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Abstract 

N-Heterocyclic Carbenes (NHC) present a viable alternative to traditional phosphine ligands 

in a variety of organometallic mediated catalytic reactions.  Singlet ground-state carbenes are 

stabilized by the push-pull presence of two adjacent nitrogen atoms in an imidizolium 5-

membered ring, allowing neutral electron donor properties.  The ability to synthesize a variety of 

NHC ligands with differing steric and electronic properties is possible by changing the sustiuents 

on the nitrogen atoms of the imidizolium.  Tunable characteristics and enhanced chemical and 

thermal stability give NHC’s an advantage over phosphines in many catalytic systems. 

This dissertation focuses on the use N-Hetercyclic Carbenes in a variety of organometallic 

complexes.  The synthesis of NHC complexes with a variety of transition metals is described.  

The transition metals complexed with NHC’s include palladium, iridium, nickel and ruthenium.  

The catalytic activity of the metal-NHC complexes is investigated as well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Organometallic, catalysis, carbene, N-Hetercyclic Carbene, NHC, palladium, iridium, 
nickel, cross-coupling, ligands 
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Chapter 1:  Cross Metathesis Allowing the Conversion of a Ruthenium 

Indenylidene Complex into Grubbs' Catalyst. 

1.1 Abstract 

The active metathesis catalyst (PCy3)2Cl2Ru(3-phenylinden-1-ylidene) (4) was obtained in high 

yield using a simple one-pot procedure. The initial reaction of RuCl2(PPh3)3 with 1,1-diphenyl-2-

propyn-1-ol gave (PPh3)2Cl2Ru(3-phenylinden-1-ylidene) (6). In situ exchange of PPh3 with 

PCy3 led to the isolation of 4 in>90% yield. Whereas complex 6 did not show any activity in the 

cross metathesis reaction with styrene, reaction of compound 4 with excess styrene gave Grubbs’ 

catalyst, (PCy3)2Cl2Ru=C(H)Ph (1), dichloro(phenylmethylene)bis 

(tricyclohexylphosphane)ruthenium(II), in nearly quantitative yield. This two-step procedure 

yielded complex 1 in 88% overall yield starting from inexpensive and commercially available 

materials. The widely used metathesis catalyst 1 was also obtained in good yield in one single 

step that is without isolation of compound 4, making this a simple and safe synthetic route to 

Grubbs’ catalyst.  

 

1.2 Overview 

The advent of well-defined, highly reactive catalysts for olefin metathesis (ring-closing 

metathesis, RCM; ringopeningmetathesis polymerization, ROMP; cross metathesis, CM; and 

their combinations) has made this technique a powerful tool in organic synthesis and polymer 

chemistry.1,2 Especially valuable was the introduction of late-transition metal ruthenium catalysts 

which display excellent tolerance towards polar functional groups.3 Several modifications of the 

original catalyst precursor (PCy3)2Cl2Ru=C(H)Ph [1, Grubbs’ catalyst, 

dichloro(phenylmethylene)bis(tricyclohexylphosphane)- ruthenium(II)],4 have appeared in the 
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last decade. These include highly active and stable −second-generation catalysts, modified with 

N-heterocyclic carbenes, such as (PCy3)(IMes)Cl2Ru=C(H)Ph (2),5 and 

(PCy3)(SIMes)Cl2Ru=C(H)Ph (3),6 [IMes=1,3-bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-

imidazol-2-ylidene; SIMes=1,3-bis(2,4,6-trimethylphenyl)tetrahydroimidazol-2-ylidene]. We 

have also shown that complexes of unsaturated “Cα” ligands other than these alkylidenes such as 

(PCy3)2Cl2Ru(3-phenylinden-1-ylidene) (4) and (PCy3)(IMes)Cl2Ru(3-phenylinden-1-ylidene) 

(5) are active catalyst precursors in the ring-closing metathesis of dienes (Scheme 1).7 

 

Scheme 1.1: Series of Active Metathesis Catalysts 

The major drawback of the highly popular complexes 1, 2 and 3 are the synthetic procedures 

available for their synthesis. In the most widely used preparation route, complexes 1-3 are 

synthesized by reaction of the inexpensive and commercially available RuCl2(PPh3)3 with a 

diazo compound. However, the instability of diazo compounds and safety issues associated with 

handling the diazo compounds leaves room for improvement. An alternative method using in situ 

generated sulfur ylides as carbenoid precursors has appeared recently.8 Here, we present an 

alternative synthetic route leading to complex 1 in high yield starting from RuCl2(PPh3)3, PCy3, a 

commercially available alkynol and styrene. For this, we capitalize on the activity of the 

indenylidene complex 4 which, through a cross metathesis reaction, yields the desired compound 
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(PCy3)2Cl2Ru=C(H)Ph (1). The present study also shows that the active metathesis catalyst 4 can 

be obtained in high yield in a single synthetic step. The phenylindenyl complex 4 has been 

synthesized in the past using a two-step procedure. The first step consists of reacting 1,1-

diphenyl-2-propyn-1-ol with RuCl2(PPh3)3 in refluxing THF and results in the formation of 

(PPh3)2Cl2Ru(3-phenylinden-1-ylidene) (6) according to Eq. (1.1).9  The second step involves a 

simple ligand substitution of PPh3 with PCy3 in CH2Cl2 and gives complex 4 in 80% overall 

yield.We wanted to devise a simpler, one-pot method to the catalytically active compound 4. 

Indeed, when the reaction mixture in THF is treated directly with a slight excess of PCy3 (2.7 

equivs.), clean formation of 4 was detected as shown by 31P NMR spectroscopy. Subsequent 

work-up yielded pure complex 4 in 90-95% yield. As confirmed by 31P NMR, a single signal for 

the two equivalent phosphine ligands is observed at 34.30 ppm. 1H NMR data are in accord with 

the reported chemical shift values for 4. 

 

Equation 1.1: Synthesis of (PCy3)2Cl2Ru(3-phenylinden-1-ylidene) 

Next, the feasibility of the cross-metathesis of compound 4 with styrene was examined, a 

reaction that would lead to complex 1 according to Eq. (1.2). Therefore, we performed small-
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scale experiments using complex 4 in the presence of 20 equivs. of styrene in either THF or 

toluene solutions. 

 

Equation 1.2: Synthesis of Grubb’s Catalyst from (PCy3)2Cl2Ru(3-phenylinden-1-ylidene) 

The mixture was vigorously stirred at room temperature, the appearance of product 1 was 

followed by 31P NMR. Both solvents showed the reaction to proceed in nearly identical reaction 

times, with completion of the reaction in one day (see Table 1 and Experimental Section). This is 

somewhat surprising and indicates no effective binding of THF to the catalytically active 

monophosphine species.10 Substantially longer reaction times, both in THF and toluene, were 

observed in the presence of 5 or 10 equivs. of styrene under the same reaction conditions. 

Complex 6 did not show any activity in this cross metathesis reaction. Surprisingly, the 

indenylidene complexes with either IMes, [(PCy3)(IMes)Cl2Ru(3-phenylinden-1-ylidene)] (5), or 

SIMes, [(PCy3)(SIMes)Cl2Ru(3-phenylinden-1-ylidene)] (7), did not show good reactivity 

toward the cross metathesis with styrene. Interestingly, clean formation of complex 1 was 

observed after only 90 min when a THF solution containing 4 and 20 equivs. of styrene were 

heated under an argon flow (oil bath temperature; 70°C). Although complex 1 is notoriously 

unstable at high temperature, no decomposition was observed under these conditions.11 We 
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believe that the excess styrene present in the cross-metathesis reaction efficiently retards 

decomposition of complex 1. Using this reaction protocol on a preparative scale with subsequent 

work-up in pentane led to the isolation of Grubbs’ catalyst (1) in nearly quantitative yield (96%) 

starting from complex 4. Overall, this two-step procedure involving commercially available 

materials [i.e., RuCl2(PPh3)3, 1,1-diphenyl-2-propyn-1-ol, styrene] gave complex 1 in 88% 

overall yield. 

Finally, we wanted to examine the feasibility of the cross-metathesis reaction when excess 

phosphine was present in the reaction mixture, as would be the case in a one-pot synthesis of 1 

starting directly from RuCl2(PPh3)3. For this purpose, we reacted compound 4 with excess 

styrene (20 equivs.) in the presence of either 2 equivs. PPh3 or 2 equivs. PCy3. The results of this 

series of experiments are listed in Table 1 (Experimental Section, entries 4 and 5) and show that 

while PPh3 retards the reaction, the presence of 2 equivs. of free PCy3 completely shuts down the 

activity of 4.1b These experiments encouraged us to attempt the preparation of 1 in a one-step 

preparative scale (1 gram) by slightly modifying our reaction conditions. Phosphine exchange 

was performed using only 2.05 equivs. of PCy3 (instead of 2.7 equivs.). Due to the presence of 

free phosphine ligands, (3 equivs. PPh3, 0.05 equivs. PCy3) the cross-metathesis reaction 

required 3 h at 70°C to reach completion, as monitored by 31P NMR. In addition, more styrene 

was added during the transformation in order to accelerate the reaction and prevent 

decomposition of 1 (see above). Despite the fact that some of the compound was lost during 

work-up (mostly because of the presence of several organic byproducts), 

(PCy3)2Cl2Ru=C(H)Ph(1) was recovered in 80% overall yield. Spectroscopic data (1H and 31P 

NMR) of the purple compound confirmed the clean formation of Grubbs’ catalyst.  In summary, 

a new, synthetically simple and safe method for the synthesis of the widely used metathesis 
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catalyst (PCy3)2Cl2Ru=C(H)Ph (1, Grubbs’ catalyst) is described. The method involves reaction 

of RuCl2(PPh3)3 with commercially available 1,1-diphenyl-2-propyn-1-ol in a THF solution, in 

situ substitution of the PPh3 ligands by PCy3 and subsequent cross-metathesis of the 

indenylidene compound 4 with excess styrene. 

The procedure may be performed in a single step or alternatively, using a two-step procedure 

with isolation of compound 4. Both methods yield the desired complex (PCy3)2Cl2Ru=C(H)Ph 

(1) in good yield and high purity. The described method appears to be general, allowing the 

synthesis of various alkylidenes. These and related experiments are currently ongoing in our 

laboratories. 

Table 1.1: In situ follow-up by 31P NMR of the formation of (PCy3)2Cl2Ru[¼C(H)Ph] (1) 
from 4  

Entry Solvent Added 
PR3 

T (°C) Conversion 
at 1.5 hrs 

Conversion 
at 3.5 hrs 

Conversion 
at 7 hrs 

Conversion 
at 24 hrs 

1 Toluene - rt 16% 25% 40% 100% 
2 THF - rt 14% 21% 35% 100% 
3 THF - 70 100% - - - 
4 THF 2 PPh3 70 72% 100% - - 
5 THF 2 PCy3 70 <5% <10% <10% - 

[conditions: 4 (100 mg), styrene(20 equivs.), solvent (10 mL)]. 
 

1.3 Experimental Section 

1.3.1 General Remarks 

All reactions were carried out using standard Schlenk techniques under an atmosphere of dry 

argon or in an MBraun glovebox containing dry argon. Solvents were distilled from appropriate 

drying agents or were passed through an alumina column in an MBraun solvent purification 

system.Other anhydrous solvents were purchased from Aldrich and degassed prior to use by 

purging with dry argon and were kept over molecular sieves. Solvents for NMR spectroscopy 

were degassed with argon and dried over molecular sieves. 1,1-Diphenyl-2-propyn-1-ol (Aldrich, 
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99%) and RuCl2(PPh3)3 (Strem, 99%) were used as received. Styrene (Fluka, 99%) was degassed 

and kept in the freezer (_50 8C). Complexes (PCy3) (IMes)Cl2Ru(3-phenylinden-1-ylidene) (5) 

and (PCy3)(SIMes)Cl2Ru(3-phenylinden-1-ylidene) (7) were synthesized according to published 

procedures.[7] NMR spectra were recorded on a 400 MHz Varian Gemini spectrometer.  

1.3.2 Synthesis of (PCy3)2Cl2Ru(3-phenylinden-1-ylidene)(4) from RuCl2(PPh3)3 

RuCl2(PPh3)3 (5.00 g, 5.215 mmol) and 1,1-diphenyl-2-propyn-1-ol (1.63 g, 7.823 mmol) were 

dissolved in THF (170 mL) and the red solution was heated at reflux for 3 h. Subsequently, the 

solution was cooled to room temperature, PCy3 (3.95 g, 14.081 mmol) was added as a solid and 

the reaction mixture was stirred overnight at room temperature. The volatiles were removed, the 

sticky red solid suspended in diethyl ether (100 mL) and stirred for an additional 15 min. The 

suspension was filtered; the filtrate was washed with diethyl ether (2 x 5 mL) and pentane (2 x 5 

mL) and dried under vacuum giving the product as a brick-red solid. An additional crop of 

product was obtained by cooling the mother liquor in the freezer (-50°C) overnight, filtering the 

precipitate formed and washing with cold pentane (2 x 10 mL). Overall yield: 4.43 g (92%). 31P 

and 1H NMR(C6D6) showed clean formation of (PCy3)2Cl2Ru(3-phenylinden-1-ylidene) (4). 

1.3.3 Synthesis of (PCy3)2Cl2Ru=C(H)Ph (1) from (PCy3)2Cl2Ru(3-phenylinden-1-ylidene) 

(4) 

A THF solution (60 mL) containing (PCy3)2Cl2Ru(3-phenylinden-1-ylidene) (4, 539 mg, 0.583 

mmol) was heated under argon (oil bath temperature: 70°C) with stirring. After 5 min, styrene 

(1.34 mL, 11.665 mmol) was added via syringe and the red solution was stirred at 70°C under 

argon for 100 minutes. During this time, the Schlenk flask was purged 4 times by applying 

vacuum for 1 second. Subsequently, the volatiles were removed under vacuum. The solid was 
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suspended in pentane (70 mL), stirred for 10 min, concentrated to 30 mL and put into the freezer 

for 1 hour (-50°C). The purple precipitate 

was filtered, washed with cold pentane (-50°C, 2 x 10 mL) and dried under vacuum. Yield: 459 

mg (96%). 31P and 1H NMR (C6D6) showed clean formation of (PCy3)2Cl2 

Ru[=C(H)Ph] (1). 

1.3.4 Synthesis of (PCy3)2Cl2Ru=C(H)Ph (1) from RuCl2(PPh3)3. 

RuCl2(PPh3)3 (1000 mg, 1.043 mmol) and 1,1-diphenyl-2-propyn-1-ol (282 mg, 1.356 mmol) 

were dissolved in THF (50 mL) and the red solution was heated at reflux for 3 h. Subsequently, 

the solution was cooled to room temperature, PCy3 (600 mg, 2.138 mmol) was added as a solid 

and the reaction mixture was stirred overnight at room temperature. Styrene (2.39 mL, 20.86 

mmol) was added via syringe and the reaction mixture was heated under argon (oil bath 

temperature: 70°C) with stirring. In the course of the reaction additional styrene was added after 

one hour and again after two hours (2.39 mL each). Completion of the reaction was observed 

after 3 h.  During this time, the Schlenk flask was purged every 30 min by applying vacuum for 1 

second. Subsequently, the volatiles were removed under vacuum leaving a sticky dark-red solid. 

The solid was suspended in an acetone/pentane mixture (1:10; 150 mL overall), stirred for 10 

min, concentrated to 50 mL and put into the freezer for 3 hours (_50 oC).The purple precipitate 

was filtered, washed with cold pentane and acetone (-50°C, 2 x 5 mL each) and dried under 

vacuum. An additional crop of product was obtained by leaving the mother liquor in the freezer 

(-50°C) overnight, filtering the precipitate formed and washing with cold pentane (2 x 5 mL). 

