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ABSTRACT 

 

Telomeres are nucleoprotein complexes found at the ends of linear eukaryotic chromosomes. 

Telomeres consist of a short sequence of repetitive double stranded DNA, TTAGGG repeats in 

humans (and all mammals), and a complex of 6 proteins, termed the shelterin complex. The 

length of the telomeres varies greatly between species, from approximately 300 base pairs in 

yeast to many 10-15 kilo bases in humans, because of the end replication problem this length get 

shorten with each cell division and ultimately leads to cell death. However the immortal 

eukaryotic cells and some transformed human cells over come this incomplete end replication 

problem with the use of enzyme called Telomerase. Telomerase is a ribonucleoprotein enzyme 

that adds a specific DNA sequence repeats (TTAGGG) to the 3′ end of DNA strands in the 

telomere regions. However from the telomerase activity studies, it was concluded that telomerase 

is active in almost 90% of human cancers but not in normal somatic tissues. Finally, the low or 

transient expression of telomerase in normal tissues, including normal stem cells, and the 

generally longer telomeres in normal cells versus tumor cells provide a degree of tumor 

specificity to telomerase-based drugs and reduce the probability of toxicity to normal tissue. All 

of these factors suggest that cancer drugs based on telomerase might have a broad therapeutic 

window.  

This dissertation focusing on the synthesis of acridine derivatives that have the capability to 

inhibit the enzyme telomerase. Several N-acridyl maleimide (NAM), N-acridyl succinimide 

(NAS) and N-acridyl phthalimide (NAP) derivatives have been synthesized and evaluated for 

their anti cancer activity against various cancer cell lines. While synthesizing acridine derivatives 

it was required to form the C-N bonds at various stages. Developed a copper-nicotinic acid 



  xix 

complex, which catalyzes the coupling of aryl halides with N-formyl amines and cyclic imides to 

form C-N bond. Explored Cu (II) catalyzed formation of C-N bond by coupling aryl halides with 

various N-nucleophiles such as formamide, N,N-dimethyl formamide, N-formyl amines and 

various cyclic imides. 

 

Key Words: Telomeres, Telomerase, Eukaryotes, Shelterin Complex, End replication problem, 

Acridine, Anti cancer activity, Copper-Nicotinic acid complex, C-N bond, Aryl halides, N-

formyl amines, Formamide, N,N-dimethyl formamide, Cyclic imides.   
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Chapter 1: Introduction 

 

1.1 Cancer:  

Cancer medically known, as a malignant neoplasm is not a one disease but a large group of 

almost 100 diseases, which are a leading cause of death worldwide, accounting for 8.2 million 

deaths in 2012 1. However they all possess the same common property of abnormal cell growth. 

Cancer cells majorly differ from somatic cells (normal cells) in 4-different ways 2, 

1) Uncontrolled Proliferation: Proliferation occurs in normal cells as well as in cancer cells. 

But normal cells stop dividing after certain size has been reached, but not the cancer 

cells. This uncontrolled proliferation occurs in cancer cells due to elongation of “telomere 

by over active telomerase”. 

2) Loss of Contact Inhibition: Normal cells stop moving and growing when they come in 

direct contact with other cells called as “contact inhibition.” cancer cells seem to have 

lost this. 

3) Lack of Adhesion Requirement For Growth: Normal cells are adhere to one another and 

stay home, which is violated by cancer cells. 

4) Inability to Differentiate Fully: A well-differentiated cell is “mature” and takes on a 

cellular function. It also looses its ability to divide, which is generally exhibited by 

normal cells. 

Despite of this seriousness in disease, so far we don’t have a perfect cure for cancer. Currently 

the most commonly used treatments to cure cancer are including surgery, radiation therapy and 

chemotherapy and several others 3. All of theses have beneficial effects along with side effects. 
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These therapies used either alone or in combination with other therapies depending on the type 

of cancer. 

Surgery: Surgery is the primary treatment for many types of cancer by which they remove the 

tumor and surrounding tissue by an operation. The side effects of surgery depend on the type of 

surgery and the overall health of the person before surgery. A common side effect is pain. 

Radiation Therapy: In this treatment they use high energy X-rays or some other particles to kill 

cancer cells. There were several kinds of radiation therapies including external-beam radiation, 

internal radiation therapy or brachy therapy, and proton therapy among all external beam 

radiation is the common one. 

Side effects of radiation therapy include fatigue, mild skin reactions, upset stomach and loose 

bowel movements, internal radiation therapy may cause bleeding, infection or irritation, all these 

are temporary and go away with time. It also associated with long-term side effects may include 

the risk of a second cancer, infertility heart problems, gastro intestinal problems, lung fibrosis, 

neurologic problems, thyroid problems or osteoporosis. 

Targeted Therapy: Targeted therapy is a treatment that targets the cancer's specific genes, 

proteins, or the tissue environment that contributes to cancer growth and survival. It also blocks 

the growth and spread of cancer cells while limiting damage to normal cells. This treatment 

associated with side effects involving the skin, hair, nails and other areas of the body. 

Immunotherapy: This is also called as biologic therapy, which designed to boost the body’s 

natural defenses to fight the cancer. It uses the material made either by the body or in a 

laboratory to bolster, target or restore the immune function. Side effects include flu like 

symptoms, such as chills, nausea and fever. 
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However, chemotherapy is the general treatment for all type of cancers, and in today’s market 

more than 100 drugs are available to cure the cancer but most of them are cytotoxic because of 

lack of selectivity. However, the discovery of telomeres and telomerase 4 intrigue the scientists in 

developing the new class of anti cancer drugs that selectively targets the cancer cells. 

1.2 Telomeres:  

Telomeres are nucleoprotein complexes found at the ends of linear eukaryotic chromosomes 

(Figure 1.1) 5. Most prokaryotes, lacking this linear arrangement, do not have telomeres. 

Telomeres consist of a short sequence of repetitive double stranded DNA, TTAGGG repeats in 

humans (and all mammals), and a complex of 6 proteins, termed the shelterin complex. These 

repetitive DNA sequences (TTAGGG) span approximately 10 to 15 kilobase pairs in humans at 

birth, and this length decreases with age 6. 

Telomeres compensate for incomplete semi-conservative DNA replication at chromosomal ends. 

The protection against homologues recombination (HR) and non-homologues end joining 

(NHEJ) constitutes the essential “ capping “ role of telomeres that distinguishes them from DNA 

double strand breaks (DSBs) 7. 

 

Figure 1.1 Purple color chromosomes capped with red color telomeres  
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1.2.1 Telomeres length with number of cell divisions: 

The length of the telomere varies greatly between species, from approximately 300 base pairs in 

yeast to many 10-15 kilo bases in humans. However the length of the telomere get shorten with 

each cell division because of end replication problem (Figure 1.2) that is exhibited during DNA 

replication in eukaryotes only. It was estimated to be telomeres loose 50-100 base pairs at each 

cell division 8. 

The DNA replication does not begin at either end of the DNA strand, but starts in the center, and 

considering that all known DNA polymerases move in the 5’ to 3’ direction, one finds a leading 

and a lagging strand on the DNA molecule being replicated. On the leading strand, DNA 

polymerase can make a complementary DNA strand without any difficult because it goes from 5’ 

to 3’. However the other so called lagging strand is replicated discontinuously. In fact DNA 

polymerase III adds a multitude of small segments of nucleotides named Okazaki fragments, 

primed by short stretches of RNA primers. In the next step another type of enzyme, DNA 

polymerase I removes RNA primers, replacing the ribonucleotides with deoxyribonucleotides by 

extending the strand from the adjacent Okazaki fragments. The primers can be replaced 

everywhere except at the extreme 5’ end, which makes this new strand slightly shorter than the 

parallel one 9. 
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It was predicted that after 20-40 generations of cell doubling, the telomere length shorten 

completely and prevent cells from further duplicating, causing cellular senescence and 

irreversible cell death. However the immortal eukaryotic cells and some transformed human cells 

over come this incomplete end replication problem with the use of enzyme called Telomerase 

(Figure 1.3) 10. 
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Figure 1.3 Telomere lengths with number of cell divisions for various cell types 

1.3 Telomerase: 

Telomerase is a ribonucleoprotein enzyme that adds a specific DNA sequence repeats 

(TTAGGG) to the 3′ end of DNA strands in the telomere regions, which are found at the ends of 

eukaryotic chromosomes. Carol W. Greider and Elizabeth Blackburn discovered Telomerase in 

1984 in the ciliate Tetrahymena 11. 
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Human telomerase consists of two molecules each of human telomerase reverse transcriptase 

(TERT), telomerase RNA (TR or TERC), and dyskerin (DKC1). 

 1.3.1 Elongation telomeres by telomerase: 

The telomerase reverse transcriptase enzyme (TERT) uses TERC to add a six nucleotide 

repeating sequence, 5′- TTAGGG to the 3′ strands of the chromosomes. The figure shows the 

mechanism of elongation (Figure 1.4). 

 

 

Figure 1.4 Mechanism of the elongation of the telomeres by telomerase 
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The elongation process takes place via the following steps:12 

1) Telomere binding, in which the 3′ end of the G-rich telomeric strand aligns opposite the 

complementary (C- rich) template region. 

2) Elongation, in which six nucleotides (GCTTAG, directed by the complementary template 

sequence0 are sequentially, added to the telomere. 

3) Translocation, in which the extended telomere-template heteroduplex is interrupted and 

shifted back by six nucleotide, positioning the enzyme for another round of elongation, 

that is processive addition of GGTTAG. 

However the whole process can be interrupted when the extended telomere dislocates from 

telomerase.  

1.3.2 Activity of Telomerase in normal and cancer cells: 

Telomerase is a ribonucleoprotein complex that extends and maintains the telomeres, and 

activation of this enzyme is therefore required for cells to overcome replicative senescence and 

obtain the ability to divide without limits. This concept was supported by findings that 

telomerase activity is observed in the vast majority of cancers or cancer cell lines but not in most 

normal tissues 13. However, along with the cancer cells, some types of normal cells like 

hematopoietic progenitor cells, intestinal crypt cells, endometrial cells and basal layer cells of 

skin and cervical keratinocytes express telomerase activity 14.  

Kim et al, conducted a detailed experiments on the activity of telomerase in both normal and 

cancer cells 15. They conducted a survey on the telomerase activity and this survey included a 

total of 100 immortal cell lines and 22 normal somatic cell cultures from 18 different tissues. Of 
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the 100 immortal cell lines, 94 were tumor derived lines and 6 were cell lines transformed with 

viral oncoproteins. 

Table 1.1 Telomerase activity in normal and immortal cells. 

Tissue of Origin Cell Type 

Telomerase Activity (no. 

Positive/ no. Tested) 

Skin Tumor 8/8 

Skin Normal 0/5 

Connective Tumor 1/1 

Joint Normal 0/1 

Adipose Tumor 1/1 

Breast Tumor 22/22 

Breast Normal 0/8 

Lung Tumor 18/18 

Lung Transformed 2/3 

Lung Normal 0/3 

Stomach Tumor 1/1 

Pancreas Tumor 3/3 

Ovary Tumor 5/5 

Cervix Tumor 3/3 

Cervix Normal 0/1 

Uterus Tumor 0/1 

Kidney Tumor 8/8 
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Kidney Transformed 1/1 

Bladder Tumor 3/3 

Bladder Normal 0/1 

Colon Tumor 7/7 

Prostate Tumor 2/2 

Prostate Transformed 0/1 

Prostate Normal 0/2 

CNS Tumor 3/3 

Retina Transformed 1/1 

Blood Tumor 9/9 

 

From the table 1.1, it was clear that all of the 94 tumor lines are telomerase active and among the 

6-transformed tumor lines 2 lines have been found to be telomerase inactive and all 22-cell lines 

derived from normal somatic cells are telomerase inactive.  

The TRAP assay on wide range of normal and tumor tissues concluded that, 90 of 101 malignant 

tumor samples expressed high telomerase activity. 

Table 1.2 Telomerase activity in human tumors and tissues 

Tissue Type 
Telomerase Activity (no. Positive/no. 

Tested) 

Fetal testis 2/2 

Adult testis 1/1 

Fetal ovary 2/2 
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Ovarian follicle 1/1 

Hepatocellular carcinoma 1/1 

Colon cancer 8/8 

Adjacent colonic tissue 0/7 

Colonic tubular adenoma 0/1 

Colonic polyp 0/1 

Squamous cell carcinoma (head and neck) 14/16 

Adjacent tissue 6/16 

Normal breast tissue (from non cancer 

patients) 
0/8 

Prostate cancer 2/2 

Prostatic intraepithelial neoplasia type 3 3/5 

Benign prostatic hyperplasia 1/10 

Normal prostatic tissue 0/8 

Neuroblastoma 5/5 

Brain tumors 6/8 

Lung small-cell carcinoma 4/4 

Rhabdomyosarcoma 1/1 

Leiomyosarcoma 3/3 

Leiomyoma 9fibroids) 0/11 

Normal myometrium 0/10 

Acute lymphocytic leukemia 14/16 

Chronic lymphocytic leukemia 2/2 
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Lymphoma (adult) 5/5 

Wilms tumor 6/6 

Adjacent kidney tissue 2/6 

Breast cancer (ductal and lobular, node 

positive) 
18/20 

Breast cancer (axillary node negative) 1/4 

Adjacent tissue 2/20 

 

The structural studies of the telomerase enzyme complex have revealed the presence two major 

subunits contributing to enzyme activity: a structural RNA component (hTER) that contains a 

template region that binds the TTAGGG repeats in telomeres 16 and a catalytic subunit with 

reverse transcriptase activity (hTERT). While hTER is constitutively present in normal and 

cancer cells, expression of hTERT is almost exclusively limited to cancer cells 17. This was full 

supported by the fact that, introduction of hTERT gene into telomerase-negative normal cells is 

sufficient to induce telomerase activity and to immortalize cells that can be propagated to 

telomere based replicative senescence 18.  

