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Abstract 
This dissertation comprises two different financial essays. Essay 1, “An Applied Credit 

Score Model,” uses data from local credit union to predict the probability of default. Due to 

recent financial crisis regulation has been enacted that makes it essential to develop a probability 

of default model that will mitigate charge-off losses. Using discriminant analysis and logistic 

regression this paper will attempt to see how well credit score can predict probability of default. 

While credit score does an adequate job at classifying loans, misclassification of loans can be 

costly. Thus while credit score is a predictor, there is danger in relying solely on its information. 

Thus other variables are needed in order to more accurately be able to find the probability of 

default.  Essay 2, “Christian Mutual Fund Performance,” draws attention to a much ignored type 

of funds, Christian mutual funds. The following questions are asked: How does Christian mutual 

fund perform compared to the market? Is there a difference in performance during recessions as 

indicated by literature? Is Christian mutual fund performance different than SRI funds? How do 

Catholic and Protestant fund perform? Looking at qualitative evidence, Christian mutual funds 

place much more importance on moral issue than SRI funds.  Thus there is a clear difference in 

objectives and the type of screening that these two mutual fund pursue. Overall data reflects that 

screened data perform worse than the market, however during recession screened funds perform 

as well and at times better than the market. Christian mutual funds tends to perform worse than 

SRI funds.   

 

 

 

Keywords: Credit Score, Probability of Default, Loans, Mutual Fund Performance, Religion
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Chapter 1 

Essay 1: An Applied Credit Scoring Model 

 
 

1.  Introduction 

The banking industry has gone through several changes in the last 60 years. These changes have 

in part to do with regulatory changes and financial product innovation. Yet one thing has 

remained: the demand and dominance of consumer lending. Consumer credit loans have 

increased in the banking industry, in general, as well as in Credit Unions in the last 60 years. 

Consumer loans have contributed to the way of life for many Americans. For many Americans 

who have wanted to increase their standard of living, consumer loans have been the answer.   

Research has shown that consumer loan is among the most profitable loan a bank can make. 

However, Functional Cost Analysis (FCA) program conducted by the Federal Reserve found that 

consumer loans are among the most risky and costly loanable funds that a bank grants to their 

customer. Recovering a loan is dependent upon the consumer’s economic state, heath state, and 

many times moral character. Consumer loans, furthermore, are ascertained to be cyclical with the 

overall state of the economy. With this uncertainty surrounding consumer lending, it poses a 

challenge for banks to predict loan portfolio risk. The recent subprime crises accentuate the need 

for measuring the portfolio risk of banks. Capturing the risk for their mortgages, small business 

loans, or individual borrowers influences the financial institution in making appropriate interest 

rate, lending policy, and reserve requirement changes. 

There are different types of consumer loans: residential mortgage, non-residential loans, 

and credit card loans. Consumer loans are a very profitable form of loans since they are usually 

priced well above the cost of funding them. However, since the financial state of the consumer 

can fluctuate due to illness or loss of employment, consumer credit is also among the most risky 



2 
 

and costly product for banks. For this reason, interest rates are set high for most consumer loans. 

Banks thus must be prepared for the event that loans may not be collected. Charge-off can be 

defined as an amount of debt that is unlikely to be recovered, thus must be written-off.  

According to the Federal Reserve as seen in figure 1, commercial banks’ net charge-off reached 

a peak of almost $51 billion in the fourth quarter of 2009, since then it has declined so that in the 

first quarter of 2015 the net charge-off is around $8 billion. This, however, is still a considerable 

sum of money. Therefore it is critical to be able to predict the possibility of charge-off and the 

likelihood of default. 

Figure 1: Net Charge-Off 

The Net Charge-offs on all loans and leases for all commercial banks reported quarterly and not 

seasonally adjusted. The figures are in millions of dollars.  

 

One major advantage that smaller community banks and credit unions have over large 

banks is their relationship with customers. A key factor when analyzing a consumer’s loan 

application is to have knowledge of the borrower’s character and ability to pay. Knowing the 
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person’s character and thus their sense of moral responsibility is a good indication of their 

intentions to pay back. A consumer loan officer also should seek insight of customer’s credit 

history. There are over 2,000 credit bureaus in the United States that provide credit rating for 

most individuals who has at one time or another, borrowed money. Many banks use credit 

scoring system to evaluate their loan application. This system has a major advantage that it can 

sift through large quantities of credit application with minimal labor, thus reducing operating 

costs. A bank establishes a cutoff point which would yield the greatest net savings in loan losses. 

Yet credit scores provide limited information and should not be the only precursor used. Due to 

their small size, small banks do not have the same resources as larger banks to calculate portfolio 

loan loss. 

The current crisis of the subprime mortgages emphasizes the need to have simple models 

that are capable of capturing the financial institution population risk. The idea is to find and pre-

identify certain factors that determine the probability of default for a given loan or credit by 

using quantitative scores. In some cases, the score can be interpreted as a probability of default. 

The score may be used to classify or quantify the potential of default or to group a borrower into 

a “good” or “bad” category. Credit scoring systems are also known as behavioral scoring, in 

which scores try to predict behavioral trends exhibited by customers. Credit scoring applies logic 

to behavioral results and provides warning reports to portfolio management personnel on credits 

that possess undesirable behavioral attributes deemed to be associated with greater potential loss. 

Attributes of credit scoring systems may include, but are not limited to, updates of loan 

accounting system information, updates of loan deposit information, and updates of information 

from personal and/or business credit bureau files. With a credit scoring system, accounts can be 
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queued to portfolio management personnel for risk grade establishment and exposure 

assessment.  

The purpose of this study is to aid small community banks and credit unions in 

constructing a model that will predict portfolio loan risk. This study will define consumer 

lending and highlight some interesting statistics relating to the current status of consumer lending 

in the banking industry. We will also analyze different types of models and methodology that has 

been used in the past. This study will provide valuable information to the portfolio manager of a 

bank which is essential to making the correct decision regarding consumer loans. We found that 

credit score is able to accurately identify default loans by 85%. However, they misclassify loans 

that defaulted as pay-off loans by almost 15%. Thus, using credit score as a sole predictor of 

default can be costly. Credit score can only explain 43% of probability of default. And thus other 

variables need to be included.  

 

2.  Literature Review  

Tufano (2009) defines consumer finance as “the study of how institutions provide goods 

and services to satisfy the financial functions of households, how consumers make financial 

decisions, and how government action affects the provision of financial services.” Although in 

academic research corporate finance overshadows consumer finance in asset value the consumer 

sector dominates the corporate sector. The recent economic crisis attests to the importance of the 

consumer sector. Though there may be several different factors that contributed to the economic 

recession, without a doubt the subprime mortgage market played a big role. Thus it is important 

to understand consumer finance. Banks play a large role in consumer lending yet one of their 
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greatest challenges is to find ways to prevent loan losses. Therefore a probability of default 

model for portfolio loan is essential.  

Risk Management 

 Regulations and risk management procedures are another important reason for probability 

of default models. One key component that bank managers are concerned with is asset 

management. Managers are tasked to minimize risk by diversifying their portfolio and acquiring 

assets with low default risk.  A big part of this is managing credit risk.  

One standard that has been put emplace to address credit risk was formed by the G-10 

central banks that established the Basel Accords. Basel Accords establish uniform capital 

requirements across nations in order to “strengthen the soundness and stability of the 

international banking system” and to decrease “competitive inequality among international 

banks” (Basle, 1988). Basel I agreement was issued in 1988 and focuses on capital requirements 

on assets with differing credit risks. Basel I set up a framework on how to categorize asset into 

five risk categories (0, 10, 20, 50 and 100%). An international operating bank is required to have 

8% or less risk weight. Basel II, a revision of the previous framework, was agreed upon in June 

2004, but was going to be implemented in late 2007; however the financial crisis interrupted full 

implementation. The main objective of Basel II was to revise the previous framework to be more 

risk-sensitive (Basle, 2006). They developed a three pillar concept: 1. Minimum capital 

requirements, 2. Supervisory review, and 3. Market discipline. While the previous provision 

focused on credit risk, this new agreement also ensures that operational risk and market risk be 

quantified along with credit risk in order to have the appropriate capital adequacy in banks. 

Supervisor develops review procedures that use assessment of risk tools in order to ensure that 

banks have adequate capital. Disclosure is also an important factor of the third pillar. Due to the 
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disruption of the implementation from the financial crisis, a new framework was drafted, but as 

of yet not fully implemented. The new accord’s objective is to make banks more resilient and 

able to absorb financial and economic stress shocks (BIS 2011). This new accord thus attempts 

to strengthen the three pillars by improving risk management, governance and disclosure. The 

committee also reinforces fundamental microprudential regulations as well as introduced 

macropruedential regulations.  

After the Financial Crisis, stress testing programs have been put in place in order to test 

bank’s ability to react to stressful situations, such as an economic crisis. The main objective is to 

put banks in a hypothetical hostile condition in order to ascertain up to what point the bank will 

be able to remain afloat. Regulatory agencies, as well as individual banks, may perform these 

tests in order to determine their weak spots in order to take corrective action. While stress test 

look at ten different factors, one factor is the bank’s exposure to default. Banks may use their 

own risk management default model in order to find their exposure at defaults. Two primary 

factors that are used is the probability of default (the likelihood that the borrower will not be able 

to pay back the loan) and the loss given default (the loss that a bank endures due to borrower 

default on the loan).  Thus it is becoming increasingly important that a bank create their own 

model to predict default.  

Classical Probability of Default Models 

 Since bank loan information is hard to come by, probability of default is generally 

modeled using corporate securities, specifically bonds. There has been a different progression of 

probability of default models over the years. There are two principal models in literature 

regarding corporate default: structural approach pioneered by Merton (1974) and reduced-form 

approach developed by Jarrow & Turnbull (1995). Merton (1974) was one of the first to develop 
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a model of probability of default for bonds. His purpose was to develop a theory in which he 

could price bonds that had significant probability of default. Merton’s model was of the first 

generation that linked the probability of default with firm’s asset volatility and leverage. Thus 

the probability of default is driven by the company’s asset value and its variability. However, 

Merton assumes that a default can only occur at maturity, has limitation in bond contract, and it 

dismisses the possibility of reorganization. Merton’s framework was adopted soon after by many 

researchers such as Geske (1977), Smith & Warner (1979), and Black & Cox (1976). Geske 

extended the model to show that risky securities can be valued as compound options. Smith & 

Warner also employs the model to investigate the relationship between the ways debt contracts 

are written and the conflict between stockholders and bondholders.  Black & Cox sought to 

expand Merton’s model by fixing some of Merton’s simplified assumption. In their extended 

model they explored the effect of three different, yet standard, bond indentures: safety covenants, 

subordination arrangements, and restrictions on the financing of interest and dividend payments. 

They found that these provisions positively affect the value of the bond. Their model also takes 

into account bankruptcy cost. Both Merton’s and Black & Cox’s extension however still assumes 

that interest rate is constant. Longstaff & Schwartz (1995) strived to remedy this by 

incorporating both default risk and interest rate risk to both closed-form valuation of floating rate 

and fixed rate debt. Even with all these improvements, the structural model has one huge 

drawback according to Duffie & Singleton (2003) the firm’s assets are neither traded nor 

observed. Jarrow & Turnball (1992, 1995) thus developed an alternative model which sought to 

address this problem. The reduced form model, as it later became known, values stock using a 

stochastic process that takes exogenously both the default-free term structure and the risky debt 

term structure. Jarrow, Lando, & Turnbull (1997) extend the model by presenting a finite state 
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using Markov chain model in the firm’s credit rating. Lando (1998) generalizes Jarrow et al. 

model using Cox process. This framework allows dependency between credit risk and market 

risk factors. This model thus reduces the technical difficulties caused by default correlations. 

While both models are helpful, they both have drawbacks.  Zhou (2001) thus attempts to 

combine the models in such a way that it would retain the advantages of both the structural and 

reduced-form approach.  The structural model followed a diffusion process which does not allow 

a sudden drop in firm value; the reduced-form approach however regards default as only an 

unpredictable Poisson event. Thus Zhou’s framework includes both default risk and interest rate 

risk and allows for the default to possess both a continuous and a jump component. Jarrow 

(2009) writes a comprehensive paper comparing the structural and the reduced form models and 

concludes that the reduced form model is the better credit risk model. Another area of research 

that is related to calculating the probability of default is to valuating the recovery rate in the 

event that default occurs.  

Banks  

While much work has been done on measuring the probability of default and recovery 

rate on bonds and options, much less have been done on bank loans. Yet bonds and bank loans 

are monitored differently. While loans are monitored by bank managers, bonds must be 

monitored by the public who holds them. There is a dichotomy of information between the two.  

Where the bank has superior resources and information on their borrower, bondholder usually 

does not. Thus there is a monitoring advantage of banks over bondholders (Diamond 1984). 

Recently, there has been a growth in loan securitization. This has brought about a fear of 

monitoring deterioration and moral hazard behavior. Loan securitization could give the bank the 

opportunity of getting rid of “lemon” loans and keep only the best quality loans. However, moral 
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hazard can be mitigated, and banks still have a monitoring advantage compared to public bonds 

(Altman, Gande, Saunders, 2010). In fact Altman et al. found evidence that loan returns Granger 

cause bond returns before firm defaults on its loans. Altman & Suggitt (2000) assess the default 

rate experience on large, syndicated bank loans. According to them, the most fundamental aspect 

of credit risk models is the rating of the underlying credit asset and the associated expected and 

unexpected risk migration patterns. The mortality rates on bank loans are extremely similar to 

corporate bonds, but loan default rates appear to be noticeably higher than bonds for the first two 

years after issuance. Thus, in the first two years after issuance, loan default rates are higher than 

bond default rates.  

A very interesting result is found using loans from a Spanish credit institution from 1988-

2000 (Jimenez, & Saurina, 2004). They analyze the determinant of probability of default 

focusing on three variables: collateral, type of lender, and bank-borrower relationship. They find 

that collateral for a loan actually increases the probability of default of a loan. While this may 

sound counterintuitive, their theory relates that banks tend to screen less on a loan in which 

collateral is provided. The risk of default was found to be affected by the type of lender, or the 

type of bank giving the loan. The model revealed that savings banks have a higher risk 

compared to commercial banks’ loans. One explanation for this is that the savings’ banks are 

controlled by managers, as opposed to commercial banks which are controlled by shareholders. 

Regarding relationship banking, it was found that the closer the relationship between the firm 

and the bank, the higher the risk of default. If a firm is being financed by only one bank and 

thus shows a greater commitment to that bank, the bank will be more likely to take on the risk, 

and thus the probability of default is higher. This paper thus strongly encourages the use of 

thorough screening process when making loan decisions in order to avoid high default rates. 
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Jacobson, & Roszbach (2003) create a model that determines a bank’s decision on whether or 

not to approve a loan and the borrower’s risk of default on that loan. The researchers used loan 

applications collected from a Swedish lending agency between September 1994 and August 

1995. The data included the number of the applicant, the date submitted, size of the loan, status 

on whether the loan was good or bad as of October 1996, and what date the loan reached the 

bad status also other demographical information was included such as sex, marital status, 

residence, citizenship, age, income, wealth, and homeownership status. After discarding 

variables due to endogeneity issues, they found that the income level of the applicant, whether 

the applicant owns a house, whether the applicant has taxable income from a business, loans 

outstanding, and the existence of a guarantor all have a positive effect on whether or not the 

applicant gets approved for a loan. The income variable stood out because even though an 

applicant with a higher income was more likely to have his or her loan approved, the applicant 

was more likely to default on the loan. Several of the variables that affected the loan approval 

decision do not affect the loan’s risk of default. Another interesting find was that the size of the 

loan itself does not alter the loan’s chance of being defaulted on. A borrower was no more likely 

to default on a larger loan than default on a small loan. Looking at portfolio loans for a Farm 

Credit District, three ratios was identified to be significant in explaining the probability of 

default for the data set loans: repayment capacity, owner equity, and working capital 

(Featherstone & Roessler, & Barry, 2006). Another discovery that was made was that as loans 

age increase, the probability of default decreases. This is a logical result since the longer a loan 

continues without defaulting, the more stable the payments have been for a longer period of 

time, and the default rate will be lower. 
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Featherstone, Roessler, and Barry (2006) conducted research on credit analysis. The 

primary risk that financial institutions face is credit risk, and thus they most perform some-type 

of risk-taking systems. These ratings serve multiple purposes, including contributing to the loan 

origination process, aiding in monitoring the safety and soundness of loan portfolios, and in 

management reporting, facilitating adequacy of loan reserves, and providing components of 

loan pricing profitability analysis systems. The “fundamental goal” of a credit risk-rating 

system is to accurately estimate the credit risk of a specific transaction or portfolio of 

transactions/assets. The “ultimate goal” is to measure the expected and unexpected loss from 

investing in an asset and the capital required to support it.  Default mode and mark-to-market 

are the two main approaches to measuring credit risks identified in the literature (Barry 2001). 