Overall yield: 686 mg (80%). 31P and 1H NMR (C6D6) showed clean formation of 

(PCy3)2Cl2Ru=C(H)Ph (1). 
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Chapter 2: Determination of N-Heterocyclic Carbene (NHC) Steric 

and Electronic Parameters using the [(NHC)Ir(CO)2Cl] System 

 

2.1 Introduction 

Since the first report on N-heterocyclic carbenes (NHCs) by Wanzlick1 in 1962 and the 

following seminal research2,3 describing metal−NHC complexes, NHCs have attained a special 

status in organometallic chemistry.4 Subsequent to the isolation and crystallographic 

characterization of a stable free NHC by Arduengo et al.5 in the 1990s, NHC−transition metal 

complexes have attracted significant attention as homogeneous catalysts. First reserved to a 

limited number of practitioners in the area, the field of TM−NHC catalysis has experienced rapid 

growth with remarkable achievements in ruthenium-based olefin metathesis,6 hydrosilylation,7 

hydrogenation,8 and isomerization reactions.9 Palladium-catalyzed C−C10 and C−N11 coupling 

reactions have also benefited from the use of NHCs as supporting ligands. Structures of the most 

frequently encountered NHCs are shown in Figure 2.1. 
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Figure 2.1: Unsaturated and saturated NHCs used in this work. 

Initially considered as simple tertiary phosphine mimics in organometallic chemistry,12 there is 

increasing experimental evidence that NHC−metal catalysts surpass their phosphine-based 

counterparts in both activity and scope. Among the advantages associated with replacing a 

tertiary phosphine with a NHC are: (1) the reduced need for excess ligand in a catalytic reaction 

due to the stronger NHC binding to the TM compared to PR3 ligands, (2) improved air and 

moisture stability of TM−NHC complexes compared to metal−phosphine analogues, stemming 

from the tendency for the phosphine to frequently oxidize in air, and (3) the remarkable activity 

in catalysis, generally attributed to the unique combination of strong σ-donor, poor π-acceptor, 

and steric properties of NHCs. Interestingly, the properties of tertiary phosphine ligands were 

first characterized in terms of electronic effects, until Tolman13 reported the importance of steric 

factors. Contrary to tertiary phosphines, studies on NHC ligands have focused principally on 

steric properties, because of the analogy with phosphines and/or the possible formation of 
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dimeric species. A comprehensive study of the stereoelectronic parameters associated with 

NHCs14 appears vital and is fundamental to understand the factors governing their reactivity, as 

well as necessary for the development of ever more active NHC-containing catalytic systems. 

Our group has made use of the [(NHC)Ni(CO)3] system (in an analogous manner to Tolman) to 

describe steric and electronic properties of the most widely employed NHC ligands.15 According 

to Tolman,13 electronic and steric effects are intimately related and difficult to separate. A 

practical and useful separation can be made through the steric parameter (θ) and the electronic 

parameter (ν). The θ parameter represents the ligand cone angle where space occupation about a 

static metal−phosphorus (or central ligand atom) bond is quantified. The measure of electronic 

effects ν can be obtained using the fundamental CO stretching frequency A1 of [(L)Ni(CO)3] 

since the ligand L does not influence ν by crowding the Ni(CO)3 moiety, the square-planar 

structure being optimum in this regard. Notwithstanding the handling problem of the extremely 

toxic [Ni(CO)4], this system did not allow for a complete comparison of commonly used NHCs. 

The use of the bulkiest NHCs, ItBu and IAd, in an exchange reaction with Ni(CO)4 led to the 

formation of very unusual three-coordinate [(NHC)Ni(CO)2] complexes.16 We believe the 

reasons behind the stabilization of such coordinatively unsaturated organometallic species are 

steric in nature. In order to place all commonly encountered NHC ligands on the same 

stereoelectronic scale, we began a search for a more universal organometallic system enabling 

the synthesis of isostructural complexes with NHC ligands. 

2.2 Results and Discussion 

Among the different carbonyl-containing transition metal systems that could be employed as 

standards for the present study and with the aim to place every NHC on a unique scale, 
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[(L)Rh(CO)2Cl]17 and [(L)M(CO)5], with M = Cr, Mo, or W,18 were considered. In the end, the 

system found to be the most general is the [(L)Ir(CO)2Cl] series.19 Crabtree and co-workers 

reported on the use of this [(L)Ir(CO)2Cl] system to compare the electronic donating property of 

two NHC ligands that were developed in the Yale laboratory.20 Interestingly, Crabtree noted that 

by correlating the average infrared stretching frequency of the Ir system and the A1 stretch from 

[(L)Ni(CO)3], a linear correlation could be obtained for a series of phosphines where data was 

available for both systems. By extrapolation, it was possible to evaluate the Tolman electronic 

parameter (TEP, θ)13,21 of these new NHCs, a process that normally required the well-established 

Ni−carbonyl system. As a consequence of these observations, the [(L)Ni(CO)3] system was set 

aside and the Ir system considered. Crabtree followed his initial observation with a study in 

which the [(L)Ir(CO)2Cl] system was used to explore the ligand-donating properties of other 

NHCs.22 Glorius then reported on the use of this same Ir system to determine the donating ability 

of a series of bisoxazoline-derived NHCs that have been used effectively in the Suzuki−Miyaura 

reaction.23 Herrmann has also used [(L)Ir(CO)2Cl] in a study of Ir− and Rh−NHC complexes 

used as catalysts in borylation reactions.24 In this report, Herrmann isolated two 

[(NHC)Ir(CO)2Cl] complexes, one of which contained an ICy ligand. Unfortunately, to the best 

of our knowledge, the detailed correlation between the TEP and the CO stretching frequency of 

[(NHC)Ir(CO)2Cl] complexes has not been demonstrated so far for various NHCs.25 

The overall synthetic strategy devised to isolate the complexes of interest involves a simple two-

step approach shown in Schemes 1 and 2. The first step involves the coordination of the NHC to 

the iridium center by simple cleavage of [Ir(cod)Cl]2 (cod = cyclooctadiene). The second step is 

the displacement of the cyclooctadiene ligand by carbon monoxide. Ligands and yields for each 

reaction are presented below. 
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2.2.1 Synthesis of [(NHC)Ir(cod)Cl] Complexes  

The [(NHC)Ir(cod)Cl] complexes were synthesized in moderate to excellent yields using the free 

carbene in slight excess and the dimer [Ir(cod)Cl]2 (Scheme 1). To ensure the formation of 

[(ICy)Ir(cod)Cl], 3, a substoichiometric amount of free ICy was required. When this reaction was 

carried out using an excess of ICy, a byproduct was formed and identified as [(ICy)2Ir(cod)]+Cl−. 

We found it interesting that only ICy showed this unique reaction of binding two NHC onto the 

Ir−cod system with associated displacement of the chlorine to the outer sphere. 

 

Scheme 2.1: Synthesis of [(NHC)Ir(cod)Cl] Complexes 

 

Scheme 2.2: Synthesis of [(NHC)Ir(CO)2Cl] Complexes 

The 1H NMR spectra of complexes 1–4, 7, and 9 with unsaturated NHC ligands show a single 

low-field resonance around 7 ppm corresponding to the imidazole protons, while the 1H NMR 



    
 

14 
 

spectra of complexes 5 and 8 with saturated NHC backbones have resonances at 4 ppm for these 

imidazole protons. 13C NMR spectra of the unsaturated complexes have a characteristic 

resonance for the carbonic carbon around 180 ppm, while the carbenic carbon resonance for the 

saturated complex is found at lower field, around 210 ppm. Single-crystal X-ray diffraction 

experiments were carried out to unambiguously determine the atom connectivity, with the 

exception of complexes 6 and 9, where all attempts to obtain suitable crystals failed.26 

2.2.2 Synthesis of [(NHC)Ir(CO)2Cl] Complexes  

Dissolving the [(NHC)Ir(cod)Cl] complexes in dichloromethane and bubbling carbon monoxide 

through the solution results in the clean formation of the corresponding [(NHC)Ir(CO)2Cl] in 

moderate to good isolated yield. While ligand exchange was straightforward for complexes 10 

and 12–18, the synthesis of [(IAd)Ir(CO)2Cl] (11) required high pressures of CO. The high-

pressure cell was fitted with an IR probe in order to obtain in situ reaction data. As shown in 

Figure 2, during the first 75 min of reaction, there is a general increase in all bands of the 

infrared spectra as [(IAd)Ir(cod)Cl] undergoes carbonylation. Two intermediates of the ligand 

replacement reactions were detected. The bands due to the first intermediate (Int-1, 2025 cm−1) 

grow in initially, as well as bands due to a second intermediate (Int-2, 1956 cm−1) and also bands 

due to the final product cis-[(IAd)Ir(CO)2Cl] (cis refers to the position of CO ligands) (2063 and 

2048 cm−1). Spectra recorded after overnight reaction times showed the complete disappearance 

of Int-1; however a reaction time of over 6 days at 20 °C and 34 atm CO was required to 

completely convert Int-2 into the final product. 
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Figure 2.2: In situ monitoring of [(IAd)Ir(CO)2Cl] (11) formation at 500 psi of CO during 

the first 75 min. 

The very slow nature of the carbonylation of 11 was surprising. The most common mechanism 

of ligand substitution of square-planer d8 complexes involves associative displacement in which 

the incoming ligand typically approaches along the z axis. As shown in the crystal structure, the 

approach along that axis appears to be blocked by the pendant adamantyl groups to a greater 

extent than in the other complexes shown. The identity of the two intermediates present in this 

reaction remains unknown. The time course of the reaction (Figure 3) is consistent with a 

mechanism in which [(IAd)Ir(cod)Cl] (11) is converted into Int-1 and in which Int-1 is 

converted to a mixture of Int-2 and product. The conversion of Int-2 to product is much slower 

than initial formation of Int-1. Examination of the band near 1605 cm−1 due to free 1,5-

cyclooctadiene shows that following the first day of reaction there is no further buildup of free 

cod. One mechanism consistent with these observations is shown in eqs 1–3.  



    
 

16 
 

 

 

Figure 2.3: Time course of reaction of [(IAd)Ir(cod)Cl] with CO showing the formation 

and/or disappearance of intermediate species and product. 

In this postulated mechanism, Int-1 is formed in step 1 in a pressure-dependent equilibrium. It 

reacts further with CO in step 2 to produce both product and a second intermediate trans-

[(IAd)Ir(CO)2Cl] (which would have only one CO band from symmetry). Step 3 would 

correspond to slow trans–cis isomerization to produce cleanly the final product. While this 

appears consistent with our observations, it is speculative. The goal of this work was primarily 

synthesis of the desired cis-[(IAd)Ir(CO)2Cl]. The difficulty encountered in this preparation is 

due to the steric strain in 11 that may also carry over to a different mechanism of replacement in 

this system than the usual smooth associative substitution typically seen in similar systems. 
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Additional mechanistic work in this area may be called for to understand more fully the 

interesting slow conversion of 3 into [(ICy)Ir(CO)2Cl], 12. 

The structures of [(NHC)Ir(CO)2Cl] complexes 10−14, 16, and 17 were unambiguously 

determined by single-crystal X-ray diffraction studies. Unfortunately, for 15 and the 

triazolylidene-containing complex 18, a suitable single crystal could not been obtained. Ball-and-

stick representations are shown in Figure 4. Similarly to the cod-containing complexes, the 1H 

NMR data for the complexes with unsaturated NHCs show resonances around 7 ppm for the 

imidazole protons and 4 ppm for the imidazole protons on complexes bearing saturated NHCs. 

Of note, for 15 bearing the NHC = IPrCl, this characteristic signal could not be employed, but 

the other signals allow for structure confirmation. The 13C NMR shows another similar pattern 

with the carbene carbon resonance around 180 ppm for complexes 10−13, 15, and 16 as well as 

for the triazolylidene-containing 18, while complexes 17 and 19 have lower field resonances 

(201.9 and 204.9 ppm, respectively). All complexes show the expected square-planar geometry 

around the metal center with bond angles between 86.5° and 96.1°. Selected bond lengths and 

angles are shown respectively in Tables 1 and 2. The Ir−NHC distances are in the range 2.07–

2.12 Å and suggest exclusive σ-bond characteristics.27 
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Figure 2.4: Ball-and-stick representation of [(NHC)Ir(CO)2Cl] complexes.  

Table 2.1: Selected Bond Lengths (Å) for [(NHC)Ir(CO)2Cl] Complexes 

Complex Ir−CNHC Ir−Cl Ir−Ccis-CO Ir−Ctrans-CO 

[(ItBu)Ir(CO)2Cl] 10 2.114(5) 2.435(3) 1.813(11) 1.873(6) 

[(IAd)Ir(CO)2Cl] 11 2.102(7) 2.377(3) 1.869(9) 1.958(10) 
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Complex Ir−CNHC Ir−Cl Ir−Ccis-CO Ir−Ctrans-CO 

[(ICy)Ir(CO)2Cl] 12 2.078(3) 2.3281(13) 1.611(6) 1.847(6) 

[(IPr)Ir(CO)2Cl] 13 2.079(2) 2.3426(8) 1.857(4) 1.886(3) 

[(SIPr)Ir(CO)2Cl] 14 2.071(4) 2.2933(17) 1.883(5) 1.959(4) 

[(IMes)Ir(CO)2Cl] 16 2.108(12) 2.331(4) 1.65(2) 1.86(2) 

[(SIMes)Ir(CO)2Cl] 17 2.121(14) 2.367(5) 1.72(2) 1.915(19) 

cis and trans are relative to the NHC. 

Table 2.2: Selected Angles (deg) for [(NHC)Ir(CO)2Cl] Complexes 

Complex Cl−Ir−CNHC CNHC−Ir−Ccis-CO CNHC−Ir−Ctrans-CO 

[(ItBu)Ir(CO)2Cl] 10 88.2(4) 91.1(4) 175.0(9) 

[(IAd)Ir(CO)2Cl] 11 89.9(2) 89.9(3) 178.0(3) 

[(ICy)Ir(CO)2Cl] 12 86.97(2) 90.0(2) 177.1(2) 

[(IPr)Ir(CO)2Cl] 13 89.61(7) 91.71(11) 176.55(11) 

[(SIPr)Ir(CO)2Cl] 14 87.04(12) 95.0(17) 175.00(19) 

[(IMes)Ir(CO)2Cl] 16 88.8(3) 92.5(6) 174.8(6) 

[(SIMes)Ir(CO)2Cl] 17 87.6(5) 95.0(6) 178.2(8) 

cis and trans are relative to the NHC. 
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2.3 Infrared Spectroscopy  

In order to gain insight into the relative electronic donor ability of the NHCs, and to then be able 

to compare this class of ligands to commonly used tertiary phosphines, the carbonyl stretching 

frequencies of compounds 10–18 were recorded (Table 2.3). Tolman used the A1 stretching 

frequency of the Ni−carbonyl system as the meter to quantify the donor properties of the tertiary 

phosphines. This has subsequently been called the Tolman electronic parameter (TEP).13 We 

examined the correlation between the [(L)Ir(CO)2Cl] and the TEP (Figure 2.5). The phosphine 

data used are literature values.28 Upon examination of the data, we found it necessary to take the 

average values of the two carbonyl stretching frequencies as first presented by Crabtree.20 The 

experimental values obtained for five NHC−containing systems support that the TEP/νCO 

[(L)Ir(CO)2Cl] relationship for tertiary phosphines can be extended to NHC ligands. Moreover, 

these additional values allow to correct the linear regression equation initially described by 

Crabtree, since the present correlation coefficient was found to be appreciably higher (R2 = 

0.971). Thus, we used the new equation TEP (cm−1) = 0.847[νCO(average)] + 336 cm−1 to 

calculate the TEP values for IAd, ItBu, IPrCl, and TPT (Table 3). We believe that, in using this 

equation, it is quite feasible to use these organometallic systems almost interchangeably when 

necessary. 
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Table 2.3: A1 Carbonyl Stretching Frequencies for Compounds [(L)Ir(CO)2Cl] and 

[(L)Ni(CO)3]
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Figure 2.5: Correlation of the average νCO values for [(L)Ir(CO)2Cl] complexes with the 
Tolman electronic parameters (TEP).  