Various research studies on transcriptional regulation of the hTERT promoter identified the 

factors including c-Myc and Sp1 critically regulate the promoter activity 19. However, most 

factors are not stringently tumor-specific and are also expressed in some normal cells that lack 

telomerase activity. Thus, the tumor specific hTERT expression cannot be explained based on 

these transcription factors. Unknown ‘repressors’ that are expressed in normal cells but are 

absent in cancer cells may explain the specificity of hTERT in tumor cells. Unfortunately, such 

transcriptional repressors have not yet been identified 20. The regulation of epigene by DNA 



  13 

methylation and histone acetylation is also insufficient to explain the tumor specificity of hTERT 

expression. Despite of the extensive efforts by a number of groups, the mechanisms of tumor 

specific telomerase activation are not fully established. 

However from all these telomerase activity studies, it was concluded that telomerase is active in 

almost 90% of human cancers but not in normal somatic tissues. Finally, the low or transient 

expression of telomerase in normal tissues, including normal stem cells, and the generally longer 

telomeres in normal cells versus tumor cells provide a degree of tumor specificity to telomerase-

based drugs and reduce the probability of toxicity to normal tissue. All of these factors suggest 

that cancer drugs based on telomerase might have a broad therapeutic window 21.   

1.3.3 Targeting Telomerase: 

The key advantages of targeting telomerase in comparison with most other cancer targets are its 

relative universality, criticality and specificity for cancer cells, including the putative cancer stem 

cell 22. The various approaches to kill the telomerase positive cancer cells had been shown in the 

Figure 1.5. 
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Figure 1.5 Available approaches to target the telomerase enzyme 

The 5-approaches that are available to target the telomerase are 23 

1) Telomerase is a unique enzyme, whose function is to synthesize telomeric DNA. So the 

most obvious approach is direct enzyme inhibition. Several strategies are possible, 

including the active site inhibitors that mimic telomeres or the nucleotide substrates, and 

allosteric inhibitors, which target structural features of telomerase reverse transcriptase 

(hTERT) or telomerase RNA component (hTR).  

2) The second approach is the active immunotherapy. Telomerase immunotherapy products 

are designed to stimulate the patient’s immune system to attack and kill telomerase-

positive tumor cells that express TERT. 
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3) The third approach uses telomere-disrupting agents to alter the structure of the telomeres 

leading to inability of telomerase to access the telomere, or to a telomere length-

independent damage signal causing immediate cell arrest or death. 

4) The fourth approach is the suicide gene therapy, where the delivery of suicide gene in a 

viral vector and production of the toxic gene product in the cytoplasm which targets the 

promoter region of hTERT. 

5) The fifth approach is blocking telomerase expression or biogenesis is based on the 

growing understanding of how the telomerase enzyme is made, from transcription to post 

translational modification, assembly and transport. 

 

1.4 Telomeres G-quadruplex structure:  

The right-handed double helical structure of B-form DNA has been known since long time 24. 

However, it has become increasingly clear that DNA can adopt a variety of alternative 

conformations based on particular sequence motifs and interactions with various proteins. A 

number of non-B DNA structures have been discovered (approximately one new confirmation 

every 3 years for the past 35 years) and include the following: triplexes, left-handed DNA, bent 

DNA, cruciforms, nodule DNA, flexible and writhed DNA, G4 tetrad (G-Quadruplex or 

Tetraplexes), slipped structures, and sticky DNA (Table 1.3) 25. All these structures were 

originally characterized in vitro by using biophysical techniques such as circular dichroism 26.   
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Table 1.3 Non B-DNA conformations involved in rearrangements  
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Human telomeric DNA contains thousands of tandem repeats of the G-rich (TTAGGG)n 

sequence. However, in molecular biology the guanine rich nucleic acid sequences have the 

tendency to form G-quadruplexes (G-Tetrads or G4- DNA) structures (Figure 1.8), those are 

arises from the Hoogsten hydrogen bonding 27. 

In contrast to Watson- Crick bonding (Figure 1.6) which involves N1 and N3 of the heterocyclic 

rings, Hoogsten bonding (Figure 1.7) involves N7, and occurs between this N7 and N3 on the 

corresponding nucleotide. 

 

Figure 1.6 Watson-Crick H-bonding 

 

Figure 1.7 Hoogsteen H-bonding 
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Figure 1.8 G-quartet formed by Hoogsteen H-bonding 

 

1.4.1 Quadruplex Topology and Structure:  

Quadruplexes can be formed from one, two or four separate strands of DNA (or RNA) and can 

display a wide variety of topologies, which are in part a consequence of various possible 

combinations of strand direction, as well as variations in loop size and sequence 28. 

There are 3 different types of G-quadruplexes available.  

(1) Unimolecular (Intramolecular): The sequences Gm Xn Gm Xo Gm Xp Gm, where m is the 

number of G residues in each short G-tract, which are usually directly involved in G-

tetrad interactions. Xn , Xo , and Xp can be any combination of residues, including G, 

forming loops.  
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(2) Bimolecular: The association of two identical sequences Xn Gm Xo Gm Xp, where n and p 

may or may not be zero, forms Most of the bimolecular sequences reported to date. 

(3) Tetramolecular: tetramolecular quadruplexes may be formed by four Xn Gm Xo or Gm Xn 

Gm strands associating together. 

All these G-quadruplex structures exist in different topologies 

 

Figure 1.9 Some possible topologies for simple tetra molecular (on the left hand side) and 
bimolecular quadruplexes. 



  20 

 

Figure 1.10 Some possible topologies for simple unimolecular quadruplex  

Most of the vertebrate telomeric sequence d(TTAGGG) forms the unimolecular quadruplexes. 

There is a good evidence from a range of biophysical techniques, that the four-repeat quadruplex 

formed by the sequence d(TTAGGG)4 (and variants on it, notably d[AGGG(TTAGGG)3] ), 

adopt differing topologies in Na+ versus K+ solution 29. 

NMR analysis 30 of the structure formed in Na+ conditions by the 22mer d[AGGG(TTAGGG)3] 

has shown that the structure has an anti-parallel fold with two lateral and one diagonal loops, 

each loop comprising the TTA triad sequence (Figure 1.11). 
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Figure 1.11 The deposited structure of the Na+ form of human unimolecular telomeric 
quadruplex formed from the sequence d[AGGG(TTAGGG)3]. 

 

The crystallographic analysis 31 of this sequence and the related 12mer (i.e two-repeat) sequence 

d(TAGGGTTAGGGT), in K+ solution, showed that they form a unimolecular (Figure 1.12)  and 

a bimolecular quadruplex, respectively in the crystal lattice. 
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Figure 1.12 The K+ form of human unimolecular telomeric quadruplex formed from the 
sequence d(TAGGGTTAGGGT). 

 

Most importantly, the implication of G-quadruplex is evoked in several biological dysfunctions 

that selectively alter the integrity of cancer cells 32. In particular, the formation of G-quadruplex 

DNA at the end of telomeres has been reported not only to impede the telomerase association 

and activity (due to the enzyme inability to bypass the folded form of its DNA-substrate) but also 

severely to increase the genomic instability by hampering normal recognition of telomere-

associated proteins with their targets 33. The regulatory potential of G-quadruplexes towards 

cancer cell growth is also strongly substantiated by their possible formation in the promoter 

regions of several human genes (such as the retinoblastoma susceptibility 34, insulin 35, muscle 

specific 36, vascular endothelial growth factor 37, hypoxia inducible factor 1α 38, fragile X mental 

retardation genes 39) and oncogenes (such as c-myc 40, k-ras 41, bcl-2 42, c-kit 43 or RET 

oncogenesis 44). Consequently the possibility of building novel anti-cancer therapeutic strategies 

with G-quadruplex-DNA as the cornerstone is currently under investigation. 
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Therefore a general consensus is that G-quadruplex binders that stabilize the G-quadruplex 

structure could pave the way for the discovery of novel anti-cancer drugs.   

 1.5 Targeting G-quadruplex structure by using small molecules: 

The first small molecule telomerase inhibitor based on G-quadruplex stabilizing was reported by 

SUN group in 1997 45, since then different research groups from around the world developed 

various types of telomerase inhibitors that stabilizes the G-quadruplex structure of the telomeres. 

To design the small molecules that specifically target the G-quadruplex structures it is important 

to consider the G-quadruplex and ligand interactions. Majority of the small molecule ligands that 

are reported possesses the binding mode of pi-pi stacking and electrostatic interactions, so 

usually the aromatics and charged ligands have been widely discussed. We also have the reports 

where the ligands bind with the quadruplex grooves, convex loops and negatively charged ion 

channels. However the small molecules that target the g-quadruplex have been divided into 3-

main categories based on their structural characteristics and nature of binding. 

1) Flat aromatic rings with arms or side chains. 

2) Flat aromatic ring systems. 

3) Macro cyclic ligands.  

1.5.1 Flat aromatic rings with arms or side chains: 

Most of the G-quadruplex ligands that are designed to date are flat aromatic compounds that 

targets the G-tetrad of the quadruplex, in order to anchor them onto the G-quadruplexes those flat 

aromatic ring systems are functionalized with arms or sidechains, these side chains are usually 

amines such as pyrrolidines, quinolines or (N,N-dimethyl)- ethylene diamines. These diamines 

are usually protanated at physiological pH conditions and engaged in electrostatic interaction 
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with the negatively charged DNA or phosphate backbone. Examples such as PIPER, TMPy et al 

comes under this category. 

1.5.1(a) PIPER: perylene compounds are highly versatile molecules which attract a great 

interest owing to their applications in diverse fields of physical organic chemistry, such as dye 

lasers, light harvesting arrays, organic electronic devices and liquid crystalline dyes 46. Further 

more perylene derivatives have been widely studied in medicinal chemistry because they can be 

considered potential antitumor drugs acting as telomerase inhibitors 47. Perylene diimides, with 

their five condensed aromatic ring systems with suitable polar side chains can be considered 

potentially good G-quadruplex interacting compounds.    

PIPER 48 ((N,N’-Bis[2-(1-piperidino)-ethyl]-3,4,9,10-perylenetetracarboxylic diimide) (Figure 

1.13) the fused perylene ring system has a strong interaction with the G-quadruplex structure. 

According to the NMR studies by Hurley and co workers, the ligand molecule doesn’t intercalate 

with in the G-quadruplex itself but rather stacks on the surface of the 3’- terminal G-tetrad 

(Figure 1.14). This binding mode can be classified as a “ threading intercalation “ with a fast 

structural transition between the two orthogonal drug orientations (Figure 1.15). From the results 

of gel shift experiments the authors also concluded that PIPER can dramatically accelerates the 

association of a DNA oligomer containing two tandem repeats of the human telomeric sequence 

(TTAGGG) into di- and tetrameric G-quadruplexes. 
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Figure 1.13 PIPER structure 

 

 

Figure 1.14 NMR based model of the 2:1 d[TTAGGG]4 – PIPER complex 
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Figure 1.15 Structural transition between two orthogonal drug orientations of PIPER 

 

Because of its two-molecule aggregation PIPER have the better selective binding to G-

quadruplexes over double helical DNA structure. PIPER can also facilitate the rate of formation 

of hairpin bimolecular G-quadruplex by about 100 times. However the effectiveness of PIPER 

binding varies with pH, at lower pH conditions PIPER exists as a single molecule and has similar 

binding with double stranded DNA and G-quadruplexes, at higher pH conditions PIPER can 

aggregate and has a better selectivity with G-quadruplex structures 49. 

1.5.1(b) TMPyP: Porphyrin compounds have been known since long time as ligands to bind the 

double stranded DNA, however the aromatic ring of porphyrins can stack on top of G-quartets. 

The represented TMPyP4 50 ((meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphine 

tetratosylate) (2) (Figure 1.16) is the first type of porphyrin molecule that have been reported to 

bind G-tetrad with high affinity. However its cyclic shape and pi stacking ability make it an 

excellent DNA binder although this ligand suffers from very poor quadruplex specificity. The 
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TMPyP4 ‘s isomer TMPyP2 (1) (Figure 1.16) is also binds to the G-quadruplex but it has a 

weaker activity of the mutual recognition of a G-quadruplex due to the steric hindrance resulting 

from the location of methyl groups. From the data analysis of the UV melting temperature 

studies shows that both TMPyP4 and TMPyP2 stabilizes the antiparallel quadruplex DNA 

structure to about the same extent. TMPyP4 forms the complex with d[TAGGGTTAGGG], and 

from its crystal structure it was evidenced that TMPyP4 only stacked on the 5’ end region of a 

TTA loop, and had no direct contact with G-quartets, this observation was also supported by the 

photocleavage experiment studies. From the NMR studies it was clear that TMPyP4 had an 

external π - π stacking interaction with the c-myc G-quadruplex.  

 

Figure 1.16 Structures of TMPyP2 and TMPyP4 

 

Several structurally related ligands have been described over the past years: the porphyrin TQMP 

(4) (Figure 1.17) 51 and the porphyrazine 3,4-TMPyPz (3) (Figure 1.17) 52 are two examples of 

tetracationic macrocylces, which have been shown to bind efficiently to quadruplex DNA. In 
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particular in the case of the porphyrazine derivative, a 100-fold increase in affinity as compared 

to TMPyP4 has been measured by SPR, but also a significant improvement of the specific 

recognition of quadruplex over duplex DNA was observed.  

