the 

Northern hemisphere.  Statham et al (2014) suggest European and North American red foxes 
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could be distinct species based on global analyses of genetic markers.  This and other large scale 

analyses based on nuclear and mitochondrial data show they are distinct, falling into separate 

clades within a global framework (Aubry et al 2009; Statham et al 2014).  Morphologically and 

behaviorally red foxes are diverse but North American red foxes, in particular, show an affinity 

for boreal habitats while Eurasian red foxes occur in a much wider range of habitats, including 

deserts.   

British red foxes were introduced to the eastern United States at a time when native foxes 

were expanding south from populations in eastern Canada (Kasprowicz et al 2016).  This 

artificially created an area of secondary contact between North American and Eurasian red foxes.  

Although European haplotypes were found to be absent from most of contemporary North 

America (Statham et al 2012), a previous study found 2 British mitochondrial haplotypes at 

relatively high frequency (~30%) in a small region of the eastern United States near where they 

had been introduced a couple centuries earlier (Kasprowicz et al 2016).  Despite the geographic 

restriction of these British haplotypes to a relatively small area, analysis of neutral nuclear 

markers showed little population differentiation between this and neighboring regions that had 

no British mtDNA haplotypes (Kasprowicz and Sacks 2016).  Similarly, only 3 instances of a 

British Y chromosome were found in the Eastern United States, suggesting asymmetry in the 

introgression of British mitochondrial and nuclear genes. 

Organelle genomes, such as mtDNA, move readily across species barriers due to their 

“introgressive advantages” resulting from their haploid nature, maternal inheritance, small 

genome size, and the reduced impact of selection (Abe et al 2005; Currat et al 2008).  The near-

absence of European Y-chromosomal markers in North American red foxes suggest some level 



  

84 
 

of reproductive isolation, possibly related to Haldane’s rule (Statham et al 2014; Kasprowicz et 

al 2016).   

Secondary contact provides an opportunity to study admixture, expansion, and speciation.  

Here, we use microsatellite markers from parent populations as well as the region of admixture 

to examine the level of introgression between fox lineages.  Our primary objective was to 

identify the nuclear origins of red foxes in the mid-Atlantic region.  To accomplish this, we 

compared genetic data from the area of admixture to data from two potential sources, 

populations in eastern Canada and Great Britain.  Additionally, previous analyses have 

confirmed that British red foxes have impacted certain regions but overall low levels of 

population structure throughout the region of admixture suggests that the impact of British 

nuclear genome may be less widespread.  We compared a priori hypotheses incorporating data 

from the potential source populations and based on geographic and mitochondrial groupings that 

upland, Appalachian populations are primarily native while lowland populations have strong 

British influence.   

 

METHODS 

Sampling 

We used 342 red fox samples from 7 states across the mid-Atlantic region of the United 

States previously described in Kasprowicz and Sacks (2016).  In addition, we included 50 

samples from Great Britain and 68 from eastern Canada in the collection at the Mammalian 

Ecology and Conservation Unit of the Veterinary Genetics Laboratory at the University of 

California-Davis (Lounsberry et al in prep; Statham et al in prep).  All samples used in this study 

have been archived in the same collection.  Samples from the United States (USA) were divided 
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into sub-groups based on the region in which they were collected: Chesapeake region including 

northern Maryland and southern Pennsylvania (CHS), eastern shore from Delaware (ES), 

western New York (NY), southern Maryland (SMD), northern Virginia (NVA), northern New 

Jersey (NJ), central Pennsylvania (CPA), and the southern Appalachians in Virginia and North 

Carolina (SO).   

 

Genotyping 

We genotyped all 464 individuals at 21 microsatellite loci.  Amplification protocols can 

be found in Kasprowicz and Sacks (2016).  Alleles presumed to display size homoplasy between 

native and introduced lineages were treated ambiguously and coded as the same allele size for 

both lineages. 