 

By examining the carbonyl stretching frequencies of the NHC−Ir complexes in this study (Table 

2.3 and Figure 2.5), we observe an important difference between NHCs and tertiary phosphines. 

With the exception of special NHCs such as IPrCl and TPT, the most strongly donating 

phosphine (PCy3) is much weaker than the weakest of the NHCs (SIPr), and the gap is 

significant (ca. 4 cm−1). Contrary to tertiary phosphine ligands, the difference between NHC 

electronic parameters is very small (Figure 5). As shown with IPrCl, bearing chlorine on the 

imidazole backbone, and the triazolylidene TPT (respectively TEP = 2055.1 and 2057.3 cm−1), 

simple modifications on the imidazole ring allow for efficient tuning of the NHC electronic 

properties. As expected, alkyl-substituted NHCs are more donating than aryl congeners, and the 

most donating ligand is the adamantyl derivative. For the first time, the bulky ItBu and IAd have 
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been directly compared to the rest of the NHCs, showing electronic properties very close to ICy. 

We also found that saturated NHCs are slightly less donating than the unsaturated analogues. 

However, between the two substituent pairs (mesityl and diisopropylphenyl) there is almost no 

difference; IMes and IPr are both slightly more donating than SIMes and SIPr. This confirms the 

results found in work performed with Ni(CO)4 as well as similar trends in the relative bond 

disruption enthalpies of ruthenium complexes involving the aforementioned ligands.29 

The NHCs bearing a phenyl group on the backbone developed by Crabtree appear as more 

strongly donating ligands (TEP = 2046 cm−1).22 The TEP of bioxazoline-derived NHCs(23) and 

of those recently reported by Plenio24 are in the range of common alkyl- and aryl-substituted 

NHCs (2052 cm−1 > TEP > 2049 cm−1). Nonetheless, the introduction of functional groups on 

aryl N-substituents appears to allow for variation of the electronic parameter ν, as sulfoxide and 

sulfone in para positions led to weaker TEP (2057–2054 cm−1).24 

The carbonyl stretching frequencies were also determined using DFT calculations (Table 2.4). 

Good agreement with experimental values is obtained. The weaker values (≈2000 cm−1) 

correspond to the asymmetric CO stretching and the higher (≈2070 cm−1) to the symmetric CO 

stretching. For NHCs with alkyl substituents, DFT values replicate perfectly the experimental 

increase in the wavenumber values. Comparing the saturated NHCs (SIPr and SIMes) with their 

unsaturated counterparts, the DFT values reproduce the experimental finding that both CO 

stretchings are about 1 or 2 cm−1 smaller in the unsaturated. We believe that in the saturated 

NHC-containing complexes there is a higher d → π* (NHC) back-donation, which consequently 

results in reduced d → π* (CO) back-donation.(29b) 
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Table 2.4: Experimental and DFT-Calculated Carbonyl Stretching of Several NHCs 

Complex νCO(exp) (cm−1) νCO(DFT) (cm−1) 

[(ItBu)Ir(CO)2Cl], 10 2064.6, 1980.0 2085, 2012 

[(IAd)Ir(CO)2Cl], 11 2063.4, 1979.8 2082, 2010 

[(ICy)Ir(CO)2Cl], 12 2064.8, 1981.2 2083, 2015 

[(IPr)Ir(CO)2Cl], 13 2066.8, 1981.0 2083, 2005 

[(SIPr)Ir(CO)2Cl], 14 2068.0, 1981.8 2084, 2007 

[(IMes)Ir(CO)2Cl], 16 2066.4, 1979.8 2084, 2007 

[(SIMes)Ir(CO)2Cl], 17 2068.0, 1981.8 2085, 2008 

This study is further evidence that the relative reactivity of catalysts with these ligands is due to 

factors other than electronic donation. For that reason, we quantified the steric factors 

characterizing them in measuring the amount of volume of a sphere centered on the metal, 

occupied by atoms of various NHC, % VBur. The volume of this sphere represents the space 

around the metal atom that must be shared by the different ligands upon coordination. We 

examined the DFT-optimized geometries of the free ligands and positioned them at various 

distances from the metal center (Table 2.5). The 2 and 2.28 Å values correspond respectively to 

typical NHC−Ni and PR3−Ni distances in the nickel carbonyl system. The results support the 

previous findings obtained with the nickel carbonyl system.15 The ItBu exhibits steric 

requirements similar to IAd and largely superior to the other NHCs, the amount occupied by the 

ligand inside the sphere being around 1.5 times more important. Interestingly, these values point 

out undoubtedly the bulkier effect of saturated NHCs (3% of VBur between SIPr and IPr); this 

could explain some differences observed in catalysis.10d The smaller size of ICy explains why, 
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with this NHC, introduction of two or more NHCs on a metal center is commonly observed 

during TM complex formation.30 

Table 2.5: Calculated % VBur of the NHC at Various Ir−NHC Distances 

  % VBur at various Ir−CNHC distance (Å) 
Complex distance Ir−CNHC (Å) 2.00 X-ray 2.28 

[(ItBu)Ir(CO)2Cl], 10 2.114 33 31 28 
[(IAd)Ir(CO)2Cl], 11 2.102 33 31 27 
[(ICy)Ir(CO)2Cl], 12 2.078 23 23 19 
[(IPr)Ir(CO)2Cl], 13 2.079 26 24 20 

[(SIPr)Ir(CO)2Cl], 14 2.071 29 27 23 
[(IMes)Ir(CO)2Cl], 16 2.108 26 24 20 

[(SIMes)Ir(CO)2Cl], 17 2.121 27 24 21 

 

2.4 Conclusion 

We have synthesized a series of NHC-containing iridium complexes and measured their carbonyl 

stretching frequencies in order to determine the exact order of electron-donating strength. We 

have shown that commonly used NHCs are much more strongly donating ligands than the 

strongest tertiary phosphine. Furthermore, there is surprisingly little difference between the 

NHCs themselves, showing the weak influence of N-substituents on electronic properties. At this 

point, we believe the differences of behavior between the complexes bearing these NHCs are 

more closely associated with their steric properties. On the other hand, IPrCl as well as the 

triazolylidene exhibits significantly lower donating ability, demonstrating that modifications on 

the imidazole ring allow for effective tuning of electronic properties. We have also established a 

single metal–ligand system ([(L)Ir(CO)2Cl]) that can accurately compare the donating strength of 

all ligands tested and eliminate some drawbacks of other methods currently in use. 
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2.5 Experimental Section 

2.5.1 General Considerations  

All reactions were carried out using standard Schlenk techniques under an atmosphere of dry 

argon or in a MBraun glovebox containing dry argon with less than 1 ppm oxygen. Solvents 

were distilled from appropriate drying agents or were passed through an alumina column in an 

MBraun solvent purification system. Other anhydrous solvents were purchased from commercial 

sources and degassed prior to use by purging with dry argon and were kept over molecular 

sieves. Solvents for NMR spectroscopy were degassed with argon and dried over molecular 

sieves. NMR spectra were collected on a 400 MHz Varian Gemini spectrometer or 300 and 400 

MHz Bruker Avance spectrometers. Infrared spectra were recorded on a PE 2000 FT-IR and a 

Tensor 27 Bruker FT-IR spectrometer. Elemental analyses were performed by Quantitative 

Technologies Inc. and by Robertson Microlit Laboratories and at the Universidad Complutense 

de Madrid on a LECO CHNS 932 microanalyzer. [Ir(cod)Cl]2 was purchased from Strem 

Chemicals and used as received. NHC ligands were synthesized following literature 

procedures.(31) 

2.5.2 Synthesis of [(NHC)Ir(cod)Cl]. General Procedure  

A benzene solution (10 mL) of NHC (1.79 mmol, 2.4 equiv) was added dropwise to a benzene 

solution (5 mL) of [Ir(cod)Cl]2 (500 mg, 0.74 mmol). The reaction was stirred overnight, and the 

formation of a yellow precipitate was observed. The solid was collected, washed with pentane (2 

× 5 mL), and dried under vacuum to provide the product as a yellow solid. The solid was 

dissolved in a minimum amount of ethyl acetate and purified by passing it through a short 

column of silica. X-ray quality crystals were obtained by slow evaporation of a saturated pentane 

solution. 
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2.5.3 [(ItBu)Ir(cod)Cl] (1)  

The general procedure yielded 515 mg (67%). 1H NMR (CDCl3, 400 MHz, δ): 7.15 (s, 2H, 

NCH=CHN), 4.48 (m, 2H, CHcod), 2.71 (m, 2H, CHcod), 2.17 (m, 4H, CH2
cod), 1.95 (s, 18H, 

CH3), 1.52 (m, 2H, CH2
cod), 1.33 (m, 2H, CH2

cod). 13C NMR (CDCl3, 100 MHz, δ): 179.9 (C, N-

C-N), 119.7 (CH, NCH=CHN), 78.3 (CH, CHcod), 59.7 (C, C(CH3)3), 51.5 (CH, CHcod), 33.6 

(CH3, CH3), 33.0 (CH2, CH2
cod), 29.3 (CH2, CH2

cod). Anal. Calcd for C19H32N2ClIr (MW 

516.14): C, 44.21; H, 6.25; N, 5.43. Found: C, 44.17; H, 6.23; N, 5.47. 

2.5.4 [(IAd)Ir(cod)Cl] (2)  

The general procedure yielded 912 mg (91%). 1H NMR (CDCl3, 400 MHz, δ): 7.18 (s, 2H, 

NCH=CHN), 4.49 (m, 2H, CHcod), 2.77 (d, J = 12.0 Hz, 6H, CH2
Ad), 2.53 (d, J = 11.6 Hz, 6H, 

CH2
Ad), 2.27 (m, 6H, CHAd), 2.17 (m, 2H, CHcod), 1.75 (s, 12H, CH2

IAd), 1.52 (m, 4H, CH2
cod), 

1.35 (m, 4H, CH2
cod). 13C NMR (CDCl3, 100 MHz, δ): 179.1 (C, N-C-N), 118.2 (CH, 

NCH=CHN), 76.9 (CH, CHcod), 60.5, (C, CAd), 51.3 (CH, CHcod), 45.6 (CH2, CH2
Ad), 36.3 

(CH2, CH2
Ad), 33.2 (CH2, CH2

cod), 31.8 (CH2, CH2
Ad), 30.5 (CH, CHAd), 29.4 (CH2, CH2

cod), 

22.9 (CH, CHAd). Anal. Calcd for C31H44N2ClIr (MW 672.36): C, 55.38; H, 6.60; N, 4.17. 

Found: C, 55.37; H, 6.70; N, 3.99. 

2.5.5 [(ICy)Ir(cod)Cl] (3)  

The general procedure using 1.8 equiv of ICy yielded 490 mg (58%). 1H NMR (CDCl3, 400 

MHz, δ): 6.82 (s, 2H, NCH=CHN), 5.12 (m, 2H, CHCy), 4.55 (m, 2H, CHcod), 2.92 (m, 2H, 

CHcod), 2.20 (m, 6H, CH2
Cy), 1.99 (d, J = 12.0 Hz, 2H, CH2

Cy), 1.92 (dd, J = 12.9 and 2.1 Hz, 

2H, CH2
Cy), 1.83 (dd, J = 13.3, 2.1 Hz, 2H, CH2

Cy), 1.73 (m, 4H, CH2
Cy), 1.60 (m, 4H, CH2

cod), 

1.48 (m, 4H, CH2
cod), 1.20 (m, 4H, CH2

Cy). 13C NMR (CDCl3, 100 MHz, δ): 178.1 (C, N-C-N), 

117.1 (CH, NCH=CHN), 83.5 (CH, CHcod), 60.1 (CH, CHCy), 51.0 (CH, CHcod), 34.5 (CH2, 
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CH2
Cy), 34.4 (CH2, CH2

Cy), 34.0 (CH2, CH2
cod), 29.9 (CH2, CH2

cod), 26.0 (CH2, CH2
Cy), 25.6 

(CH2, CH2
Cy). Anal. Calcd for C23H36N2ClIr (MW 568.22): C, 48.62; H, 6.39; N, 4.93. Found: C, 

48.52; H, 6.36; N, 4.82. 

2.5.6 [(IPr)Ir(cod)Cl] (4)  

The general procedure yielded 865 mg (80%). 1H NMR (CDCl3, 400 MHz, δ): 7.45 (t, J = 7.7 

Hz, 2H, CHAr), 7.33 (m, 4H, CHAr), 7.01 (s, 2H, NCH=CHN), 4.18 (m, 2H, CHcod), 3.42 (m, 

2H, CH(CH3)2), 2.88 (m, 2H, CHcod), 2.68 (m, 2H, CH(CH3)2), 1.68 (m, 4H, CH2
cod), 1.50 (m, 

2H, CH2
cod), 1.40 (m, 12H, CH(CH3)2), 1.30 (m, 2H, CH2

cod), 1.08 (d, J = 6.6 Hz, 12H, 

CH(CH3)2). 
13C NMR (CDCl3, 100 MHz, δ): 182.6 (s, N-C-N), 136.3 (C, CAr), 130.0 (C, CAr), 

124.5 (CH, CHAr), 123.0 (CH, NCH=CHN), 83.0 (CH, CHcod), 51.6 (CH, CHcod), 33.7 (CH2, 

CH2
cod), 29.1 (CH2, CH2

cod), 28.9 (CH2, CH2
cod), 26.6 (CH, CH(CH3)2), 22.6 (CH3, CH(CH3)2), 

23.4 (CH3, CH(CH3)2). Anal. Calcd for C35H48N2ClIr (MW 724.44): C, 58.03; H, 6.68; N, 3.87. 

Found: C, 58.05; H, 6.66; N, 3.71. 

2.5.7 [(SIPr)Ir(cod)Cl] (5)  

The general procedure yielded 830 mg (77%). 1H NMR (CDCl3, 400 MHz, δ): 7.38 (t, J = 7.7 

Hz, 2H, CHAr), 7.30 (d, J = 7.5 Hz, 2H, CHAr), 7.20 (d, J = 7.5 Hz, 2H, CHAr), 4.15 (m, 2H, 

CHcod), 3.95 (s, 4H, NCH2-CH2N), 3.84 (m, 2H, CH(CH3)2), 3.16 (m, 2H, CH(CH3)2), 2.92 (m, 

2H, CHcod), 1.59 (m, 4H, CH2
cod), 1.20 (m, 4H, CH2

cod), 1.45 (d, J = 6.8 Hz, 6H, CH(CH3)2), 

1.38 (d, J = 6.8 Hz, 6H, CH(CH3)2), 1.24 (d, J = 6.8 Hz, 6H, CH(CH3)2), 1.18 (d, J = 6.8 Hz, 6H, 

CH(CH3)2). 
13C NMR (CDCl3, 100 MHz, δ): 209.5 (C, N-C-N), 149.3 (C, CAr), 146.3 (C, CAr), 

136.8 (C, CAr), 129.1 (CH, CHAr), 125.0 (CH, CHAr), 123.5 (CH, CHAr), 83.9 (CH, CHcod), 54.3 

(CH, CHcod), 51.6 (CH2, CH2
cod), 33.5 (CH2, NCH2-CH2N), 31.8 (CH, CH(CH3)2), 29.2 (CH2, 

CH2
cod), 28.9 (CH, CH(CH3)2), 28.6 (CH3, CH(CH3)2), 27.1 (CH3, CH(CH3)2), 24.3 (CH3, 
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CH(CH3)2), 23.3 (CH3, CH(CH3)2), 22.9 (CH3, CH(CH3)2). Anal. Calcd for C35H50N2ClIr (MW 

726.45): C, 57.87; H, 6.94; N, 3.86. Found: C, 57.83; H, 6.98; N, 3.98. 