 

Figure 1.17 Structures of 3,4-TMPyPz and TQMP 

 

Recently an important breakthrough in the porphyrin series came with the design of a 

diselenosapphyrin Se2SAP (5) (figure 1.18) with an expanded porphyrin core 53. This ligand was 

shown to bind strongly and selectively to quadruplex DNA and to convert parallel (c-myc 

sequence) or anti-parallel (human telomeric sequence) topologies to a mixed anti-parallel/parallel 

hybrid structure.  
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Figure 1.18 Structure of Se2SAP 

 

1.5.2 Flat aromatic ring systems:  

1.5.2 (a) Berberines: Berberine (6) (Figure 1.19) is an antibiotic alkaloid originating from 

chinese herbal medicine 54; its antibacterial activity has been demonstrated against many species 

55. But later on it was screened for anti cancer activity following evidence of anti- neoplastic 

properties, these properties were arising from the inhibition of telomerase elongation 56. Coralyne 

(7) (Figure 1.19) a synthetic analogue of berberine also binds to triplex DNA 57. However from 

the competition dialysis experiments 58 it was found that both compounds have selectivity for 

triplex DNA and to a minor extent for quadruplex DNA compared to duplex DNA. Molecular 

modeling studies of interactions between berberine derivatives and human parallel G-quadruplex 

structure indicate that berberine is stacked on the terminal G-tetrad of the quadruplex (Figure 

1.20). The ability of berberine and coralyne to form inter and intra molecular G-quadruplex 

structures was investigated by polyacrylamide gel electrophoresis (PAGE) and it showed that 

both analogues were able to induce G-quadruplex dimeric structures, but each to a different 

extent. The telomeric repeat amplification protocol  (TRAP) assay was used to measure the 
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telomerase inhibition and from these essays coralyne shows higher telomerase activity with an 

IC50 value of 70 micro M and berberine shows an activity with an IC 50 value of >130 micro M. 

 

Figure 1.19 Structure of berberine and coralyne 

 

 

Figure 1.20 Models for the complexes of berberine (top) and piperidino-berberine  (bottom) with 
a monomeric G-quadruplex (blue) and ligand molecules. 
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1.5.2(b) Daunomycine: It is evidenced that the cellular activity of established duplex DNA- 

interacting anti cancer drugs such as the anthracyclines doxorubicin and daunomycine (Figure 

1.21) also involves interaction with telomeric DNA 59, possibly via quadruplex stabilization of 

the 31nthraquinones chromophore. The well-ordered crystal structure of a complex formed by 

parallel G4 quadruplex drug complex employing the anti cancer drug daunomycin was first 

reported by Neidle et all 60. The complex was crystallized by the hanging –drop method in the 

monoclinic space group C2, with cell dimensions a = 53.078 A°, b = 47.329 A°, c = 31.914 A°, β 

= 119.80°.  

The asymmetric unit contains four parallel d(TGGGGT) strands that form a discrete 

intermolecular quadruplex, together with three daunomycin molecules, 3 Na + ions and 129 

water molecules. Two layers of daunomycin moleules fill the interface between two 

quadruplexes. The six-daunomycin molecules at the interface are arranged into two dyadrelated 

sets of three coplanar molecules (Figure 1.22). Each set of three daunomycins is stacked onto the 

5’ end of the quadruplex where they make weak π - π interactions with the guanines in the 

terminal tetrad. The trio of daunomycin molecules is held together in one layer by a cluster of 

van der walls contacts. The daunomycin layer packs tightly onto the end of the quadruplex stack, 

with the daunosamin sugar moieties forming H- bonding interactions and/ or van der walls 

contacts with three of the four quadruplex grooves. 

The crystal structure also indicates that daunomycin prefers to stack onto a terminal G-quartet 

rather than intercalate between the layers of the quadruplex. 
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Figure 1.21 Structure of daunomycin 

 

Figure 1.22 Structure of the daunomycin-d(TGGGGT) complex showing the arrangement in the 
crystal lattice of two quadruplexes, in vander Walls space-filling mode, and stacked end-t-end. 
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1.5.2(c) Fluoroquinoanthroxazines:  

The fluoroquinolines are well known for their antimicrobial activity that arises by the inhibiting 

bacterial DNA gyrase 61. However some tetracyclic quinoline (Figure 1.23) analogues have 

shown good anti neoplastic activity by topoisomerase II poisoning and by telomeres G-

quadruplex stabilization.  

 

Figure 1.23: Structures of fluoroquinoanthroxazines 

 

The binding studies of FQAs with telomeres quadruplex was reported by Hurley et all 62. The 

binding affinity of the FQAs with the intramolecular G-quadruplex structures, were determined 

by incubating the DNA template containing four repeats of the human telomeric sequence 

TTAGGG with increasing concentrations of FQAs in the presence of Taq DNA polymerase. 

From these studies it was cleared that FQA-CR showed a modest but selective stabilization of 

the G-quadruplex structure. To understand even more, they also did the binding studies with 

Tetrahymena telomeric sequence, which has four consecutive guanines in each telomeric 

sequence (TTGGGG). From these binding studies they got the IC50 values of FQA-CS, FQA-CR, 

FQA-TS, and FQA-TR as 0.67, 0.06, 5.7, and 2.4 µM respectively. From the IC50 graph it was 

clear that FQA-CR has selectivity of about 90 fold for g-quadruplex structures over single and 

/or double stranded DNA (Figure 1.24). 
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Figure 1.24 Graphical representation of the quantification of the stop products caused by the 
interaction of G-quadruplex or double stranded DNA with FQA-CR. 

 

To identify the binding position of FQAs with Quadruplex, they did the photomediated cleavage 

reaction studies and on the basis of the results they proposed a model in which two FQA 

molecules selectively bid to the intramolecular chair type G-quadruplex structure through an end 

stacking binding mode (Figure 1.25). 

   

Figure 1.25 Proposed model of FQAs binding to the intramolecular chair-type G-quadruplex 
structures. 
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1.5.3 Macro cyclic Ligands: 

1.5.3(a) Telomestatin and its derivatives:  

Telomestatin (Figure 1.26) is a natural product isolated from streptomyces 3533-SV4 in 2001 by 

Shinya’s group, and has been shown to be a potent telomerase inhibitor 63. The structural 

similarity between telomestatin and G-tetrad suggested that the telomerase inhibition might be 

attributed to the ability of telomestatin to interact directly with G-quadruplex structures. The 

formation of a G-quadruplex structure is a slow process and takes several hours in the presence 

of high concentrations of monovalent cations (Na, K) 64. However, telomestatin is able to 

facilitate the formation of and /or stabilizes the preformed G-quadruplex structure within one 

minute.  

 

Figure 1.26 Structure of Telomestatin 

 

Telomestatin prefers the intramolecular, rather than the intermolecular G-quadruplex structure 

and also it is quite selective for the G-quadruplex structure over a single stranded or duplex DNA 

structure. Polymerase stop assays demonstrate that telomestatin has a 70 fold high selectivity for 

G-quadruplex structures over single and/or double stranded DNA (Figure 1.27). Moreover, once 



  36 

telomestatin binds to intramolecular G-quadruplex structures, it is not easily displaced. It has 

been demonstrated that telomeric function is more likely depend on structure, rather than on 

length alone. The maintenance of the normal telomere structure is important for cell survival. 

The selective interaction of telomestatin with intramolecular G-quadruplex structures would also 

be anticipated to have an influence on telomeric structure. This can be attributed from the 

sequestration of the single stranded 3’- overhangs of telomeres as an intramolecular G-

quadruplex structure would prevent the formation of appropriate telomeric structures, such as T-

loops. 

 

Figure 1.27 Polymerase stop essays of telomestatin 

 

According to literature reports telomestatin accelerates the rate of telomere shortening to a 

greater extent than was expected from the number of population doublings, and this is 
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accompanied by cell growth arrest and senescence- associated morphological changes 65. The 

effect of telomestatin on the activities of both telomerase and SI nuclease and similar DNA 

nucleases may play a key role in accelerated telomere shortening in cancer cells. Based on the 

results from polymerase stop assay, it was clear that the specific binding of telomestatin with 

intramolecular G-quadruplex structures causes the inhibition of DNA polymerase processivity at 

the human telomeric sequence, which might be an additional mechanism for accelerated 

telomere shortening. 

Telomestatin interacts with the intramolecular G-quadruplex; contradictory to this TMPyP4 

interacts with the intermolecular G-quadruplex. To investigate the relative importance of these 

two different types of G-quadruplex interactions in producing the overall biological activity, the 

cytotoxicities of telomestatin and TMPyP4 were determined against telomerase transformed 

(SW39) and ALT- transformed (SW26) cell lines respectively. These cells maintain their 

telomeres either through the telomerase  (telomerase- positive) and alternative lengthening of 

telomeres (ALT-positive) mechanisms. From the fig the IC50 values are found to be 4.1 µM 

(telomestatin against SW39), 1.8 µM (telomestatin against SW26), 56.3 µM (TMPyP4 against 

(SW39) and 62.9 µM (TMPyP4 against SW26) (Figure 1.28) 66. 
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Figure 1.28 Cytotoxic assays of telomestatin and TMPyP4  

Getting the inspiration from the binding modes of telomestatin, Nagasawa et all synthesized 

some telomestatin derivatives such as 6OTD which has C2- symmetrical macrocyclic 

hexaoxazole structure, as a new G-quadruplex binder (Figure 1.29) 67. 

 

Figure 1.29 Chemical structure of 6-OTDs 
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By considering the proposed stacking model of telomestatin with telomeric G-quadruplex, they 

hypothesized that a 6OTD dimer connected through an appropriate linker would show 

cooperative interaction of the two monomer moieties with telomeric DNA, and would therefore 

bind more selectively than the monomer (Figure 1.30) 68.  

 

 

Figure 1.30 Design concept of 6OTD dimers 

 

1.6 Metallo-Organic G-quadruplex ligands 

The use of metallo-organic complexes became a very good alternative to the use of classical 

organic molecules. This class of ligands is highly interesting, because of their easy synthetic 

access and their very promising G-quadruplex binding properties. 

This approach is based on the assumption that the central metal centre could be positioned over 

the cation channel of the quadruplex, there by optimizing the stacking interactions of the 

surrounding chelating agent with the accessible G-quartet 69. The cationic or highly polarized 



  40 

nature of these complexes also promotes the association with the negatively charged G-

quadruplex-DNA. 

The first reported examples of this kind were started with the insertion of metal atoms such as 

Cu(II), Ni(II) or Mn(II) in the cavity of TMPyP4 (Figure 1.31) 70. Among all these Mn-TMPyP4 

showed a 10 –fold preference for quadruplex over duplex DNA 71. The other transition metal 

complexes like Ru(II) 72, Fe(III) 73, Zn(II) 74, Pt(II) 75, Ni(II) –Salphen 76 and Mn (III)-Porphyrin 

77 were appeared to stand amongst the most potent reported G-quadruplex ligands. Their 

performances are indeed impressive both in terms of quadruplex stabilization and quadruplex 

selectivity that were evaluated by FRET –melting assay and SPR. These compounds also display 

good level of telomerase inhibition (IC50-TRAP= 120 and 580 nM for Ni(II) and Mn(III)- 

complexes respectively. The Mn(III) –porphyrin complex also showed a 10000-fold quadruplex 

vs. duplex selectivity measured by SPR 78.  

 

Figure 1.31 Structures of Metallo-Organic G-quadruplex ligands 

 

The very simple structures such as Cu(II) (Figure 1.32) and Pt(II)-terpyridine complexes that can 

be synthesized in one-step or two-step processes have proved to be high-affinity and highly 



  41 

selective G-quadruplex ligands 79. All these studies highlighted that the geometry of the metal 

centre is a key parameter governing the selectivity. 

 

Figure 1.32 Structure of Cu-ttpy 

 

1.7 Aim of the Dissertation  

From the literature survey it was clear that, the small ligands that stabilize the G-quadruplex 

formed by the guanine rich telomeres can inhibit the interaction between telomeres and 

telomerase. This inhibition ultimately leads to the cell death. The selective activity of telomerase 

in cancer cells makes this approach as versatile to develop a new class of anti cancer drugs.  

The dissertation will focus on the following goals like design and synthesis of small ligands that 

stabilize the G-quadruplex structure. The synthesis of the ligand molecules must start from the 

easily available starting materials and the over all synthesis should be easily accessible and 

applicable to large-scale manufacturing. The main focus should be synthesizing a diverse library 

of compounds and evaluate them as anti cancer drugs on various types of cancer cell lines.    
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Chapter-2: Synthesis and Anti-Cancer Evaluation of Acridine 
Derivatives 

 

2.1 Introduction: 

2.1.1 Acridines: Acridine is a naturally occurring anthracene like heterocyclic containing a 

nitrogen atom on its central ring. It was isolated in 1871 by Graebe and Caro from coal tar. 

Acridone (acridin-9(10H)-one) is the ketone derivative from acridine. The first identified 

synthesis of acridone was the oxidation of acridine and was reported by Graebe and Caro in 

1880.  

Acridine and acridone analogues have been known since long time for their various biological 

activities such as anti bacterial drugs (1-6) 1, anti protozoal drugs (7-12) 2, anti malarial agents 

(13) 3, and anti HIV drugs (14) 4. 
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Figure 2.1 Acridine based anti bacterial drugs 

 

Figure 2.2 Acridine based anti protozoal drugs 

 

   

Figure 2.3 Acridine based anti malarial agents    Figure 2.4 Acridine based anti HIV drugs 

 

However many acridine and acridone derivatives such as asulacrine analogues (15,16), acridine 

carboxamides, e.g., N-(2-(dimethylamino)ethylacridine-4-carboxamide (DACA) (17); nitro 
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acridines (18), nitropyrazolo-acridine (19), bis –acridines (20) and amsacrine (21) also shown the 

anti cancer activity 5. We also have several natural acridine/acridone analogs of alkaloids that are 

isolated from plants and marine organisms can exhibit the anti cancer activity 6. 