The default mode approach “focuses directly on the possibilities of loan loss, including 

probability of default and the severity of loss given that default has occurred.” The mark-to-

market approach attempts to measure how future changes in the credit risk characteristics of a 

loan or a group of loans will affect the loan(s) market value, including potential losses in value. 

Furthermore, the new Basel Accord may allow lenders to benefit from a more accurate risk 

rating of their loan portfolio. The goals of the Basel Accord are to tailor risk management of the 

financial institution and to increase segmentation of the loan portfolio by risk rating. Wilson 

(2000) found that banks are more likely to fail if they have low capitalization, higher ratios of 

loan to asset, and poor quality of loan portfolios. Lopez (2002) looks at the relationship between 

firm’s probability of default, asset size and average asset correlation. He found that the average 

asset correlation negatively correlates with the probability of default. Thus the probability of 

default is not closely related with the macroeconomic environment instead default is mainly due 



12 
 

to idiosyncratic factors. This brings into question whether Basel accords regard for other type of 

risks are warranted. Wheelock and  

The Great Recession 

The importance of consumer lending became obvious during the Great Recession. One 

key factor of the Great Recession was due to the increase subprime and near-prime lending, 

which was further aggravated by the securitization of these loans. The Financial Crisis of 2008 

followed similar trends to other crisis (Demyanyk & Van Hemert, 2011). First, there was an 

evident boom in the subprime mortgage market. Second, a bust occurred in 2007 which is 

signaled by house foreclosures, high delinquencies and default rates. The subprime crisis led to 

spill over into other credit markets. The crisis intensified when underwriting standards 

deteriorated along with loan quality which led to an increase in loan risk that was not reflected 

by an increase in price, which led to a collapse in the market. 

 Kwan (2001), using data from nine years from Merrill Lynch and Fannie Mae , finds  the 

average annual growth rate of subprime mortgages was 26 percent. Kwan concludes that 

subprime loans can affect credit values and the loans that are tied in with them. With an increase 

in subprime lending in the 2000s due to predatory practices, it was only a matter of time for a 

banking crisis to occur. The credit boom emanated from 2001 – 2006 and bust in 2007, mainly 

due to the large subprime securitized mortgage market (Demyanyk & Hasan, 2010). In 2008, the 

subprime securitized mortgage market was roughly around $1.8 trillion which is about one-third 

of the securitized market and 16% of total mortgage debt. Though many people doubted that 

such a comparatively small market could induce such a crisis, the complexity, however, of the 

innovated security contributed to the collapse. Keys et al. (2008) studied the link between 

securitization and screening subprime mortgage backed securities. They found that lenders that 
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are most likely to securitize portfolios have less motivation to screen borrowers and more likely 

to default (by 10-25%) compared to those portfolios with similar risk but with less probability of 

securitization. Furthermore, Mian & Sufi (2008) revealed a positive relationship between 

securitization and subprime lending and subsequent defaults. In geographical zones where 

borrowers were once denied credit (in 1996) received an exceptional growth of accepted credit 

and later mortgage default. In congruent with the growth in mortgage credit in this area and 

decrease in income growth, there was an increase to securitize these subprime mortgages. In 

2008, Bernanke informed the public that 10% of near-prime mortgages and over 20% of 

subprime mortgages were delinquent and 2.25 million foreclosures were initiated. In 2009, these 

figures increased to 13% and 25% respectively. While many maligned the nontraditional features 

involved in mortgage contracts, Mayer, Pence and Sherlund (2009), found that the biggest reason 

delinquency rates were remarkably unmanageable was because it was originated to borrowers 

with low credit score and high loan-to-value ratios. LaCour-Little & Zhang (2014) looked at 

estimating the probability of default and loss given default for home equity loans around the time 

of the financial crisis. In this paper, they compiled data from large commercial banks, where 

loans were originated during 2004-2008 and tracked from 2008-2012. They are particularly 

interested in the relationship between loan outcomes and the lender decision to securitize the 

asset. After they examined loan performances, including LGD for home equity loans they 

ascertained that there was an increase in the probability of default among the particular loans that 

were securitized. Lending to the corporate sector through loan syndication also suffered during 

the 2008 Financial Crisis (Ivashina & Scharfstein, 2010). There was a 37% drop in lending 

during September through November period prior to the past three month period and 68% 

decline since the peak in 2007. The authors expostulate however, that a decrease in lending does 
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not necessary mean a reduction in credit supply. A decrease in lending is due to a reflection of 

the increase in risk. However, they noted that banks with a “strong base of deposits” will cut 

their lending less. For example, in August-November 2008 period, the median range bank 

reduced lending by 38% while a bank with a deposit of one standard deviation below (above) 

reduced their lending by 51% (14%). Thus a bank with a solid deposit intake are inherently less 

risky and are capable of lending even through the crisis.  

Credit Scores Literature  

Before the emergence of credit score, credit worthiness was measured in various ways, 

but normally boiled down to a judgment call (Fensterstock, 2003). A loan officer would base 

their decision off a system that captures the borrowers Character, Capacity, Capital, and 

Condition; also known as the four C’s. Saunders & Allan (2010) includes another C, Collateral. 

Other than these factors, managers also had to take interest rate into account. Loan managers are 

aware of the nonlinear relationship between interest rate and expected return on loan. If interest 

rates are at a relatively “low” level, by increasing the rate, return should also increase. However 

if interest rates are relatively high, the expected return on loan decreases due to adverse selection 

and risk shifting. However, due to the subjective nature of loan decisions, individual or business 

credit worthiness could vary drastically depending on the loan officer. The judgmental system 

uses internal and external credit experience within a formula to determine the score. This method 

looks at the customer’s payment history, credit agency ratings, and financial statements among 

other factors. However, it is inefficient because it takes copiousness amount of manual work, 

especially in the initial set-up of the system. Also, the weights used can be biased because of 

irrelevant factors that should not weigh into the situation. It is difficult of the judgmental system 

to determine where errors are originating from, which makes it difficult to update and correct the 
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system.  

Now, individual’s risk assessment is usually given by their credit score, which is 

calculated by credit bureaus, Fair Isaac Corporation (FICO) being the most common.  These 

credit scores are developed using predictive algorithms that use personal information to estimate 

an individuals’ risk (Citron & Pasquale, 2014). FICO was created in 1956, and developed a 

three-digit credit score system which scores ranged from 300 to 850 where the lower the score, 

the more likelihood the individual would default.  In many instances, credit scores are used to 

price loans in order to remain objective. According to FICO, their scores are calculated using 

credit data which are grouped into five different categories: 1) Payment history; 2) Amounts 

owed; 3) Length of credit history; 4) New credit; and 5) Types of credit used.  

Credit scores are calculated by determining which factors are pertinent to the score and 

multiplying them by a respective weight of importance (Fensterstock, 2003). Credit scores can 

get much more complex than that, however, there are four main kinds of credit scoring systems, 

including the judgmental system (which we previously mentioned), the neural network-based 

system, the statistical-based system, and the genetic algorithm-based system. The last three are 

scientific-based and can be up to 30% more accurate than the human judgment system; they also 

meet requirements set by Sarbanes-Oxley. Each system has advantages and disadvantages and 

different business may use different systems (Fensterstock, 2005).  

The neural network-based systems, is able to decide which characteristics are the most 

necessary to include in the prediction of credit risk. The basis of this model is to link how the 

brain, using a network of neurons, would process information. One of the main advantages of 

this model is that it can map out nonlinear relationships between the independent variables and 

the predictive variable. The most common model of neural network displays a multilayer 
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perceptron. We see the bottom layer holds the input layers, such as the applicant’s attributes, 

however these neurons does not automatically go to the output layer, credit score, but goes 

through a hidden layer. Thus the hidden layer receives information inputs from the previous 

layers. This hidden layer can also be thought of as the training phase in which information is 

provided and the weights are adjusted in order to produce a better output. 

There is contradictory evidence of the effectiveness of neural networking for credit 

scoring. While Tam and Kian (1992) and Desay, Crook & Overstreet (1996) state that neural 

network is a better method, Altman et al. (1994) and West (2000) indicate that linear 

discriminate analysis and logistic regression, respectively, perform better and gives more 

accurate results.  However, one huge drawback of this method is that it lacks explanation of how 

and why prediction was achieved. Bank managers using this system will not know the weights or 

relationships within the system. This makes it difficult to assess the model’s decisions properly 

and accurately. 

 Statistical-based systems use multivariate regression models to approximate the 

probability that a customer will default on their loan. Unlike the judgmental system, weights 

assigned to factors are based on statistical assessment rather than human arbitration, thus this 

allows a statistical analyst to choose variables to check if a relationship makes financial sense. 

This also allows one to correct the accuracy of the model by finding sources of error and 

correcting them. However, this system requires someone with a background in statistics and can 

be hard to apply in some instances. 

 The last kind of system is the genetic algorithm-based system based on Charles Darwin’s 

theory of “survival of the fittest” and may be the best model. Genetic algorithms (GA) create a 

random initial generation of models where the next generation is made up of the best of the first 
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generation that have been tested for fitness against specific standards, which means an evolution 

of more advanced and accurate models. Unlike the other models, GAs can use 100% of the 

available data instead of just selected pieces. On the other hand, this model has been used very 

little, especially outside of universities and thus implementing a system that is not fully 

understood can be risky.  

While there are many ways to estimate credit scores, credit agency does not divulge 

estimation of the credit score and thus considered a “black box.” Citron & Pasquale thus names 

three problems with the credit score system: 1) their opacity, 2) their arbitrary results, and 3) the 

disparate impact. Credit bureaus lack of transparency on their scoring methodology leaves 

individuals powerless to understand or challenge their score. Due to this opacity there exist 

arbitrary results. Different credit bureaus may present totally differing scores for the same 

individual. The secret behind the black box does not assure us of equal opportunity scoring. In 

fact, the scoring results show there is a disparate impact where women and minorities are 

concerned. Since credit score estimation is based on credit history alone, they fail to classify an 

entire group who may not have any credit history due to recent entrance into market, lack of 

large consumption in need of credit, or the fact that they rent instead of own assets. While credit 

score is a step in the right direction, the past financial crisis has shown that credit can still be 

given out incorrectly.  

 

3. Methodology  

Two common used methodology when working with probability of default is discriminant 

analysis and logistic regression. While both methods are used to analysis data with categorical 

outcomes, they do have different underlying assumptions. Linear discriminant analysis assumes 
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normal distribution in the explanatory variables. Logistic regression, however, does distribution 

assumptions of the independent variables, thus it is more general.  

Discriminant Analysis 

The main objective of discriminant analysis is “to classify objects into one of two or 

more groups based on a set of features that describe the objects” (Gurny & Gurny 2013). In this 

case, we seek to classify good borrowers and bad borrowers based on different variables that 

describe that person. Thus the basic idea is to determine whether these different groups vary in 

means and if they can be used to predict default.  Its primary use it to classify and make 

predictions where the dependent variable is in qualitative form and then find a linear 

combination which “best discriminates between the groups” (Altman, 1968). A disadvantage 

using discriminant analysis is their list of assumptions. Data is assumed to be normally 

distributed, variance and covariance are homogeneous, there is no correlation between means 

and variances, multicollinearity, and random sample.    One advantage of using this method is 

that it reduces the space dimensionality by G-1, where G is the number of groups. In our paper, 

we only have two groups (Good or Bad) and thus we have one dimension.  

Discriminant analysis follows two basic steps. The first step is to estimate the coefficient 

of the independent variables, the borrower’s characteristics. The coefficients serve as weights 

that measures which variables are good predictors for default. The second step is to apply a 

discriminant function to establish a cut-off value. The discriminant function is derived using the 

following equation: 

𝑍 = 𝑣1𝑥1 + 𝑣2𝑥2 + ⋯ + 𝑣𝑛𝑥𝑛 

Where v is the discriminant coefficients and x is the independent variables. The discriminant 

function is treated as a standardized variable, so it has a mean of zero and a standard deviation of 

(1) 
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one. The discriminant coefficient maximizes the distances between the means of the dependent 

variables, where good predictor variables have the larger coefficient. Thus the discriminant 

function coefficient range between values of -1.0 and 1.0 and treated as a standardized variable. 

Thus the magnitude of the coefficients indicates the contribution of the independent variable.  

 

Figure 2: Discriminant Function distribution 

This is a hypothetical example of two groups (A, B). The discriminant function distribution 

diagram measures how well they are able to classify objects. If the overlap of the distribution 

function is small, than the function does a good job in classifying objects, if the overlap is large 

however there is a large probability of misclassification and thus the function is poor.  

 

 

 

 

 

 

 

 

 

 

 

An individual’s z-score can be found by simply summing the product of the coefficient 

with the independent variable. The group mean is the average of all the individual’s score, also 

referred to as the centroid (Stamatis, 2003). The success of the function can be determined by 

measuring the group centroid distance from one another. Figure 2 illustrates an example of the 



20 
 

distribution of scores of two group functions. The key to evaluating the function is by measuring 

the overlap of the distribution. Thus the top diagram depicts a statistically significant function 

and does well in distinguishing between group A and B. The bottom diagram, however, show 

that group have a large overlap, and thus the function has a high probability of misclassifying 

borrowers.  

  Logistic Regression 

Since our objective is to find whether loan default will occur or not, than the appropriate 

methodology to apply would be logistic regression. Thus logistic regression takes a binary 

variable which only takes two values, zero or one. The main objective of a logistic regression is 

to find the best fitting model to describe the relationship between the dichotomous characteristic 

of interest (the dependent variable) and a set of independent variables. Logistic regression 

generates the coefficients of a formula to predict a logit transformation of the probability of the 

presence of the loan characteristics. A logit function thus stipulates the probability that default 

will occur and one minus this function specifies that default will not occur.  

𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛼 +  𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + ⋯ + 𝑏𝐾𝑥𝑖𝐾 

𝑧 = 𝛼 + ∑ 𝛽𝑛𝑋𝑛 

This is a standard scoring model in which 𝛼 is a constant and 𝑋𝑠 are independent 

variables such as credit score, age, and other loan characteristics. In this paper since we seek to 

determine how credit score can find the probability of default of bank loans so our first equation 

will be to test this theory. Credit score ratings can be ranked in different groups taking into 

account 3734the approved loan amount. 