2.5.8 [(IPrCl)Ir(cod)Cl] (6)  

The general procedure yielded 880 mg (75%). 1H NMR (CDCl3, 400 MHz, δ): 7.56 (t, J = 7.7 

Hz, 2H, CHAr), 7.48–7.43 (m, 4H, CHAr), 4.33–4.28 (m, 2H, CHcod), 3.65–3.56 (bs, 2H, 

CH(CH3)2), 2.98–2.95 (m, 2H, CHcod), 2.38 (bs, 2H, CH(CH3)2), 1.66–1.61 (m, 2H, CH2
cod), 

1.42–1.32 (m, 14H, CH(CH3)2 and CH2
cod), 1.25–1.19 (m, 12H, CH(CH3)2). 

13C NMR (CDCl3, 

100 MHz, δ): 187.6 (s, N-C-N), 132.8 (C, CAr), 130.6 (CH, CHAr), 128.5 (C, CAr), 119.7 (CH, 

NCCl=CClN), 83.8 (CH, CHcod), 51.4 (CH, CHcod), 35.3 (CH, CH(CH3)2), 33.4 (CH2, CH2
cod), 

28.7 (CH2, CH2
cod),. Anal. Calcd for C35H46Cl3N2Ir (MW 793.33): C, 52.99; H, 5.84; N, 3.53. 

Found: C, 53. 29; H, 5.81; N, 3.68. 

2.5.9 [(IMes)Ir(cod)Cl] (7)  

The general procedure yielded 822 mg (86%). 1H NMR (CDCl3, 400 MHz, δ): 6.98 (d, J = 13.3 

Hz, 2H, NCH=CHN), 6.94 (s, 4H, CHMes), 4.13 (m, 2H, CHcod), 2.95 (m, 2H, CHcod), 2.35 (s, 

12H, CH3), 2.15 (s, 6H, CH3), 1.65 (m, 4H, CH2
cod), 1.3 (m, 4H, CH2

cod). 13C NMR (CDCl3, 100 

MHz, δ): 180.9 (C, N-C-N), 138.8 (C, CMes), 137.5 (C, CMes), 136.2 (C, CMes), 134.6 (C, CMes), 

129.7 (CH, CHMes), 128.3 (CH, CHMes), 123.5 (CH, NCH=CHN), 82.7 (CH, CHcod), 51.7 (CH, 

CHcod), 33.7 (CH2, CH2
cod), 29.2 (CH2, CH2

cod), 21.4 (CH3, CH3
Mes), 19.9 (CH3, CH3

Mes), 18.45 

(CH3, CH3
Mes). Anal. Calcd for C29H36N2ClIr (MW 640.28): C, 54.40; H, 5.67; N, 4.38. Found: 

C, 54.50; H, 5.78; N, 4.24. 

2.5.10 [(SIMes)Ir(cod)Cl] (8)  

The general procedure yielded 870 mg (91%). 1H NMR (CDCl3, 400 MHz, δ): 6.94 (d, J = 14.1 

Hz, 4H, CHAr), 4.08 (d, J = 2.9 Hz, 2H, CHcod), 3.88 (s, 4H, NCH2-CH2N), 3.06 (d, J = 1.7 Hz, 
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2H, CHcod), 2.54 (s, 6H, CH3
Mes), 2.33 (s, 6H, CH3

Mes), 2.30 (s, 6H, CH3
Mes), 1.60 (m, 4H, 

CH2
cod), 1.25 (m, 4H, CH2

cod). 13C NMR (CDCl3, 100 MHz, δ): 207.4 (s, N-C-N), 138.2 (C, 

CAr), 138.0 (C, CAr), 136.4 (C, CAr), 135.4 (C, CAr), 130.0 (CH, CHAr), 128.6 (CH, CHAr), 83.9 

(CH2, CH2
cod), 52.0 (CH, CHcod), 51.7 (CH2, NCH2-CH2N), 33.6 (CH, CHcod), 29.9 (CH, CHcod), 

21.3 (CH3, CH3
Mes), 20.1 (CH3, CH3

Mes), 18.7 (CH3, CH3
Mes). Anal. Calcd for C29H38N2ClIr 

(MW 642.30): C, 54.23; H, 5.96; N, 4.36. Found: C, 54.15; H, 5.95; N, 4.10. 

2.5.11 [(TPT)Ir(cod)Cl] (9)  

The general procedure yielded 852 mg (91%). 1H NMR (CD2Cl2, 300 MHz): δ 8.67–8.63 (m, 

2H, CHPh), 7.73–7.70 (m, 2H, CHPh), 7.58–7.52 (m, 3H, CHPh), 7.51–7.41 (m, 6H, CHPh), 7.36–

7.31 (m, 2H, CHPh), 4.53–4.48 (m, 2H, CHcod), 2.63–2.58 (m, 1H, CHcod), 2.46–2.42 (m, 1H, 

CHcod), 2.07–1.95 (m, 1H, CH2
cod), 1.81–1.33 (m, 6H, CH2

cod), 1.28–1.18 (m, 1H, CH2
cod). 13C 

NMR (CD2Cl2, 75 MHz) δ 186.1 (C, N-C-N), 153.7 (C, CN), 140.0 (C, CPh), 137.5 (C, CPh), 

131.0 (CH, CHPh), 129.6 (CH, CHPh), 129.3 (CH, CHPh), 129.1 (CH, CHPh), 129.0 (CH, CHPh), 

129.0 (CH, CHPh), 128.9 (CH, CHPh), 128.4 (CH, CHPh), 125.5 (C, CPh), 123.9 (CH, CHPh), 86.3 

(CH, CHcod), 84.5 (CH, CHcod), 53.6 (CH, CHcod), 52.7 (CH, CHcod), 34.1 (CH2, CH2
cod), 32.3 

(CH2, CH2
cod), 30.1 (CH2, CH2

cod), 28.8 (CH2, CH2
cod). Anal. Calcd for C28H27N3ClIr (MW 

633.20): C, 53.11; H, 4.30; N, 6.64. Found: C, 53.22; H, 4.09; N, 6.65. 

2.6 Synthesis of [(NHC)Ir(CO)2Cl]. General Procedure  

A dichloromethane solution (5 mL) of [(NHC)Ir(cod)Cl] (200 mg) was placed under 1 atm of 

CO. The reaction was stirred until a color change from bright yellow to very pale yellow was 

observed, ca. 10 min. The solvent was removed under reduced pressure. Hexane was added, and 

the collected precipitate was washed with pentane (2 × 5 mL) and dried under vacuum to give 
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the corresponding product as a yellow solid. X-ray quality crystals were obtained by slow 

evaporation of a saturated pentane solution. 

2.6.1 [(ItBu)Ir(CO)2Cl] (10)  

The general procedure yielded 139 mg (75%). 1H NMR (CDCl3, 400 MHz, δ): 7.21 (s, 2H, 

NCH=CHN), 1.86 (s, 18H, CH3). 
13C NMR (CDCl3, 100 MHz, δ): 179.7 (C, N-C-N), 172.9 (C, 

CO), 168.7 (C, CO), 118.8 (CH, NCH=CHN), 83.1 (s, C-ItBu), 60.2 (C, C(CH3)3), 33.1 (CH3, 

C(CH3)3), 30.6 (CH3, C(CH3)3). Anal. Calcd for C13H20N2O2ClIr (MW 463.98): C, 33.65; H, 

4.34; N, 6.04. Found: C, 33.50; H, 4.22; N, 6.01. IR νCO (CH2Cl2, cm−1): 2064.6, 1980.0. 

2.6.2 [(IAd)Ir(CO)2Cl] (11)  

A dichloromethane solution (5 mL) of 2 (100 mg, 0.149 mmol) was placed under 600 psi of CO. 

The reaction was stirred for 5 days and monitored in situ for the appearance of the product. The 

solvent was removed under reduced pressure. Hexane was added, and the collected precipitate 

was washed with pentane (2 × 5 mL) and dried under vacuum to give 11 as a yellow solid. Yield: 

66 mg (72%). 1H NMR (CDCl3, 400 MHz, δ): 7.28 (s, 2H, NCH=CHN), 2.54 (m, 12H, CH2
Ad), 

2.27 (m, 4H, CHIAd), 1.74 (m, 12H, CH2
Ad). 13C NMR (CDCl3, 100 MHz, δ): 179.8 (C, N-C-N), 

172.1 (C, CO), 168.8 (C, CO), 117.7 (CH, NCH=CHN), 61.0 (CH, CHIAd), 45.2 (C, CAd), 36.1 

(CH2, CH2
Ad), 30.4 (CH, CHAd). Anal. Calcd for C25H32N2O2ClIr (MW 620.20): C, 48.41; H, 

5.20; N, 4.52. Found: C, 48.47; H, 5.07; N, 4.39. IR νCO (CH2Cl2, cm−1): 2063.4, 1979.8. 

2.6.3 [(ICy)Ir(CO)2Cl] (12)  

The general procedure yielded 77 mg (41%). 1H NMR (CDCl3, 400 MHz, δ): 6.99 (s, 2H, 

NCH=CHN), 4.82 (m, 2H, CHCy), 2.20 (d, J = 7.1 Hz, 2H, CH2
Cy), 2.05 (m, 2H, CH2

Cy), 1.87 

(m, 4H, CH2
Cy), 1.75 (d, J = 13.3 Hz, 2H, CH2

Cy), 1.48 (m, 6H, CH2
Cy), 1.20 (m, 4H, CH2

Cy). 

13C NMR (CDCl3, 100 MHz, δ): 181.9 (C, N-C-N), 171.2 (C, CO), 168.5 (C, CO), 118.1 (s, 
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NCH=CHN), 60.8 (CH, CHCy), 34.2 (CH2, CH2
Cy), 33.8 (CH2, CH2

Cy), 25.8 (CH2, CH2
Cy), 25.7 

(CH2, CH2
Cy), 25.5 (CH2, CH2

Cy), 25.4 (CH2, CH2
Cy). Anal. Calcd for C17H24N2O2ClIr (MW 

516.05): C, 39.57; H, 4.69; N, 5.43. Found: C, 39.84; H, 4.59; N, 5.29. IR νCO (CH2Cl2, cm−1): 

2064.8, 1981.2. 

2.6.4 [(IPr)Ir(CO)2Cl] (13)  

The general procedure yielded 115 mg (62%). 1H NMR (CDCl3, 400 MHz, δ): 7.49 (t, J = 7.8 

Hz, 2H, CHAr), 7.31 (d, J = 7.9 Hz, 4H, CHAr), 7.17 (s, 2H, NCH=CHN), 2.87 (m, 4H, 

CH(CH3)2), 1.37 (d, J = 6.6 Hz, 12H, CH(CH3)2), 1.15 (d, J = 6.8 Hz, 12H, CH(CH3)2). 
13C 

NMR (CDCl3, 100 MHz, δ): 180.1 (C, CO), 178.6 (C, N-C-N), 168.6 (C, CO), 146.2 (C, CAr), 

134.8 (C, CAr), 130.7 (CH, CHAr), 124.9 (CH, CHAr), 124.3 (CH, NCH=CHN), 29.1 (CH, 

CH(CH3)2), 26.3 (CH3, CH(CH3)2), 22.8 (CH3, CH(CH3)2). Anal. Calcd for C29H36N2O2ClIr 

(MW 672.28): C, 51.81; H, 5.40; N, 4.17. Found: C, 552.03; H, 5.17; N, 3.96. IR νCO (CH2Cl2, 

cm−1): 2066.8, 1981.0. 

2.6.5 [(SIPr)Ir(CO)2Cl] (14)  

The general procedure yielded 97 mg (52%). 1H NMR (CDCl3, 400 MHz, δ): 7.39 (t, J = 7.9 Hz, 

2H, CHAr), 7.25 (d, J = 6.2 Hz, 4H, CHAr), 4.07 (s, 4H, NCH2-CH2N), 3.35 (m, 4H, CH(CH3)2), 

1.44 (d, J = 5.4 Hz, 12H, CH(CH3)2), 1.25 (d,J = 5.8 Hz, 12H, CH(CH3)2). 
13C NMR (CDCl3, 

100 MHz, δ): 204.9 (C, N-C-N), 180.3 (C, CO), 168.8 (C, CO), 147.2 (C, CAr), 135.0 (C, CHAr), 

129.9 (CH, CHAr), 124.7 (CH, CHAr), 54.6 (CH2, NCH2-CH2N), 29.1 (CH, CH(CH3)2), 27.1 

(CH3, CH(CH3)2), 23.7 (CH3, CH(CH3)2). Anal. Calcd for C29H38N2O2ClIr (MW 674.29): C, 

51.66; H, 5.68; N, 4.15. Found: C, 51.90; H, 5.49; N, 3.98. IR νCO (CH2Cl2, cm−1): 2068.0, 

1981.8. 

2.6.6 [(IPrCl)Ir(CO)2Cl] (15)  
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The general procedure yielded 135 mg (70%). 1H NMR (CDCl3, 400 MHz, δ): 7.60 (t, J = 7.8 

Hz, 2H, CHAr), 7.39 (d, J = 7.8 Hz, 4H, CHAr), 2.84 (sept, J = 6.7 Hz, 4H, CH(CH3)2), 1.42 (d, J 

= 6.7 Hz, 12H, CH(CH3)2), 1.23 (d, J = 6.7 Hz, 12H, CH(CH3)2). 
13C NMR (CDCl3, 100 MHz, 

δ): 179.5 (C, CO), 178.5 (C, N-C-N), 168.5 (C, CO), 146.7 (C, CAr), 131.7 (C, CAr), 131.4 (CH, 

CHAr), 124.7 (CH, CHAr), 120.9 (C, NCH=CHN), 29.0 (CH, CH(CH3)2), 25.2 (CH3, CH(CH3)2), 

24.0 (CH3, CH(CH3)2). Anal. Calcd for C29H36N2O2Cl3Ir (MW 743.18): C, 46.87; H, 4.88; N, 

3.77. Found: C, 47.01; H, 4.58; N, 3.88. IR νCO (CH2Cl2, cm−1): 2071.4, 1985.1. 

2.6.7 [(IMes)Ir(CO)2Cl] (16)  

The general procedure yielded 164 mg (89%). 1H NMR (CDCl3, 400 MHz, δ): 7.10 (m, 2H, 

NCH=CHN), 7.00 (s, 4H, CHMes), 2.35 (s, 6H, CH3
Mes), 2.20 (s, 12H, CH3

Mes). 13C NMR 

(CDCl3, 100 MHz, δ): 180.2 (C, CO), 176.2 (C, N-C-N), 168.6 (C, CO), 139.7 (C, CMes), 135.3 

(C, CMes), 135.0 (C, CMes), 129.5 (CH, CHMes), 123.8 (CH, NCH=CHN), 21.4 (CH3, CH3
Mes), 

18.71 (CH3, CH3
Mes). Anal. Calcd for C23H24N2O2ClIr (MW 588.12): C, 46.97; H, 4.11; N, 4.76. 