 

 

Figure 2.5 Acridine based anti cancer analogues 

 

The anti cancer activity of acridine/acridone derivatives arises from their capability to intercalate 

with DNA and inhibit topoisomerase or telomerase enzymes 7. 
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2.1.2 Acridine/Acridone as DNA targeting Agents: 

The utility of acridines as chemotherapeutics is due to their chemical and biological stability and 

their capability of effective binding to DNA or RNA 8, resulting in the disorder of the biological 

functions in living cells. The mechanism of their intercalation into DNA is based on π-stacking 

interaction with base pairs of double-stranded nucleic acids. The heterocyclic, polyaromatic flat 

structure of acridine fits effectively into the gap between two chains of polynucleotides and the 

intercalation of the acridine moiety disturbs their crucial role in cell division 9.   

 

Figure 2.6 Acridine based DNA targeting agents 

 

2.1.3 Acridines as topoisomerase inhibitors: 

DNA topoisomerases are a class of enzymes involved in the regulation of DNA supercoiling 10. 

There were 2 types of topoisomerases, type I topoisomerases change the degree of supercoiling 

of DNA by causing single-strand breaks and religation, where as type II topoisomerases cause 

double strand breaks. Even though topo I and II may indicate opposing roles in the regulation of 
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DNA supercoiling, both activities are necessary during DNA transcription, replication and 

chromatin condensation. 

Amsacrine (m-AMSA), obtained by Denny’s group was the first synthetic drug that was shown 

to act as a topoisomerase inhibitor and that was approved for clinical usage 11. It has been used in 

leukemia treatment since 1976. The other series of acridine derivatives, like anilinoacridines, and 

acridin-4-carboxamides were also interfere to some extent with topoisomerases. Among these 

DACA, which was prepared in 1987 is one of the exceptional compounds that inhibit both topo I 

and II isomerases 12.   

 

Figure 2.7 Acridine based topoisomerase inhibitors 

 

2.1.4 Acridines as telomerase inhibitors: 

Several acridine based small molecules have been described to inhibit telomere maintenance via 

the stabilization of the quadruplex G4 structure, thus inhibiting the telomerase action 13. A 

number of studies have demonstrated that the inhibition of telomerase in cancer cells leads to 

senescence and apoptosis. Among these studies, there are some acridine-based structures, which 

can be divided into three sub-families; 
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1) Dibenzophenanthrolines 

2) Pyridoacridines 

3) Trisubstituted acridines. 

2.1.4(a) Dibenzophenanthrolines: 

The quinacridine class of acridine based quadruplex-stabilizing agents; dibenzophenanthrolines 

were developed in 2001 by Teulade-Fichou 13. These pentacyclic quinacridines that display a 

crescent shape likely to maximize the overlap with the guanines of the accessible G-quartet. 

Among all of quinacridines family, MMQ3 was the leading compound. It shows remarkable G-

quadruplex stabilization (ΔT1/2 = 20 °C) and high telomerase inhibitory activity (IC50-TRAP = 28 

nM). The NMR structure was available with MMQ1, the dipropylamino analogue of MMQ3, and 

a tetramolecular quadruplex (Figure 2.9) 14. This study not only shows the simultaneous overlap 

of three guanines by the quinacridines unit, but also pinpointed the role of the protanated 

sidearms, which actively participate in quadruplex recognition via interaction in the grooves. A 

dimeric macrocyclic quinacridine was subsequently proposed, BOQ1, that proved to be an 

improved quadruplex stabilizer (IC50- TRAP = 130 nM) 15. This selectivity attributed to the 

enhancement of the ligand aromatic surface, is also likely a consequence of the steric hindrance 

of the macrocyclic scaffold that imedes duplex binding. 
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Figure 2.8 Quinacridine based telomerase inhibitors 

 

 

Figure 2.9 Side- (A) and top-views (B) of the NMR structure of MMQ1 complex with 
tetramolecular quadruplex-DNA (d[T2AG3T])4 (PDB entry: 2JWQ) 
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2.1.4(b) Pyridoacridines: 

The Stevens group reported RHPS4, a N-methylated pentacyclic acridinium that stabilizes the G-

quadruplex in 2000 16. In vitro studies (IC50- TRAP = 330 nM) and in cellulo investigations 

demonstrated the ability of this highly condensed aromatic ligand to decrease telomere length 

and to act in synergy with the classical anti-cancer agent Taxol. Recently, RHPS4 has also been 

reported as an efficient telomere uncapping agent, as well as a telomere binding proteins 

modulator 17. It is important to mention that RHPS4 is one of the rare ligands whose complex 

with G-quadruplex-DNA has been solved by NMR (Figure 2.11). The cationic molecule 

sandwiches the quadruplex- structure because of strong stacking interactions between the ligand 

and the two external G- quartets of the G-quadruplex. 

     

Figure 2.10 Pyridoacridine based (RHPS4) telomerase inhibitor  
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Figure 2.11 Side- (A) and top-views (B) of the NMR structure of RHPS4 complex with 

tetramolecular quadruplex-DNA (d[T2AG3T])4 (PDB entry: INZM) 

2.1.4(c) Trisubstituted acridines: 

The key issue in the development of compounds that target G-quadruplex –DNA is to conceive a 

large flat aromatic system prone to π- stacking with G-tetrad platform, while retaining reasonable 

water solubility. In other words, the molecule has to exhibit both hydrophobic and hydrophilic 

characteristics. A usual way to ensure this duality is to introduce protanable sidearms like amine 

groups around an aromatic core; the molecule is then, water soluble, with the charges far from 

the hydrophobic centre. 

By considering all these information into account, Prof Neidle group designed a 3,6,9-

trisubstituted acridine-based molecules that selectively interact with the human DNA quadruplex 

by using computer modeling 18.  
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Figure 2.12 Trisubstituted acridine based telomerase inhibitors  
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2.1.4(d) Synthesis of the trisubstituted acridine derivatives: 

Compounds were synthesized as shown in the scheme 

 

Scheme 2.1 Synthetic scheme for the 3,6,9-trisubstituted acridine derivatives. The individual 
steps involved (i) KNO3, H2SO4  (ii) CrO3, AcOH, Reflux  (iii) Zn/ HCl, 90-100°C (iv) 3-CPC, 
Reflux (v) NHR2, EtOH, NaI Reflux (vi) HCl (vii) POCl3, Reflux and  (viii) NH2PhNR2, CHCl3, 
RT 
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Figure 2.13 Prepared trisubstituted acridine derivatives  

 

The binding of all the ligands to the human quadruplex and a representative duplex structure was 

examined by SPR techniques. The SPR data of all compounds indicates that the disubstituted 

compound 1 has approximately the same binding constant for duplex and quadruplex, where as 

the two trisubstituted compounds 3 (37) and 4 (38) bind to human quadruplex DNA 30-40 times 

more strongly than to duplex. Their affinity for the quadruplex is 10-fold higher then that of 

compound 1 (35).  

However among all these the compound 3 (BRACO-19) (37) is very well studied. 
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Figure 2.14 The biological unit in the crystal (PDB id 3CE5). BRACO-19 molecule (mauve) is 
shown at the interface of the two quadruplex in the unit, stacked between a G-quartet (top) and a 
TATA tetrad (bottom). 

 

The TRAP assays show us that the activity of disubstituted acridine, compound 1 (35) is typical 

of the more active anthraquinones. Compound 2 (36) is essentially inactive as a telomerase 

inhibitor. However the two-trisubstituted compounds 3 (37) and 4 (38), showed telomerase 

activity at levels up to 100- fold greater potency. Both are also significantly less potent in the 

cytotoxicity assay; with compound 4 (BRACO-19) (36) having outstandingly low activity (as 

well as being the most potent telomerase inhibitor (table 2.1)).    
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Table 2.1 Telomerase inhibition, and cytotoxicity, given as EC50 and IC50 values of trisubstituted 
acridine derivatives in µM 

Compound telEC50 A2780 IC50 CH1 IC50 SKOV-3IC50 

1 5.2 2.65 8.2 2.6 

2 >50 1.3 2.2 2.3 

3 0.095 10 10.1 13 

4 0.06 >25 >25 >25 

 

BRACO-19 has a good solubility of at least 2mg/ml in water and in physiological pH conditions. 

However, its very poor permeability is its main biopharmaceutical limitation 19.   
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2.2 Results and Discussion: 

With consideration of BRACO-19 and tri substituted acridine derivatives along with their 

advantages and disadvantages, we rationally design a general structure of target molecule (Figure 

2.15). 

2.2.1 General Structure of the target molecule: 

 

Figure 2.15 General structure of the proposed target molecule 

 

We started with a basic acridine moiety and introduced a cyclic imide moiety at 9th position as a 

linker. Finally we were interested in introducing different substituents on acridine ring and as 

well as on cyclic imide moiety. We particularly interested in substituents like amino acids, small 
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peptide chains, because of bringing our molecule close to physiological conditions. Nara et al 

reported a few similar compounds as fluorometrical reagent for thiol compounds 20. 

The retro synthetic analysis of the target molecule shown in the scheme  

2.2.2 Retro synthesis of the target molecule: 

 

Scheme 2.2 Retro synthesis of the target molecule 

 

Based on the general structure, we proposed a retrosynthesis consists of two paths. 

 The final compound (40) can be synthesized by substitution on N-acridyl cyclic imide moiety 

(41). However, N-acridyl cyclic imide (41) can be synthesized in two paths. 
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Path-1: In path-1, compound 41 can be obtained directly by coupling of 9-haloacridine with 

corresponding cyclic imide. 

Path-2: In path-2, first 9-haloacridine (42) is converted to 9-aminoacridine (44) by nucleophilic 

substitution, and later on 9- aminoacridine is coupled with corresponding cyclic anhydride 

resulted to get compound 43 and this N-acridyl cyclic acid can be closed to get the compound 41. 

This path required, extra 2 steps then path-1. 

9-haloacridine (42), will be synthesized by ring closing and aromatization of N-phenyl 

anthranilic acid derivatives (45). And finally N-phenyl anthranilic acids can be synthesized by 

coupling of 2-halobenzoic acid derivatives (46) with aniline derivatives (47). 

I started working on synthesizing the acridine derivatives by using path-1 (Scheme: 2.3): 

Working with Path-1: 
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Scheme 2.3 Synthetic scheme for acridine derivatives by using path-1 

 

The coupling of 2-chlorobenzoic acid with (48) with aniline (49) took place in the microwave 

and completes in 15 min to get the N-phenyl anthranilic acid (50a) with a percentage yield of 80. 

The N-phenyl anthranilic acid is refluxed in phosphorus oxy halides about 6h to get the 9-halo 

acridine. By using this, we synthesized 9-bromo and 9-chloro acridine in 95% yield. Finally, 

when I tried to couple 9- halo acridine with maleimide by using various copper catalysts, I ended 

up with no reaction. We were not interested in any Pd/Pt catalysts because of the problems 

associated with these catalysts. Because of not getting success with path-1, I changed the scheme 

to path-2. So the final retro synthesis analysis was shown in scheme 2.4.  
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Scheme 2.4 Successful retro synthetic analysis of the target molecule 

 

I started synthesizing the final molecules by using the scheme 2.5  
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2.3 Synthesis of Acridine derivatives: 

2.3.1 Synthesis of N-acridyl maleimide (NAM) derivatives:  

 

 

 

 

Scheme 2.5 Synthesis of N-acridyl maleimide (NAM) derivatives 
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N-phenyl anthranilic acids (50) were prepared by coupling of 2-chlorobenzoic acid with 

substituted anilines. The coupling reaction takes place in the microwave at a power of 300, the 

reaction completes in 15 min. N-phenyl anthranilic acids (50) will undergo ring closing and 

aromatization under refluxing conditions in POCl3 to produce 9-chloroacridines (51), and we can 

convert them to 9-amino acridines by nucleophilic substitution of Cl by ammonium carbonate. 

After that, 9-aminoacridines (51) were coupled with maleic anhydride to get the N-acridyl maleic 

acid derivatives (53). The final molecule N-acridyl maleimide (NAM) (54) is obtained by ring 

closing of NAM-open (53) by using polyphosphoric acid.  

Treating with thio alcohols in acetone under the room temperature conditions, NAM was further 

functionalized as we can see in the scheme.  

By using these two schemes, I synthesized the following NAM based molecules. 

 

Figure 2.16 Synthesized N-acridyl maleimide (NAM) derivatives 
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2.3.2 Synthesis of N-acridyl succinimide (NAS) derivatives: 

After synthesizing the NAM derivatives, by using the same schematic procedure I also 

synthesized the N-acridyl succinimide derivatives (NAS) (59). The only difference is, N-acridyl 

succinic acid (58) was obtained by coupling of 9-aminoacridine derivatives (52) with succinic 

anhydride.  

 

Scheme 2.6 Synthesis of N-acridyl succinimide (NAS) derivatives 

 

 

Figure 2.17 Synthesized N-acridyl succinimide (NAS) derivative 
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2.3.3 Synthesis of N-acridyl phthalimide (NAP) derivatives: 

Finally, we synthesized the N-acridyl phthalimide derivatives (61a, 61b) by coupling the 9-

amino acridine derivatives (52) with phthallic anhydride and followed by ring closing with poly 

phosphoric acid.  

 

Scheme 2.7 Synthesis of N-acridyl phthalimide (NAP) derivatives 

 

 

Figure 2.18 Synthesized N-acridyl phthalimide (NAP) derivatives 
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2.3.4 Synthesis of RK-1: 

Along with the NAM, NAS and NAP derivatives I also synthesized N-aryl acridine derivatives. 