 

Population Statistics  

We used GenePop v 4.4 to test for linkage disequilibria among loci and deviations from 

Hardy-Weinberg Equilibrium and estimate FIS (Rousset 2008).  All statistical analyses were 

tested for significance against an alpha value of p = 0.05.  We calculated expected and observed 

heterozygosities (HE and HO), number of alleles (na), and private alleles in GenAlEx (Peakall and 

Smouse 2006).  We used ADZE-1.0 to create rarefaction curves for allelic richness (AR) and 

private allelic richness (pAR) standardized to n = 50 (Szpiech et al 2008).  We performed an 

AMOVA based on FST and Nei’s Genetic Distance (unbiased; 1978) with 999 iterations in 

GenAlEx using the three major geographical groupings: Great Britain and Ireland (GB), 

Newfoundland in Eastern Canada (CAN), and Mid-Atlantic (USA).   
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Source of nuclear genome 

We compared four hypotheses on the origins of the mid-Atlantic populations using 

AMOVAs in Arlequin (Excoffier et al 2005).  The first two hypotheses addressed the 

relationship between USA and each potential source population to identify which one was the 

parent: USA vs. GB, and USA vs. CAN.  Hypotheses three and four were focused on the 

distribution of the individual USA sampling regions in relation to overall populations and the 

impact of the different source populations on each.  The third hypothesis paired populations that 

had mitochondrial evidence of British introductions (CHS, ES, NY, SMD, NVA, NJ) with the 

GB samples and those that had native mitochondrial genomes (VT, CPA, SO) with the CAN 

samples.  Significant differentiation among the regions would support the British influence in the 

nuclear genome.  Finally, we separated the USA into sampling locations and tested the 

hypothesis that mountain populations were derived from CAN sources while the lowland 

populations were derived from GB sources.  We previously identified the differentiation between 

mountain and lowland populations through mitochondrial (Kasprowicz et al 2016) and nuclear 

markers (Kasprowicz and Sacks 2016) though we could not definitively link the nuclear 

differentiation to British sources.  The incorporation of samples from Great Britain allows us to 

resolve this problem.  

 

Introduced Admixture 

Finally, we wanted to determine to what extent nuclear introgression had occurred in the 

USA samples.  We used STRUCTURE 2.3.3 to analyze genetic structuring within and among 

populations (Pritchard et al 2000). We used the admixture model because it is more powerful in 

detecting potential hybridization, and correlated allele frequency model because the relaxed prior 



  

87 
 

is more appropriate for evolutionary inferences (Falush et al 2003). We used a burn-in of 

250,000 followed by 750,000 Markov chain Monte Carlo simulations. We set K = 2 and K =3 in 

separate analyses and ran 10 iterations to explore relationships between the three populations 

with and without the location prior.  We separated hybrids using the admixture proportion of 

each individual q, as an estimate of an individual’s proportion of ancestry from each of the 

clusters (Primmer 2006). We chose a conservative threshold value of q = 0.20– 0.80 for hybrid 

detection because values outside this range tended to detect hybrids even in purebred populations 

(Sacks et al 2011).  In addition, we performed analyses at higher levels of K to explore additional 

potential levels of structure.  We repeated the above analyses run 10 iterations at each value of K 

= 2 – 11.   

 

RESULTS 

Summary Statistics 

Significant LD was observed in four microsatellite locus-pairs in USA and two different 

locus-pairs in GB but none in CAN.  Two loci deviated significantly from HWE in all three (GB, 

CAN, USA) populations, CPH18 and RF2457.   Allelic richness was greatest for GB followed by 

USA then CAN (8.00, 6.42, 5.82, respectively).  Private allelic richness was almost four times 

greater in GB then in USA or CAN (2.40, 0.66, 0.56).  Heterozygosity, both observed and 

expected, was highest in the USA population (Table 1).     
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Table 1: Population statistics for pooled populations: Great Britain and Ireland (GB), eastern Canada 

(CAN), and eastern United States (USA).  Presented are the number of individuals (N), inbreeding 

coefficient (FIS), expected and observed heterozygosity (HE, HO), allelic richness (AR), and private allelic 

richness (pAR) both with variance in parentheses.  Allelic richness and private allelic richness were 

standardized for n = 50. 