𝑓(𝑧) =  
1

1 + 𝑒−𝑧
=  

1

1 + 𝑒−(𝛼+∑𝛽𝑛𝑋𝑛)
 

(4) 

(2) 

(3) 
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The output of this equation, which should be between 1 and 0 reveals the riskiness of the bank. 

An output of 0 or close to zero means the bank has low risk while an output of 1 or close to one 

means the bank has high risk. This logistic function can be rewritten as a logistic model by using 

the expression of the probability of X. Logistic regression models the probability associated with 

each level of the response variable by finding a linear relationship between predictor variables 

and a link function of these probabilities.  First we need to link it with our scores variables in 

which:  
𝑃𝑟𝑜𝑏(𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑖) = 𝐹(𝑆𝑐𝑜𝑟𝑒𝑖) 

The logistic distribution function can then be written as 

𝑃𝑟𝑜𝑏(𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑖) =
exp (𝑏′𝑥𝑖)

1 + 𝑒𝑥𝑝(𝑏′𝑥𝑖)
=

1

1 + 𝑒𝑥𝑝(−𝑏′𝑥𝑖)
 

A very common way to estimate the weights of the coefficients is to use the maximum 

likelihood method. Maximum likelihood estimation is used and is the product of the sum of the 

logit function when default occurs multiplied by the product of the sum of one minus the logit 

function when the default does not happen. Then maximize the log of the likelihood function in 

order to find the weights: 

(𝑌𝑖 =1) 𝑃𝑟𝑜𝑏 (𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑖) = 𝛬(𝑏′𝑥𝑖)  

(𝑌𝑖 =0) 𝑃𝑟𝑜𝑏 (𝑁𝑜 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑖) = 1 − 𝛬(𝑏′𝑥𝑖) 

𝐿𝑖 = (𝛬(𝑏′𝑥𝑖))𝑦𝑖(1 − 𝛬(𝑏′𝑥𝑖))1−𝑦𝑖 

ln𝐿𝑖 = ∑ 𝑦𝑖
𝑁
𝑖=1 𝑙𝑛(𝛬(𝑏′𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝛬(𝑏′𝑥𝑖)) 

The logit model uses the logistic distribution function to link the variables. Two steps are 

required in order to find the coefficients: 1. Set first derivative to 0 and 2. Use the Newton’s 

method. 

ln𝐿𝑖 = ∑ 𝑦𝑖
𝑁
𝑖=1 𝑙𝑛(𝛬(𝑏′𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑛(1 − 𝛬(𝑏′𝑥𝑖)) 

(9) 

 

(10) 

 

(6) 

(7) 

 

 

(8) 

(5) 

(11) 
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1. 
𝜕𝑙𝑛𝐿

𝜕𝑏
= ∑ (𝑦𝑖 −𝑁

𝑖=1 𝛬(𝑏′𝑥𝑖))𝑥𝑖 

2. 
𝜕2𝑙𝑛𝐿

𝜕𝑏𝜕𝑏′
= − ∑ 𝛬(𝑏′𝑥𝑖)(1 −𝑁

𝑖=1 𝛬(𝑏′𝑥𝑖))𝑥𝑖𝑥𝑖’  

𝑏1 = 𝑏0 − [
𝜕2𝑙𝑛𝐿

𝜕𝑏0𝑏𝜕𝑏′
0

]

−1
𝜕𝑙𝑛𝐿

𝜕𝑏0
 

 

Lawrence & Arshadi (1995), Campbell & Dietrich (1983), Gardner & Mills (1989) all 

use logit models to analyze loans, in fact, Charitou, Neophytou and Charalambous (2004) states 

that the logit method is superior when predicting defaults.  

 

4. Data 

 The data that I will be using is from a local credit union from 2006 to December 2014.  I 

will be looking at two different datasets: 1) current loan portfolio and 2) charge-off loans. Figure 

3 depicts a comparison of the loan portfolio and the charge-off loans. As of December 2014, the 

loan portfolio was valued $297,466,374 while the charge off loans were at $147,850.07. So 

roughly .05% of their portfolio loans were charged off.  

Table 1 shows the descriptive statistic of the dataset used. More information has been 

collected on the active loans compared to charge-off loans, we received 42,650 active loans. 

After cleaning up the data, there are 22,446 active loans. Information about the interest rate, 

original balance, current balance, loan maturity, the borrower’s credit score, available credit, and 

loan description is given in this data set.  

 



 
 

Figure 3: Charge-offs/Portfolio 

The data used is from a local credit union. This graph shows the amount of the active loan portfolio balance and the charge-off during 

2006 and end of 2014. 

$72,476,409.00 

$141,572,498.00 
$206,636,828.00 

$297,466,374.00 

5,000.00

20,000.00

80,000.00

320,000.00

1,280,000.00

5,120,000.00

20,480,000.00

81,920,000.00

327,680,000.00

Se
p

-0
6

D
ec

-0
6

M
ar

-0
7

Ju
n

-0
7

Se
p

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n

-0
8

Se
p

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

Se
p

-0
9

D
ec

-0
9

M
ar

-1
0

Ju
n

-1
0

Se
p

-1
0

D
ec

-1
0

M
ar

-1
1

Ju
n

-1
1

Se
p

-1
1

D
ec

-1
1

M
ar

-1
2

Ju
n

-1
2

Se
p

-1
2

D
ec

-1
2

M
ar

-1
3

Ju
n

-1
3

Se
p

-1
3

D
ec

-1
3

M
ar

-1
4

Ju
n

-1
4

Se
p

-1
4

D
ec

-1
4

Charge offs/Portfolio

Charge off Portfolio Balance 2 per. Mov. Avg. (Charge off) 2 per. Mov. Avg. (Portfolio Balance)



 
 

 

Table 1: Descriptive Statistics  

Two different types of dataset was collected from local credit union from 2006 to 2014. Panel A 

is the summary statistics of the active loan portfolio. Current and Available balances were 

updated December 2014. Panel B is the summary of the charge off loans.  

* Available credit, original balance and current balance is in the millions 

 

Panel A: Active Loan Portfolio 

 

 

 

 

 

 

Panel B: Charged-off Loans 

 

 

 

Variable Obs Mean Std. Dev Min Max 

Interest Rate 22446 8.42 5.22 0 24 

Credit Score 22446 609.18 241.22 0 964 

Available Credit 22446 87136.25 364944.2 0 163.36* 

Original Balance 22446 17558.55 36581.64 0 1.835* 

Current Balance 22446 12873.98 46161.29 0 4.76* 

Maturity 22446 4.38 6.21 0 36 

Variable Obs Mean Std. Dev Min Max 

Credit Score 578 601.2 63.39 439 839 

Age 577 41.39 12.68 21 83 

Amount 578 3536.82 4065.38 3.2 29443.04 

Debt Ratio 578 27.38 12.86 1.37 100 

Delinquency 573 463.54 247.65 2 1002 

Duration 571 2.08 1.68 0.01 13.67 



 
 

The charge-off loan database is a much smaller dataset with 3,371 observations. After 

cleaning up the charge-off data, we were left with 578 observations which can also be seen in 

Table 1. The dataset also provides information about the borrower’s age and credit score, and the 

loan amount, duration, and loan type. We deleted observations that had missing data for credit 

scores and debt ratio. Also some observations seemed to be mistyped (for example an individual 

had a 2006 credit score value) and those were also deleted. While having more variables would 

be optimal, this is a good starting point and since very few researchers have the availability of 

bank data this will provide great insight. Table 2 provides definition of the variables that will be 

used throughout this paper. As can clearly be seen both dataset provides different variables with 

the exception of credit score which in included in both. 

Table 2: Variables Description 

 

Active Loans  

Credit Score: 
The borrower's credit score calculated by FICO indicates there risk 

based on credit history 

Available 

Credit: 

The remaining amount of an open line of credit or revolving loan 

(Credit line limit minus borrowed/used amount; since December 2014) 

Original 

Balance: The loan amount taken out by borrower at issuance date 

Current 

Balance: 

The amount of the loan the borrower still owes (original balance minus 

payments made; since December 2014) 

Interest Rate: The cost of borrowing 

Maturity: The life of the loan 

  

  

Charge-Off  

Credit Score: 
The borrower's credit score calculated by FICO indicates there risk 

based on credit history 

Age: Age of the principal borrower 

Amount: The amount of the loan charged-off 

Debt ratio: Total Debt/Total Assets 

Duration: 
The time that borrowers actually paid back the loan (date last paid 

minus issuance date) 

Delinquency: 
The time (in days) the borrower has not paid back their loans (since 

December 2014)  
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We then separated the default dataset by loan type and calculated the mean, standard 

deviation, and sample size for each individual loan type which is summarized in table 3. Personal 

loan, used auto loans, indirect loans and visa loans have the highest number of observation. For 

the rest of this paper we will focus on personal, visa and used, indirect, and new auto loans. 

Reasonably, auto loans have a larger loan amount then the entire data set (as well as credit 

score), while visa and personal loans have a lower loan amount. The data set as a whole is 

extremely volatile and randomly distributed. However, it is apparent that loan types with a larger 

sample size have a higher standard deviation in relation to the mean, while loans with a smaller 

sample size have smaller standard deviations in relation to the sample mean. Thus for the rest of 

this analysis we will be using the logarithmic of the variable to normalize the effects.  

 

Table 3: Charge-Off Descriptive Statistics by loan type 
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Table 4 indicate different characteristic of good borrowers and their loans. Good 

borrowers are defined as borrowers who have a ranking of at least a B. This ranking defines the 

original risk of the loan and is assigned by the bank manager. They are assigned a binary variable 

of 1, and thus all who have a binary of 0 are classified as bad borrowers. Not surprisingly, the 

mean of a good borrower has a credit score of 647 and that of a bad borrower is 498. Thus good 

borrowers have significantly higher credit score. Credit score is used to price interest rate for the 

borrowers. Thus it makes sense that bad borrowers, who tend to have lower credit scores, also 

has higher interest rates.  Looking at original balances granted to borrowers, the table indicate 

that good borrowers have a significant higher loan amount, almost a $10,000 difference, then bad 

borrower. This is a reasonable deduction since banks doubt bad borrower capability to pay off a 

big loan while trusting good borrowers’ ability to take on a bigger loan and pay it off. Available 

credit is the difference between the credit limit of a credit card and the amount already used. 

Thus available credit is the share of the line of credit that has not been spent. As for the case of 

original balance, the available credit is statistically significantly larger for good borrowers than 

bad borrowers. Good borrowers thus are granted a higher limit than bad borrowers. Maturity of 

the loan in this study can be defined as the length of the life of the loan. This was found by 

looking at the original date and the due date of the loan. Thus this figure shows that good 

borrower tend to have loans with longer maturity than bad loans. In order to reduce the risk of 

bad borrower loans they will give them a loan with shorter maturity.   

This table also presents the different types of loans that this particular credit union gives 

to consumers. A binary variable was created to indicate what type of loans borrowers took out. 

The loans available are: auto, personal, share, credit card, end line credit, home equity line, 

trailer, second mortgaged, first mortgage, land, or business loan. Another possible explanation of 



 
 

 

 

 

Table 4: Borrower and Loan Characteristics 

Means of the borrower’s loan characteristics and their significance. Using dummy variables to account 

the different type of loans given to borrowers. Where “Good Borrowers” were those borrowers classified 

as B risk or above. The rest were classified as “Bad Borrowers”. Their means and differences are 

recorded in this table. 
*** 1% Statistically Significant 

** 5% Statistically Significant 

* 10% Statistically Significant 

 

  

Variable 
Bad Borrower 

[0] 

Good Borrower 

[1] 
Difference[0]-[1] T-statistics 

Credit Score 498.33 647.66 -149.33 [-43.28]*** 

Interest Rate 14.22 6.40 7.82 [103.99]*** 

Original Balance 10326.65 20069.59 -9742.94 [-22.22]*** 

Current Balance 7829.79 14625.41 -6795.63 [-7.44]*** 

Available Credit 21604.09 109890.20 -88286.11 [-23.39]*** 

Maturity 3.79 4.59 -0.80 [-9.43]*** 

     

     

     

Variable 
Bad Borrower 

[0] 

Good Borrower 

[1] 
Difference[0]-[1] T-statistics 

Auto Loan 0.416 0.451 -0.035 [-4.58]*** 

Personal Loan 0.249 0.122 0.127 [20.39]*** 

Share Secured Loan 0.024 0.012 0.012 [5.32]*** 

Credit Card 0.204 0.280 -0.076 [-11.99]*** 

End line of Credit 0.049 0.040 0.009 [2.85]*** 

Home Equity Line 0.007 0.009 -0.002 [-1.46]* 

Trailer Loan 0.001 0.009 -0.008 [-9.66]*** 

Second Mortgage Loan 0.007 0.013 -0.006 [-3.94]*** 

First Mortgage Loan 0.009 0.041 -0.031 [-15.75]*** 

Business Loan 0.009 0.000 0.009 [7.17]*** 

Land Loan 0.003 0.004 -0.001 [-1.31]* 
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the larger loan amount for good borrowers is the fact that good borrowers tend to invest in more 

expensive tangible items such as autos, homes, and land. Table 4 shows that good borrower take 

out more auto loans, home equity lines, trailers, first and second mortgages, and more land loans. 

In addition to these investments, good borrowers have more credit cards. Bad borrowers, on the 

other hand, tend to take out more personal loans, share secured loan, open end line of credit and 

business loans compared to good borrowers. 

Table 5 compares the means of the variables for the charge-off dataset categorized into 

loan type. For the age characteristic, it is not significant for any loan type except for achiever 

loans. The mean age for most charge-off borrowers are in the lower 40s. Therefore, the idea that 

younger borrowers are more likely to default on their payment is not substantiated by looking at 

just the means. The achiever loan is the only loan that is statistically significant and that its age is 

lower than 40s. Achiever loan borrowers are seeking to build credit and one type of borrower 

who lacks most in credit history are young adults who have not had the opportunity to build a 

history. The charge-off amount is the statistically significant for all the loan types. The highest 

charge-off amounts are from auto loans (new, used and indirect loans). Since borrowers take out 

larger loans to afford an auto, it stand to reason that they will have higher charge-off amounts. 

The achiever loan is the lowest charge-off amount. Other than the fact that there is only few 

observations, achiever loans by definition is a small loan with the sole purpose to build up credit. 

The credit score variable is significant for all loan types except for used and new auto loans. 