RK-1 (63) was synthesized by coupling of 9-chloroacridine (50a) with 4-(2-(2-

methoxyethoxy)ethoxy)aniline. The coupling was catalyzed by CuI, and completes in 21 h of 

stirring under the refluxing condition in DMF.  

 

Scheme 2.8 Synthesis of RK-1 

 

2.3.5 Synthesis of RK-2: 

RK-2 was synthesized as shown in the scheme 2.8. Compound 66 was obtained by coupling of 2-

chloro-4-nitrobenzoic acid (64) with p-anisidine (65). The N-phenyl anthranilic acid derivative 

(66) was coupled with p-anisidine in the presence of DCC to form the corresponding amide (67). 
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Finally, ring closing and aromatization takes place in oxalyl chloride solution to get the final 

compound RK-2 (68). 

 

Scheme 2.9 Synthesis of RK-2 

 

2.3.6 Synthesized acridine derivatives and their Log p values 

Table 2.2 Synthesized acridine derivatives and their Log p values 

NAME STRUCTURE MOLECULAR 
WEIGHT LOG P 

RK-1 

 

388.46 4.57 
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RK-2 

 

375.38 5.13 

RK-3 

 

274.27 2.65 

RK-4 

 

371.43 4.46 

RK-5 

 

287.36 5.64 

RK-6 

 

288.30 3.13 

RK-7 

 

276.29 2.37 

RK-8 

 

336.41 3.14 
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RK-9 

 

350.43 3.62 

RK-10 

 

324.33 4.16 

RK-11 

 

338.36 4.64 

 

 

2.4 Anti cancer assays of synthesized acridine based molecules: 

After synthesizing a library of acridine derivatives, we tested them on various cancer cell lines. 

We conducted different types assays like MTT and STAT. 

2.4.1 MTT Assays:  

MTT assay− 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma 

Aldrich) assay was performed according to manufacturer’s protocol. The cancer cells and control 

cells cultured in 96 well plates for different time intervals were incubated with MTT reagent 

(100µg/well) for required time at 37°C. At the end of incubation, 100 µl of MTT solvent (4mM 

HCl, 0.1% NP-40 in isopropanol) was added to each well and was mixed well on a shaker for 15 

min. Absorbance was recorded in a calorimeter at 590 nm (Spectra max 190, Molecular 
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Devices). Average values from at least three independent experiments were used to analyze the 

data. 

2.4.1(a) MTT Assays of acridine derivatives on 786-0 cell line: 

Cell line 786-0 (CRL-1932): Primary clear cell renal adenocarcinoma in a 58-yr-old male with 

multiple lung metastases. 

1 µ . Mol:  

        

 

    

Figure 2.19 MTT assays of synthesized acridine derivatives on 786-0 cell lines at 1 µ. Mol 
concentration  
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10 µ . Mol:  

   

 

     

Figure 2.20 MTT assays of synthesized acridine derivatives on 786-0 cell lines at 10 µ. Mol 
concentration  

 

100 µ . Mol:  
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Figure 2.21 MTT assays of synthesized acridine derivatives on 786-0 cell lines at 100 µ. Mol 
concentration  

 

 2.4.1(a) MTT Assays of acridine derivatives on crl cell line: 

crl cell line : Derived from the female renal adeno carcinoma 

1 µ . Mol:  
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Figure 2.22 MTT assays of synthesized acridine derivatives on crl cell lines at 1 µ. Mol 
concentration  

10 µ . Mol:  

   

 

 

    

Figure 2.23 MTT assays of synthesized acridine derivatives on crl cell lines at 10 µ. Mol 
concentration  
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100 µ . Mol:  

    

 

 

Figure 2.24 MTT assays of synthesized acridine derivatives on 786-0 cell lines at 100 µ. Mol 
concentration  

 

2.4.1(c) MTT assays of acridine derivatives on RCC-4 cell line: 

RCC-4: cells are derived from the primary tumor cells 
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1 µ . Mol:  

  

 

    

Figure 2.25 MTT assays of synthesized acridine derivatives on RCC-4 cell lines at 1 µ. Mol 
concentration  

10 µ . Mol:  
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Figure 2.26 MTT assays of synthesized acridine derivatives on RCC-4 cell lines at 10 µ. Mol 
concentration  

 

100 µ . Mol:  
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Figure 2.27 MTT assays of synthesized acridine derivatives on 786-0 cell lines at 100 µ. Mol 
concentration  

 

2.4.2 STAT Analysis: 

The Signal Transducer and Activator of Transcription or Signal Transduction And Transcription 

(STAT) family of proteins was first discovered in the 1990’s as key proteins in cytokine 

signaling. They play important roles in numerous cellular processes including immune 

responses, cell growth and differentiation, cell survival and apoptosis, and oncogenesis. 

There are seven mammalian STAT family members that have been identified: STAT1, STAT2 

STAT3, STAT4, STAT5 (STAT5A and STAT5B) and STAT6. 

 2.4.2(a) STAT Proteins and Cancer: 

Cancer associated inflammation is marked by the presence of specific inflammatory cells and 

inflammatory mediators, including cytokines and chemokines. Recent evidence suggests a 

crucial role for signal transducer and activator of transcription (STAT) family proteins – 

especially STAT3 in selectively inducing and maintaining a pro carcinogenic inflammatory 

microenvironment, both at the initiation of malignant transformation and during cancer progress. 

STAT3 is linked to inflammation-associated tumorigenesis that is initiated by genetic alterations 
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in malignant cells, as well as by many environmental factors, including chemical carcinogens, 

sunlight, infection, cigarette smoking and stress.   

Aside from the tumor- promoting role of inflammation, many murine studies and clinical 

findings have underscored the importance of immune responses and inflammatory mediators – 

both naturally occurring and therapeutically induced- in suppressing tumorigenesis and tumor 

growth. STAT3 and, to some extent STAT5 and STAT6 are involved in inhibiting anti tumor 

immunity. However STAT1-STAT1 homodimers or STAT1-STAT2 heterodimers accumulate in 

the nucleus and regulate the expression of genes that promote growth arrest and apoptosis.  

2.4.2(b) STAT Family and their Target Genes: 

 

Table 2.3 STAT Family and their Target Genes 

STAT Protein Main Trget Genes 

STAT1 TH1- type immunostimulatory, and pro-
apoptosis 

STAT2 TH1- type immunostimulatory, and pro-
apoptosis 

STAT3 TH17-type anti-apoptosis, pro-proliferation, 
angiogenic and metastatic. 

STAT4 TH-1 type, especially IFNγ 

STAT5A and STAT5B Anti- apoptosis, pro- proliferation, and 
differentiation 

STAT6 TH2-type, and anti-apoptosis 
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IFN: Interferon, TH: T helper 

 

2.4.2(c) STAT Analysis of the Acridine Derivatives on Male Renal Adeno Carcinoma Cells: 

 

Table 2.4 STAT analyses of the synthesized acridine derivatives on 786-0 cell line 

786-0 STAT1 STAT2 STAT3 STAT5 STAT6 

Control 48 29.5 719 73 24 

RK-1 26 14 304 50 3.5 

RK-2 35 31 63 54 21 

RK-3 34 82 206 38 11 

RK-5 24 19 73 53 16 

RK-6 135.5 137 112.5 69 27 

RK-9 38.5 44 65 31.5 10 

RK-10 17 17 77.5 25 8 

RK-11 11 10 28 19 9 

 

2.4.2(d) STAT Analysis of the Acridine Derivatives on Male Primary Tumor Cells: 

 

Table 2.5 STAT analyses of the acridine derivatives on RCC-4 cell line 

RCC-4 STAT1 STAT2 STAT3 STAT5 STAT6 

Control 26 18 583 40.5 9 

RK-1 19 9.5 193 27.5 7 

RK-2 17 14 55 29 3.5 

RK-3 14 12 49 18 3.5 
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RK-5 16.5 15 105 51.5 5 

RK-6 17 21 81 33 10 

RK-9 24 30 99 42 6 

RK-10 13 12 81 27 6.5 

RK-11 28 46 70.5 58 14 

 

2.5 Conclusions: 

We have successfully synthesized a library of N-acridyl maleimide (NAM), N-acridyl 

succinimide (NAS) and N-acridyl phthalimide (NAP) derivatives. We also tested them on 

various cancer cell lines such as male renal adeno carcinoma (786-0), female renal adeno 

carcinoma (crl) and primary tumor cell lines (RCC-4) by using MTT assays. From the biological 

assays we got some ambiguous results. However by combining all the assays we can conclude 

that RK-3, RK-6, RK-10 and RK-11 have the better potency at 10 µ. Mol concentration. Even 

though most of the molecules showing better results at 100 µ. Mol concentration, we ruled out 

this concentration because of cytotoxicity of these molecules at higher concentrations. Along 

with MTT assays we also conducted the STAT assays and compared our MTT results with 

STAT assay results. 
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2.6 Experimental Section: 

N-phenyl anthranilic acids (50):  

A mixture of 2-chlorobenzoicacid (48) (11.7 gm, 0.0740 m) and corresponding aniline derivative 

(49) (0.0830 m) in 100 ml of DMF was brought to reflux in a microwave at a power of 300 and 

continued stirring about 15 min, cooled and filtered the precipitate. The product was extracted by 

DCM and washing the organic layer with water. Combined organic layers were dried under 

sodium sulfate after that a quick flash column with DCM results in getting the N-phenyl 

anthranilic acid derivatives in mentioned isolated yields. 

9-chloroacridine Derivatives (51):  

A mixture of N- phenyl anthranilic acid derivatives (50) (5.0 mmol) in 10 ml of phosphorous oxy 

chloride is stirred about 6 h at a temperature of 1200C, cooled and poured in a vigorous stirring 

solution of an ice cold mixture of chloroform and ammonia in water (Maintain the pH of solution 

around 7-8). Washed the organic layer with cold water, and dried under sodium sulfate. 

Combined organic layers were dried under reduced pressure to get the crude 9-chloroacrdine 

(51) derivatives, and used them in the next step without purification. 

 

9-Aminoacridine Derivatives (52): 

A solution of 9-chloroacridine derivatives (51) (11.0 mmol) in 15 ml of phenol was stirred at a 

temperature of 70°C. To this stirring solution (18.0 mmol) of ammonium carbonate was added, 

immediately we can observe the raise in temperature to 130-135°C, and continued the stirring at 

this temperature about 1 h, cooled to room temperature and poured in a 50 ml of ice cold acetone 
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and kept about 1 h resulting a precipitate of 9-aminoacridine hydrochloride. Filter the precipitate 

and washed the precipitate with acetone and dried. The hydrochloride salt was dissolved in hot 

water and charged with sodium hydroxide solution in water resulting a precipitate of free 9-

aminoacridine derivatives, filter the precipitate and washed with boiling water and dried to get 

the pure 9-aminoacridine derivatives. 

N-(9-Acridinyl)Maleamic Acid Derivatives (53):  

To a stirring solution of 9-aminoacridine deribative (52) (3.0 mmol) in 40 ml of acetone, (15.0 

mmol) of maleic anhydride in 8 ml of acetone was added and the resulting solution stirred at 

room temperature about 4 h resulting an yellow colored precipitate, filtered the precipitate and 

washed several times with acetone to get the pure product of N-(9-acridinyl)maleamic acid 

derivatives with corresponding yields.  

N- (9-Acridinyl)Maleiimide Derivatives (54);  

(2mmol) of N-(9-acridinyl)maleamic acid (53) was added to 8.0 g of polyphosphoricacid and the 

resulting slurry was stirred at a temperature of 135°C about 1 h, cooled to the room temperature 

and poured on ice resulting the yellow colored precipitate. Filter the precipitate and neutralize 

with sodium bicarbonate powder resulting a yellow colored precipitate, filtered it and washed 

with water and dried under vaccume resulting the pure N-(9-acridyl)maleimide derivatives (54) 

with reported yields. 

[1-(acridin-9-yl)-3-(phenylthio)pyrrolidine-2,5-dione (RK-4) (56a): 
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To a solution of NAM (RK-3) (53a) (274 mg, 1.00 mmol) in 120 ml of acetone, (0.12 ml, 1.1 

mmol) of thiophenol and 1 ml of water were added. The mixture was stirred at room temperature 

about 30 min, and then acetone was evaporated at 30°C under reduced pressure, the resulting 

precipitate was filtered washed with water and extracted with DCM and upon purification by 

using column chromatography with DCM to get the 327 mg of pure 1-(acridin-9-yl)-3-

(phenylthio)pyrrolidine-2,5-dione (RK-4) (56a) with a 85% yield. 

9-(phenylthio)acridine (RK-5) (57a):  

To a solution of NAM (RK-3) (53a) (274 mg, 1.00 mmol) in 120 ml of acetone, (0.12 ml, 1.1 

mmol) of thiophenol and 1 ml of water were added. The mixture was stirred at room temperature 

about 30 min, and then acetone was evaporated at 30°C under reduced pressure, the resulting 

precipitate was filtered washed with water and extracted with DCM and upon purification by 

using column chromatography with 1%EtOAc+99% DCM to get the 28.7 mg of pure 9-

(phenylthio)acridine (RK-5) (57a) with a 10% yield. 

[1-(acridin-9-yl)-3-(ethylthio)pyrrolidine-2,5-dione (RK-8) (55a):  

To a solution of NAM (RK-3) (53a) (274 mg, 1.00 mmol) in 120 ml of acetone, (0.08 ml, 1.1 

mmol) of thioethanol and 1 ml of water were added.  The mixture was stirred at room 
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temperature about 30 min, and then acetone was evaporated at 30°C under reduced pressure, the 

resulting precipitate was filtered and washed with water and dried to get the 306 mg of pure 1-

(acridin-9-yl)-3-(ethylthio)pyrrolidine-2,5-dione (RK-8) (55a) with a 91% yield. 