 N FIS HE HO AR pAR 

USA 342 0.063 0.715 0.670 6.42 (4.16) 0.66 (0.46) 

CAN 68 0.225 0.665 0.606 5.82 (6.17) 0.56 (0.81) 

GB 50 0.089 0.697 0.541 7.99 (13.3) 2.40 (3.95) 

Table 2:  Pairwise comparisons for pooled USA populations: Great Britain and Ireland (GB), eastern 

Canada (CAN), and eastern United States (USA), including FST (below diagonal) and Nei’s genetic 

distance (above diagonal).  Asterisk (*) indicates significant comparison (P < 0.05) based on 999 

permutations. 

 

 USA CAN GB 

USA - 0.279 0.410 

CAN 0.095* - 0.678 

GB 0.119* 0.185* - 

 

Genetic structure and differentiation  

The AMOVA revealed 80% of variation was within individuals while only 11% could be 

explained by difference among populations.  When the USA population was analyzed as its 

component populations, variation among these populations only accounted for 3% of the total 

variation.  Global FST was 0.112 and significant.  Levels of differentiation among all populations 

were high and significant, with the highest differentiation estimated between GB and CAN (FST 

= 0.185; Nei’s GST = 0.678; Table 2).  When comparing GB and CAN to individual USA 

populations, GB was most differentiated from VT and in general has lower FST values when 

compared with mid-Atlantic populations (Table 3).  All USA populations were also strongly 

differentiated from CAN though less so than from GB excluding CHS which was less 

differentiated from GB than CAN (FST = 0.113 vs FST = 0.150; Table 3).  While all of the a 
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priori AMOVA’s were significant, the highest support came from grouping the USA sample 

sites with the CAN population (Table 4), suggesting that GB had little influence on the genomic 

make-up of USA foxes. On the other hand, we found the second most support for the hypothesis 

that grouped the USA sampling sites with British mtDNA with GB vs. grouping the USA 

sampling sites with no British mtDNA with CAN sites.  This comparison was considerably better 

supported than the comparison which grouped USA sampling sites according only to whether 

they were in the Appalachians or not.  Taken together, the trend suggests some correspondence 

between the relative proportions of British nuclear DNA and mtDNA among sampling sites. 

The focus of this study was to determine the level of admixture in USA populations.  As 

such, we focused analysis on K = 2 and K = 3, to quantify the contribution of each ‘parent 

population’ to the USA populations.  Structure analysis showed the USA population clustering 

with CAN at K = 2, but separating at K = 3 (Fig 1) demonstrating the structure is hierarchical 

such that the magnitude of differentiation between USA and CAN is less than the degree of 

differentiation of either from GB.  At K = 3 only 14 individuals met the threshold for hybrid.   

Table 3:  Pairwise population comparisons, linearized FST (below diagonal) and  Nei’s unbiased genetic 

distance (above diagonal), among  Great Britain and Ireland (GB), eastern Canada (CAN), and 

subsamples of the eastern United States (USA): Vermont (VT), New York (NY), New Jersey (NJ), central 

Pennsylvania (CPA), Chesapeake (CHS), Eastern Shore/Delmarva Peninsula (ES), southern Maryland 

(SMD), northern Virginia (NVA), and southern Virginia (SO).  