Indirect auto and credit card have the highest credit score. Indirect auto loans usually are 

originated in the car dealership and then transferred to the bank. Thus the bank does not have 

direct contact with the buyer. Credit card application, while many times dealt through the bank, 

also has a third party involved, the credit card company (in this case Visa). Thus these third party  
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Table 5: Charge-off Loan Characteristics 
Dummy variables are assigned to different loan types in the charge-off dataset. The means of variable are 

than compared by specific loan versus the rest of the loans.  
*** 1% Statistically Significant ** 5% Statistically Significant * 10% Statistically Significant 

 

Variable Other Loans [0] Personal Credits [1] Difference[0]-[1] T-statistics 

Age 40.74 42.34 -1.60 [-1.461] 

Amount 4716.82 1630.66 3086.16 [11.369]*** 

Credit Score 608.56 589.30 19.26 [3.621]*** 

Debt Ratio 26.58 28.67 -2.09 [-1.827]* 

Delinquency 409.25 551.95 -142.70 [-6.886]*** 

Duration 2.65 1.14 1.51 [13.648]*** 

Variable Other Loans [0] Credit Cards [1] Difference[0]-[1] T-statistics 

Age 41.24 42.51 -1.27 [-0.688] 

Amount 3642.60 2443.78 1198.82 [3.04]*** 

Credit Score 599.68 616.90 -17.22 [-1.943]** 

Debt Ratio 27.28 28.42 -1.14 [-0.651] 

Delinquency 452.33 583.41 -131.08 [-3.796]*** 

Duration 1.96 3.36 -1.40 [-2.93]*** 

Variable Other Loans [0] Indirect Auto [1] Difference[0]-[1] T-statistics 

Age 41.59 40.03 1.56 [0.989] 

Amount 3253.52 5135.66 -1882.14 [-4.167]*** 

Credit Score 598.29 617.60 -19.31 [-2.851]*** 

Debt Ratio 27.78 25.13 2.65 [2.148]** 

Delinquency 489.06 321.00 168.06 [6.923]*** 

Duration 2.04 2.30 -0.26 [-1.665]* 

Variable Other Loans [0] Used Auto [1] Difference[0]-[1] T-statistics 

Age 41.86 40.19 1.67 [1.491] 

Amount 2811.39 5207.39 -2396.00 [-5.817]*** 

Credit Score 600.14 603.62 -3.48 [-0.598] 

Debt Ratio 27.98 25.99 1.99 [1.920]** 

Delinquency 487.95 408.02 79.93 [3.749]*** 

Duration 1.87 2.57 -0.70 [-5.188]*** 

Variable Other Loans [0] New Auto [1] Difference[0]-[1] T-statistics 

Age 41.28 43.24 -1.96 [-0.854] 

Amount 3396.43 7260.43 -3864.00 [-2.672]*** 

Credit Score 601.00 606.38 -5.38 [-0.473] 

Debt Ratio 27.43 25.98 1.45 [0.476] 

Delinquency 468.66 328.90 139.76 [3.054]*** 

Duration 2.03 3.41 -1.38 [-3.932]*** 

Variable Other Loans [0] Achiever [1] Difference[0]-[1] T-statistics 

Age 41.47 31.71 9.76 [2.842]** 

Amount 3579.81 30.45 3549.36 [20.816]*** 

Credit Score 602.39 503.86 98.53 [5.672]*** 

Debt Ratio 27.14 46.63 -19.49 [-1.542] 

Delinquency 466.97 186.29 280.68 [5.443]*** 

Duration 2.10 0.35 1.75 [18.405]*** 
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loan transactions may require a larger credit score cut-off before being accepted. Personal loans 

have a lower credit score than the other loans. Relationship banking may have influenced the 

acceptance of this loan application. An achiever loan has the lowest credit score. Credit cards 

and personal loans have higher payment delinquency than the other loan types. These loans, 

which also have lower charge-off payment (and loan amount), are given more time in 

delinquency until marked off the books. Duration is the amount of time that the borrowers paid 

off their loan before defaulting. The three auto loan and credit cards loans have higher duration 

mean the other loan type. Thus they had more loan payment periods than the other loans.  

Using these two dataset, we will attempt to see how and if credit score is a good measure 

for default. While some charge-offs are due to the borrower’s death or incarceration, most are 

due to bankruptcy, post repo, inability to pay, or just the refusal to pay. In order to run a test to 

see whether credit score can really predict the probability of default we need a database that has 

both default loans and paid-off loans. In our portfolio loan database we find which loans have 

paid of at least 99% of their loans back and we assign the binary variable of 0. We merge them 

with our defaulted loans, classified as 1, and delete any default that was due to death, prison, or 

any charge-off amount below $50 or have been delinquent in the last 30 days. Our new database 

has 1261 observations with 543 being default observations and 718 being paid-off loans. The 

credit score ranges from 437 to 850 with a mean of 677. The only shared variable is credit score 

and thus our regression will focus on the influence that credit score has as a predictor of 

probability of default.  

5.  Results 

Multiple Linear Regression 
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The next step of this data analysis is to run a multiple regression analysis on the default 

dataset. The main idea of this paper is to find the probability of default. Even though we will not 

be able to ascertain this using multiple regression, what this regression analysis will allow us to 

do is see if the credit score is a legitimate predictor for charge-off amount. Table 6 shows the 

result of our multiple regressions. While we do not know the exact method that companies use to 

calculate credit score, at least two variables in our dataset seem to have a positive significance 

with credit score, debt ratio and age. We focus our regression on debt ratio and age since these 

are characteristics of the borrower opposed to characteristics of loans.  Therefore, older 

borrowers with lower debt ratio has better credit score. This is logical since older borrowers have 

more credit history and have had time to build their credit. Having a high debt ratio is also 

synonymous to having high risk, thus it is puzzling why this value is not negative.  However the 

r-square is very low.  

 The second regression output is where the dependent variable is the log of charge-off 

amount. Credit score is clearly positively significant with charge-off amount in all four equation. 

This seems to indicate that borrowers with high credit score has higher charge-off amounts. This 

maybe because borrowers with higher credit score are given higher loan amount, thus higher 

potential for larger charge-off amounts. However, these equations have a low r-square. The r-

squared for regression model four is just 10%. This means the 10% of charge-off amount is 

represented by the four predictors that we used in this regression analysis. Ideally, you want to 

have an r-squared of at least 50% for a model to be considered legitimate. In conclusion, the r-

squared of 10% for this model is extremely low and could not be used to accurately predict 

charge-off amount.   
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Table 6: Linear Regressions 

Multiple regression on the default database. Panel A is a multiple linear regression where the 

dependent variable is log(credit score) and the independent variable is log (debt ratio) and 

log(age). The p-value is included to show significance. Panel B is a multiple regression where 

the log(charge-off amount) is the dependent variable. Different models are run with different 

variables, emphasis is on the significance of credit score. R-squared is also recorded.   

*** 1% Statistically Significant ** 5% Statistically Significant * 10% Statistically Significant 

 

 

 Discriminant Analysis Results 

We run a discriminant analysis on the first dataset. Here are categorical group is good 

borrower which is determined by the original risk of the borrower. If they were assigned a B 

or better they are classified as good borrower (1), if they have a risk below this than they are 

classified as bad borrowers (0). Since there is only two different groups there will only be 1 

function. First, we look at how well credit score can preditct good borrowers. Table 7 shows 

the outcome and that the discriminant function is significant. However, using just that one 

variables comes with misclassifications. Discriminant analysis uses the group means in order 

A. Dependent: Log Credit Score    

      

   Coefficient 

Std. 

Error P-Value  

 Constant 2.686 0.025 0.001  

 logdebtratio 0.028 0.008 0.001  

 logage 0.032 0.014 0.023  

 N 578    

 R2 3.11%      

      

B. Dependent: Log Charge-off amount   

      

   (1) (2) (3) (4) 

 Constant -6.639*** 

-

6.550*** 

-

5.381*** 

-

5.254*** 

 logcreditscore 3.559*** 3.472*** 3.025*** 3.062*** 

 logdebtratio  0.111 0.130 0.130 

 logduration   0.259*** 0.262*** 

 logage       -0.145 

 R2 7.16% 7.35% 9.74% 9.83% 
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to discriminate betweens goups. As can be seen in the following table, the group means are 

relatively close to each other indicating an overlap in the distribution graph. With an overlap, 

this means that there is a higher tendency of classification errors. While this model was able 

to correctly classify about 89% of the good borrowers, it had more problems classifying bad 

borrowers. This model only classified 16.32% correctly, almost 84% were misclassified in 

group 1. Thus using this model, they would place a high porpotion of borrower in good 

borrower standing when they really belonged as bad borrower classification.  

Table 7: Discriminant Analysis of Good Borrowers based on Credit Score 

Discriminant analysis on the group good borrower is run with one predictor, credit score. The first section 

of is the canonical test which shows the number of functions and its significance. The second section 

looks at unstandardized and standardized canonical coefficient for the discriminant function and the 

canonical structure. The next section looks at the group means, the “centroids.” And the last section looks 

at the classification. Whether the model is able to classify correctly the type of borrower.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fcn Canon. Corr. Likelihood Rato F Prob>F 

1 0.103 0.989 240.06 0.000 

Ho: this and smaller canon. Corr. Are zero   

     

  

Unstandardized 

Canonical  

Standardized 

Canonical  

Canonical 

structure 

 logcreditscore 1.069 1 1 

 constant -2.659   

     

     

 Goodborrower Group Means   

 0 -0.176   

 1 0.061   

     

 TRUE Classified  

 Goodborrower 0 1 Total 

 
0 

944 4,841 5,785 

 16.32% 83.68% 100% 

 
1 

1,857 14,804 16,661 

 11.15% 88.85% 100% 
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We decided to expand the model to include other variables given such as original 

balance, current balance, available credit, maturity, and interest rate. As can be seen in table 8, 

the function is significant. The unstandardized canonical coefficients are the parameters that are 

used to find the discriminant score. Thus the discriminant score for the average borrower is -

0.71774, which is much better than the previous model (0.318). The standard canonical 

coefficient can be used to rank the importance of the variable. In this case, interest rate definitely 

is the most significant predictor.The correlation sturcture are latent discriminant loading 

variables. They represents the correlation between the predictor and the discriminant function. It 

can also be used to assess the importance of the variable. Usually a variable with a correlation of 

.3 or higher is  desirable. Interest rate is the only variable that has a high correlation. The group 

means, or the centroid, of the group is the average of the sum of all the discriminant score of 

each individual of each group. The farther they are apart the better because it will be better able 

to descriminate per group. As we can see the group means are relatively far apart and this model 

does a much better job of classification. This model correctly classified good borrower by almost 

91%. While the bad borrowers are still harder to classify (72%), it is much better than the 

previous model. However, 1,621 borrowers were still classified as good borrowers when they 

actually were bad borrowers. Therefore, in order to improve this model we need better variables. 

As could be seen in standardized canonical coefficient and the canonical structure variables were 

relatively low and therefore many of these variables are not the best predictors to use.  
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Table 8: Discriminant Analysis of Good Borrowers  

Discriminant analysis on the group good borrower is run against several predictors: credit score, 

original balance, current balance, available credit, maturity, and interest rate. The first section of 

is the canonical test which shows the number of functions and its significance. The second 

section looks at unstandardized and standardized canonical coefficient for the discriminant 

function and the canonical structure. The next section looks at the group means, the “centroids.” 

And the last section looks at the classification. Whether the model is able to classify correctly the 

type of borrower.  

 

Fcn Canon. Corr. Likelihood Rato F Prob>F 

1 0.713 0.492 359.2 0.000 

Ho: this and smaller canon. Corr. Are zero   

     

  

Unstandardized 

Canonical  

Standardized 

Canonical  

Canonical 

structure 

 logcreditscore -0.121 -0.113 -0.102 

 logoriginalbalance 0.021 0.015 -0.166 

 logcurrentbalance -0.022 -0.025 -0.06 

 logavailablecredit -0.210 -0.469 -0.129 

 logmaturity 0.463 0.172 -0.0073 

 intrate 0.276 1.090 0.854 

 constant -1.963   

     

     

 Goodborrower Group Means   

 0 1.724   

 1 -0.599   

     

 TRUE Classified  

 Goodborrower 0 1 Total 

 
0 

4,164 1,621 5,785 

 71.98% 28.02% 100% 

 
1 

1,549 15,112 16,661 

 9.30% 90.70% 100% 
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 The next test looks at our merged database. This will give us a clearer picture of whether 

credit score can predict the probability of default which is shown in Table 9. Since credit score is 

our only variable in this database we are constricted in using just this predictor. The function 

again is significant and because only one predictor is use the standardized canonical coefficient 

and structure is one. The unstandardized canonical coefficient is given in which we are able to 

find the discriminant score function: 𝐷𝑖 =  −9.99 + 0.015 ∗ 𝑋𝑖 where i is each individual 

borrower and x is their credit score. The idea behind the discriminant score is to find the group 

means. The group means for paid-off loans is 0.835 and for default loans, -1.104. Credit score is 

able to correclty classify loans that will default (be paid-off) by 85% (81%). Thus this model is 

relatively good. A manager has a reasonable vindication to assign a cut-off score to avoid 

charge-offs. Thus a  manager will be willing to accept a credit score which discriminant score is 

closer to group mean of 0.835. The group mean’s credit score is approximately a credit score of 

722, thus anything above that should clearly be accepted. The average credit score of this 

database is a 677, even though the descriminant score is below the group mean, the discriminant 

score of .165 is much closer to the group zero’s mean than group one’s mean. Thus a credit score 

of 677 should also be accepted.  

 Notice that there is a big difference in credit score capacity of predicting actual 

probability of default and good borrower classification that was given by the bank. While credit 

score was able to classify good borrowers relatively well, it was not able to classify bad 

borrowers that well. Credit score model tended to over-classify borrowers as good borrowers 

where the bank had determined them to be bad borrowers. Thus is can be assumed that managers 

uses other variables other than credit score to decide whether a borrower is good or bad. Though 

credit score does an admirable job at classifying loans probability of default, there is still room 
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for improvement. It still has a 19% probability that it will classify a loan as a pay-off loan when 

it actually will default. Depending on the amount of charge-off, this can be a huge loss for any 

bank. In order to make this model more accurate, more variables will need to be added in order 

for the model to discriminate more efficiently.  

Table 9: Probability of Default using discriminant Analysis 

Discriminant analysis is run on a merged dataset of defaulted loans and paid-off loans. The 

defaulted loans were given the binary value of 0 and the paid off loans were given the binary 

number of 1. There is only one predictor value, credit score.  The first section of is the canonical 

test which shows the number of functions and its significance. The second section looks at 

unstandardized and standardized canonical coefficient for the discriminant function and the 

canonical structure. The next section looks at the group means, the “centroids.” And the last 

section looks at the classification. Whether the model is able to classify correctly the type of 

borrower.  

 

Fcn Canon. Corr. Likelihood Rato F Prob>F 

1 0.693 0.52 1162.8 0.000 

Ho: This and smaller canon. Corr. Are zero   

     

  

Unstandardized 

Canonical  

Standardized 

Canonical  Canonical structure 

 Credit score 0.015 1 1 

 constant -9.99   

     

     

 Default Loans Group Means   

 0 0.835   

 1 -1.104   

     

 TRUE Classified  

 Default Loans 0 1 Total 

 
0 

580 138 718 

 80.78% 19.22% 100% 

 
1 

79 464 543 

 14.55% 85.45% 100% 
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 Logistic regression 

The credit union ranks their borrowers from an A+ to an E scale, A+ obviously being the 

safest borrower. While many banks classify good borrowers based on their credit score alone, 

using logistic regression, we can look at other characteristics that can help identify good 

borrowers as well. We run eight different regression with varying number of independent 

variables to see how that will change the degree of coefficients. The results can be seen in Table 

10.  

We are first interested in credit score. We want to know how well credit score predicts good 

borrowers. One unit increase in log(credit score) will produce an expected increase likelihood 

that the individual is a good borrower by .227 units. Because this is a logistic regression we need 

to transform coeffieicent to odds ratio which can simply be done by taking the coeeficient’s 

exponential. Thus the odds ratio becomes 1.255. Thus each credit score unit increase is 

associated with a 25% odds of being a good borrower over a bad borrower. If we wanted to find 

the probability of the individual being a good borrower we can plug the coefficients in to the 

equation: 𝑌 = ln (
𝑝

1−𝑝
)= .503+.227*log(creditscore). If we use the mean as our x=609, than the 

total will be 1.135. Since we are looking for the probability we will have to transform that 

product as well: 𝑝 = (
𝑒𝑦

𝑒𝑦+1
)=75.68% that a borrower with a credit score of 609 is a good 

borrower. Thus credit score is a relatively good indicator of borrower status. By adding more 

variables however we can be more accurate. Using the coefficient output of equation 6 and the 

means of those variables we get a probability of 97% that the average borrower in this bank 

portfolio is a good borrower. However, the r-square is still problamatic. Using other variables, 

such as borrower’s income and account may make the model fit better and thus increase in 

accuracy. 