[3-(ethylthio)-1-(2-methylacridin-9-yl)pyrrolidine-2,5-dione (RK-9) (55b) :  

To a solution of 2-Methyl NAM (RK-6) (53b) (288 mg, 1.00 mmol) in 120 ml of acetone, (0.08 

ml, 1.1 mmol) of thioethanol and 1 ml of water were added. The mixture was stirred at room 

temperature about 30 min, and then acetone was evaporated at 30°C under reduced pressure, the 

resulting precipitate was filtered and washed with water and dried to get the 326 mg of pure 3-

(ethylthio)-1-(2-methylacridin-9-yl)pyrrolidine-2,5-dione(RK-9) (55b) with a 93% yield. 

N-(9-Acridinyl)succinic Acid (58):  

To a stirring solution of 9-aminoacridine (52) (583 mg, 3.00 mmol) in 40ml of acetone, (15.0 

mmol) of succinic anhydride in 8ml of acetone was added and the resulting solution stirred at 

room temperature about 4 hrs resulting an yellow colored precipitate. Filter the precipitate and 

washed several times with acetone to get the 821 mg of pure product of N- (9-acridinyl) succinic 

acid (58) with a percentage yield of 93%. 

N- (9-Acridinyl)succinimide(NAS) (RK-7) (59):  

N-(9-acridinyl) succinic acid (58) (2.0 mmol) was added to  8.0 gm of polyphosphoricacid and 

the resulting slurry was stirred at a temperature of 135°C about 1h, cooled to the room 

temperature and poured on ice resulting the yellow colored precipitate. Filter the precipitate and 

neutralize the elutent with sodium bicarbonate powder resulting a yellow colored precipitate, 
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filtered it and washed with water and dried under vaccume resulting the 82.9 mg of pure N-(9-

acridyl)succinimide with isolated yield of 15%. 

N-(9-Acridinyl)phthallic Acid (60):  

To a stirring solution of 9-aminoacridine derivatives (52) (1.0 mmol) in 20 ml of acetone, (10.0 

mmol) of phthallic anhydride in 10 ml of acetone was added and the whole solution stirred at 

room temperature about 4 h resulting an yellow colored precipitate. Filtered the precipitate and 

washed several times with acetone to get the pure product of N-(9-acridinyl) phthallic acid 

derivatives with corresponding yields . 

N- (9-Acridinyl)phthalimide(NAP) (RK-10) (61a):  

(2 mmol) of N-(9-acridinyl)phthallic acid (60a) was added to  8.0 g of polyphosphoricacid and 

the resulting slurry was stirred at a temperature of 135°C about 1 h, cooled to the room 

temperature and poured on ice resulting the yellow colored precipitate. Filter the precipitate and 

neutralize the elutent with sodium bicarbonate powder resulting a yellow colored precipitate, 

filtered it and washed with water and dried under vaccume resulting the 77.8 mg of pure N-(9-

acridyl)phthalimide (RK-10) (61a) with isolated yield of 12%. 

2-(2-methylacridin-9-yl)isoindoline-1,3-dione (RK-11) (61b):  

2-methyl-N-(9-acridinyl)phthallic acid (2.0 mmol) (60b) was added to 8.0 gm of 

polyphosphoricacid and the resulting slurry was stirred at a temperature of 135°C about 1 h, 

cooled to the room temperature and poured on ice resulting the yellow colored precipitate. Filter 

the precipitate and neutralize the elutent with sodium bicarbonate powder resulting a yellow 
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colored precipitate, filtered it and washed with water and dried under vaccume resulting the 67.6 

mg of pure 2-methyl-N-(9-acridyl)phthalimide (RK-11) (61b) with isolated yield of 10%. 

4-(2-(2-methoxyethoxy)ethoxy)aniline (62): 

 

4-nitro phenol (2085 mg, 15.00 mmol) and (2650 mg, 19.20 mmol) potassium carbonate were 

dissolved in 15 ml of DMF and the resulting mixture was brought to 105°C, to this stirring 

solution (2660 mg, 19.20 mmol) of (2-(2-chloroethoxy)ethoxy)methylium in 10 ml of DMF was 

added slowly about 10 min, upon completion the whole reactions mixture was stirred at 105°C 

about 12 h, cooled to the room temperature and extracted the organic layer with ether washed 

with 2M HCl and finally washed with 2M NaOH, combined organic layers dried under sodium 

sulfate and removed the solvent under reduced pressure to get the 3220 mg of 1-(2-(2-

methoxyethoxy)ethoxy)-4-nitrobenzene with an isolated yield of 89%. 

1-(2-(2-methoxyethoxy)ethoxy)-4-nitrobenzene is dissolved in minimum amount of methanol, to 

this added a pinch of Pd/C and the reaction mixture stirred under pressure in the H2 environment 

about 3 h, after completion filtered the Pd/C, and evaporated the solvent under reduced pressure 

to yield the 2622 mg of 4-(2-(2-methoxyethoxy)ethoxy)aniline (62) with 93%. 

N-(4-(2-(2-methoxyethoxy)ethoxy)phenyl)acridin-9-amine (RK-1) (63):  

To a stirring solution (427 mg, 2.00 mmol) of 9-chloroacridine (51a) in 20 ml of DMF, (423 mg, 

2.00 mmol) of 4-(2-(2-methoxyethoxy)ethoxy)aniline (62) and (278 mg, 2.00 mmol ) of 
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potassium carbonate and (380 mg, 2.00 mmol) of copper (I) iodide were added and the resulting 

reaction mixture was brought to reflux about 21 h, after completion cool it down to the room 

temperature and filter the precipitate, the organic layer was extracted with the DCM and washed 

with water followed by 10% HCl solution. Combined organic layers were dried under sodium 

sulfate and done a column chromatography with 2% EtOAc + 98% DCM to give the 300 mg of 

pure product with a percentage yield of 40%. 

N-(4-methoxyphenyl)-2-(4-methoxyphenylamino)-4-nitrobenzamide (67): 

To a stirred solution of 2-(4-methoxyphenylamino)-4-nitrobenzoic acid (66) (576 mg, 2.00 

mmol) in 20 ml of DCM, (246 mg, 2.00 mmol) of p-anisidine and (604 mg, 3.00 mmol) of DCC 

and a small amount of DMAP were added. The resulting reaction mixture stirred about 1 h at 

room temperature after that added couple of drops of water and stirred further more about 15 

min, filtered of the precipitate and organic layer was extracted with the DCM and dried over 

sodium sulfate. Purification was done by flash column to get the 600 mg of corresponding amide 

with a percentage yield of 73%. 

2-methoxy-N-(4-methoxyphenyl)-6-nitroacridin-9-amine (RK-2) (68):  

N-(4-methoxyphenyl)-2-(4-methoxyphenylamino)-4-nitrobenzamide (67) (393 mg, 1.00 mmol) 

is dissolved in 15ml of DCM and to this stirring solution 2 ml of (COCl)2 was added and the 

resulting reaction mixture was stirred about 2 h at room temperature. Organic layer was washed 

with sodium bicarbonate solution and did a column chromatography to get the 58.2 mg of pure 

2-methoxy-N-(4-methoxyphenyl)-6-nitroacridin-9-amine (RK-2) (68) with a percentage yield 0f 

15%. 

 



  95 

2.7 Spectral Section: 

2-(4-methoxyphenylamino)-4-nitrobenzoic acid (66): 1H NMR (dmso): δ 9.57 (b, 1 H), 8.06 

(d, J = 8.4 Hz, 1 H), 7.53 (s, 1 H), 7.4 (d, J = 8.8 Hz, 1 H), 7.25 (d, J = 7.2 Hz, 2 H), 7.01 (d, J = 

6.8 Hz, 2 H), 3.77 (s, 3 H) ppm; 13C NMR (dmso): δ 169.5, 157.7, 151.6, 150.2, 134.3, 132.2, 

126.7, 116.6, 115.7, 110.4, 107.5, 56.0 ppm. 

N-(4-methoxyphenyl)-2-(4-methoxyphenylamino)-4-nitrobenzamide (67): 1H NMR (CDCl3): 

δ 9.20 (b, 1 H), 7.90 (d, J = 2.0 Hz, 1 H), 7.64 (d, J = 8.8 Hz, 1 H), 7.49-7.44 (m, 3 H), 7.14 (d, J 

= 8.8 Hz, 2 H), 6.94-6.91 (m, 4 H), 3.82 (s, 6 H) ppm; 13C NMR (CDCl3): δ 166.7, 157.5, 157.4, 

150.9, 149.0, 132.4, 130.2, 128.7, 125.6, 124.7, 123.1, 121.2, 115.5, 115.3, 114.6, 110.7, 108.7, 

55.8 ppm. 

9-Aminoacridine (52a): 1H NMR (dmso): δ 8.48 (d, J = 8.8 Hz, 2 H), 7.92 (d, J = 8.4 Hz, 2 H), 

7.64 (t, J = 7.2 Hz, 2 H), 7.31 (t, J = 7.2 Hz, 2 H), 3.97-3.80(b, 2 H) ppm; 13C NMR (dmso): δ 

151.0, 149.5, 130.7, 129.3, 124.1, 122.3, 113.7 ppm. 

2-(Methylacridin)-9-amine (52b): 1H NMR (dmso): δ 8.38 (d, J = 8.4 Hz, 1 H), 8.18 (s, 1 H), 

7.81 (d, J = 8.4 Hz, 1 H), 7.75 (d, J = 8.4 Hz, 1 H), 7.67 (b, 2 H), 7.59 (t, J = 6.8 Hz, 1 H), 7.47 

(d, J = 8.4 Hz, 1 H), 7.27 (t, J = 6.8 Hz, 1 H), 2.45 (s, 3 H) ppm; 13C NMR (dmso): δ 149.9, 

149.1, 148.3, 133.0, 131.4, 130.1, 129.4, 129.3, 123.9, 122.2, 122.2, 113.7, 113.5, 22.1 ppm.  

4-(2-(2-methoxyethoxy)ethoxy)aniline (62): 1H NMR (CDCl3): δ 6.58 (d, J = 8.8 Hz, 2 H), 

6.45 (d, J = 8.8 Hz, 2 H), 3.87 (t, J = 4.8 Hz, 2 H), 3.63 (t, J = 4.8 Hz, 2 H), 3.57 (b, 2 H), 3.53 (t, 

J = 4.8 Hz, 2 H), 3.40 (t, J = 4.8 Hz, 2 H), 3.22 (s, 3 H) ppm; 13C NMR (CDCl3): δ 151.8, 140.6, 

116.56, 115.9, 72.0, 70.6, 70.0, 68.2, 59.0 ppm. 
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4-(acridin-9-ylamino)-4-oxobut-2-enoic acid (53a): 1H NMR (dmso): δ 9.80-9.98 (b, 2 H), 

8.56 (d, J = 8.4 Hz, 2 H), 7.97 (t, J = 7.6 Hz, 2 H), 7.79 (d, J = 8.8 Hz, 2 H), 7.54 (t, J = 7.6 Hz, 2 

H), 6.05 (s, 2 H) ppm; 13C NMR (dmso): δ 168.0, 158.5, 140.0, 136.9, 136.3, 125.3, 124.6, 

119.5, 112.2 ppm. 

4-(2-methylacridin-9-ylamino)-4-oxobut-2-enoic acid (53b): 1H NMR (dmso): δ 9.79 (b, 2 H), 

8.59 (d, J = 8.8 Hz, 1 H), 8.42 (s, 1 H), 7.99 (t, J = 7.2 Hz, 1 H), 7.84 (q, J = 15.2 Hz, 6.4, 2 H), 

7.76 (d, J = 8.8 Hz, 1 H), 7.57 (t, J = 7.6 Hz, 1 H), 6.00 (s, 2 H), 2.51 (s, 3 H) ppm; 13C NMR 

(dmso): δ 168.2, 157.4, 139.4, 137.9, 137.8, 136.9, 135.7, 134.0, 125.0, 124.2, 123.5, 119.3, 

119.0, 112.0, 21.6 ppm. 

2-(acridin-9-ylcarbamoyl)benzoic acid (60a):  1H NMR (dmso): δ 9.80-9.93 (b, 2 H), 8.61 (d, J 

= 8.4 Hz, 2 H), 8.13 (q, J = 5.6, 2.0 Hz, 2 H), 8.00 (t, J = 8.0 Hz, 2 H), 7.84 (d, J = 8.4 Hz, 2 H), 

7.58 (t, J = 8.0 Hz, 2 H), 7.48-7.46 (m, 2 H) ppm; 13C NMR (dmso): δ 169.1, 158.2, 139.9, 

136.0, 135.6, 133.1, 131.1, 125.2, 124.4, 119.5, 112.1 ppm. 

2-(2-methylacridin-9-ylcarbamoyl)benzoic acid (60b): 1H NMR (dmso): δ 9.67-9.80 (b, 1 H), 

8.56 (d, J = 8.8 Hz, 1 H), 8.36 (s, 1 H), 8.16 (q, J = 6.0, 2.4 Hz, 2 H), 7.95 (t, J = 7.6 Hz, 1 H), 

7.80 (d, J = 8.4 Hz, 2 H), 7.72 (d, J = 8.8 Hz, 1 H), 7.53 (t, J = 7.6 Hz, 1 H), 7.48 (q, J = 6.0 Hz, 

2.4, 2 H), 2.47 (s, 3 H) ppm; 13C NMR (dmso): δ 169.3, 157.3, 139.5, 138.0, 137.7, 135.6, 133.9, 

133.2, 131.1, 125.0, 124.1, 123.5, 119.4, 119.2, 111.8, 21.5 ppm. 