 GB CAN VT SO CPA NY NJ CHS ES SMD NVA 

GB - 0.014 0.029 0.052 0.141 0.086 0.047 0.279 0.092 0.075 0.230 

CAN 0.007 - 0.008 0.047 0.135 0.067 0.043 0.302 0.077 0.055 0.215 

VT 0.012 0.004* - 0.055 0.116 0.049 0.042 0.266 0.054 0.063 0.190 

SO 0.025* 0.020 0.020* - 0.160 0.076 0.063 0.318 0.100 0.038 0.253 

CPA 0.051 0.049 0.020 0.050 - 0.163 0.147 0.031 0.195 0.170 0.301 

NY 0.030 0.024 0.016 0.018 0.052 - 0.073 0.337 0.051 0.078 0.095 

NJ 0.018 0.017 0.015 0.021 0.051 0.025 - 0.330 0.064 0.082 0.194 

CHS 0.102 0.107 0.097 0.114 0.014 0.108 0.051 - 0.195 0.353 0.499 

ES 0.034 0.030 0.020 0.034 0.065 0.017 0.023 0.137 - 0.085 0.142 

SMD 0.028 0.023 0.025 0.011* 0.060 0.027 0.031 0.122 0.031 - 0.225 

NVA 0.072 0.070 0.057 0.066 0.087 0.029 0.061 0.143 0.045 0.071 - 

*p > 0.05 
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Figure 1: Bar plots based on Structure results for K = 2 and K = 3 among the three pooled populations: Great Britain and Ireland (GB), eastern 

Canada (CAN), and eastern United States (Vermont (VT), New York (NY), New Jersey (NJ), central Pennsylvania (CPA), Chesapeake (CHS), 

Eastern Shore/Delmarva Peninsula (ES), southern Maryland (SMD), northern Virginia (NVA), and southern Virginia (SO)).  Brackets identify the 

USA populations that have remnant European mitochondrial DNA (impacted) versus those with haplotypes native to North America.  Similarly, a 

bar plot identifying the mitochondrial haplotype of each of the individuals within the USA population is below.  Green represents native mtDNA, 

blue is ambiguously native (may be from fur farm), yellow is unambiguously fur farm, and red is European. 



  

91 
 

Three populations, CHS, NJ, and NY, each had two individuals that had significant 

proportions of both USA and GB ancestry.  Meanwhile, four locations had USA/CAN mixtures: 

4 in NY, 1 in CPA, 1 in SO, and 2 in VT (Table 5).  As expected, there were no mixed 

individuals in either ‘parent’ population.  Finally, VT had one individual that was assigned to the 

CAN cluster with a q-value higher than 0.80.   

Table 4:  Hypothesis based AMOVA’s comparing relatedness among populations, Great Britain and 

Ireland (GB), eastern Canada (CAN), and eastern United States (USA). Subsamples of the eastern USA 

include Vermont (VT), New York (NY), New Jersey (NJ), central Pennsylvania (CPA), Chesapeake 

(CHS), Eastern Shore/Delmarva Peninsula (ES), southern Maryland (SMD), northern Virginia (NVA), 

and southern Virginia (SO). 

  FST FSC FCT 

USA/GB 1: USA, GB 

2: CA 

0.107* 0.121* -0.015 

USA/CAN 1: USA, CAN 

2: GB 

0.131* 0.096* 0.039* 

European mtDNA 1: USA (CHS, ES, 

NY, SMD, NVA, 

NJ), GB 

2: USA (VT, 

CPA, SO), CAN 

0.093* 0.069* 0.026* 

Mountain/Valley 1: CAN, USA 

(VT, NJ, NVA, 

CPA, SO) 

2: GB, USA (NY, 

CHS, ES, SMD, 

NJ) 

0.081* 0.078* 0.002 

*p < 0.05 

As K was increased, clusters emerged among the USA populations, consistently 

separating out VT and NVA from the rest.  A full analysis setting K = 1 – 10 suggested K = 3 as 

the most likely value of K based on both the Pritchard P(X|K) and the Evanno ΔK method (Fig. 