 
 

Table 10: Logistic Regression of Good Borrowers 

Logistic regression on active loan dataset. Good borrowers’ variable is a binary variable denoted as 1, and bad borrower is 0. We 

check to see how different loan variables influence good borrowers. 

 

prob(𝑔𝑜𝑜𝑑𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟) = 𝛼 + 𝛽1 log(credit score) + 𝛽2 log(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑏𝑎𝑙𝑎𝑛𝑐𝑒) + 𝛽3 log(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑎𝑙𝑎𝑛𝑐𝑒) + 𝛽4 log(𝑎𝑣𝑎𝑖𝑙𝑎𝑙𝑏𝑒𝑐𝑟𝑒𝑑𝑖𝑡) +

𝛽5 log(𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦) +  𝛽6interest rate + +𝛽7indirect + 𝛽8coborrow + 𝛽9𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑐𝑟𝑒𝑑𝑖𝑡  

*** 1% Statistically Significant ** 5% Statistically Significant * 10% Statistically Significant 

 

 

 

  

  1 2 3 4 5 6 7 8 

logcreditscore 0.227*** 0.118*** 0.164*** 0.391*** 0.449*** 0.508*** 0.508*** 0.506*** 
logoriginalbalance  0.443*** 0.806*** 1.024*** 0.968*** -0.666*** -0.756*** -0.763*** 

logcurrentbalance   -0.338*** -0.066** -0.036 0.100*** 0.099*** 0.876** 

logavailablecredit    0.405*** 0.390*** 0.516*** 0.527*** 0.526*** 

logmaturity     0.339*** 0.358*** 0.351*** 0.346*** 

intrate      -0.510*** -0.516*** -0.517 

indirect       0.538*** 0.652*** 

coborrow       0.233*** 0.202*** 

multiplecredit        0.293*** 

constant 0.503*** -0.908*** -1.249*** -4.035*** -4.238*** 5.993*** 6.289*** 6.257*** 

Pseudo R2 0.87% 2.50% 3.38% 9.53% 9.64% 49.71% 49.94% 50.08% 
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Most variables had the expected signs. For example interest rate is negative and credit score 

is positive across the board. Good borrowers are characterized as having high credit score which 

is used to price loans. Thus, good borrowers will have lower interest rate (cost) than bad 

borrowers. Maturity and available credit is also positively significant. Good borrowers are given 

a higher available credit because they are trusted to keep up with the payments. Maturity is also 

longer. A possible reason for this is that many good borrowers may take out a big loan that 

requires a longer time to pay off. Other variables that came in positively significant are indirect 

variable, coborrow variable and multiplecredit variable.  

An interesting result is that the original balance variable is positively significant with good 

borrower until interest rate is taken into account in which it becomes negatively significant. A 

possible explanation is that banks are normally more willing for good borrowers to have large 

loans. However, since large loans are seen as riskier they tend to have higher interest rates. A 

possible solution then is for good borrowers to take multiple smaller loans at lower interest rates. 

Current balance also had a change in signs. It started negatively significant but when the maturity 

variable was introducted, this switch the sign to positively significant. Since good borrowers tend 

to have longer loan maturity than bad borrowers, bad borrowers pay off their balances quicker.  

 The result of the logistic regression for the default dataset is seen in Table 11 and 12. The 

first table categorizes the default borrowers by their credit ranking and uses loan type as the main 

independent variables and loan characteristics are used as controle variables; also achievement 

loans are excluded to avoid a dummy trap. For borrowers who rank in the A tier, they were more 

likely to default on their credit card loans. There is no other statistically significant figure. 

Although A credit rating is seen as the best and E is the worse, all of these have failed to pay off 

their loans. Thus credit rating does not always signify that the borrower will not default.  
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Table 11: Credit Score Ratings and Loan types 

Run logistic regression on charge-off dataset. The dependent variables are borrowers who 

categorized by credit score ranking where A have the highest credit scores and E has the lowest 

credit scores. The independent variables are the different loan types where the characteristic of 

loans (italicized) are used as control variables. 

[Indicate p-values] *** 1% Statistically Significant ** 5% Statistically Significant * 10% Statistically Significant 

  

Table 12  classifies the default borrowers by credit type. First we focus on credit score as the 

sole predictor. In this case, we are not looking so much at the probability of default since all of 

these borrowers have defaulted, but looking at what probability that they defaulted with a 

specific loan type. An average borrower with a credit score of 601 is more likely to default on a 

personal loan than any other loan (probability of 38%). Credit score seems to be a good predictor 

            

Dependent Variable   A Tier B Tier C Tier D Tier E Tier 

  (1) (2) (3) (4) (5) 

      

Credit Card 2.059 0.894 -0.571 -0.622 -0.661 

 [0.056]* [0.301] [0.386] [0.315] [0.241] 

Personal Loan 1.173 0.542 -0.263 0.188 -0.614 

 [0.268] [0.490] [0.631] [0.709] [0.196] 

New Auto 0.380 1.375 -0.664 0.079 -0.644 

 [.768] [0.150] [0.427] [0.910] [0.420] 

Used Auto 0.480 0.392 -0.255 0.224 -0.175 

 [0.654] [0.633] [0.652] [0.669] [0.726] 

Indirect 1.339 0.529 -0.110 -0.200 -0.478 

 [0.214] [0.536] [0.854] [0.720] [0.387] 

Log(Age)t 0.417 -1.861 -0.352 0.219 0.930 

 [0.667] [0.060]* [0.677] [0.760] [0.227] 

Log(Amount)t 0.469 -0.091 0.083 0.173 -0.458 

 [0.079]* [0.691] [0.686] [0.323] [0.011]** 

Log(Duration)t 0.260 0.181 0.241 0.022 -0.418 

 [0.806] [0.646] [0.493] [0.942] [0.161] 

Log(Delinquency)t -0.096 -0.700 -0.035 -0.369 1.429 

 [0.806] [0.035]** [0.914] [0.172] [0.001]*** 

Constant -4.942 2.575 -0.892 -0.914 -4.344 

 [0.032]** [0.189] [0.605] [0.535] [0.009]*** 

N 571 571 571 571 571 

Pseudo R2 4.40% 2.91% 0.52% 1.43% 5.02% 
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for personal loans with the expected sign. For indirect and credit card loans however there is a 

positive significance which seems to be contrary to common rationality. Credit score was also 

insignificant for used and new auto loans.  

Table 12: Credit Score Ratings and Loan types 

Logistic regression was run on the charge-off dataset from a local credit union. The dependent variable is 

the different types of loans and the loan characteristics are the independent variables. Panel A focuses on 

credit score, while panel B looks at the other variables as well.  

Credit Type = 𝛼 + 𝛽1 log(𝐶𝑟𝑒𝑑𝑖𝑡 𝑆𝑐𝑜𝑟𝑒 ) + 𝛽2 log(𝑎𝑔𝑒) + 𝛽3 log(𝑎𝑚𝑜𝑢𝑛𝑡) + 𝛽4(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

+ 𝛽4(𝐷𝑒𝑙𝑖𝑛𝑞𝑢𝑒𝑛𝑐𝑦) + 𝛽4(𝐷𝑒𝑏𝑡 𝑅𝑎𝑡𝑖𝑜) 

 [Indicate p-values] *** 1% Statistically Significant ** 5% Statistically Significant * 10% Statistically Significant 

Panel A: 

 

 

 

 

Panel B: 

 

 

 

 

 

 

 

            

Dependent 

Variable   

Credit 

Card 

Used 

Auto 

New 

Auto 
Indirect Personal 

  (1) (2) (3) (4) (5) 

Log(Credit Score) 6.119 1.158 2.343 7.032 -6.97 
 [0.057]* [0.562] [0.631] [0.006]*** [0.001]*** 

Constant -19.359 -4.049 -9.788 -21.292 18.862 
 [0.031]** [0.466] 0.471 [0.003] [0.001]*** 

N 578 578 578 578 578 

Pseudo R2 1.05% 0.05% 0.13% 1.53% 1.69% 

            

Dependent Variable   Credit Card Used Auto New Auto Indirect Personal 

  (1) (2) (3) (4) (5) 

      

Log(Credit Score) 6.689 -3.741 -2.899 3.882 -0.191 

 [0.068]* [0.107] [0.633] [0.172] [0.938] 

Log(Age)t 0.194 -1.247 1.450 -1.454 2.053 

 [0.894] [0.109] [0.439] [0.137] [0.013]** 

Log(Amount)t -0.572 0.958 1.423 1.100 -1.116 

 [0.034]** [0.001]*** [0.010]*** [0.001]*** [0.001]*** 

Log(Duration)t 1.378 1.866 2.683 0.565 -2.959 

 [0.004]*** [0.001]*** [0.002]*** [0.152] [0.001]*** 

Log(Delinquency) 2.841 -0.386 -0.929 -1.14 1.423 

 [0.001]*** [0.158] [0.055]* [0.001]*** [0.001]*** 

Log(debt ratio) 0.264 -0.078 -0.444 -0.716 0.340 

 [0.688] [0.860] [.716] [0.205] [0.448] 

Constant -27.676 9.036 -0.485 -10.213 -3.401 

 [0.007]*** [0.154] [0.975] [0.192] [0.613] 

N 571 571 571 571 571 

Pseudo R2 8.99% 12.39% 16.32% 11.58% 27.26% 
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Next we look at all the predictors. Once we put all the other variables, credit score is only 

10% statistically significant for credit card loans. Thus credit score is not a very good predictor 

for default. This demonstrates that while credit score can be a measure of a borrower’s risk, other 

variables should be taken into account when measuring probability of default. Debt ratio is also 

insignificant for all five loan types. Even though it may seem logical to assume that a person that 

has a low debt ratio, and thus a lower porportion of debt to assets, would be able to pay loan and 

thus avoid default, this can not be used as a predictor.  

 

Table 13: Logistic Regression of Probability of Default 

Logistic regression on merge data set of default and paid-off loans. The default loans were given 

a binary value of 1, while the paid-off loans were given the value of 0. The probability of default 

is the dependent variable and credit score is the sole independent variable.  

 

prob(𝐷𝑒𝑓𝑎𝑢𝑙𝑡) = 𝛼 + 𝛽1Credit Score 

 

 

 

 

 

 

The last logistic regression run is on the merge data. The results can be found in table 13. 

Credit score variable is negatively significant with a coefficient of -0.024. Thus a one unit 

increase in credit score, will produce a .024 decrease likelihood that the loan will default. 

Looking at the odds ratio, a one unit increase in credit score is associated with a 2.4% odd of 

decrease probability of default. Thus the probability of default of the average credit score 

borrower in this dataset (creditscore=677) is 41.9%. Obviously, the higher the credit score the 

Prob Coef Std. Err. P-Value 

Credit 
Score 

-0.024 0.001 0.001 

Constant 15.923 0.852 0.001 

N 1261   

Pseudo R2 
43.37%     
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less probability of default. An 850 credit score borrower would have a 1.1% chance of default 

while a borrower with a 500 credit score would have a 98.1% probability of default. However, 

the Pseudo R2 is only 43% so other variable should be taken into account.  

Table 14: Result Summary for Probability of Default 

Credit 
Score 

Discriminant 
Score 

Probability 
of Default. 

500 -2.490 98.1% 

592            
(DS mean) 

-1.110 84.7% 

663 -0.045 50.3% 

667 0.015 47.9% 

722            
(DS mean) 

0.840 19.7% 

735 1.035 15.2% 

786 1.800 5.0% 

850 2.760 1.1% 

 

The discriminant score mean had a score of 722, which has a 19.7% probability of default. If 

a bank want to lower their probability of default they must choose a score that is close to 

discriminant score mean, since this function does a good job of classification. The greater the 

credit score the lower the probability of default as can be seen in Table 14. This function and 

probability of default model however can be improved by adding other variables. 

 

6. Conclusion 

 Most of the literature related to probability of default has focused on the bond market. 

The consumer lending market has been gravely overlooked in research mainly due to data 

available. Consumer lending however is a huge market that should not be overlooked. Due to the 

recent financial crisis banks have suffered a massive loss on loans. This brings up an awareness 
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of a need for an approach that banks can adopt to mitigate these losses and to measure credit risk 

more accurately.   The objective of this paper is to find a simple model that small bankcs could 

use in order to find the probaiblity of default of their loans.  

 Credit score is a wonderful tool to measure riskiness of a borrower. Using discriminant 

analysis and logistic regression we found that credit score is a predictor of default. Using 

discriminant analysis a manager could assign a cut-off score that will reduce the likelihood of 

default.  However, its opaqueness and the fact the borrowers with good score default shows that 

it should not be the sole predictor. While the credit score model had passable result in classifying 

loans, they still misclassified loans. This error could cause a bank to lose money. The logistic 

regression also had a low r-square which also causes question to the accuracy of the model. In 

order to have a better predicting model, more variable should be included.  

 

Adding more variables to the model will help in the accuracy of the prediction. This gives 

practical use to bankers when making the decision of whether to accept a loan. While credit 

score does give good information, it should not be the sole factor when making this decision. 

This model can also be used for existing loan. If a bank knows the probability of default of their 

existing loan they will be forwarned therefore forearmed in case the worse were to occur. Having 

this information is essential for a bank to make the proper credit rationing and capital adequacy 

decisions.  
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Chapter 2 

Essay 2: Christian Mutual Fund Performance 
 

 

1. Introduction 

For centuries, religion has influenced the history of this world and help shape it into what 

it is now. Religion is a personal belief that adheres to a supreme authority in which faith is 

placed on. It is reasonable to believe that religion also influences a person’s everyday decision. 

According to the Huffington post the top 3 beliefs are (1) Christianity with 2.3 billion, (2) 

Muslim with 1.5 billion, and (3) nonreligious or atheist with about 1 billion people. According to 

the Gallop poll in 2013, 39% of the United States population attend a religious service weekly, 

furthermore 56% of the population consider religion very important in their lives (Newport, 

2013). This paper seeks to explore the intersection between religion and finance by focusing on 

the case of religiously affiliated mutual funds.  

Since religion is an important factor when making decisions, there has been an increase 

in demand for religious investment. This has brought an increase in popularity for religious 

mutual funds. Conventionally, religious mutual funds have been relegated as just another subset 

of a group called Socially Responsible Mutual Funds. Socially responsible mutual funds seek to 

invest in only those firms that meet their specific criteria. Social Investment Forum defines 

“Sustainable and responsible investing (SRI) an investment discipline that considers 

environmental, social and corporate governance (ESG) criteria to generate long-term competitive 

financial returns and positive societal impact.” SRI thus undergoes a rigorous screening process 

assuring them that they meet these criteria. In the same manner, religious mutual funds tend to 

shy away from investing into “sin stocks” such as alcohol, tobacco, and gambling. Moreover, 

Protestant funds tend to avoid investing in industries that promote pornography, abortion, or 
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same-sex marriages (Peifer, 2011). Many Catholic funds also avoid industries that are 

environmental polluters, that has excessive executive packages, or those that have poor labor 

relations. The main question that this paper asks is whether religious mutual funds are different 

than SRI funds and how they perform compared to SRI funds and the market.  There remains a 

doubt on how effective a religious mutual fund would be compared to a regular mutual fund or 

market index who is not constrained with eliminating undesirable investment.  

Since religious people have an added constraint to their investment choices, mainly that 

investment cannot compromise their values, this may affect their diversification value. There has 

been an increasing amount of literature that looks at SRI mutual funds’ performance versus a 

benchmark and there has even been some research looking into Islamic finance, this paper seeks 

to contribute to this area by focusing on Christian mutual funds. The different types of fund that 

this paper will look at are: Protestant Funds and Catholic Funds. This paper seeks to separate 

Christian funds with social responsible funds and analyze their performance. Christian mutual 

funds tend be smaller than SRI as well as have a propensity to screen against moral ambiguous 

stocks rather than social or environmental screening. Due to restrictive screening that restrains 

diversification benefits, Christian mutual funds performs worse than the market and SRI funds. 