4-(acridin-9-ylamino)-4-oxobutanoic acid (60): 1H NMR (dmso): δ 8.48 (d, J = 8.4 Hz, 2 H), 

7.84-7.77 (m, 4 H), 7.42 (t, J = 8.4 Hz, 2 H), 2.31 (s, 4 H) ppm; 13C NMR (dmso): δ 175.3, 55.6, 

143.7, 134.1, 124.8, 123.7, 123.3, 112.7, 31.4 ppm.   
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N-(4-(2-(2-methoxyethoxy)ethoxy)phenyl)acridin-9-amine (RK-1) (63): 1H NMR (CDCl3): δ 

8.47 (s, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.86 (s, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.37 (d, J = 8.8 

Hz, 1 H), 7.24 (d, J = 8.8 Hz, 2 H), 6.90 (d, J = 8.8 Hz, 2 H), 6.81 (d, J = 8.8 Hz, 2 H), 3.79 (s, 3 

H), 3.77 (s, 3 H) ppm; 13C NMR (CDCl3): δ 164.1, 163.2, 159.6, 157.16, 149.2, 141.3, 138.2, 

133.3, 130.4, 129.8, 127.3, 127.1, 124.1, 123.1, 122.6, 122.4, 121.7, 121.5, 115.4, 114.8, 114.53, 

114.5, 114.4, 114.3, 55.8, 55.7 ppm.   

 2-methoxy-N-(4-methoxyphenyl)-6-nitroacridin-9-amine (RK-2) (68): 1H NMR (CDCl3): δ 

7.95 (d, J = 8.0 Hz, 2 H), 7.80 (b, 2 H), 7.53 (t, J = 6.8 Hz, 2 H), 7.14 (t, J = 6.8 Hz, 2 H), 6.85-

6.79 (m, 4 H), 4.09 (t, J = 4.4 Hz, 2 H), 3.84 (t, J = 5.2 Hz, 2 H), 3.72 (t, J = 4.0 Hz, 2 H), 3.58 

(t, J = 5.2 Hz, 2 H), 3.37 (s, 3 H) ppm; 13C NMR (CDCl3): δ 154.6, 130.7, 125.3, 123.1, 120.5, 

119.3, 115.8, 77.6, 77.3, 77.0, 72.2, 71.0, 70.1, 68.0, 59.3 ppm.  

1-(acridin-9-yl)-1H-pyrrole-2,5-dione (RK-3) (54a):  1H NMR (dmso): δ 8.27 (d, J = 8.8 Hz, 2 

H), 7.97 (d, J = 8.8 Hz, 2 H), 7.93 (t, J = 8.0 Hz, 2 H), 7.67 (t, J = 8.0 Hz, 2 H), 7.47 (s, 2 H) 

ppm; 13C NMR (dmso): δ 170.8, 149.5, 136.2, 134.7, 131.7, 130.2, 128.4, 124.5, 124.1, 36.0 

ppm. 

1-(acridin-9-yl)-3-(phenylthio)pyrrolidine-2,5-dione (RK-4) (56a): 1H NMR (dmso): δ 8.30 

(d, J = 8.8 Hz, 2 H), 7.78 (t, J = 8.8 Hz, 2 H), 7.66 (d, J = 8.4 Hz, 2 H), 7.61 (d, J = 8.4 Hz, 1 H), 

7.48 (p, J = 6.4 Hz, 3 H), 7.40 (t, J = 7.6 Hz, 2 H), 7.12 (d, J = 8.8 Hz, 1 H), 4.47 (q, J = 9.2 Hz, 

4.0, 1 H), 3.60 (q, J = 9.2 Hz, 9.2, 1 H), 3.19 (d, J = 19.2 Hz, 1 H) ppm; 13C NMR (dmso): δ 

174.2, 173.5, 149.6, 148.6, 135.9, 133.8, 130.7, 130.6, 130.4, 130.2, 130.1, 130.0, 127.9, 127.9, 

123.0, 122.9, 122.2, 122.2, 45.5, 36.7 ppm.  
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9-(phenylthio)acridine (RK-5) (57a): 1H NMR (dmso): δ 8.69 (d, J = 8.8 Hz, 2 H), 8.29 (d, J = 

8.8 Hz, 2 H), 7.78 (t, J = 7.6 Hz, 2 H), 7.54 (t, J = 7.6 Hz, 2 H), 7.11-7.06 (m, 3 H), 7.00 (d, J = 

8.4 Hz, 2 H) ppm; 13C NMR (dmso): δ 149.3, 139.4, 137.2, 130.6, 130.4, 129.4, 129.3, 129.2, 

127.7, 127.5, 127.4, 127.0, 126.1 ppm. 

1-(2-methylacridin-9-yl)-1H-pyrrole-2,5-dione (RK-6) (54b): 1H NMR (dmso): δ 8.31 (d, J = 

8.8 Hz, 1 H), 8.22 (d, J = 8.8 Hz, 1 H), 7.79 (t, J = 7.6 Hz, 1 H), 7.66 (d, J = 7.6 Hz, 2 H), 7.58 

(t, J = 7.6 Hz, 1 H), 7.40 (s, 1 H), 7.14 (s, 2 H), 2.56 (s, 3 H) ppm; 13C NMR (dmso): δ 169.5, 

138.2, 135.2, 133.8, 130.5, 130.2, 127.7, 124.4, 124.4, 122.4, 120.5, 22.5 ppm. 

 N- (9-Acridinyl)succinimide(NAS) (RK-7) (59): 1H NMR (dmso): δ 8.27 (d, J = 8.8 Hz, 2 H), 

8.12 (d, J = 8.4 Hz, 2 H), 7.92 (t, J = 7.2 Hz, 2 H), 7.67 (t, J =7.6 Hz, 2 H), 3.17 (s, 4 H); 13C 

NMR (dmso): δ 178.1, 149.5, 136.2, 131.7, 130.1, 128.1, 124.4, 123.6, 30.3 ppm. 

1-(acridin-9-yl)-3-(ethylthio)pyrrolidine-2,5-dione (RK-8) 1H NMR (dmso): δ 8.28 (t, J = 7.6 

Hz, 2 H), 8.20 (d, J = 8.8 Hz, 1 H), 7.98-7.91 (m, 3 H), 7.75-7.67 (m, 2 H), 4.50 (d, J = 5.2 Hz, 1 

H), 3.78 (q, J = 18.4 Hz, 8.8, 1 H), 3.07 (d, J = 18.4 Hz, 1 H), 2.89 (q, J =14.4 Hz, 7.2, 2 H), 1.29 

(t, J = 7.2 Hz, 3 H); 13C NMR (dmso): δ 176.9, 175.3, 149.5, 149.4, 135.1, 131.8, 131.7, 130.4, 

130.1, 128.6, 128.2, 124.4, 123.7, 123.3, 122.8, 37.5, 26.1, 14.9 ppm. 

3-(ethylthio)-1-(2-methylacridin-9-yl)pyrrolidine-2,5-dione (RK-9) 1H NMR (dmso): δ 8.25 

(t, J = 7.6 Hz, 1 H), 8.17 (t, J = 8.4 Hz, 1 H), 7.79 (q, J = 14.8, 8.2 Hz, 2 H), 7.77-7.66 (m, 3 H), 

4.50 (t, J = 8.0 Hz, 1 H), 3.83-3.75 (m, 1 H), 3.05 (d, J = 18.4 Hz, 1 H), 2.90 (q, J = 19.2 Hz, 

11.6, 2 H), 2.48 (s, 3 H), 1.28 (t, J = 11.2 Hz, 3 H); 13C NMR (dmso): δ 176.9, 176.8, 175.4, 

175.4, 148.9, 148.8, 148.6, 148.5, 138.4, 138.3, 134.6, 134.4, 133.0, 131.2, 131.1, 130.4, 130.2, 
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130.1, 129.9, 128.4, 128.0, 124.3, 123.8, 123.7, 123.4, 123.4, 122.7, 121.9, 120.7, 75.8, 37.5, 

26.0, 25.9, 22.4, 22.3, 14.9, 14.9 ppm. 

2-(acridin-9-yl)isoindoline-1,3-dione (RK-10) (61a): 1H NMR (dmso): δ 8.29 (d, J = 8.8 Hz, 2 

H), 8.12- 8.07 (m, 4 H), 8.02 (d, J = 8.4 Hz, 2 H), 7.93 (t, J = 7.6 Hz, 2 H), 7.64 (t, J = 7.6 Hz, 2 

H); 13C NMR (dmso): δ 167.9, 149.5, 135.9, 135.1, 132.5, 131.7, 130.2, 128.4, 124.8, 124.4, 

124.3 ppm 

 2-(2-methylacridin-9-yl)isoindoline-1,3-dione (RK-11) (61b): 1H NMR (CDCl3): δ 8.26 (d, J 

= 8.8 Hz, 1 H), 8.19 (d, J = 9.2 Hz, 1 H), 8.11 (q, J = 5.2 Hz, 2.8, 2 H), 8.04-7.99 (m, 3 H), 7.88 

(t, J = 9.2 Hz, 2 H), 7.77 (d, J = 8.8 Hz, 1 H), 7.62 (t, J = 7.6 Hz, 1 H), 2.48 (s, 3 H); 13C NMR 

(CDCl3): 168.0, 148.9, 148.6, 138.5, 135.8, 134.6, 133.9, 132.6, 131.1, 130.2, 129.9, 128.3, 

124.8, 124.5, 124.4, 124.1, 122.0, 22.1. 
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Chapter-3: Copper-Nicotinic Acid Complex Mediated Coupling of 
Aryl Halides With Nitrogen Nucleophiles 

 

3.1 Introduction: 

Transition metal catalyzed C-N cross coupling reactions are considered to be extremely powerful 

and versatile methods in the synthesis of pharmaceuticals, optical devices, and materials.(1) The 

conventional route for N- arylation of N-nucleophiles with aryl halides is the Ullmann type 

coupling reactions.(2) However they associated with the limitations of harsh conditions, and long 

reaction times. Great efforts have been made to minimize these problems, and one of them is 

Buchwald – Hartwig amination.(3) The reaction requires palladium-based catalysts with 

phosphine or N-heterocyclic carbene  ligands and proceeds under milder conditions. We also 

have various reports of Pd catalyzed C-N bond formation by coupling aryl halides with amines,(4) 

amides (5) and imides.(6) However the high cost of Pd and use of external ligands makes it 

difficult to apply these reactions in the industrial scale. 

Recently there has been a significant development in the copper catalysis, especially in the 

formation of C-N bond by using external ligands such as diamines,(7) diols,(8) triols,(9) rac-

binols,(10) salicylamides,(11) β-diketones,(12) β-ketoesters,(13) imines,(14) amino acids,(15) amino 

phosphates,(16) and diazaphospholanes.(17) However, most of these ligands are hard to synthesize 

and these catalytic systems are not applicable to all kind of N-nucleophiles. Recently we reported 

a ligand free copper (II) catalyzed formamidation of aryl halides. So we are in a desperate need 

of common catalytic system that can be applicable to all kind of N- Nucleophiles. Here we are 
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reporting a copper- nicotinic acid complex catalytic system that applicable to coupling of aryl 

halides with various N-nucleophiles such as N-formyl amines and cyclic imides.  

3.2 Results and Discussion:   

We synthesized the copper-nicotinic acid complex by stirring equivalent amounts of 

CuSO4•5H2O and nicotinic acid in DMF at 150°C about over night. The formed dirty red color 

precipitate was filtered off from the reaction mixture and washed with water and dried. However, 

we were unable to derive its actual structure so we assumed that Cu and nicotinic acid were 

boned together in 1:1 ratio. 

We optimized the reaction conditions by stirring the mixture of bromobenzene, N-formyl 

ethanolamine, potassium carbonate and copper-nicotinic acid complex under refluxing 

conditions for 4h (Scheme 3.1).  

At first we tested the catalyst effect by loading 10%, and ended up seeing only 10% conversion 

of the product. So we concluded that the reaction requires equivalent amounts copper complex. 

With an established condition for coupling reaction, we then examined the scope of the process 

to other N-formy amines. We noticed that the reaction works very well with. When N-formyl 

butylamine was chosen, significant increase in the reaction timings were observed, and this is 

because of low boiling point of N-formyl butylamine. It is important to mention that the reported 

aliphatic N-formyl amines are all liquids, therefore the reactions doesn’t require any additional 

solvent systems.  
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3.2.1 Aryl halides coupling with N-formyl-2- aminoethanol 

 

Scheme 3.1 Aryl halides coupling with N-formyl-2-aminoethanol 

 

Table 3.1 Prepared of N-aryl-2-ethanolamines    

Entry 
No Aryl Halide Product Structure Reaction 

Time (h) 
Yield 
(%) 

A 

  
4 82 

b 

  

4 80 

c 

  
4 91 

d 

 
 

4 94 

e 

 
 

4 85 
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3.2.2 Aryl halides coupling with N-formyl-2-(methylamino)ethanol  

 

Scheme 3.2 Aryl halides coupling with N-formyl-2-(methylamino)ethanol  

 

Table 3.2 Prepared Methyl- N-aryl ethanolamines  

Entry 
No 

Aryl Halide Product Structure Reaction 
Time (h) 

Yield 
(%) 

a 

  
4 81 

b 

  

5 86 

c 

  

5 79 

d 

 
 

3 91 

e 

 
 

2 84 
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3.2.3 Aryl halides coupling with N-formyl butylamine: 

 

Scheme 3.3 Aryl halides coupling with N-formyl butylamine  

 

Table 3.3 Preparation of N-Arylbutylamines 

Entry 
No 

Aryl Halide Product Structure Reaction 
Time (h) 

Yield 
(%) 

a 

  

24 72 

b 

  

24 77 

c 

  

24 83 

d 

  

18 86 
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e 

  

12 93 

 

Where as N-formyl amine requires an additional solvent such as DMF or 2(2-Methoxy-ethoxy 

ethanol). However 2(2-Methoxy-ethoxy ethanol) is the ideal solvent as it takes relatively less 

time to complete the reaction.  We also explored the scope of the reaction with respect to aryl 

halides, and resulted with excellent yields irrespective of the nature of the aryl halides. 