Found: C, 46.82; H, 4.00; N, 4.88. IR νCO (CH2Cl2, cm−1): 2066.4, 1979.8. 

 

 

2.6.8 [(SIMes)Ir(CO)2Cl] (17)  

The general procedure yielded 170 mg (92%). 1H NMR (CDCl3, 400 MHz, δ): 6.95 (m, 4H, 

CHMes), 3.99 (m, 4H, NCH2-CH2N), 2.42 (s, 12H, CH3
Mes), 2.31 (s, 6H, CH3

Mes). 13C NMR 

(CDCl3, 100 MHz, δ): 201.9 (C, N-C-N), 180.5 (C, CO), 168.8 (C, CO), 138.9 (C, CMes), 136.1 

(C, CMes), 134.8 (C, CMes), 129.8 (CH, CHMes), 52.0 (CH2, NCH2-CH2N), 21.4 (CH3, CH3
Mes), 

18.9 (CH3, CH3
Mes). Anal. Calcd for C23H26N2O2ClIr (MW 590.13): C, 46.81; H, 4.44; N, 4.75. 

Found: C, 46.75; H, 4.35; N, 4.48. IR νCO (CH2Cl2, cm−1): 2068.0, 1981.2. 
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2.6.9 [(TPT)Ir(CO)2Cl] (18)  

The general procedure yielded 138 mg (72%). 1H NMR (CD2Cl2, 300 MHz, δ): 8.29–8.24 (m, 

2H, CHPh), 7.59–7.52 (m, 7H, CHPh), 7.48–7.46 (m, 1H, CHPh), 7.44–7.41 (m, 2H, CHPh), 7.37–

7.34 (m, 3H, CHPh). 13C NMR (CD2Cl2, 75 MHz, δ): 180.5 (C, CO), 178.8 (C, N-C-N), 167.8 

(C, CO), 154.5 (CH, CH=N), 139.4 (C, CPh), 136.4 (C, CPh), 131.6 (CH, CHPh), 130.7 (CH, 

CHPh), 129.9 (CH, CHPh), 129.4 (CH, CHPh), 129.3 (CH, CHPh), 129.2 (CH, CHPh), 128.8 (CH, 

CHPh), 125.4 (C, CPh), 124.5 (CH, CHPh). Anal. Calcd for C22H17N3OClIr (583.06): C, 45.24; H, 

3.11; N, 7.19. Found: C, 45.55; H, 2.96; N, 7.12. IR νCO (CH2Cl2, cm−1): 2072.2, 1989.3. 

2.7 Computational Details  

The density functional calculations were performed on all the systems at the GGA level with the 

Gaussian03 set of programs.32 The Perdew, Burke, and Ernzerhof functional was used for all the 

calculations.33 The electronic configuration of the molecular systems was described by the split-

valence basis set with polarization functions of Ahlrichs and co-workers (standard SVP basis set 

in Gaussian03), for main group atoms.34 For Ir the small-core, quasi-relativistic 

Stuttgart/Dresden effective core potential (standard SDD basis set in Gaussian03) basis set, with 

an associated (8s7p6d)/[6s5p3d] valence basis set contracted according to a (311111/22111/411) 

scheme, was used.35-37 Frequency calculations were performed on the optimized geometries. 
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Chapter 3: A general method for the Suzuki-Miyaura cross-coupling 

of sterically hindered aryl chlorides: Synthesis of di- and tri-ortho-

substituted biaryls in 2-propanol at room temperature 

3.1 Abstract 

The catalytic formation of di- and trisubstituted ortho biaryl junctions has been achieved using a 

palladacylce pre-catalyst bearing a N-heterocyclic carbene ligand. This transformation is 

performed at room temperature in technical grade 2-propanol.  

3.2 Results and Discussion 

Transition metal-mediated cross-coupling reactions represent an extremely versatile tool in 

organic synthesis.1 Reactions leading to C−C bond formation are often key steps in a wide range 

of organic processes ranging from supramolecular chemistry2 to natural product synthesis.3 

Among these, the Suzuki−Miyaura reaction, involving the coupling of an aryl halide with an 

organoboron reagent, has emerged as a favorite.4,5 Palladium−phosphine complexes have been 

the most commonly employed catalysts for the Suzuki−Miyaura reaction.6,7  

Some of the challenges associated with cross-coupling reactions have focused on the use of 

“unreactive” aryl chlorides as coupling partners in view of their attractive cost and readily 

available diversity.8 Efforts aimed at developing catalytic systems that perform at mild reaction 

temperatures in short times using low catalyst loadings are an ongoing effort. Some progress has 

been achieved in this area.7-9 A remaining challenge is to achieve cross coupling under these 

optimum conditions for highly hindered biaryl junctures such as poly-ortho-substituted biaryls.10  
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N-Heterocyclic carbenes (NHC)11 and metallacycle scaffolds12 have been used as alternatives to 

tertiary phosphines in cross-coupling reactions.11-13  The NHC are sterically demanding ligands 

with better σ-donor ability than tertiary phosphines. The metallacycle framework has shown to 

be quite robust and capable of high turnover numbers in the Heck reaction.12 We recently 

reported a new class of catalysts combining the highly donating and sterically demanding NHC 

with the stability imparted by the palladacycle framework (Figure 3.1). These catalysts displayed 

excellent performance in aryl amination and α-arylation of ketones using low catalyst loading.14 

We now report the activity of one of these catalysts, 1, in the Suzuki−Miyaura cross-coupling 

reaction.  

 

Figure 3.1: NHC-bearing palladacycles 

During the course of performing experiments on the catalytic dehalogenation of aryl chlorides 

with 1 using technical grade 2-propanol (1.5 mL) as the solvent and NaOtBu as base (1.2 equiv), 

we achieved very high yields of dehalogenated product at room temperature in minutes.15 In 

view of similarities between both processes,7a,16 the activity of this catalyst/solvent system was 

examined in the Suzuki−Miyaura reaction. To minimize and hopefully eliminate the undesirable 

dehalogenation of the aryl chloride under catalytic conditions, this substrate was slowly added to 
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the catalytic reaction mixture. In test reactions, using phenylboronic acid as coupling partner, 

various aryl chlorides (activated and unactivated) afforded the corresponding biaryl products in 

very short reaction times at room temperature in high yields (Table 3.1).  

 

Table 3.1:  Suzuki−Miyaura Cross-Coupling of Aryl Chlorides with Phenylboronic Acid 

 
a GC yield (isolated yield), average of two runs. 

The use of anhydrous 2-propanol did not lead to improved yields or shorter reaction times. This 

is a true testimony to the robustness of the catalytic species. The phosphine congeners of 1 do not 
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afford product under these reaction conditions,17 highlighting the need for the NHC supporting 

ligand in this transformation.  

The present methodology was also successfully tested in reactions leading to di- and tri-ortho-

substituted biaryls. Reactions under these mild conditions afford high yields of desired products 

in short reaction times (Table 3.2). A larger-scale experiment (2.5 mmol of aryl chloride) was 

carried out for the reaction in entry 4 and afforded 428 mg (87%) of the desired product in 75 

min.  

Table 3.2:  Synthesis of Di- and Tri-ortho-substituted Biaryls 

 

a GC yield (isolated yield), average of two runs. 
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To gain insight on the exact mechanism at play in this system, the organic fragment liberated in 

the initial activation step of the catalysis was isolated and fully characterized in reactions 

involving 1, NaOtBu and 2-propanol. After flash chromatography, 2-(dimethylamino)-biphenyl 

was isolated in quantitative yield. When the base was not added, the palladacycle was recovered 

intact. This suggests an activation pathway involving the formation of a palladacycle hydride 

species that subsequently undergoes reductive elimination of the biphenyl moiety (Scheme 3.1). 

The [(IPr)Pd] species generated then becomes available for oxidative addition of aryl chloride 

and initiates the catalytic cycle.  

 

Scheme 3.1:  Proposed Mechanism for the Activation of 1 

In summary, we have described a catalytic system that is general for the Suzuki−Miyaura cross-

coupling reaction involving aryl chlorides and boronic acids at room temperature. Reactions 

reach completion in short reaction times. Sterically hindered unactivated aryl chlorides couple 

with sterically hindered boronic acids under these conditions and lead to di- and tri-ortho-

substituted biaryls in high yields. The use of technical grade 2-propanol as solvent makes this 
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system very attractive in view of its low cost and environmental friendliness. Studies aimed at 

elucidating the exact mechanistic details involved in this transformation are presently being 

examined with this and related palladacycles.  

 

Chapter 4: Synthesis, characterization, and catalytic activity of 

N-heterocyclic carbene (NHC) Palladacycle complexes 

4.1 Abstract 

Palladacycle dimers possessing bridging halides can be easily cleaved by using N-heterocyclic 

carbenes (NHCs) to generate novel monomeric complexes. The structure of one of these was 

determined by single-crystal diffraction study and consists of a square-planar coordination 

around the palladium center where the NHC ligand is trans to the amine of the palladacycle. The 

complex was found to be equally active in aryl amination and α-arylation of ketones even at very 

low catalyst loading (0.02 mol %). Primary and secondary alkyl/arylamines are equally active 

partners in coupling reactions.  

4.2 Results and Discussion 

Rapid developments in the area of metal-mediated cross-coupling reactions involving 

unactivated substrates, especially aryl chlorides, have highlighted both the positive and negative 

properties of phosphines as supporting ligands.1 The high price associated with bulky tertiary 

phosphines and/or difficulties associated with removal of the ligands and their degradation 
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byproducts, phosphine oxides, have encouraged researchers to explore alternative catalytic 

systems. To this end N-heterocyclic carbenes2 (NHCs) and metallacycle3 scaffolds have been 

used as ancillary ligands.  

The NHCs have the general advantage of being better σ-donors than tertiary phosphines 

rendering the oxidative addition of the aryl halide to palladium facile. In addition, the significant 

steric demand brought about by the presence of bulky substituents on the NHC facilitates 

elimination of the product. The strong interaction between metal and carbenic carbon of the 

imidazole moiety inhibits the dissociation, thereby minimizing the need for excess ligand.4 The 

second class of alternative catalysts focuses on palladacycles. Pioneering work by the Herrmann 

group and others3 has shown these catalysts to be very robust and capable of high turnover 

numbers, especially in Heck coupling reactions. Conceptually, some of these catalysts can be 

viewed as oxidative addition products of an aryl halide to palladium. The use of these catalysts 

on unactivated substrates usually requires long reaction times.  

Recently, a combination of a palladacycle framework with highly donating, sterically demanding 

secondary phosphines has been reported.5 These catalysts combine the stability induced by the 

presence of a palladacycle framework with the high activity commonly associated with 

palladium/phosphine complexes. The mechanism of activation and the exact nature of the active 

catalytic species are still in question in this system. We were interested in an approach that 

would combine the important donating properties of NHC with the stability imparted by the 

palladacycle framework.  

Recently, we reported the synthesis of monomeric NHC-Pd(allyl)Cl species6 by the reaction of 

NHC and [(η3-allyl)PdCl]2. We speculated that a similar reactivity pattern between palladacycle 

dimers and NHC could be applied to generate monomeric palladium complexes.  
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Herein, we describe the synthesis, characterization, and catalytic activity of a novel class of 

palladacycle/NHC complexes (NHC is IPr [N,N‘-bis((2,6-diisopropylphenyl)imidazol)-2-

ylidene], IMes [N,N‘-bis((2,4,6-trimethylphenyl)imidazol)-2-ylidene]). Scheme 4.1 depicts the 

reaction between IPr and a palladacycle dimer. The reaction was performed in THF at room 

temperature for 2 h and afforded 1 in 67% yield after recrystallization. The product is a 16-

electron species that is air and moisture stable. Crystals suitable for single-crystal X-ray 

diffraction were obtained from hexanes/CH2Cl2 solutions. The X-ray data confirmed the complex 

to have a distorted square-planar geometry with the NHC ligand trans to the amino group. The 

biphenyl geometry is twisted probably to accommodate the steric bulk of the IPr ligand. (Figure 

4.1).  

 

Scheme 4.1:  Synthetic Protocol Leading to NHC Modified Palladacycles  
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    Figure 4.1: ORTEP drawing of 1. Hydrogens are omitted for clarity.  

We investigated the catalytic activity of NHC modified palladacycles (1 and 2) in the aryl 

amination7 using 4-chlorotoluene and morpholine as standard substrates. When 2 was used as the 

catalyst the reaction reached completion in 1.5 h at 70 °C. On the other hand, aniline is 

completely inert under these conditions. However, the use of 1 in this reaction involving aniline 

leads to quantitative product formation. It should be noted here that the secondary phosphine 

congeners to 1 and 2 perform arylation of amines but require much harsher conditions.5 

Considering the existence of similar electronic effects in both catalysts (1 and 2), we suspect the 

difference in reactivity must be associated with a different rate of reductive elimination. Faster 

rates were observed for the more bulky ligand, IPr. Among bases, NaOtBu was found to be the 

most effective in terms of conversion and price. Cs2CO3 and K3PO4 were completely ineffective, 

supporting the hypothesis of Hartwig that two different mechanisms can operate in arylation of 

amines.8  
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A survey of catalytic cross-coupling of aryl halides with a wide range of amines performed at 70 

°C is provided in Table 4.1.  

Table 4.1:  Cross-Coupling of Aryl Halides and Amines Mediated by 1a 

 

 Conditions:  1.1 mmol of NaOtBu, 1 mol % of 1, 1 mmol of ArX.; (a) Unless otherwise stated 

reactions were carried out with 3 mL of dioxane. (b) Reaction carried out with 3 mL of toluene. 

Yields were determined by GC. Isolated yields are braketed and are an average of two runs. 
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Table 4.2:  α-Arylation of Ketonesa 

 
a
 Conditions:  1.1 mmol of NaO

t
Bu, 1 mol % of 1, 1 mmol of ArX. (a) 3 mL of dioxane. (b) 3 mL 

of toluene. GC yields. Isolated yields are braketed and are an average of two runs. 

 

 

Aryl chlorides were used as coupling partners in most reactions. Despite the unreactive nature of 

the C−Cl bond these reactions required low catalyst loading and reaction times ranging from 20 

min to a maximum of 4 h. It was interesting to observe that varying the nature of aryl group 

substituents had minimal influence on reaction rates. Sterically hindered aryl chlorides such as 2-

methoxychlorobenzene or 2-methylchlorobenzene have rates slightly lower than nonhindered 

relatives. We were pleased to find that a large variety of substrates heterocyclic alkylamines, 

dialkylamines, aryl−alkylamines and primary amines are all efficient coupling partners. 

Furthermore, it should be pointed out that substrates such as aniline, hexylamine, and other 

primary amines have oftentimes been found to undergo a second arylation under catalytic 

conditions. This is not observed with this system. The reactivity of the present system compares 

favorably to that displayed by systems reported by Buchwald.9  

We were interested in the activity of the catalyst at lower catalyst loadings. For this facet of the 

study, the reaction between p-chloroanisole and aniline was chosen as it involves a coupling of 

an electron-rich aryl with a poorly activated amine. The experiments showed that the TON can 
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be nearly doubled by increasing the temperature of the reaction from 70 (TON = 160) to 110 °C 

(TON = 305). Under the more forcing conditions no formation of palladium black was observed. 

Harsher conditions were tested with use of 0.05 mol % of catalyst 1 and TON of up to 460 were 

obtained. Further studies in this direction are presently ongoing and are aimed at understanding 

the fate of the catalytic species.  