They have similar pattern of conventional mutual funds to perform better (compared to the 

market) during recession however there performance is still lower than SRI funds. This paper 

also seeks to compare Protestant and Catholic funds.  There are a larger number of Protestant 

funds which also lean towards a larger NAV. On the other hand, Catholic funds take more risk 

but have had a greater return historically than Protestant. Also their funds have a higher 

percentage of efficiency. 
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This paper differs from others that it looks at Christian funds. Past literature related to 

this topic has focused on either SRI funds or Islamic funds, none that I am aware of looks 

exclusively at Christian funds. Using conventional methods as well as the novel data 

envelopment analysis method, this paper will attempt to answer whether Christian mutual funds 

are different than SRI funds and if they suffer due to their higher moral standards.  

 

2. Literature Review 

July 1774, in Amsterdam an investment trust called Eendragt Maak Magt was created and 

established as the first mutual fund (Rouwenhorst, 2004). The first mutual fund invested 

primarily in bonds issued to banks, foreign governments and plantation loans to the West Indies. 

These Investment Trust were later introduced to the United States in the 1890s. Now there are 

more mutual funds in the United States than securities listed in the NYSE. The number of mutual 

funds owned by individuals has increased precipitously over the last few decades. Mutual funds 

have become a popular tool of investment since it allows the individual investor to pool their 

funds with others and thus have a diversified portfolio managed by a professional. According to 

the 2012 Census, at the time there were 7,581 mutual funds, in other words, 44 percent of the US 

household population owns mutual fund. 

Mutual Fund Literature  

Mutual funds are considered an attractive investment for the following reasons: customer 

service, low transaction cost, diversification and professional management (Gruber, 1996). With 

all these appealing qualities, their performance, in many researchers’ observation, is less than 

appealing. Malkiel (1995), Gruber (1996), Carhart (1997), and Fama and French (2010) have all 

found that mutual funds are not able to outperform passive benchmarks and in most cases 

underperform passive indices. Gruber (1996) found that while some managers may augment 
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value to funds, the investment cost (transaction cost, fund expenses, and loading fees) charged to 

investors eradicates value. Carhart (1997) surmises that while top decile mutual funds perform 

well, on average, most funds underperform due to investment expenses. He also disinterred 

evidence of a one-year momentum effect. Last year’s winners tend to have higher than average 

return the next year, yet this effect discontinues the years after. He surmises that investment costs 

have a direct negative effect on funds’ performance.    Mutual funds returns are more enticing 

when they are reported in gross terms, before incurring transaction cost and expense ratios. 

When measuring in net returns, few are able to produce benchmark returns while covering costs. 

Malkiel (1995) however found that mutual fund underperform even before costs are deducted. 

Fama and French (2010) stipulates that those few funds that does outperform, only some are due 

to managers’ skill oppose to luck.  

However, Grinblatt and Titman (1989, 1993) find that superior performance can occur due to 

managers’ skill in choosing stocks. They observe over performance specifically among 

aggressive-growth and growth type funds as well as with funds with the smallest NAV. 

However, their evidence is based on gross returns. Wermers (2000) tries to resolve both sides of 

the debate by studying gross equity holdings and net return of mutual funds. He finds that there 

is an annual 2.3% difference between net and gross return. The gross returns outperform the 

market index by 1.3% a year, and when costs are included, the net fund returns underperform by 

1% per year. Of the 2.3% difference, 1.6% can be explained by fund expenses and transaction 

costs, while the remaining is due to unproductive fund holding such as bonds and cash. Thus, 

while managers can add value with their stock-picking talent, this is neutralized by the cost and 

expenses that investors incur.    
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On average, most researchers acknowledge that the net return of mutual fund is negative. 

However, Glode (2008) and Kosowski (2006) identified precedence where mutual fund have 

exceptional performance. They found that while mutual fund does underperform during 

expansion periods, during a recession the risk-adjusted performance has been positive. In fact, 

fund managers are more active during bad states than good states. The difference between alphas 

in recession and expansion periods is about 3-5% per year. Thus, an acceptable elucidation of 

investors’ continuance interest in mutual funds is due to their role as insurance against economic 

downturns.  

Social Responsible Investing  

SRI funds comprise only those firms that practice social responsibility such as environmental 

policies or charitable donations. This requirement may be a hindrance to firms. Literature shows 

two main camps of thought regarding social responsibility. One side argues that engaging in 

social responsibility is costly and thus is an economic disadvantage for competitive markets 

(Friedman, 1970, McWilliams & Siegel, 1997). They claim that the money used in complying 

with social responsibility requisite means sacrificing potential profit making projects and as a 

consequence a drop in their potential net income. They strongly argue that the manager’s 

primary responsibility is to the shareholders, being “socially responsible” is in fact acting 

irresponsibly. Yet it has been stipulated by a second group of researchers that engaging into 

social responsibility is actually a competitive advantage since it attracts investors, resources, 

quality employees, customers, and creates other unforeseen opportunities (Cochran & Wood, 

1984; Waddock & Graves, 1997; Greening & Turban, 2000). Therefore, by engaging in social 

responsibility the firms are in essence receiving some good publicity that in the long run will be 

beneficial for them. 
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Although social responsible investing has grown and it keeps the investors feeling better 

about themselves and the work their money is doing; does it perform better than the conventional 

mutual funds? There has been a number of papers that look at this topic yet the result still seems 

unresolved. Guerard (1997), Diltz (1995), and Hamilton et al. (1993) found that SRI perform as 

well as benchmark portfolios. In other words, even though SRI firms had restricted investment, 

there is no real benefit to holding an SRI portfolio, but there is no harm either. Statman (2000) 

and Bartolomeo & Kurtz (1999), however, found that SRI perform better than normal portfolios. 

SRI funds benefit from their intense screening process which effectively eliminates the poor 

performing firm’s thus resulting better performance than the benchmark. Yet another group of 

researchers found that SRI perform worse than the benchmark (Geczy, Stambough, and Levin 

2003). Since SRI investment adds a constraint to the investment choices for their portfolio thus 

excluding not only certain stocks, but many times whole industry, this decreases the 

diversification benefits of the fund thus explaining the worse performance (Goldreyer and Diltz 

1999). Barnett & Saloman (2006) tries to bring these differing views into accordance by 

explaining that when a fund undergoes intense screening then it will result in over-performance, 

since it eliminates poor firms, on the other hand, if it does very little screening, then it may still 

over-perform because their funds tend to exhibit more diversification. Yet those funds that are 

stuck in the middle with their screening process does not tend to do well. As can be seen through 

literature, these mixed reviews show that the performance of SRI is still unsettled.  

Religious Funds 

There is another subcategory of the SRI fund, which is the religious funds. Forte & Miglietta 

(2007) found that though religious fund are seen as a subcategory of SRI funds they should be 

seen as something different. Religious funds or “faith-based funds” show different characteristics 
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from SRI funds that are easily distinguishable. Religious funds thus are distinguished by the 

values they adhere, there asset allocation, risk, and econometric profile. The investment strategy 

of a religious fund then is to not only stay away from “Sin stocks” but to invest in what their 

religion holds true. However, Miglietta’s paper uses Islamic funds to define religious funds and 

ignores Christian funds all-together.  

However both Islamic and Christian funds tend to stay away from “sin” stocks. So how does 

neglecting sin stocks effect religious mutual funds? Sin stocks outperform Shariah-compliant 

stocks during both expansionary and contractionary economic periods (Liston & Soydemir, 

2010). Hong & Kacperczyk (2009) looks at the effects of social norms on the price of sin stocks. 

Social norms indicate that normally individuals are against supporting companies that promotes 

human vices such as alcohol, tobacco and gaming. They also found evidence that “sin stock” are 

held less by institutional ownership and are also not covered much by analyst. Since they are 

neglected they tend to be cheaper than their counterpart and thus the market price is below the 

intrinsic price. Another reason why “sin stocks” are underpriced is due to litigation risk, these 

companies are perceived to be under constant regulatory scrutiny and thus their value is derived 

from very conservative accounting. Thus they found statistical significant evidence that sin 

stocks have higher expected returns both in the US and European markets.  

Recently, many researchers have hone their focus towards Islamic financing and Islamic 

mutual funds.  Islamic funds differ from conventional funds because they are Sharia-compliant 

and thus have limitation to their investment and cannot receive or pay interest (Kraeussl & 

Hayat, 2008). Thus they are not only prohibited in investing in companies that are against their 

values such as alcohol, gambling, pornography, entertainment and pork related industries but in 

addition to these industries they are also prohibited in investing in companies that deal with 
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interest payment. Islamic funds tend to prefer small cap firms (Hoepner, Rammal & Rezec, 

2009; and Girard & Hassan, 2008). This preference for small-cap is presumptively due to the 

reasoning that large cap companies may dabble in Sharia prohibited activities. Khatkhatay & 

Nisar (2008) suggests that funds are too liberal with their investment and needs to be more strict 

and restrictive of companies allowed to be part of their fund. Rubio, Hassan & Merdad (2012), 

Girard & Hassan (2006, 2008), Hussein (2007), and Kraussl & Hayat (2008) found that Islamic 

funds do not lose efficiency and are an effective investment opportunity. In other words, 

although Islamic fund must adhere to strict Islamic law, there is no difference in performance. 

Therefore, Islamic funds are a good alternative for investing while still upholding to Sharia law. 

However, Hoepner, Rammal & Rezec (2009) found that Islamic mutual funds trail behind the 

benchmark mainly due to its restrictions and prohibition of lucrative investment. Hussein (2007) 

finds that Shariah compliant indices underperform in a bear market yet that in a bull market they 

are a superior investment choice. However, Kraeussl & Hayat (2008) finds that equity funds tend 

to outperform the benchmark during a bear market. Hoepner, Rammal & Rezec (2001) also 

studied Islamic mutual funds in twenty different countries. Their finding are that they cannot 

determine whether Islamic fund generally under or over-perform, yet that national characteristics 

are important to explain fund performance. Interestingly they found that those funds located in 

countries where the largest Islamic financial centers were located tended to perform 

competitively and even outperform international equity market benchmark. On the other hand, 

those funds located in countries with less developed Islamic financial services or where the 

predominant religion was Christianity, tended to underperform their benchmark.  

While religion in the financial, economic world has been neglected, it has not been all 

together ignored. Many researchers have come to the conclusion that religion is an important 



58 
 

factor in an individual’s decision process. There has been a common misconception that as 

science and academic learning advances in today’s culture, then religion will cease to exist, yet 

Iannaccone (1998) observes that “the resurgence of evangelical Christians in USA, the rise of 

Islamic fundamentalism in the Middle East, and the explosive growth of Protestants in Latin 

America. In the US, there shows little or no decline of religion over time.” Thus religion is an 

important factor in an individual’s decision making and should not be ignored. In fact, Stulz 

(2003) uses religion as a prediction of culture. There have been many different philosophies on 

religion and economic performance. John Wesley, the founder of the Methodist church, was 

inclined to believe that Protestant ethics would bolster up economic development. Arruñada 

(2010) finds that “Protestant values shape a type of individual who exerts greater effort in mutual 

social control, supports institutions more and more critically is less bound to close circles of 

family and friends, and holds more homogenous values.” It has been observed that Protestant 

countries tend to have more wealth and power than Catholic nations. One reason is that 

Protestant countries have better education (Becker & Woessmann, 2009). Max Weber (1904) 

attributes this to Protestant work ethics and their influence in developing capitalism. Protestants 

are taught that their hard work glorifies God. United States was founded with this Protestant 

work ethics as well. In early colonial times, John Smith admonished the residence of Jamestown 

for being idle and only letting the few work hard to maintain them, he thus quoted Paul saying 

“he that will not work, shall not eat,” this ideology has continued and become a legacy of 

Protestant workers. However, this study does ignore that in many “Protestant” countries, 

religiosity is declining (for example European countries).  Financial literature ascertains that an 

accession of religious participation has a statistically negative effect on economic growth and 

reduce individual’s income (Barro & McCleary 2003;McCleary 2008; Lipford & Tollison 2003). 
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As individuals are more involved in religious activity they are predisposed to spend less time 

working and thus hampers economic development. However, while McCleary makes this case 

for several countries, United States is an exception and he also consented that Christian ethics is 

important to a child’s upbringing.  

Christian ethics are important and useful, McGuire, Omer & Sharp (2011) show that in those 

areas where religion is dominant, there are lower incidence of financial reporting irregularities. 

There is further indication that religion is apt to make individual and firm more risk averse, thus 

the portfolio structure may be more conservative in nature (Hilary & Hui, 2009). Adhikari & 

Agrawal (2014) also finds that banks headquartered in highly religious area takes less risk. 

Interestingly enough, of the two major Christian factors, Catholics exhibit less aversion to 

speculative risk than Protestants (Shu, Sulaeman, & Yeung, 2012).  Kumar, Page & Spalt (2011) 

also observes this tendency that Catholics have higher pension for gambling and speculation than 

Protestants in that regions that have a higher Catholic ratio hold stocks with lottery-type features. 

 Furthermore, they argue that religious beliefs do influence both individual’s portfolio choice as 

well as corporate decisions. Thus it is important to quantify the importance that religion has on 

finance. This paper will try to fill in gaps that have not been looked at, mainly in the area of 

Christian mutual fund performance.  

 

3. Data 

The number of mutual funds owned by individuals has increased precipitously over the last 

few decades. Mutual funds have become a popular tool of investment since it allows the 

individual investor to pool their funds with others and thus have a diversified portfolio managed 

by a professional. According to the 2012 Census, at the time there were 7,581 mutual funds, in 

other words, 44% percent of US household population owns mutual fund.  A proportion of this 
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has been due to the growing number of interest to investing in line with their values. Using 

public data, we identify 111 Christian mutual funds and 153 SRI fund that span from January 

2005 to January 2015.  

Data was collected through publicly available websites. Social Responsible funds were 

collected from Social Funds website which is “the largest personal finance site devoted to 

socially responsible investing” and the USSIF, the Forum for Sustainable and Responsible 

Investment site. The Fama and French factors along with the market return and the risk-free rate 

was taken from French’s website. The descriptive statistics of Christian mutual funds and SRI 

fund returns are shown in Table 1.  

By analyzing the descriptive statistics Social Responsible funds has a higher mean return 

than Christian mutual funds but also a larger standard deviation. The table depicts that SRI funds 

have a mean of .297% return with a considerably high standard deviation of 4.6%. The SRI fund 

fluctuated between a return of -38.6% and 31.3%. The worse return year was at the height of the 

financial crisis, 2008, but recovered substantially in 2009. On the other hand, Christian mutual 

funds has a statistically significantly lower mean of .15% return with a slightly smaller standard 

deviation of 4.3%. While the Christian mutual fund does have a wide range of fluctuation 

throughout the 10 years, the minimum return is lower than the Social responsible minimum 

return. This intimates that by having higher restrictions, Christian mutual funds are essentially 

“shooting themselves in the foot.”  

Out of the two Christian sects, Catholic returns seemed to be slightly higher with a .28% 

mean return versus Protestant .13% mean return. However Protestant returns does have a slightly 

smaller standard deviation. In fact, Catholics have a higher return than the average of the whole 

CMF set, while Protestant funds has a lower mean. This seems to suggest that Catholics are 
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Table 1: Descriptive Statistics 
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taking more risk in their investment but are having higher rewards compared to Protestants 

funds. Data of Thrivent mutual funds have also been collected. Thrivent financial is a Lutheran 

financial organization that has the largest Christian fund, however they are not included in the 

CMF dataset since they do not actively screen for or against anything. Compared to the other 

Protestant funds that does screen, they not only have a higher mean, but also a slightly lower 

standard deviation. Thus this seems to agree with the basic concept that more diversification 

reduces risk. Comparing the screen dataset versus the S&P 500 index, the returns of both the 

Christian mutual funds and Social Responsible funds is lower than the Index and the standard 

deviation is higher.  