2; Pritchard et al 2000; Evanno et al 2005).  We present K = 4–7 to demonstrate how 

substructure increases in the colonial populations but not source populations (Fig. 3).  As the 

number of clusters allowed (K) increases, the individuals assigned to these additional genetic 

groupings are almost exclusively in the colonial populations, while the source populations. 
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Figure 2:  Graphs to determine optimal value of clusters (K) under the (A) Pritchard model using 

likelihoods and (B) Evanno et al (2005) method that calculates ΔK.   
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Figure 3: Bar plots representing K = 4 – 7  for the populations: Great Britain and Ireland (GB), eastern Canada (CAN), and eastern United States 

(Vermont (VT), New York (NY), New Jersey (NJ), central Pennsylvania (CPA), Chesapeake (CHS), Eastern Shore/Delmarva Peninsula (ES), 

southern Maryland (SMD), northern Virginia (NVA), and southern Virginia (SO)).   
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Table 5:  Number of hybrid individuals (0.8 < q < 0.2) within each sample location: Great Britain and 

Ireland (GB), eastern Canada (CAN), Vermont (VT), New York (NY), New Jersey (NJ), central 

Pennsylvania (CPA), Chesapeake (CHS), Eastern Shore/Delmarva Peninsula (ES), southern Maryland 

(SMD), northern Virginia (NVA), and southern Virginia (SO). 

  K = 3 

 K=2 USA/GB US/CAN 

GB 0 0 0 

CAN 1 0 0 

VT 0 0 2 

SO 0 0 1 

CPA 0 0 1 

NY 2 2 4 

NJ 2 2 0 

CHS 1 2 0 

ES 0 0 0 

SMD 0 0 0 

NVA 0 0 0 

 

 

DISCUSSION 

 Our results show that, although introduced mitochondrial lineages are present in high 

frequency, there is little evidence of nuclear genes from British red foxes.  There is support, 

based on our nuclear data, of the influence introduced markers have had in increasing the genetic 

diversity of the USA populations, resulting in increased differentiation with CAN population.  

This could also be explained by isolation by distance from a more remote north eastern 

population.  However, rather than having reduced genetic variation as often expected with IBD, 

the USA population has higher heterozygosity and average allelic richness.  Nevertheless, the 

impact has not been as significant as that of the mitochondrial genome.  Mito-nuclear 

discordance, when mtDNA and msat markers have different coalescent signals, is a common 

occurrence in animal systems (Toews and Brelsford 2012).  Similar to our findings, there is 

usually more structuring in the mitochondrial DNA.  There are several explanations for this 

including coalescent variance, selective sweeps, life history traits, and modes of molecular 

inheritance (Pavlova et al 2012).   
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The explanation for our results comes from theoretical predictions about admixture 

between two previously isolated populations.  Contrary to prior thinking, nuclear introgression 

between two previously isolated populations that are still reproductively compatible is expected 

to occur in the direction of native into introduced (Currat et al 2008).  Based on the relatedness 

between the red foxes in the United States and those in Canada and the UK, it is clear that the 

native genome persists.  There is strong support that the US populations are derived from eastern 

Canada based on nuclear markers.  The only exception, CHS, has a high proportion of 

mitochondrial British markers and could represent an area where introductions occurred.   

A second prediction from Currat et al (2008) is that higher introgression would occur 

among markers of the less dispersing sex because of reduced conspecific gene flow at the 

expansion front.  This would likely result in the lower effective population size and higher rate of 

introgression (Nussberger et al 2014).  This is because as those genes disperse into the native 

range, backcrossing is exclusively with the natives and eventually those markers are swamped.  