While reaction conditions are still being optimized, initial results show that reactions involving 

4-methoxychlorobenzene or 4-chlorotoluene and morpholine can be carried out at room 

temperature. These reactions reach completion within 2 h.  

An attractive alternative to the use of aryl chlorides as a substrate in cross-coupling chemistry is 

the use of aryl triflates which are easily synthesized from phenols.10 We found that an important 

factor enabling the use of triflates is solvent selection. Standard reaction conditions involving 

dioxane as solvent led to no significant amount of products. The use of toluene led to 

conversions similar to those involving aryl chlorides.  

We investigated the use of palladacycle-NHC complexes as catalysts in the arylation of simple 

ketones with aryl halides and pseudohalides at 70 °C. The NaOtBu base plays a dual role, it 

generates the active catalytic species (as described above) and it deprotonates the ketone. In our 

initial studies multiple arylations are not observed probably due to steric constraints.  

Indolese and co-workers recently reported a similar catalytic system but the palladacycle was 

stabilized and activated by the presence of a secondary phosphine.5 The reaction of 1 and 

tricyclohexylphosphine in the presence of NaOtBu was monitored by 31P NMR spectroscopy. 

The appearance of a peak at 52.6 ppm, similar to the reported values for mixed NHC phosphine 

palladium(0) complexes synthesized by Cloke and co-workers,11 was observed.12 On the basis of 

this spectroscopic information, we speculate an activation mechanism that is initiated by an 
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attack of alkoxide on palladium resulting in the formation of a palladium alkoxide. Aryl 

palladium alkoxide complexes have been shown to be susceptible to thermal reductive 

elimination.13 Alternatively, under catalytic conditions, a palladacycle-NHC aryl complex could 

form and subsequently eliminate the arylated aminoaryl fragment thereby generating the “Pd-

NHC” fragment. We are now exploring which of these two activation modes is operating in the 

present system. In either case the generated electron-rich palladium(0) species stabilized by the 

presence of a NHC ligand then enters the catalytic cycle performing the oxidative addition of 

aryl halides (Scheme 4.2).  

 

Scheme 4.2:  Proposed Catalyst Activation Pathway  

In summary, a new class of catalysts with a broad spectrum of activity in cross-coupling 

chemistry has been synthesized and fully characterized. The catalysts consist of a palladacycle 

scaffold stabilized by the presence of a highly donating, sterically demanding NHC ligand. The 

catalysts are well-defined, air stable, and very active in cross-coupling of aryl chlorides or 

triflates with amines and/or ketones. Their synthesis is simple and is achieved by mixing a NHC 

with a palladacycle in THF at room temperature. The large number of palladacycles and 

carbenes reported in the literature leaves open the possibility of discovering even more active 
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catalysts. The proposed mechanism of activation is based on the generation of aryl-alkoxy 

palladium species that are subject to thermal elimination of ethers. The palladium(0) species 

formed upon elimination of the ether is stabilized by coordination to an electron-rich, sterically 

demanding NHC. Currently, we are expanding the scope and use of of NHC-palladacycle 

complexes to other cross-coupling and related reactions.  

 

 

Chapter 5: Simple Synthesis of CpNi(NHC)Cl Complexes (Cp 

= Cyclopentadienyl; NHC = N-Heterocyclic Carbene) 

5.1 Abstract 

The reaction of saturated and unsaturated imidazolium salts with nickelocene in refluxing THF 

results in the formation of NHC complexes of general formula CpNi(NHC)Cl (NHC = SIMes 

(2), IPr (3), SIPr (4)). This protonation of Cp2Ni was also tested using phosphonium salts, and 

the reaction of nickelocene with triethylphosphonium chloride leads to CpNi(PEt3)Cl (5). All 

compounds were characterized by NMR and X-ray crystallography. The catalytic activity of the 

NHC compounds was tested in aryl amination (Buchwald−Hartwig reaction) and in aryl halide 

dehalogenation reactions.  

 

 



    
 

49 
 

5.2 Introduction 

N-heterocyclic carbenes (NHCs) have become a very important class of ligand in organometallic 

chemistry.1 Oftentimes compared to tertiary phosphines because of similarities in bonding and 

transition-metal (TM) catalyst activity, the NHCs possess properties that render them more 

desirable for a number of catalytic applications.2 A minor hurdle hindering a more widespread 

use of NHCs as ligands is the need to generate them from their respective imidazolium salt, thus 

either requiring an additional isolation step or, alternatively, forming them in situ. The most 

common method of affixing a NHC onto a metal center is synthesizing the free carbene by action 

of a base on the imidazolium salts and subsequently reacting the NHC with a metal complex.3 A 

method gaining popularity in recent reports is the transmetalation of the NHC from a silver 

complex that can be synthesized by reacting Ag2O with the azolium chloride.4 This 

transmetalation has been especially useful with NHCs that are difficult to isolate or that are 

somewhat unstable as a free carbene. Both of these current methods require an additional step, 

increasing the cost and generating waste.  

We have recently taken advantage of a Ni system ((NHC)Ni(CO)x; x = 2, 3) to quantify the steric 

and electronic parameters characterizing a number of NHCs.5 Recent reports of Ni−NHC 

complexes capable of mediating organic transformations have drawn attention to this low-cost 

organometallic system. Louie and co-workers have shown that a Ni−NHC system successfully 

facilitated the cycloaddition of alkynes with either isocyanates or carbon dioxide at a higher rate 

than when Ni−tertiary phosphine systems were employed.6 Fort has had success with Ni-

catalyzed aryl amination and transfer hydrogenation using NHCs as ancillary ligands.7,8 Mori has 

recently reported on the stereoselective synthesis of (Z)-allylsilanes from dienes and aldehydes 

mediated by a Ni/NHC system,9 and a similar system involving alkynes10 has been used by 
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Montgomery. A most recent report by Jamison uses an IPr/Ni(0) system to effect the 

enantioselective and regioselective coupling of allenes, aldehydes, and silanes.11 While this paper 

was in preparation, very recent work from the Snieckus group came to our attention where 

CpNi(IMes)Cl (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) was used as 

precatalyst in a cross-coupling of aryl Grignards with sulfamates.12 Since a general synthetic 

route has not yet been demonstrated leading to these CpNi(NHC)Cl catalysts, we felt that in this 

context a simple route to a large number of compounds in this family would be a welcome 

contribution.  

The first transition-metal−NHC complexes were not formed by the use of a free carbene, as they 

were considered unstable at the time. Öfele13 and Wanzlick14 both use the direct addition of 

imidazolium salts to metal precursors. Since Arduengo15 showed the feasibility of generating a 

stable free carbene, the use of direct addition of the azolium salt to a transition metal has seen 

limited use. The reaction of an imidazolium salt and Pd(OAc)2 has been shown to form Pd−NHC 

complexes,16 and there have been a few reports of Ni−NHC complexes made in this fashion.17 

One report describes the use of Ni(indenyl)2 and an alkyl-substituted imidazolium salt, but the 

generality of the approach was not expanded upon.17c There has only been one example reported 

so far that makes use of a simple assembly protocol involving IMes·HCl and Cp2Ni leading to 

CpNi(IMes)Cl (1) in one pot.17a Since recent publications have focused on catalytically active 

Ni−NHC complexes (see above), a facile synthetic method of preparation leading to such 

complexes seemed desirable. We therefore undertook a detailed study probing the generality of 

the one-pot synthetic approach from nickelocene.  
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5.3 Results and Discussion 

5.3.1 Background and Synthesis 

The saturated NHC complexes do exhibit enhanced reactivity in certain instances.18 For this 

reason, it was of interest to test whether SIMes·HCl could be reacted directly with nickelocene. 

Interestingly, this appears to be a fairly straightforward reaction, as a solution of nickelocene and 

the saturated imidazolium chloride upon being refluxed in THF gave the desired product. 

Reaction completion is apparent by a change of color from dark green to red. This protocol also 

proved valid for the more sterically encumbered IPr and its saturated congener, SIPr (see Scheme 

1). The isolated products are all stable in solution as well as being air-stable in the solid state. 

Complexes CpNi(SIMes)Cl (2; SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-

ylidene), CpNi(IPr)Cl (3; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), and 

CpNi(SIPr)Cl (4; SIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene) were 

synthesized as shown in Scheme 1. Initial support for the proposed structure was derived from 

both 1H and 13C NMR, which showed one carbene ligand and one η5-bonded cyclopentadienyl 

ligand. The NMR spectroscopy was also consistent with the reported data for the IMes 

derivative.17a Elemental analysis confirmed the expected product composition.  

 

Scheme 5.1:  Synthetic Route to CpNi(NHC)Cl Complexes 



    
 

52 
 

Attempts to synthesize in a similar manner the ItBu, ICy, and IAd nickel complexes failed. All 

three bear alkyl substituents (tert-butyl, cyclohexyl, and adamantyl, respectively) directly on the 

imidazolium nitrogens, rendering the C−H imidazolium bond stronger and possibly more 

difficult to activate.  

Exchanging the counterion from Cl to BF4 or PF6 leads to no reaction of either aryl- or 

alkylimidazolium salts and recovery of nickelocene. We believe that the strong Ni−Cl bond 

formed in the reaction with imidazolium chlorides must act as a significant thermodynamic 

driving force leading to product.  

We also wondered if the protocol could be extended to trialkylphosphine complexes using a 

phosphonium salt as the phosphine source. CpNi(PR3)Cl (PR3 = tertiary phosphine) complexes 

have been known for quite some time.19 The preferred synthetic route to these complexes 

involved a disproportionation reaction where a mixture of nickelocene and Ni(PR3)2Cl2 is 

refluxed until an equilibrium is reached. Yields are generally very low, and workup is not always 

straightforward. The handling of trialkylphosphines is also a possible complication, as these are 

extremely air-sensitive compounds. In attempting this one-pot synthesis with phosphonium 

salts20 of trialkylphosphines, we targeted a solution that would address these two shortcomings.  

Our first attempts involved the bulky [PtBu3]HCl. The reaction with nickelocene and the salt did 

not lead to formation of the desired product. In light of the very bulky nature of PtBu3 and of the 

small size of Ni, we reasoned that steric congestion might be at the origin of this failure. Use of a 

less sterically demanding but electronically equivalent tertiary phosphine, triethylphosphine 

(PEt3), was then tested. The synthesis requires the quaternization of the phosphine, but this is 

easily achieved, since the air-sensitive triethylphosphine can be straightforwardly treated with an 

anhydrous HCl solution in dioxane to yield the air-stable phosphonium salt. A solution of 
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nickelocene and triethylphosphonium chloride was stirred at room temperature until the 

characteristic green to red color change occurred after 2 h. This procedure afforded a moderate 

yield (32%) of CpNi(PEt)3Cl (5) (eq 5.1). The identity of 5 was confirmed by comparison with 

the previously reported literature spectroscopic data.19 To the best of our knowledge, this is the 

first report of the isolation of a metal−phosphine complex through the use of a phosphonium salt. 

This method may well be general for a variety of phosphine ligands and is especially applicable 

to systems containing larger metal centers, where steric crowding about the metal coordination 

sphere is not a concern.  

 

Equation 5.1: Synthesis of CpNi(PEt)3Cl 

To unequivocally determine the identity of 2−5, single crystals were obtained from slow cooling 

of a warm saturated toluene solution of the respective compounds. The molecular structures of 

the complexes of type CpNi(L)Cl (L = SIMes (2), IPr (3), SIPr (4), PEt3 (5)) are shown as ball-

and-stick diagrams in Figure 1 (2 and 3) and Figure 2 (4 and 5), and relevant bond lengths and 

angles are provided in Table 1. In the case of 2, poor-quality crystals yielded a higher R value 

than for complexes 3−5. Nevertheless, the skeletal arrangement is correct, with the asymmetric 

unit comprising of two independent molecules with their bond distances and angles lying close to 

those obtained for 3 and 4. In all cases the coordination geometry can be described as trigonal 
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planar (sum of bond angles using the Cp ring centroid 360.0°) comprised of a η5-Cp ligand, a 

carbene (or phosphine in the case of 5), and a chloride ion. For complexes 2−4, the Ni−carbene 

bond lengths lie in the range 1.85−1.89 Å and are similar to those reported for [Ni(Cp)(NHC)2]
+ 

(1.883(2) Å; NHC = tetramethylimidazol-2-ylidene)21 and (Cp)2Ni(NHC) (1.885(4) Å; NHC = 

1,3-bis(2,6-dimethyl-4-bromophenylimidazol-2-ylidene)21 but are somewhat shorter than that 

reported for 1 (1.917(9) Å).17a The complexes containing the saturated NHC ligands (compounds 

2 and 4) show slightly shorter bond distances than their corresponding unsaturated analogues 

(Table 1); however, these differences are not significant. The Ni−Cl distances are similar to those 

of 1 (2.185(2) Å). As also observed for 1,17a the aryl substituents on the NHC ligand are twisted 

(by 34.7(8) and 33.34(70)° for 2, 37.91(5)° for 3, and 31.12(0.08)° for 4), resulting in a favorable 

steric arrangement with the metal center. In addition the two sp3 carbons in the SIMes and SIPr 

complexes show torsion angles lower than the known value for free SIMes (13.4°), suggesting 

that some restriction in rotation is present (1.6(2)° for 2 and 6.8(3)° for 4). For complex 5, the 

nickel−phosphorus (2.1505(3) Å) and nickel−chloride (2.1871(3) Å) distances lie within the 

ranges reported for other three-coordinate nickel complexes.22-25  

 

Figure 5.1:  Ball and stick structures of CpNi(SIMes)Cl (2) (left) and CpNi(IPr)Cl (3) (right). 
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Figure 5.2: Ball and stick structures of CpNi(SIPr)Cl (4) (left) and CpNi(PEt3)Cl (5) (right). 

 

Table 5.1:  Selected Bond Lengths (Å) and Angles (deg) for CpNi(SIMes)Cl (2), 
CpNi(IPr)Cl (3), CpNi(SIPr)Cl (4), CpNi(PEt3)Cl (5), and CpNi(IMes)Cl (1) 

 2a 3 4 5 1b 

Ni−Lc 1.85(2), 1.89(2) 1.8748(11) 1.8752(16) 2.1505(3) 1.917(9) 
Ni−Cl 2.199(5), 2.183(6) 2.1876(3) 2.1795(5) 2.1871(3) 2.185(2) 

Ni−Cp(c) 1.77(6), 1.76(7) 1.80(2) 1.768(8) 1.753(8) 1.760(7) 
L−Ni−Cp(c) 133.5(8), 134.4(8) 134.8(8) 137.5(3) 136.2(3) 132.4(2) 
Cl−Ni−Cp(c) 127.4(8), 127.1(9) 131.0(8) 130.4(3) 131.3(2) 129.2(2) 

L−Ni−Cl 98.1(6), 99.4(6) 93.86(3) 92.06(5) 92.386(11) 98.2(2) 
a
 Two independent molecules are present in the asymmetric unit.

b
 Values taken from ref 17a.

c
  

L = SIMes, IPr, SIPr, PEt3. 