Christian Fund Data 

When looking at Christian mutual funds, there are two different subsets: Protestants and 

Catholics. Though they have the same origins, the term catholic stems from the idea that there 

was one universal church yet that obviously changed with the Protestant movement. These two 

sects have a rich history of rivalry and although they have similar origins, there are some 

differing theological beliefs. However the Protestant sect also has different denominations that 

have different levels of conservatism, for example southern Baptist is known for their 

conservative behavior and strictly oppose alcohol, Lutherans, on the other hand, are more 

acceptable of the intake of alcohol. This paper will focus on these two sects of Christianity 

taking into account they contain different ethical values as well as risk tolerance. The specific 

funds that will be looked at are: from the Protestant Family: Praxis fund, New Covenant fund, 

Guidestone fund, Steward Fund and Timothy Plan fund. From the Catholic family: Ave Maria 

fund, Epiphany funds, and LKCM Aquinas fund.  
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Fund Background 

Everence Financial service (Praxis) is a ministry of the Mennonite Church USA, started in 

1945 which offers many different types of services for individuals, organization and 

congregations. Everence screening process adheres to their stewardship investing core values: 

respect, build, demonstrate, exhibit, support, and practice. Everence thus invests in companies 

that respect human right, ethnic and cultural diversity. They shun any company that promotes 

violence, such as weapons production and military contracting. They invest in countries that 

conduct in equal opportunity and fair compensation to their employees as well as companies that 

have sound corporate governance. They also positively screen those companies that support and 

develop their communities with their own resources. And lastly, they invest in companies that 

promote natural and environmental welfare.  

New Covenant Funds are a part of the Presbyterian foundation group that makes their 

investment decisions which are consistent with views adopted by the General Assembly of the 

Presbyterian Church. The screening process avoids the gambling, alcohol and firearm industry.  

They also have positive screening for companies that hold fair treatment to employees and 

invests in their communities. However New Covenant does make a note that they may at times 

invest in companies that has been recognized as being in conflict with the principles held by the 

Presbyterian Church.  

Guidestone, founded August 2001, belongs to the Southern Baptist denomination and is 

United States’ largest screened Christian fund. This fund is much more socially conservative 

than the last few funds.  Their goal is to provide high-quality, comprehensive mutual fund for 

individuals, foundations, retirement and other investment causes while adhering to their 

Christian values. They have an intense screening process against those companies that deals with 
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liquor, tobacco, gambling, pornography, the abortion industries or any company who are 

irreconcilable to the Christian moral and ethics that Guidestone adopts.  

Steward mutual fund is a non-denominational Christian fund that tries to remain consistent 

with their Christian faith. They only execute avoidance screening and thus do not have any 

positive screening, which promotes a typical Christian culture. The negative screening they apply 

is against abortion, alcohol, gambling, tobacco and pornography industries or those companies 

that derive significant income from these products.  

The Timothy Fund was begun in 1992 by Arthur Ally. His purpose was to implement a fund 

that will more properly screen based on Christian value. Their goal is to be good stewards of 

what God has entrusted them. They mainly screen against 7 activities: abortion, pornography, 

entertainment that promotes violence and sexual immorality, alternative lifestyle, alcohol, 

tobacco and gambling. 

The Ave Maria mutual fund is the most prominent catholic-oriented mutual fund. They hire 

Schwartz Investment Counsel, Inc. as adviser for their mutual fund. Their mission is to provide 

superior financial services while keeping with the Catholic teachings. Ave Maria holds on to a 

pro-life, pro-family philosophy. Their moral screening identifies companies and determines 

whether they are compliant towards the Catholic Church’s values. These values mostly regard 

teachings on abortion, pornography, and policies that undermine the holy sacrament of marriage.  

The Epiphany Fund is a Catholic fund which seeks to invest in securities that are consistent 

with Christian morals and ethical principles. They use the FFV scorecard (Faith and Family 

Values) to screen their investments. The objective of the FFV scorecard is to identify companies 

that are in keeping of their 4 pillars: 1) Life and Family; 2) Social Justice; 3) Environment; and 



65 
 

4) Corporate Governance. Their screening is consistent with the United States Conference of 

Catholic Bishops (USCCB) Socially Responsible Investment guidelines.  

Luther King Capital Management (LKCM) Aquinas was founded in 1979 as an advisory firm 

committed to select equity based on Catholic values. There are committed in providing a solid 

financial performance while keeping in line with the Catholic values. They also follow the 

investment guidelines set by the USCCB investment guidelines. They screen against companies 

that engage in abortion, embryonic stem cell research and weapons of mass destruction. Along 

with this moral screening they also screen against companies that have poor environmental, 

human right records and employment records.  This fund, however not only screens against 

companies, but also take a proactive stand discussing with companies about their practices that 

may come into conflict with their guidelines.  

So while there is an obvious difference between Islamic funds and SRI funds do to not only 

restriction in “sin stocks, Islamic funds are very different because they restrict interest-bearing 

stocks. However these are questions on whether Christian funds are different than SRI funds. 

Both type of funds have similar screening quality which is why Christian funds have been 

categorized as a SRI funds. However, there Screening focus is different which impacts fund 

composition. As can be seen from table 2, CMF and SRI funds have different focus when it 

comes to screening. 93% of SRI funds have some sort of environmental screening. The second 

most popular screen is social screening. Social screening is a very broad subject that relates to 

anything that involves the improvement of society such as, but not limited to, community 

investment, human rights, and labor issues. On the other hand, they do not emphasize moral-type 

screening like abortion (only 1%) and pornography (6%). Christian mutual funds on the other 

hand accentuate the need to screen based on these issues that are very important to their faith, 
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such as screening against pornography and abortion (96%). Another category that is also 

screening against by both CMF (83%) and SRI (69%) funds is the traditional exclusionary 

screens such as tobacco, alcohol, and gambling. Thus there is an obvious difference in screening 

emphasis on Christian mutual funds and SRI funds. An interesting matter to note is that 100% of 

the protestant funds execute traditional exclusionary screening process, while none of the 

Catholic funds do. 

Table 2: Qualitative Screening 

The data includes 108 Social Responsible Funds, and 106 Christian mutual funds. The information was 

collected from the fund family website or through the Social Investment fund forum. This table classifies 

what type of screening funds emphasizes on. 

 

 

 

 

 

 

 

 

Thus, at least qualitatively, we see a difference in screening undertaken by Christians 

compared to SRI funds through their screening process. Also according to the descriptive 

statistics Christian mutual funds has a lower standard deviation and thus their fund has lower 

risk. Thus values have an impact on screening which has an impact on fund composition and 

performance. 
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4. Methodology 

Existing literature poses questions while analyzing Christian mutual funds. How does Christian 

mutual fund perform compared to the market? Is there a difference in performance during 

recessions as indicated by literature? Is Christian mutual fund performance different than SRI 

funds? How do Catholic and Protestant fund perform? We will be using traditional methods used 

in past literature to evaluate and compare performance.  

Sharpe Ratio 

 When comparing performance of mutual funds, two popular ratios are the Sharpe ratio 

(1966) and Treynor ratio (1965). These two ratios are similar in theory and practice. The 

numerator is calculated by finding the excess return, the portfolio return subtracted by the risk 

free rate, divided by the standard deviation. 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 = (𝑅𝑝 − 𝑅𝑓)/𝜎 

where 𝑅𝑝the return of the portfolio is, 𝑅𝑓 is the return of a risk-free asset, and 𝜎 is the standard 

deviation of the portfolio. Thus the Sharpe ratio calculates the excess return per unit of risk. The 

higher the Sharpe ratio the better since it indicates that the portfolio has performed well relative 

to the risk. However, if this ratio becomes negative it indicates that the investment in the 

portfolio is not worth the risk thus a risk-less alternative is preferable.  

Sharpe (1994) details the importance of defining the differential return. 𝐷𝑡 = 𝑅𝐹𝑡 − 𝑅𝐵𝑡. 

He denotes that the differential return in period t is equal to the difference of the return on the 

fund in period t, 𝑅𝐹𝑡, and the return on the benchmark portfolio in period t, 𝑅𝐵𝑡, (in this analysis 

we will use both the risk free rate as well as the S&P 500 Index as the benchmark). The ex post 

(1) 
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Sharpe Ratio than becomes 𝑆ℎ =
�̅�

𝜎𝐷
, where �̅� is the average value of the differential return. The 

T-statistic can easily be found to measure the significance of the Sharpe Ratio: T-stat= 𝑆ℎ ∗ √𝑡. 

Jensen’s alpha and CAPM 

Another customary measure used is the Jensen’s alpha (1968). 

Jensen’s alpha = ∝ = 𝑅𝑝 − [𝑅𝑓 + 𝛽(𝑅𝑀 − 𝑅𝑓)] 

where 𝑅𝑝the return of the portfolio is, 𝑅𝑓 is the return of a risk-free asset, and 𝑅𝑀 is the market 

return. This is another performance measure that presents the abnormal return of portfolio over 

the theoretical expected return given by the capital asset pricing model. Jensen’s alpha is thus 

calculated by the capital asset pricing model (CAPM):  

 (𝑅𝑝 − 𝑅𝑓) = ∝  +𝛽(𝑅𝑀 − 𝑅𝑓) 

The alpha in this model is the y-axis intercept of the excess return and thus signify a type of 

active return. If the value is positive, then it signifies that the portfolio is earning an excess return 

thus outperforming the benchmark. Thus a positive alpha is positive news since it indicates that 

the portfolio “beats the market.” 

Fama-French Factor model  

While our focus remain on alpha as a measurement of performance, the Fama – French 

three factor model and the Carhart four-factor model are calculated in order to test for 

robustness. Therefore, we want to know to know the significance of alpha controlling for the 

additional risk factors and momentum. 

(2) 

(3) 
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The Fama and French (1993) three factor model is an extension of the CAPM model:  

(𝑅𝑝 − 𝑅𝑓) = ∝  +𝛽𝑖,1,𝑡(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) +  𝛽𝑆,𝑖,𝑆𝑀𝐵𝑡 +  𝛽𝐻,𝑖𝐻𝑀𝐿𝑡 + 𝜀𝑖,𝑡   

where (𝑅𝑝- 𝑅𝑓) is the excess return of the portfolio , (𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) is the excess return of the 

market which is measure using the value-weighted return of firms listed in CRSP as the return on 

market minus the one-month Treasury bill rate. The 𝑆𝑀𝐵𝑡variable is Fama and French’s “small 

minus big” factor which is a size loading factor and takes the three smallest portfolio minus the 

three biggest portfolio. HML is the “high minus low” factor which is a value loading factor that 

takes two value portfolio and subtract it by two growth portfolios. 

 We will also use Carhart four-factor model, which is an extended version of the Fama-

French three factor model and includes a momentum factor.  

(𝑅𝑝 − 𝑅𝑓) = ∝  +𝛽𝑖,1,𝑡(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) +  𝛽𝑆,𝑖,𝑆𝑀𝐵𝑡 +  𝛽𝐻,𝑖𝐻𝑀𝐿𝑡 + 𝛽𝑀,𝑖𝑀𝑂𝑀𝑡   

 The momentum factor, 𝑀𝑂𝑀, is calculated using six value-weighted portfolio which 

were creased based on size and prior returns that are listed in the NYSE, AMEX, and NASDAQ. 

Than to find the MOM, the two lowest prior average return portfolio is subtracted from the two 

highest prior average return portfolios. This factor measure if the fund experiences momentum, 

which is if the price continues experience the same trend as the previous periods.  

Data Envelopment Analysis 

While these traditional ratios and methodology are useful, another method is used to 

accurately measure performance of mutual fund and take account of the ethical aspect that our 

funds possess. Thus the performance that is used here and which have been used in other mutual 

(4) 

(5) 
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fund related literature (such as Basso and Funari 2001, 2003; Rubio et al. 2014) is the Data 

Envelopment Analysis (DEA) approach. The DEA model is beneficial because it can use 

multiple inputs and outputs to measure the relative performance of the decision making unit. The 

DEA is a popular operational management methodology that tests the efficiency of decision 

making. The premise of this methodology is to compare a producer’s (or a decision making unit, 

DMU) efficiency with the “best” producer (or the efficient frontier).  Thus the produces takes on 

a set of inputs to produce a set of outputs. An efficient decision maker thus would seek to 

maximize output while minimizing input. In the investment environment this would be similar to 

maximizing return while minimizing risk. While there is a number of way to formulate the DEA 

the most direct formulation will be given: were 𝑋𝑖 is a vector of inputs that produces a vector of 

outputs, 𝑌𝑖, where i is the number of funds. Therefore to measure the efficiency of DMU0 , by 

estimating the performance, P, fund the following linear program would be used:  

𝑃 = 𝑀𝑖𝑛    𝜃 

𝑠. 𝑡. ∑ 𝜆𝑖𝑋𝑖 ≤ 𝜃 𝑋0 

∑ 𝜆𝑖𝑌𝑖 ≥ 𝑌0 

𝜆 ≥ 0 

 where λ is the exogenous weight fitted to DMU i in its attempt to dominate DMU0 which 

efficiency is represented by θ. Thus when P=1, then they have reach efficiency level.  

 In this DEA model, input will represent a risk measure while output will represent all 

return measurements. The literature proposes 3 different feasible input for risk: standard 

deviation, lower partial moments (LPM), and maximum drawdown periods (MDP). The proposal 

for outputs are: expected returns, the upper partial moments (UPM), and the maximum 

(6) 
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consecutive gain (MCG).  LPM demonstrates the risk of holding an investment security while 

UPMs captures the gains of holding the investment. This study utilizes partial movements to 

differentiate between inputs and outputs. In order to estimate both the lower and upper partial 

moments as the mth root of these variables, the mean return, rmin,  is employed to distinguish 

between the upside and downside of investment.  

𝐿𝑃𝑀𝑗.𝑚 =
1

𝑇
∑(𝑟𝑚𝑖𝑛

�̃�

𝑡=1

− 𝑟𝑡,𝑗)𝑚      

𝑈𝑃𝑀𝑗.𝑚 =
1

𝑇
∑(�̅�𝑡,𝑗 − 𝑟𝑚𝑖𝑛

�̂�

𝑡=1

)𝑚     ∀  𝑚 = 0, … ,4 

Where 𝑟𝑚𝑖𝑛 is the target rate, 𝑟𝑡,𝑗 is the monthly return of fund j that is below the target rate, �̅�𝑡,𝑗 

is the monthly return of fund j that is above the target rate. Utilizing partial movements, BBC is 

found to determine how efficiently funds take risk to produce return. These scores are than used 

to compare with the average of their own fund category.  

 MDP and MCG can also be used if Net Present Value (NPV) of the funds are available. Funds 

j’s MDP represents the maximum number of consecutive months when the fund’s net asset value 

is lower than the historic high. Conversely, MCG is when the maximum number of consecutive 

months are above the minimum target rate.  

 Using old traditional methods and a newer efficient method we can study the 

performance of SRI funds as well as Christian mutual funds. 