With the least dispersing sex, however, as hybridization occurs there’s continuous backcrossing 

with the invasive population that is exponentially growing.  The non-dispersing genes increase 

under genetic drift and gradually introgress into the native population.  In our case, 

mitochondrial DNA from British ancestors was able to migrate as far inward as western New 

York, probably around the Appalachian Mountain range through the human-dense Hudson River 

Valley.  While the dispersal there may have been the result of human transport, there is evidence 

for ongoing gene flow between the populations.  Contrastingly, we identified only three 

European Y markers, and those were all in the Chesapeake Bay watershed region (Kasprowicz et 

al 2016).  Although red foxes have a broad range of behavioral phenotypes when it comes to 

dispersal and mating, typically males have a higher rate of dispersal (Allen and Sargeant 1993).  
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A second explanation, though not mutually exclusive, for the strong presence of invasive 

mtDNA but not Y markers is Haldane’s rule, “when in the offspring of two different animal 

races one sex is absent, rare, or sterile, that sex is the [heterogametic] sex” (Haldane 1922).  In 

other words, when two species hybridize, heterogametic offspring will be less viable.  In this 

case, male hybrid offspring are less viable than female offspring resulting in the continuance of 

European mitochondrial genome but not the Y genome.      

 It is generally accepted at this point that phylogenetic studies should be completed with 

multiple types of markers, as different markers can provide different insight.  For example, 

markers associated with the most dispersing sex are expected to be better at delimiting species 

because they experience higher levels of gene flow (Petit and Excoffier 2009).  In this case, 

while mitochondrial markers may provide greater insight into the history of red foxes in the mid-

Atlantic United States, the Y markers reveal the current reality: introduced British red foxes have 

had little impact on the population and the remnants of the introductions will likely be lost over 

time.   
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The global redistribution of species by humans has had significant impacts on native 

biota (Genton et al 2005; Ricciardi 2007; Kirk et al 2011; LeRoux et al 2011).  The impacts have 

been negative, from species eradication to genetic homogenization (Wilson et al 2009).  

However, positive results can arise when introduced species (or recently expanded species) 

hybridize, including increased population fitness and speciation (Abbot et al 2013).  Fortunately, 

new molecular tools and advances in theory and analysis allow for deeper investigations into 

introductions and expansions.  These can, in turn, advance evolutionary theory and provide 

strategies for dealing with population declines and climate change. 

 Red foxes were first recognized in the eastern United States in the mid-18th century.  At 

the onset of European colonization of North America they were believed to occur above 40-45oN 

latitude and were “scarce or absent from the unbroken mixed hardwood” where grey foxes 

occurred (Churcher 1959).  As Europeans razed forests and changed the habitat for agricultural 

purposes, red foxes from northern populations in eastern Canada expanded their range south 

(Audubon and Bachman 1849; Rhodes 1908; Churcher 1959).  There were simultaneous reports 

of introductions of red foxes from European (Frey 2013).  Subsequently, it became established 

that the red foxes in eastern United States were invasive populations that had expanded across 

the continent and were threatening native populations (Kamler and Ballard 2002). However, this 

hypothesis was shown to be incorrect as no European mitochondrial markers were found in a 

survey of foxes in central United States (Statham et al 2012).   

 In this study I addressed the origins of red foxes in the eastern portion of the United 

States.  This study extended geographically from Vermont to North Carolina and western New 

York to the Delmarva Peninsula.  I used a molecular approach to answer the broad question, 

what are the origins of red foxes in eastern United States?  In answering this question, I also 
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explored questions regarding the impacts of introduced species and the effects of the landscape 

in shaping the population structure throughout the study region.  Here, I address each of these 

questions in regards to the study as a whole. 

 

What are the origins of the red fox in eastern United States? 

Although this study confirms European red foxes were introduced to the mid-Atlantic 

region of North America, their limited geographic range and absence in Appalachian populations 

demonstrates they are not the sole source of red foxes in the region.  Mitochondrial DNA 

identified native Canadian haplotypes and fur-farmed individuals also contributed to the 

foundation of populations.  The widespread nature of the F3-9 haplotype in eastern United States 

samples, including historical Georgia, and its absence in samples north of the Hudson lowlands 

is consistent with a late Holocene or historical population expansion.  These findings suggest that 

red foxes were indigenous to the eastern United States prior to or during colonial times.  