 

5.3.2 Catalytic Activity.  

The reactivity of these (NHC)Ni(II) complexes was tested in aryl dehalogenation and aryl 

amination reactions. Dehalogenation of aryl halides is an important reaction in organic chemistry 

as well as in the design of environmentally benign industrial processes, due to the high toxicity 

of these types of compounds.26 Metal-catalyzed hydrogenation,27 Grignard reagents,28 and the 

use of Raney Ni−Al alloy under basic conditions29 are some of the most widely studied methods 

of dehalogenation. Fort et al.30 recently reported on the reduction of aryl halides catalyzed by 

nickel(II)/imidazolium chloride in the presence of a β-hydrogen-containing alkoxide. Conditions 
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similar to those reported by Fort were tested with our CpNi(NHC)Cl complexes. The results of 

these catalytic tests are presented in Table 5.2. Moderate toluene formation was observed by GC 

after 4 h of reaction when bromotoluene was subjected to these conditions. No further 

conversion was observed after longer reaction times. The yields are similar for all nickel 

complexes, but the fastest reaction rates were observed with CpNi(IMes)Cl (1):  36% conversion 

after 1 h in THF at 65 °C. With CpNi(IPr)Cl (3), for example, only 14% of the dehalogenated 

product was obtained under the same conditions. Similar results were observed under reflux in 

both THF and dioxane, despite the difference in reaction temperature. These results are 

somewhat puzzling, but the activation step in this transformation may require reduction of Ni(II) 

to Ni(0) prior to oxidatively adding the aryl halide. The ease with which this reduction is 

accomplished (or lack thereof) may be at the origin of the poor catalytic performance in 

dehalogenation using this system.  

Table 5.2:  Dehalogenation of p-Bromotoluene with CpNi(NHC)Cl Complexes as 
Precatalysts 

 

 conversiona (%) 

solvent, T (°C) CpNi(IPr)Cl CpNi(SIPr)Cl CpNi(IMes)Cl CpNi(SIMes)Cl 

THF, 65 24 29 40 37 
p-dioxane, 105 30 31 40 23 

a
 Conversions were determined by GC and are averages of two runs. 

 

Carbon−nitrogen bond-forming reactions have been most widely studied with palladium 

complexes bearing sterically demanding ligands such as phosphines31 and N-heterocyclic 
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carbenes.32 Much less attention has been paid to nickel-catalyzed aryl amination, even though it 

is an attractive alternative to the more costly palladium derivatives. Different nickel-based 

catalysts have shown their utility for this transformation:  Ni(COD)2 (COD = cyclooctadiene) 

associated with 1,1‘-(bis(diphenylphosphino)ferrocene (DPPF) or 1,10-phenanthroline,33 

heterogeneous Ni(0)/C−DPPF,34 and Ni(0)−2,2‘-bipyridine.35 Fort et al.36 developed the 

amination of aryl chlorides based on a nickel/N-heterocyclic carbene system. The 

Ni(II)/SIPr·HCl precatalyst in the presence of NaOtBu was found to be efficient in the arylation 

of secondary cyclic or acyclic amines and anilines.  

To achieve aryl amination reactions, we first tested the conditions reported by Fort. 

Unfortunately, no conversion was observed by GC. Some optimization studies were then carried 

out and revealed that 2 equiv of KOtBu in dioxane at 105 °C provided the best catalytic system. 

Under these conditions, p-chlorobenzonitrile and p-bromotoluene yielded the corresponding 

coupling products with morpholine in good yields (Table 5.3). Lower conversions were observed 

using o-bromotoluene. It is noteworthy that no difference in reactivity was observed between 

nickel complexes in the coupling of morpholine and p-bromotoluene, but more challenging aryl 

halides showed that CpNi(IPr)Cl (3) and CpNi(SIPr)Cl (4) were the best catalyst precursors for 

this transformation. Studies aimed at exploiting this system in related catalytic transformations 

are ongoing.  
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Table 5.3:  Aryl Amination Catalyzed with CpNi(NHC)Cl Complexes as Precatalysts 

 

    yielda (%) 

entry R X time (h) 
CpNi-  

(IMes)Cl 
CpNi-  

(SIMes)Cl 
CpNi-  
(IPr)Cl 

CpNi-  
(SIPr)Cl 

1 p-Me Cl 20 20b 20b 45b 48b 
2 p-CN Cl 7 32b 34b 75 82 
3 p-Me Br 7 98 92 90 98 
4 o-Me Br 20 49 50 76 80 

a
 Isolated yields.

b
 Conversion determined by 

1
H NMR of the crude product. 

5.3.3 Conclusions.  

We have prepared a series of catalytically active NHC−nickel compounds directly from a 

relatively inexpensive and readily available metal precursor and imidazolium salts. We were also 

able to synthesize a trialkylphosphine nickel complex through the use of an air-stable salt of an 

otherwise pyrophoric material. We plan to expand on the use of stable starting materials in the 

development of catalytically active compounds.  

5.4 Experimental Section 

5.4.1 General Considerations.  

All reactions were carried out using standard Schlenk techniques under an atmosphere of dry 

argon or in MBraun gloveboxes containing dry argon and less than 1 ppm of oxygen. Solvents 

were distilled from appropriate drying agents or were passed through an alumina column in an 

MBraun solvent purification system prior to use. Other anhydrous solvents were purchased from 

Aldrich and degassed prior to use by purging with dry argon and were kept over molecular 

sieves. Solvents for NMR spectroscopy were degassed with argon and dried over molecular 
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sieves. Aryl halides and morpholine were used as received. Flash column chromatography was 

performed on silica gel 60 (320−400 mesh). NMR spectra were collected on a 400 MHz Varian 

Gemini spectrometer. Elemental analyses were performed by Robertson Microlit Labs.  

5.4.2 CpNi(SIMes)Cl (2). A solution of nickelocene (2.0 g, 10.6 mmol) in tetrahydrofuran (100 

mL) was added to 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazolium chloride (3.77 g, 11.0 

mmol). The mixture was refluxed overnight. During the first 1 h of reflux, the color of the 

solution changed from dark green to dark red. The solvent was removed under vacuum, and the 

resulting red residue was extracted with hot (100 °C) toluene (100 mL). The solution was filtered 

and reduced in volume to 25 mL. When the solution stood for 12 h at ambient temperature, large 

red crystals of the product formed. These were collected by filtration and washed with pentane 

(25 mL), leading to the isolation of 4.3 g (87%) of the title compound. 1H NMR (CDCl3, 400 

MHz, δ):  2.39 (s, 18H, CH3); 3.90 (s, 4H, NCH2−CH2N); 4.54 (s, 5H, C5H5); 7.07 (s, 4H, m-H). 

13C NMR (CDCl3, 100.6 MHz, δ):  201.04 (s, N−C−N), 138.51 (s, SIMes C), 137.11 (s, SIMes 

C), 129.70 (s, SIMes-C), 92.70 (s, C5H5), 51.21 (s, NCH2CH2N), 21.36 (s, SIMes CH3), 18.74 (s, 

SIMes CH3). Anal. Calcd for C26H31N2ClNi:  C, 67.06; H, 6.71; N, 6.02, Cl, 7.61. Found:  C, 

67.25; H, 6.67; N, 5.98; Cl, 7.87.  

5.4.3 CpNi(IPr)Cl (3). A solution of nickelocene (2.0 g, 10.6 mmol) in tetrahydrofuran (100 

mL) was added to 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (4.68 g, 11.0 mmol). The 

mixture was refluxed for 2.5 h. During the first 30 min of reflux, the color of the solution 

changed from dark green to bright red. The solvent was removed under vacuum, and the 

resulting red residue was extracted with hot (100 °C) toluene (100 mL). The solution was filtered 

and reduced in volume to 25 mL. When the solution stood for 12 h at ambient temperature, large 

red crystals of the product formed. These were collected by filtration and washed with pentane 
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(25 mL), leading to 4.1 g (71% yield) of the title compound. 1H NMR (CDCl3, 400 MHz, δ):  

1.10 (d, 12H, CH3); 1.44 (d, 12H, CH3); 2.84 (m, 4H, CH(CH3)2); 4.51 (s, 5H, C5H5); 7.11 (s, 

2H, NCH); 7.22 (d, 4H, m-H); 7.58 (t, 2H, p-H). 13C NMR (CDCl3, 100.6 MHz, δ):  169.31 (s, 

N−C−N), 146.37 (s, IPr C), 136.71 (s, IPr C), 130.13 (s, IPr C), 125.51 (s, IPr C), 123.95 (s, 

NCH CHN), 92.02 (s, C5H5), 28.61 (s, IPr CH), 26.11 (s, IPr CH3), 22.50 (s, IPr CH3). Anal. 

Calcd for C32H41N2ClNi:  C, 70.16; H, 7.54; N, 5.11; Cl, 6.47. Found:  C, 69.99; H, 7.48; N, 

4.99; Cl, 6.54.  

5.4.4 CpNi(SIPr)Cl (4). A solution of nickelocene (2.0 g, 10.6 mmol) in tetrahydrofuran (100 

mL) was added to 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolium chloride (4.69 g, 11.0 

mmol). The mixture was refluxed overnight. During the first 1 h of reflux, the color of the 

solution changed from dark green to dark red. The solvent was removed under vacuum, and the 

resulting red residue was extracted with hot (100 °C) toluene (100 mL). The solution was filtered 

and reduced in volume to 25 mL. When the solution stood for 12 h at ambient temperature, large 

red crystals of the product formed. These were collected by filtration and washed with pentane 

(25 mL), leading to 4.7 g (81% yield) of the title compound. 1H NMR (CDCl3, 400 MHz, δ):  

1.23 (d, 12H, CH3); 1.47 (s, 12H, CH3); 3.31 (m, 4H, CH(CH3)2); 3.99 (s, 4H, CH2CH2); 4.48 (s, 

5H, C5H5); 7.35 (d, 4H, m-H); 7.49 (t, 2H, p-H). 13C NMR (CDCl3, 100.6 MHz, δ):  203.18 (s, 

N−C−N), 147.74 (s, SIPr C), 137.52 (s, SIPr C), 129.49 (s, SIPr C), 124.58 (s, SIPr C), 92.70 (s, 

C5H5), 53.57 (s, NCH2CH2N), 28.79 (s, SIPr CH), 26.89 (s, SIPr CH3), 23.52 (s, SIPr CH3). 

Anal. Calcd for C32H43N2ClNi:  C, 69.90; H, 7.88; N, 5.09; Cl, 6.45. Found:  C, 69.85; H, 8.09; 

N, 5.07; Cl, 6.72.  

5.4.5 CpNi(PEt3)Cl (5). A solution of nickelocene (0.2 g, 1.06 mmol) in tetrahydrofuran (20 

mL) was added to triethylphosphonium chloride (0.18 g, 1.16 mmol). The mixture was stirred at 
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room temperature overnight. During the first 2 h, the color of the solution changed from dark 

green to dark red. The solvent was removed under vacuum, and the resulting residue was 

extracted with dry pentane. The solution was filtered, and the solvent was removed by vacuum to 

yield a red powder in 32% yield (178 mg). 1H NMR (C6D6, 400 MHz, δ):  0.89 (m, 9H, CH3); 

1.13 (m, 6H, CH2); 5.04 (s, 5H, C5H5). 
13C NMR (CDCl3, 100.6 MHz, δ):  92.37 (s, C5H5); 16.92 

(d, CH2); 8.50 (s, CH3). 
31P NMR (C6D6, 161.9 MHz, δ):  30.17 (s, 1P, PEt3).  

5.4.6 General Procedure for Dehalogenation of p-Bromotoluene. In an oven-dried vial fitted 

with a septum screw cap, NaH (60 mg, 1.5 mmol, 3 equiv), CpNi(NHC)Cl (0.025 mmol, 5 mol 

%), and 1 mL of THF were loaded inside a glovebox. Outside of the glovebox, the mixture was 

heated to 65 °C and i-PrOH (0.155 mL, 3 equiv) was added. After 1 h of further heating, p-

bromotoluene was added and the reaction was monitored by GC.  

5.4.7 General Procedure for Arylation of Morpholine. In an oven-dried vial fitted with a 

septum screw cap, KOtBu (0.112 g, 1 mmol, 2 equiv), CpNi(NHC)Cl (0.025 mmol, 5 mol %), 

and 1 mL of p-dioxane were loaded inside a dry glovebox. Outside of the glovebox, the mixture 

was heated to 105 °C and morpholine (65 µL, 1.5 equiv.) was added. After 30 min of further 

heating, the aryl halide (0.5 mmol) was added and the reaction was monitored by GC. After 

consumption of the starting halide or no further conversion, the reaction mixture was cooled to 

room temperature and adsorbed onto silica gel. The crude reaction mixture was purified by silica 

gel chromatography. All compounds described in Table 2 are known in the literature and were 

characterized by comparing their 1H and 13C NMR spectra to the previously reported data:  N-(4-

methylphenyl)morpholine (Table 2, entries 1 and 3),37 N-(4-cyanophenyl)morpholine (Table 2, 

entry 2),38 and N-(2-methylphenyl)morpholine (Table 2, entry 4).39  
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Chapter 6: Suzuki-Miyaura, α-Ketone Arylation and 

Dehalogenation Reactions Catalyzed by a Versatile N-

Heterocyclic Carbene-Palladacycle Complex 

6.1 Abstract 

The activity of the complex (IPr)PdCl(η2-N,C-C12H7NMe2), 1 [IPr = (N,N‘-bis(2,6-

diisopropylphenyl)imidazol)-2-ylidene], in the Suzuki−Miyaura cross-coupling reaction 

involving unactivated aryl chlorides and triflates with arylboronic acids at room temperature in 

technical grade 2-propanol is described. These conditions allow for the synthesis of di- and tri-

ortho-substituted biaryls in very short reaction times. This complex also displays very high 

activity for α-ketone arylation and dehalogenation reactions of activated and unactivated aryl 

chlorides.  

6.2 Introduction 

Cross-coupling reactions have become a powerful tool in the arsenal of methods available to 

chemists for the formation of new Csp2−Csp2 or Csp2−Csp3 bonds.1 While from the late 1970s to 

the early 1990s research focused mainly on finding new coupling partners, especially 

organometallic partners, attention during the past 10 years has turned toward the development of 

more powerful catalysts that allow reactions to be conducted using milder reaction conditions 

and unprecedented substrate activations. One particular interest has been the development of 

catalysts that can operate at very low metal loadings. To achieve this, catalytic species must be 

highly reactive while decomposition should be minimal. Palladacyclic complexes have played a 
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significant role in this regard. Although the vast majority of palladacycles reported to date 

contain phosphines, especially bulky tertiary and secondary phosphines, as ancillary ligands to 

stabilize the palladium center,2 the costly price usually associated with this phosphine type, along 

with phosphine ligand and ligand decomposition byproduct removal difficulties, have led to the 

use of N-heterocyclic carbenes (NHCs)3 as a very attractive ligand alternative.4 We have reported 

preliminary results on the very efficient performance of such palladacyclic complexes as 

precatalysts in aryl amination reactions and α-ketone arylation reactions of aryl chlorides and 

triflates.5 Later, we reported on the use of 1 in room temperature Suzuki−Miyaura reactions.6 

Herein, we expand the substrate scope of 1 for the α-ketone arylation and the Suzuki−Miyaura 

reaction and also report on the use of this complex as an active precatalyst for the dehalogenation 

of aryl chlorides at room temperature.  

 

Figure 6.1: NHC-bearing palladacycles. 

 

6.3 Results and Discussion 
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6.3.1 Suzuki−Miyaura Cross-Coupling Reactions. 