  

5. Results 

Sharpe Ratio 

(7) 
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Table 3 shows the Sharpe ratio when the differential benchmark is either the risk-free rate 

or the S&P 500 index. Social Responsible Mutual funds has a positive Sharpe ratio when 

comparing with risk free rate which is statistically significant in the 1% level. SRI funds has an 

average excess return of 4.6% per unit of risk. Catholic mutual funds’ Sharpe ratio is significant 

in the 10% level. Catholic funds has an average excess return of 4.8% per unit of risk. The 

Sharpe Ratio calculated for the comprehensive Christian mutual fund data set and that of the 

Protestant mutual funds are statistically insignificant. Thus while Social Responsible funds and 

Catholic funds returns are more volatile, they tend to be compensated for the extra risk they bare.  

The Sharpe ratio for all funds using the S&P 500 index as the benchmark are all 

negatively significant in the 1% level. Thus passive investing and simply following the S&P 500 

index seems to be a better investment choice. During the Financial Crisis, however, the Sharpe 

ratio calculation tells a different story. In 2008, the Sharpe ratio for all four funds are positively 

significant in the 1% level compared to the S&P 500 Index. The comprehensive Christian mutual 

fund gets compensated with almost 16% excess return per unit of risk, while the Social 

Responsible funds has a 12% excess return per unit of risk. Thus even though SRI funds held 

more risk they did not get compensated as well as the Christian mutual funds. However, SRI 

funds were the only funds that continued to receive compensation in 2009. Thus, in 2008 at the 

beginning of the Financial Crisis, the screened funds performed better than the market, yet it 

would have been a better investment choice to go with a risk-free asset. In 2009, after the peak of 

the Financial Crisis and due to the government borrowing and intervention, the funds became a 

better investment opportunity than the risk free market. In 2014, these two types of screened 

mutual funds are not deemed as good investment for the risk they take compared to both the risk-

free asset and the S&P.   
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Table 3: Sharpe Ratio 

The Sharpe ratio for Christian Mutual funds and Social Responsible mutual funds is used to compare the 

performance of mutual funds to the risk-free asset, one-month Treasury bill rate, and the market, S&P 500 

Index. 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 = (𝑅𝑝 − 𝑅𝑓)/𝜎 

The Sharpe ratio calculates the excess return per unit of risk. This comparison is done throughout the 

entire sample as well as by year. The t-statistics has also been calculated. 
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Jensen’s Alpha 

Table 4 demonstrates the result for Jensen’s Alpha. SRI funds underperforms the market 

by .3868 basis points, which is approximately a -4.64% underperformance after adjusting for 

systematic risk. Christian mutual funds also underperforms, but by .46 basis points, this is 

approximately a -5.52% underperformance. In fact, all four funds have a statistically negative 

alpha and a beta less than 1. Thus although these funds had lower risk than the market’s beta, 

they still underperformed the market.  Of the four funds, SRI funds was slightly less negative. In 

fact SRI is statistically significantly higher than Christian mutual funds in 5% level. Protestant 

and Catholic funds have similar returns, with Catholic funds having a higher market risk 

however the difference is not statistically significant. This model has decent r-square ranging 

from 57%-68%, thus does a fairly good job in predicting the variation of the returns using just 

these two variables.  Panel B presents the fund’s alpha per year. Here we find interesting results 

during the Great Recession. SRI funds performed similar to the market in 2008, but outperform 

the market slightly in 2009 with a .38 basis point increase per month, or a 4.6% annual increase. 

While the comprehensive Christian mutual fund did not outperform the market any year, 

Catholic funds outperform the market in 2008 with an excessive .69 basis points per month and 

performed as well as the market in 2009 and 2010. In 2008, they definitely outperform the 

Protestant fund However, in the overall data, Catholics had the worst alpha and the highest beta. 

Thus, Catholic funds tend to take more risk, and while it paid off during the financial crisis, in 

recent years this has not been the case. In 2014, they statistically significantly (in 5% level) 

performed worse than Protestant funds. 
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Table 4: Jensen’s Alpha 

Jensen’s alpha measure the abnormal return of the portfolio.  

Jensen’s alpha = ∝ = 𝑅𝑝 − [𝑅𝑓 + 𝛽(𝑅𝑀 − 𝑅𝑓)] 

Where 𝑅𝑝is the portfolio return, 𝑅𝑓is the risk-free rate, and 𝑅𝑀 is the return of the market. The 

alpha coefficient represents the abnormal performance of the fund, while beta of the excess 

return is systematic risk.  Panel A runs the regression for the entire data set, while Panel B runs 

the data for each individual year.  

*** 1% Statistically Significant 

** 5% Statistically Significant 

* 10% Statistically Significant 

 

Fama-French and Carhart  

The Fama-French three factor model, as seen in table 5, and the Carhart model, table 6, 

are performed for robustness. The r-square did slightly increase although not as much as  

Panel A: For Entire Data   

  SRI CMF Protestant Catholic 

Alpha -0.3868*** -0.4605*** -0.4619*** -0.4661*** 

Rm-Rf 0.8394*** 0.7595*** 0.7452*** 0.8482*** 

R-square 63.58% 58.77% 57.30% 67.96% 

     

     

Panel B: Alpha per Year   

  SRI CMF Protestant Catholic 

2005 -0.3138*** -0.2930*** -0.2956*** -0.2821 

2006 -0.4605*** -0.7422*** -0.7750*** -0.5223** 

2007 -0.3316*** -0.5846*** -0.5857*** -0.5784*** 

2008 0.0572 -0.2486* -0.3809*** 0.6939** 

2009 0.3846*** 0.1736 0.1691 0.2014 

2010 -0.2309*** 0.0378 0.0231 0.1142 

2011 -0.5347*** -0.2546*** -0.2922*** -0.0531 

2012 -0.2410*** -0.2752*** -0.2417*** -0.4248*** 

2013 -0.6199*** -0.9992*** -0.9578*** -1.2000*** 

2014 -0.8241*** -0.9870*** -0.9099*** -1.3851*** 



76 
 

Table 5: Fama and French Three Factors 

The Fama-French three factor model captures performance of the fund through alpha and 

systematic risk, but also looks at additional risk involved with size and value.  

(𝑅𝑝 − 𝑅𝑓) = ∝  +𝛽𝑖,1,𝑡(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) +  𝛽𝑆,𝑖,𝑆𝑀𝐵𝑡 +  𝛽𝐻,𝑖𝐻𝑀𝐿𝑡 

where (𝑅𝑝- 𝑅𝑓) is the excess return of the portfolio , (𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) is the excess return of the 

market, 𝑆𝑀𝐵𝑡variable is Fama and French’s “small minus big” factor, HML is the “high minus 

low” factor. The regression is run on the whole sample as well as individual years for the Social 

Responsible funds (SRI), Christian mutual funds (CMF), and the Protestant and Catholic sects. 

The bottom reflects r-square.  

*** 1% Statistically Significant 

** 5% Statistically Significant 

* 10% Statistically Significant 
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conveyed by Fama and French. When the Fama and French size and value factors are included, 

the underperformance observed in the Jensen’s alpha is only aggravated more. SRI (Christian) 

funds underperform the market by .43 (.47) basis points per month, -4.8% (.65%) annually.   

Again, the alphas are all negative and significant while the betas are all less than one and also 

significant when looking at the whole sample date. This result is similar to mutual fund 

performance against the market. In 2008, the alphas cease to be significant, the market betas are 

significant and still lower than one, though they are higher than other years. So while they still 

had less market risk than the market portfolio, their funds had more market risk than previous 

years. In 2009, only the SRI funds intercept coefficient was significant in the 5% level. As in the 

Jensen’s alpha case, the alpha is positively significant thus they outperform the market by .2564 

basis points per month.  This seems to support early literature that mutual funds perform better 

than the market during economic downturns. However this was short lived since in 2010, the 

alpha again became negatively significant. During the financial crisis, the alpha for the 

remaining funds remained insignificant. Thus from 2008-2010, Christian funds performed no 

better or worse than the market.  

While both SRI and CMF have negative alphas, in most cases CMF exhibited an inferior 

alpha (statistically significant in 10% level). In fact, SRI has a superior performance to the 

separate Christian funds as well.  This pattern remain in each individual year. This seems to 

indicate that the extra pressure of religious screening hurts the performance of religious funds. 

When dividing the Christian funds between Protestant and Catholic, at first glance, it seems that 

Catholics have performed better than Protestants even though they tend to involve more risk. 

However, when studying each individual year, the difference of the coefficients are only 

statistically significant (5% level) in 2007. As indicated by the Jensen’s alpha, in 2014 Protestant 
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funds perform better than Catholic funds (statistically significant in 10% level). In other words, 

since 2012 Catholics have had the more negative alpha while still having the larger beta. Thus 

the Catholic funds have taken on more risk and it has only made their performance worse.  

The coefficient for size premium are positive for SRI and Catholic funds. These funds 

had higher risk with a positive SMB coefficient indicates that they invest in small market equity 

portfolio. The slightly more conservative Protestant funds has a negative SMB coefficient. Thus 

as firm size increases, the SMB coefficient decreases. The SMB value would decrease and thus 

lower the funds return. Historically, the SMB factors have received a size premium of about 

3.3%, yet in recent years due to financial turmoil this size premium has significantly decrease. In 

2008, at the height of the financial crisis, the SMB coefficient for SRI and Catholic funds have 

become insignificant, while the CMF and Protestant SMB funds have become more negative. 

Protestant fund tend to gravitate more to large cap firms during crisis since they tend to perform 

better.  The HML coefficient for SRI and Christian mutual funds are also negative and 

significant. Thus as equity firms have higher book-to-market value, it will have a lower 

coefficient. This seems to indicate that growth stocks outperform value stocks during the extant 

of this period.  

Table 6 demonstrates the result of Carhart four factor model. Again, the r-square is only 

slightly higher than before. Thus even for controlling for momentum the alphas are negatively 

significant. The momentum factor is negatively significant in all funds signifying an absence of 

the momentum effect articulated in other research. This seems to indicate mean reversion.  All 

the alphas are negatively significant for the whole sample period. Christian mutual funds perform 

worse than SRI funds, and Catholic funds perform better than Protestant funds. During the 

Financial Crisis alphas become insignificant. Even though alphas are no longer significant with  
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Table 6: Carhart Four Factor Model 

Carhart is an extension of the Fama-French three-factor model to include the momentum factor.  

(𝑅𝑝 − 𝑅𝑓) = ∝  +𝛽𝑖,1,𝑡(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) +  𝛽𝑆,𝑖,𝑆𝑀𝐵𝑡 +  𝛽𝐻,𝑖𝐻𝑀𝐿𝑡 + 𝛽𝑀,𝑖𝑀𝑂𝑀𝑡   

where (𝑅𝑝- 𝑅𝑓) is the excess return of the portfolio , (𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) is the excess return of the 

market, 𝑆𝑀𝐵𝑡variable is Fama and French’s “small minus big” factor, HML is the “high minus 

low” factor, and MOM is the momentum factor. The regression is run on the whole sample as 

well as individual years for the Social Responsible funds (SRI), Christian mutual funds (CMF), 

and the Protestant and Catholic sects. The bottom reflects r-square.  

*** 1% Statistically Significant 

** 5% Statistically Significant 

* 10% Statistically Significant 
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the extra momentum factor, the evidence point out that they at least perform similarly to the 

market. The r-square is also the greatest during these times. The same performance trend is 

shown in recent years. While SRI continues to outperform the religious funds, Catholic have 

perform worse than Protestant funds.  

Data Envelopment Analysis 

 The DEA was performed based on three years’ worth of data which made some funds 

invalid to find the estimated monthly BCC scores. These scores are than averaged out and 

compared the group average. The objective of this analysis is to measure the relative efficiency 

of each fund compared to other funds in the same group. Table 7 depicts the number of funds 

that are efficient.  As can be seen from the result, Catholic funds are the most efficient. About 

half of the Catholic funds are efficient.  Of course this result may be skewed by the lack of 

number of valid funds. Comparing Social responsible funds and Christian mutual funds, Social 

responsible funds are exceedingly more efficient than Christian mutual funds. About 44% of SRI 

funds are efficient compared to 37% of Christian mutual funds. However, this still indicates that 

the majority of funds have shown an inefficient BCC score (62 of 140 funds). This is consistent 

with finding previous findings. Screening funds have hurt performance and efficiency. 

Furthermore, while Christian mutual funds, as a group, are less efficient than SRI funds this is 

mostly contributed to the larger number of protestant funds. Catholic funds, who tend to perform 

better than their Protestant counterpart, are also seen to be more efficient.  

 There are a number of funds that have 1 as their BBC score for several months. The 

Protestant fund that has the most months with a BBC score of fund is the Guidestone Low 

Duration bond funds. In fact, many of the higher BBC rated funds are conservative in nature 
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either focusing on bonds, income funds or conservative allocation type funds. While the Catholic 

funds have higher proportion of efficiency, the number of funds are less along with the number 

of months. The bond which has a BBC score of 1 for most months is the Epiphany FF Strategic 

Income. However, true to the Catholic’s fund characteristic, the other funds are not as 

conservative as that of Protestant, the efficient funds are small cap, value funds and growth 

funds. SRI funds who has a measure of 1 BBC score also lean towards conservative investment. 

The fund which scored the most 1 as there BBC score is the Access Capital Community 

Investment which is an intermediate Government bond fund. Thus the DEA method tells us that 

while the Catholic have a greater proportion of efficient funds, mainly efficient funds tend to 

lean toward conservative investment.  

 

Table 7: Data Envelopment Analysis 

The Data Envelopment Analysis (DEA) measure the efficiency of fund’s performance by 

comparing the funds inputs and output. To measure the efficiency of the decision making unit 

they try to maximize return by minimizing risk. This study utilizes partial movements to 

differentiate between inputs and outputs to calculate BBC Score. In order to calculate BBC, 

funds need to have at least 3 years of information. The average of efficiency scores are found for 

each fund type and below shows the percentage of funds that are above the average efficiency 

score.  

 

 

 

 

 

Fund Type Number of Valid Funds Above Average Percentage 

CATH 15 8 53.33% 

CMF 98 36 36.73% 

PROT 83 33 39.76% 

SRI 140 62 44.29% 
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6. Conclusion   

 While religion was the first to screen their investment, they have now been swallowed up 

into a general category along with other “social responsible” investing. However, while what 

was deemed socially responsible by the public at one time was seen synonymous to Christian 

values, this is obviously not the case now. While SRI funds invest heavily in environmentally 

friendly and social awareness funds, Christians have taken another path to focus on investing 

based on biblical principles. Christian funds are more concerned with staying away from moral 

issues such as abortion, pornography, and emphasizes on staying true to biblical truth or follow 

guidelines submitted by higher authority of the church. Therefore, I argue that just as Islamic 

funds are being seen as separate from SRI grouping, so should Christian funds.  

 According to the DEA method, these screened funds are not highly efficient. In most 

cases, less than half of the fund exceed the average mark of its group. Furthermore, SRI fund and 

Christian funds tend to perform worse than the market during normal economic times. However, 

during recession screened mutual funds performed as well and in times better than the market. 

This follows literature which determines that mutual funds are attractive as an insurance 

mechanism during market downturns. Christian mutual funds performed worse than SRI funds. 

This may suggest that their lower NAV and their exclusionary screening in “sin stocks” and 

moral ambiguous stocks neutralizes diversification benefits and results in lower returns than even 

SRI funds.  

 This research was limited by data provided and results could be improved with a more 

detail and comprehensive dataset. Yet the results have proven interesting. We have showed that 

moral screening has an effect on result. As literature suggest, Catholics tend to take more risk 

than Protestants and in many cases taking extra risk paid off. In fact, Catholic funds are the most 
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efficient subset funds. In many cases, Christian organizations invest in Christian funds in their 

retirement fund. This information should be useful to them. While they may be abstain from 

sinful investing and maintain their moral principles, this in fact may hurt them financially.  
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