Relatively low nuclear genetic structure - despite geographic distance and potentially impactful 

landscape features – suggests either a recent expansion or strong admixture due to high gene 

flow.  The most parsimonious explanation for the sum total of these findings is that red foxes 

were absent south of New England at the time of European colonization and, because of this 

vacuum, and changes in the colonial landscape (e.g., removal of wolves, reduction of gray-fox 

favored habitat, climatic cooling), native red foxes expanded south along the Appalachian 

Range.  The reduction in allelic richness with increasing distance from the source population 

supports a recent expansion, as dispersing alleles undergo bottlenecks which reduce the overall 

number of alleles.  These populations expanded beyond the Appalachian Range into the lowland 

valley regions where they combined with foxes from introduced European and fur-farm 
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populations. Interestingly, mitochondrial and Y chromosome markers pinpointed the region of 

origin of these foxes to Britain and Ireland.   

 

What is the geographic extent of introduced European foxes? 

The low diversity of maternal and paternal haplotypes from European sources is 

consistent with a single successful introduction of as few as 3 individuals. The region-wide 

dispersion of European haplotypes and the sharing of a single Y chromosome haplotype among 3 

distinct locations suggests a many generational timeline of introduction consistent with colonial 

origins.  European haplotypes of either sex appear geographically limited to the human 

dominated landscapes in the low-land regions of the study area.  Although British haplotypes 

exist west of the Appalachian Mountain Range, it is in the Hudson valley which is connected to 

the mid-Atlantic lowland corridor by the Delaware Watershed Gap, and in an area with heavy fur 

farm influence suggesting human-mediated transport could also have played a role in their 

establishment there. 

 

Has native range expansion or human-mediated introduction played a bigger part in the 

establishment of red foxes in eastern United States? 

Given that several sampling sites in the present study had no European haplotypes and 

few to no unambiguous fur farm haplotypes, our results support Frey’s conclusion that these 

most likely derived from indigenous foxes.  The native F3-9 haplotype was present in 16/18 

sampling locations supporting an historic range expansion.  Mitochondrial haplotypes, however, 

confirm the influence of both introduced British and fur-farm individuals and non-native 

admixture clearly had significant impact on population diversity.  In general, non-native 
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populations can be introduced into two basic scenarios: 1) habitats without conspecifics and 2) 

habitats with conspecifics.  The first scenario would result in founder effects and strong genetic 

drift resulting in reduced genetic diversity.  The second scenario, would cause high admixture, 

outbreeding, and an increase in genetic diversity.  Population structure would depend on the pre-

existing differentiation and levels of gene flow.  In our study, genetic diversity was highest at 

mid-latitudes due to having the highest admixture among the three sources (native, European, 

fur-farm).  South of VT, individuals were assigned to multiple genetic groups with admixture 

proportions ranging 20–80%.  Thus, as indicated previously with mitochondrial DNA, 

introductions from Europe and fur farms apparently also increased the nuclear genetic diversity 

of the Eastern red fox south of the known historical range.  However, it seems that these 

introductions merely contributed diversity to the red fox populations already undergoing range 

expansion. However, it is impossible to say whether the natural range expansion would have 

succeeded without those introductions or vice versa.  Most likely, it was landscape dependent as 

the findings presented are similar to findings in the western United States.  In those populations 

nonnative red foxes (in that case, solely from fur farms) also appear to be associated closely with 

human-dominated landscapes and, perhaps, less able to thrive in more remote habitats, where 

their native counterparts predominate (Churcher 1959; Sacks et al 2010, 2011; Statham et al 

2012; Frey 2013; Volkmann et al 2015). 

 

How has the landscape, specifically the Appalachian Mountain Range, impacted the distribution 

of red foxes in eastern United States? 