 Since its discovery in 1979,7 the Suzuki−Miyaura reaction8 involving the coupling of 

organoboron reagents with organic halides has widened its scope, becoming arguably one of the 

most important transformations leading to the formation of a C−C bond. One major reason is that 

organoboron reagents show many advantages,9 for example, (1) ready availability of reagents by 

hydroboration and transmetalation, (2) inert to water and related solvents, as well as oxygen, (3) 

generally thermally stable, (4) tolerant toward various functional groups, and (5) low toxicity of 

starting materials and byproducts. A plethora of new catalysts, reaction conditions, and 

organoboron reagents have been developed by a number of research groups. Nowadays, the 

method is routinely employed in retrosynthetic schemes, and a large number of drugs,10 

polymers,11 and natural products12 make use of a Suzuki−Miyaura cross-coupling step in their 

assembly. Pioneering work in the use of palladacycles for the Suzuki−Miyaura reaction was 

performed by Herrmann and co-workers using a phosphine-bearing palladacycle in the coupling 

of activated chlorides with precatalyst loadings of 0.1 mol %.13 Good activity is not limited to 

phosphorus donor systems14,15 because N-donor,16,17 oxime-containing,18 and S-donor19 

palladacycles have also been described with good results. Tertiary phosphine adducts of 

phosphorus-, imine-, and amine-based palladacycles20,21 show excellent activity at very low 

catalyst loadings when aryl chlorides, both activated and unactivated, are used as substrates. Our 

group reported on the activity of the NHC-bearing palladacycle 1 for the Suzuki−Miyaura cross-

coupling of sterically hindered unactivated aryl chlorides with sterically hindered boronic acids, 

allowing for the synthesis in high yields of di- and tri-ortho-substituted biaryls at room 

temperature and in very short reaction times. We proposed that the activity of the complex at 
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room temperature was directly related to its particular activation mode, shown in Scheme 1, 

generating a catalytically very efficient Pd(0) species at room temperature.  

In our initial experiments, we observed the formation to a large extent, 10−50% depending on 

the substrates, of the corresponding dehalogenated species as a side product. The coupling of 

either sterically demanding chlorides or boronic acids (or both) produced a larger amount of 

dehalogenated byproduct. Because we22 and others23 have reported on the use of 2-propanol as a 

hydrogen source for palladium-catalyzed dehalogenation of aryl halides, we propose that in the 

present system both processes, the Suzuki−Miyaura reaction and the catalytic dehalogenation, 

are intertwined, sharing the oxidative addition step (Scheme 6.2, intermediate a) and leading in 

both instances to the (IPr)−Pd(0) species after one turnover.24 Sterically demanding substrates 

should lead to a decrease in the rate of transmetalation, favoring then the dehalogenation 

pathway. A proposal in line with our experimental observations is depicted in Scheme 2.  

 

Scheme 6.1:  Proposed Mechanism for the Activation of 1  
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Scheme 6.2:  Proposed Catalytic Cycle  

 

To minimize this undesirable side reaction, the aryl chlorides were initially required to be slowly 

added to the catalytic reaction mixture at an injection rate of 20 µL/30 s.25 This procedure 

permitted the couplings to occur with less than 5% of the dehalogenation byproducts regardless 

of the substrates coupled. Although it might not seem to be a big difference in the process to 

account for the suppression of the dehalogenated byproduct, it is needed to explain that, for these 

reactions, more than 75% of the desired product is produced in half of the reaction time, as 

monitored by gas chromatography. Also, the dehalogenation byproduct is formed in the first 

minutes of the reaction and its amount does not increase with time. We will show later how the 

dehalogenation reactions we carried out at room temperature require shorter reaction times and, 

even more important, only half of the catalyst loading (1 mol %), which again suggests an 

extremely rapid oxidative addition process even for deactivated aryl chlorides (vide infra). In the 

initial stages of the reaction, once intermediate a has been formed, the possible lack of the in situ 
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formed tetracoordinate boronate, together with the “large” concentration of aryl chloride and 

isopropoxide, might shift the equilibrium toward the dehalogenation process.  

As we previously reported, activated and unactivated aryl chlorides couple smoothly with 

phenylboronic acid at room temperature in short reaction times (Table 6.1). Di- and tri-ortho-

substituted biaryls can also be synthesized using the same conditions in high yields (Table 6.2). 

These results are obtained at room temperature in remarkably short reaction times! From a 

practical point of view, these conditions are very appealing, especially considering the use of an 

inexpensive and environmentally friendly solvent without predrying or purification. An 

experiment on the scale of 2.5 mmol of aryl chloride was carried out for the reaction depicted in 

entry 4 (Table 2) and afforded 428 mg (87%) of the desired product in 75 min.  

Table 6.1:  Suzuki−Miyaura Cross-Coupling Reactions with Aryl Chlorides 

 
a
 Isolated yields are the average of two runs.

b
 Reaction at 45 °C. 
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Table 6.2:  Synthesis of Di- and Tri-Ortho-Substituted Biaryls 

 
a
 Isolated yields are the average of two runs. 

Heterocyclic moieties are of great importance because they are ubiquitous in pharmaceutically 

active compounds.26 Despite their importance, the cross-coupling reaction of heterohalides 

remains a challenge, especially at low temperatures. The use of 1 allows for the coupling of 2-

chlorothiophene, 2-benzimidazole, and 2-chloropyridine with phenylboronic acid at room 

temperature within 1 h. The more deactivated substrates, 3-chlorothiophene and 3-

chloropyridine, require a slightly higher temperature and longer reaction times (Table 6.3). To 

the best of our knowledge, the Suzuki−Miyaura cross-coupling reaction of chlorothiophenes at 

such low temperatures and in such yields has not been reported to date.  
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Table 6.3: Suzuki−Miyaura Cross-Coupling Reactions with Heteroaryl Chlorides 

 

a
 Isolated yields are the average of two runs.

b
 45 °C. 

The present catalytic system also allows for the coupling of activated and unactivated aryl 

triflates under the same conditions in high yields (Table 6.4). From a synthetic point of view, 

aryl triflates are a very interesting type of substrate for the Suzuki−Miyaura reaction because 

they can be readily synthesized from the corresponding phenols in high yields.27  
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Table 6.4:  Suzuki−Miyaura Cross-Coupling Reactions with Aryl Triflates 

 

a
 Isolated yields are the average of two runs. 

 

6.3.2 α-Ketone Arylation Reactions.  

The coupling of enolizable ketones and aryl halides, despite its great synthetic importance, has 

been less explored.28 Because this reaction requires the formation of an enolate that further binds 

to the palladium center, a possible side reaction is the condensation of two ketone molecules to 

form an α-hydroxyketone.29 After optimization, we were able to successfully carry out the α-

arylation of a series of aryl and alkyl ketones at 70 °C in dry THF in the presence of sodium tert-

butoxide using a variety of aryl halides. It is noteworthy that we were able to perform every 

reaction with as low as 0.25 mol % of palladium precatalyst. Results with aryl chlorides are 

presented in Table 6.5. These substrates are of significant interest because they have in general 

lower costs and wide availability. Propiophenone can be efficiently coupled with neutral (entry 
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1), activated (entry 2), unactivated (entry 3), and sterically hindered (entry 4) aryl chlorides. We 

observed the same trend for acetophenone with slightly longer reaction times (entries 6−8). 

Satisfyingly, our catalytic system allows for the α-arylation of tetralone, even with an ortho-

substituted substrate (entries 9 and 10). Dialkyl ketones are also suitable partners, as highlighted 

by the reaction of cyclohexanone and 3-pentanone with chlorobenzene (entries 11 and 12). In the 

latter case, the use of our standard reaction conditions always resulted in mixtures of mono- and 

diarylated products, even with a large excess of ketone. Then we decided to take advantage of 

this feature by synthesizing the diarylated ketone as the only product. This can be easily achieved 

in only 30 min when 2 equiv of aryl chloride are used (entry 12). When a nonsymmetrical dialkyl 

ketone was used, a mixture of monoarylated products was observed. Butanone reacted 

preferentially at the internal position (entry 13); this can be explained by the greater stability of 

the internal enolate compared to that of the terminal one. Finally, regarding the significant role of 

the heterocyclic moiety in biologically active compounds, we attempted the coupling of 3-

chloropyridine and propiophenone. Pleasantly, the corresponding heterocyclic ketone was 

obtained in good yield (entry 15). In addition, large-scale reactions (10 mmol of aryl chloride) 

were carried out for entries 1 and 6 with similar yields in slightly longer reaction times.  
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Table 6.5:  α-Ketone Arylation Using Aryl Chlorides 

 

a
 Isolated yields are the average of two runs.

b
 Aryl chloride, 10 mmol; ketone, 10 mmol; NaOt-

Bu, 11 mmol; THF, 30 mL.
c
 A total of 1 mmol of ketone, 2.1 mmol of aryl chloride, and 2.2 mmol 

of NaOt-Bu were used. 
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Table 6.6:  Microwave-Assisted versus Conventionally Heated α-Ketone Arylation Using 
Aryl Chlorides 

 

a
 Average of two runs. 

This coupling reaction was also tested using microwave heating with excellent results (Table 

6.6). When the temperature is raised to 130 °C with this rapid heating mode, reactions could 

reach completion within 2 min with no decrease in the yields. Interestingly, we observed a higher 

selectivity in the arylation of butanone under microwave heating mode, presumably because of 

conditions favoring the more stable enolate. Decreasing the temperature might shift the 

regioselectivity toward the terminal arylated ketone, but all attempts to perform α-ketone 

arylation at room temperature were unsuccessful.  

As expected, aryl bromides were suitable substrates for reactions under these conditions, and a 

variety of aryl and alkyl ketones could be easily arylated using unactivated and sterically 

demanding aryl bromides in very good yields and, in general, shorter reaction times than for the 

analogous chlorides (Table 6.7). Gratifyingly, the use of sterically hindered aryl bromides did not 
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appear to be a limiting factor with our catalytic system. Ortho-substituted (entries 3, 4, and 7) 

and even di-ortho-substituted aryl bromides were coupled efficiently and in short reaction times. 

Following the same trend, α-tetralone reacted in high yields with 2-bromotoluene and 2-

bromoanisole to afford the arylated products (entries 9 and 10).  

Table 6.7:  α-Ketone Arylation Using Aryl Bromides 

 
a
 Isolated yields are the average of two runs. 

 

6.3.3 Catalytic Dehalogenation Reactions.  

The dehalogenation of aryl halides, and more specifically aryl chlorides, represents an important 

chemical transformation in organic synthesis.30 As a result of the high toxicity of polychlorinated 

arenes, it also has relevance to environmental remediation.31 A plethora of systems and 

conditions have been reported to perform this transformation.32 In light of our findings in the 
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Suzuki−Miyaura cross-coupling reaction, we carried out dehalogenation reactions using the same 

system but without the presence of a boronic acid. The ability of the (IPr)−Pd(0) species to 

activate the C−Cl bond at ambient temperatures translates into a very active system for the 

dehalogenation of aryl chlorides at rt. We observed that the use of the stronger base KOt-Bu 

permitted a catalyst loading reduction to 1 mol % using the same conditions (room temperature 

and technical grade 2-propanol). A variety of aryl chlorides (unactivated, activated, and 

heterocyclic) yielded the corresponding dehalogenated products in excellent yields and in short 

reaction times (Table 6.8). The catalytic performance is excellent considering these reactions are 

carried out at room temperature and require such short reaction times. Unfortunately, attempts to 

effectively dehalogenate polychlorinated substrates in these conditions led to incomplete 

reactions. Interestingly, electron-rich chlorides (entries 4−6) require shorter reaction times than 

electron-poor chlorides (entries 8−10). Because electron-poor chlorides are supposed to undergo 

oxidative addition easier than electron-rich chlorides, these results suggest that the rate-

determining step in this process is not the oxidative addition but is either the replacement of the 

chloride by the isopropoxide anion or the replacement of the chloride by the reductive 

elimination step, if we presume that neither steric nor electronic effects at the aryl moiety will 

have a large effect in the β-hydrogen elimination step (Scheme 2). In the case of entry 8, the 

substituent at the ortho position should enhance the reductive elimination step, shortening the 

reaction time when compared with the para-substituted analogue (entry 9). Studies in this matter 

are currently ongoing.  
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Table 6.8:  Catalytic Dehalogenation of Aryl Chlorides at Room Temperature 

 
a
 GC yields.

b
 Reaction at 60 °C. 
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6.4 Conclusions 

In summary, we have examined the catalytic behavior of the NHC−palladacycle 1. In particular, 

a general system involving the use of 1 and NaOt-Bu has proven suitable for the 

Suzuki−Miyaura cross-coupling of activated and unactivated aryl chlorides or triflates at room 

temperature, in technical grade 2-propanol, and requiring only short reaction times. In addition, 

the catalytic dehalogenation of aryl chlorides and the catalytic α-arylation of ketones with aryl 

bromides and chlorides were carried out using the same complex, highlighting the great 

versatility of the precatalyst. Further mechanistic and reactivity studies of this and related 

complexes in various cross-coupling reactions are ongoing in our laboratories.  

 

6.5 Experimental Section 

6.5.1 Representative Procedure for the Suzuki−Miyaura Cross-Coupling Reaction:  The 

Coupling of 2-Chloroanisole and Phenylboronic Acid. In a glovebox, 1 (2 mol %, 14.6 mg), 

sodium tert-butoxide (1.2 mmol, 115 mg), and phenylboronic acid (1.2 mmol, 146 mg) were 

added in turn to a vial equipped with a magnetic bar and sealed with a screw cap fitted with a 

septum. A parallel reaction was conducted at the same time in another vial. Outside the 

glovebox, technical grade 2-propanol (1.5 mL per vial) was injected into the vials, and the 

mixtures were stirred on a stirring plate at room temperature for 15 min. 2-Chloroanisole (1 

mmol, 127 µL) was then injected at a rate of 20 µL/30 s into each vial. The reactions were 

monitored by gas chromatography. When the reactions reached completion, as gauged by GC 
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analysis, both were combined in one vial, a small amount of silica gel was added, the solvent was 

evaporated in vacuo, and the product was isolated by flash chromatography (hexanes/ethyl 

acetate, 10:1), yielding 342 mg (93%) of the desired coupling product 2-methoxybiphenyl.  

6.5.2 Representative Procedure for the α-Ketone Arylation:  The α-Arylation of 

Propiophenone with 4-Chlorotoluene. In a glovebox, 1 (0.25 mol %, 1.8 mg), sodium tert-

butoxide (1.1 mmol, 106 mg), and anhydrous THF (3 mL) were added in turn to a vial equipped 

with a magnetic bar and sealed with a screw cap fitted with a septum. A parallel reaction was 

conducted at the same time in another vial. Outside the glovebox, propiophenone (1.1 mmol, 134 

µL) and 4-chlorotoluene (1 mmol, 118 µL) were injected in turn through the septum into each 

vial. The vials were then stirred on a stirring plate at 70 °C, unless otherwise indicated. The 

reactions were monitored by gas chromatography. When no further conversion could be 

observed, both mixtures were combined, water was added to the reaction mixture, the organic 

layer was extracted with diethyl ether and dried over magnesium sulfate, and the solvent was 

evaporated in vacuo. After flash chromatography on silica gel (hexane/EtOAc, 95:5), 442 mg 

(99%) of 2-(4-methylphenyl)-1-phenyl-1-propanone was isolated.  

6.5.3 Representative Procedure for the Catalytic Dehalogenation of Aryl Chlorides:  The 

Catalytic Dehalogenation of 4-Chlorotoluene. In a glovebox, 1 (1 mol %, 7.3 mg) and 

potassium tert-butoxide (1.2 mmol, 134.7 mg) were added in turn to a vial equipped with a 

magnetic bar and sealed with a screw cap fitted with a septum. A parallel reaction was conducted 

at the same time in another vial. Outside the glovebox, technical grade 2-propanol (2 mL per 

vial) was injected into the vial and the mixtures were stirred on a stirring plate at room 

temperature for 15 min. 2-Chloroanisole (1 mmol, 127 µL) was then injected into each vial. The 
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reactions were monitored by gas chromatography, and the product identity was compared with 

authentic samples.  
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