The nuclear genetic results repeatedly show the Appalachian Mountains served as a 

corridor facilitating southward gene flow from the northern native source.  In particular, I 
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demonstrate the differential patterns of native vs. nonnative expansion related to habitat.  While 

this pattern surfaced in all markers tested, significant correlations and isolation by resistance are 

consistent with higher connectivity across sampling sites within the Appalachian range.  For 

example, the VT site was most closely related to the location furthest from it, SO, also within the 

Appalachians.  Although the Appalachians apparently served to facilitate native gene flow, there 

was no evidence to suggest these mountains served as a barrier to non-native gene flow.  The 

landscape resistance model was not a significant predictor of genetic distance among lowland 

populations.  More directly, the AMOVAs that predicted a division between mountain and 

lowland populations were not significant and admixture profiles were nearly identical between 

central latitude sites in and out of the Appalachians.  Thus, while the Appalachians historically 

acted as a corridor for expansion and may still, they are not a barrier for gene flow between 

populations in the lowland regions and those in the Appalachians. 

 

What is the extent of introgression from British red foxes? 

 Our finding that individuals exhibiting a European haplotype (from its maternal or 

paternal side) also exhibited a North American haplotype from the other parent (in every case) 

clearly indicated that the 2 nominal species bred in the past and produced fertile offspring. 

Interestingly, however, the prevalence of mitochondrial European haplotypes was nearly an 

order of magnitude higher than that of European Y chromosomes.  While this pattern could 

reflect a greater number of female than male founders from Europe, this seems unlikely given 

evidence from the Australian introductions and anecdotes of the North American introductions 

(Long 2003; Frey 2013). When foxes were introduced, they would likely have been introduced 

as breeding pairs to facilitate population growth.  One explanation is Haldane’s rule, “when in 
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the offspring of two different animal races one sex is absent, rare, or sterile, that sex is the 

[heterogametic] sex” (Haldane 1922).  In this case, male hybrid offspring are less viable than 

female offspring resulting in the continuance of European mitochondrial genome but not the Y 

genome.  This is supported by recently described evidence of a continental exchange of 

mitochondrial but not Y chromosome lineages from Asian to Alaskan red foxes across the 

Bering land bridge during the last Pleistocene glaciation (Statham et al 2014).  On the other 

hand, predictions of introgression expect higher introgression to occur among markers of the less 

dispersing sex while those of the more dispersing sex are swallowed by the native population.  

This is because reduced conspecific gene flow at the expansion front (Currat 2008).  Although 

red foxes have a broad range of behavioral phenotypes when it comes to dispersal and mating, 

typically males have a higher rate of dispersal (Allen and Sargeant 1993). 

 Interestingly, the picture provided by the nuclear genetic analysis contrasts with findings 

from mitochondrial DNA.  Despite the heavy presence of British mitochondrial haplotypes and 

the proven ability to produce fertile offspring, there is little evidence of introgression of nuclear 

genes from introduced foxes to native ones.  Though mito-nuclear discordance is a common 

occurrence in animal systems, the causes of it are not often understood (Toews and Brelsford 

2012).  The most likely explanation for our results is nuclear introgression occurred in the 

direction of native into introduced (Currat et al 2008).  This is because as introduced genes 

disperse into the native range, there are a limited number conspecifics with whom to mate.  

When they hybridize with the native species, subsequent backcrossing is exclusively with the 

natives and eventually the introduced markers are swamped.  With mitochondrial markers, 

however, non-dispersing genes increase under genetic drift and gradually introgress into the 
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native population.  In our case, mitochondrial DNA from British ancestors was able to migrate as 

far inward as western New York but the nuclear genome was swamped by the native population. 

 

In conclusion, while mitochondrial markers may provide greater insight into the history of red 

foxes in the mid-Atlantic United States, the Y markers and nuclear markers reveal the current 

reality: introduced British red foxes have had little impact on the population and the remnants of 

the introductions will likely be lost over time. 
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