3.2.4 Aryl halides coupling with N-Formyl aniline: 

 

Scheme 3.4 Aryl halides coupling with N-formyl aniline 

 

Table 3.4 Preparation of N-arylanilines 

Entry 
No 

Aryl Halide Product Structure Reaction 
Time (h) 

Yield 
(%) 

a 

  
18 91 

b 

  

24 80 
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c 

  

12 92 

d 

 
 

12 81 

e 

  

12 90 

 

Furthermore, we investigated the coupling reaction of aryl bromides with various cyclic imides 

such as phthalimide, naphthylimide, succinimide, and dimethyl hydantoin. First we tested the 

reaction conditions with bromobenzene, phthalimide, potassium carbonate, and Copper complex 

in DMF as the reaction takes 4h to complete. We observed significant decrease in reaction 

timings (3h) when we started with Potassium salt of phthalimide as substrate and 2(2methoxy 

ethoxy ethanol) as solvent.     

3.2.5 Potassium phthalimide coupling with aryl halides 

 

Scheme 3.5 Potassium Phthalimide coupling with Aryl halides  

 

Table 3.5 Preparation of N-Aryl Phthalimides 



  109 

Entry No Aryl Halide Product Structure Reaction 
Time (h) Yield (%) 

a 

  

3 93 

b 

  

3 91 

c 

  

4 95 

d 
 
 
 
   

4 89 

 

 

3.2.6 Potassium succinimide coupling with aryl halides 

 

Scheme 3.6 Potassium Succinimide coupling with Aryl halides 

 

Table 3.6 Preparation of N-Aryl succinimides 

Entry No Aryl Halide Product Structure Reaction 
Time (h) Yield (%) 
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a 

  

4 89 

b 

  

4 91 

c 

  

3 93 

d 
 
 
 
   

3 91 

 

3.2.7 Potassium 1,8-naphthylimide coupling with aryl halides 

 

Scheme 3.7 Potassium Naphthylimide coupling with Aryl halides  

 

Table 3.7 Preparation of N-Aryl naphthylimides 

Entry No Aryl Halide Product Structure Reaction 
Time (h) Yield (%) 

a 

  

4 91 
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b 

  

4 94 

c 

  

4 86 

 

3.2.8 Potassium 5,5-dimethyl hydantoin coupling with aryl halides: 

 

 

Scheme 3.8 Potassium 5,5-dimethylhydantoin coupling with aryl halides  

 

Table 3.8 Preparation of N-aryl dimethylhydantoins 

Entry No Aryl Halide Product Structure Reaction 
Time (h) Yield (%) 

a 

  

2.5 94 

b 

  

2 93 

c 

  

2 89 
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d 
 
 
 
   

2 91 

 

 

 

 

 

3.3 Conclusions: 

In conclusion we developed a copper nicotinic acid complex that catalyze the coupling of aryl 

halides with various nitrogen nucleophiles such as N-formyl amines and cyclic imides. Most of 

the reactions not even required of any additional solvent. The other advantages like short 

reaction times, moderate to excellent yields and variety of substrate tolerability makes this 

method versatile to form the C-N bond.  

 

3.4 Experimental Section:  

Synthesis of Copper-Nicotinic acid complex: CuSO4•5H2O (5.0 g, 0.020 mol) was dissolved in 

100 ml of DMF and to this solution (2.46 g, 0.020 mol) of 2-nicotinic acid and (2.78 g, 0.02 mol) 

of potassium carbonate were added. The whole reaction mixture was stirred under refluxing 

conditions about over night. The formed dirty red precipitate filtered off from the reaction 

mixture and washed with water and dried. The dirty red powder was used without further 

purification.     
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General procedure for N-formylation of amines: Synthesis of N-formyl-2-ethanolamine (2):  

(30.5 g, 0.500 mol) of ethanolamine was dissolved in (53.6 g, 0.500 mol) of trimethyl 

orthoformate and to this solution (2.0 g, 0.012 mol) p-toluenesulfonic acid and few drops of 

water is added, the whole reaction mixture is stirred in a microwave at a power of 200 about over 

night. Bring down the temperature to room temperature and the formed N-formy-2-ethanolamine 

was used directly for the coupling reactions without further purification. 

General procedure for coupling of aryl halides with N-formyl-2-ethanolamine: 

Synthesis of 2-(p-tolylamino)ethanol (3b):    

p-bromotoluene (342 mg, 2.00 mmol) , potassium carbonate (306 mg, 2.20 mmol)  and (372 mg, 

2.00 mmol) of copper-nicotinic acid complex were dissolved in 12 ml of N-formyl-2-

ethanolamine and the whole reaction mixture was stirred at 150°C about 4 h and monitored the 

reaction progress by TLC. After completion of the reaction cool it down to the room temperature 

and washed with water thoroughly and one time wash with 1% HCl solution, and finally 

extracted the organic layer with DCM. Combined layers were dried under sodium sulfate and a 

flash column required getting 248 mg of 2-(p-tolylamino)ethanol (3c) with 82% yield. 

General procedure for aryl halides coupling with N-formyl-2-(methylamino)ethanol: 

Synthesis of 2-(methyl(p-tolyl)amino)ethanol (5b):  

p-bromotoluene (342 mg, 2.00 mmol) , (306 mg, 2.20 mmol) of potassium carbonate and (372 

mg, 2.00 mmol) of copper-nicotinic acid complex were dissolved in 12 ml of N-formyl-2-

(methylamino)ethanol and the whole reaction mixture was stirred at 160°C about 5 h and 

monitored the reaction progress by TLC. After completion of the reaction cool it down to the 
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room temperature and washed with water thoroughly and one time wash with 1% HCl solution, 

and finally extracted the organic layer with DCM. Combined layers were dried under sodium 

sulfate and a flash column required getting 284 mg of 2-(methyl(p-tolyl)amino)ethanol (5b) with 

86% yield. 

General procedure for aryl halides coupling with N-formylbutylamine: 

Synthesis of N-butyl-4-methylaniline (7b): 

p-bromotoluene (342 mg, 2.00 mmol) , (306 mg, 2.20 mmol) of potassium carbonate and (372 

mg, 2.00 mmol) of copper-nicotinic acid complex were dissolved in 12 ml of N-

formylbutylamine and the whole reaction mixture was stirred at 100°C about 24 h and monitored 

the reaction progress by TLC. After completion of the reaction cool it down to the room 

temperature and washed with water thoroughly and one time wash with 1% HCl solution, and 

finally extracted the organic layer with DCM. Combined layers were dried under sodium sulfate 

and a flash column required getting 251 mg of N-butyl-4-methylaniline (7b) with 77% yield. 

General procedure for aryl halides coupling with N-formylaniline: 

Synthesis of 4-methyl-N-phenylaniline (9b): 

N-formyl aniline (66.0 mg, 2.20 mmol) was dissolved in 10 ml of 2-(2-methoxyethoxy)ethanol, 

to this stirring solution (342 mg, 2.00 mmol) of p-bromotoluene, (306 mg, 2.20 mmol) of 

potassium carbonate and (372 mg, 2.00 mmol) of copper-nicotinic acid complex were added and 

the whole reaction mixture was stirred at refluxing conditions about 24 h and monitored the 

reaction progress by TLC, after completion of reaction cool it down to the room temperature and 

washed with water thoroughly and one time wash with 1% HCl solution, and finally extracted 



  115 

the organic layer with DCM. Combined layers were dried under sodium sulfate and a flash 

column required getting 293 mg of 4-methyl-N-phenylaniline (9b) with 80% yield. 

General preparation of potassium salts of cyclic imides: Preparation of potassium 
phthalimide (10):  

Hot ethanol (30 ml) solution of phthalimide (1470 mg, 10.00 mmol) and aqueous ethanol (1 ml 

water plus 3 ml ethanol) solution potassium hydroxide (560 g, 10.0 mmol) were mixed together. 

Resulting solution was left at room temperature for one hour. Formed white precipitate was 

separated by filtration, washed with ice-cold ethanol (3x5 ml) and dried on air to give pure 

product in approximately 93% isolated yield. 

General procedure for aryl halides coupling with potassium phthalimide: Synthesis of 2-

phenylisoindoline-1, 3-dione (12a): To a 2-(2-methoxyethoxy)ethanol suspension of Potassium 

Phthalimide (222 mg, 1.20 mmol) was added bromobenzene (157 mg, 1.00 mmol) and copper-

nicotinic acid complex (186 mg, 1.00 mmol). The reaction mixture was under refluxing 

conditions for 4 h and monitored the completion reaction by TLC. After the reaction is complete 

the reaction mixture was cooled to room temperature and washed with water thoroughly and one 

time wash with 1% HCl solution, and finally extracted the organic layer with DCM. Combined 

layers were dried under sodium sulfate and a flash column required getting 207 mg of 2-

phenylisoindoline-1, 3-dione (12a) with 93% yield.  

General procedure for aryl halides coupling with potassium succinimide: Preparation of 1-

phenylpyrrolidine-2,5-dione (14a): To a 2-(2-methoxyethoxy)ethanol suspension of Potassium 

Succinimide (164 mg, 1.20 mmol) was added Bromo Benzene (157 mg, 1.00 mmol) and copper-

nicotinic acid complex (186 mg, 1.00 mmol). The reaction mixture was stirred under refluxing 

conditions for 4 h and monitored the completion reaction by TLC. After the reaction is complete 
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the reaction mixture was cooled to room temperature and washed with water thoroughly and one 

time wash with 1% HCl solution, and finally extracted the organic layer with DCM. Combined 

layers were dried under sodium sulfate and a flash column required getting 156 mg of 1-

phenylpyrrolidine-2,5-dione with 89% yield.  

General procedure for aryl halides coupling with potassium-1,8-naphthalimide: Synthesis 

of 2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (16a): To a 2-(2-methoxyethoxy)ethanol   

suspension of Potassium salt of 1,8 Naphthalimide (282 mg, 1.20 mmol) was added Bromo 

Benzene (157 mg, 1.00 mmol) and copper-nicotinic acid complex (186 mg, 1.00 mmol). The 

reaction mixture was stirred under refluxing conditions for 4 h and monitored the completion 

reaction by TLC. After the reaction is complete the reaction mixture was cooled to room 

temperature and washed with water thoroughly and one time wash with 1% HCl solution, and 

finally extracted the organic layer with DCM. Combined layers were dried under sodium sulfate 

and a flash column required getting 248 mg of 2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-

dione with 91% yield. 

General procedure for aryl halides coupling with potassium-5,5-dimethylhydantoin: 

Synthesis of 5,5-dimethyl-3-phenylimidazolidine-2,4-dione(18a): To 2-(2-

methoxyethoxy)ethanol  a  suspension of Potassium salt of 5,5- dimethyl Hydantoin (166 mg, 1.0 

0 mmol) was added Bromo Benzene (157 mg, 1.0 mmol) and copper-nicotinic acid complex 

(186 mg, 1.0 mmol). The reaction mixture was stirred under refluxing conditions for 2.5 h and 

monitored the completion reaction by TLC. After the reaction is complete the reaction mixture 

was cooled to room temperature and washed with water thoroughly and one time wash with 1% 

HCl solution, and finally extracted the organic layer with DCM. Combined layers were dried 
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under sodium sulfate and a flash column required getting 192 mg of 5,5-dimethyl-3-

phenylimidazolidine-2,4-dione with a 94% yield. 

  

 

 

3.5 Spectral Section: 

2-(phenylamino)ethanol (3a): 1H NMR (CDCl3): δ 7.20 (t, J = 7.2 Hz, 2 H), 6.76 (t, J = 7.2 Hz, 

1 H), 6.69 (d, J = 8.0 Hz, 2 H), 3.84 (t, J = 4.4 Hz, 2 H), 3.32 (t, J = 5.2 Hz, 2 H), 2.72 (b, 2 H) 

ppm; 13C NMR (CDCl3): δ 148.1, 129.6, 118.5, 113.7, 61.4, 46.6 ppm. 

2-(p-tolylamino)ethanol (3b): 1H NMR (CDCl3): δ 7.01 (d, J = 8.0 Hz, 2 H), 6.59 (d, J = 8.0 

Hz, 2 H), 3.79 (t, J = 4.8 Hz, 2 H), 3.25 (t, J = 5.2 Hz, 2 H), 3.08 (b, 2 H), 2.26 (s, 3 H) ppm; 13C 

NMR (CDCl3): δ 146.1, 130.1, 127.5, 113.8, 61.4, 46.8, 20.6 ppm. 

2-(2-methoxyphenylamino)ethanol (3c): 1H NMR (CDCl3): δ 6.88 (t, J = 7.6 Hz, 1 H), 6.79 (d, 

J = 7.6 Hz, 1 H), 6.72 (d, J = 8.0 Hz, 1 H), 6.68 (t, J = 6.0 Hz, 1 H), 3.84 (t, J = 5.6 Hz, 2 H), 

3.32 (t, J = 4.8 Hz, 2 H) ppm; 13C NMR (CDCl3): δ 147.4, 138.1, 121.5, 117.4, 110.6, 109.8, 

61.5, 55.7, 46.2 ppm. 

2-(4-nitrophenylamino)ethanol (3d): 1H NMR (CDCl3): δ 8.09 (d, J = 9.2 Hz, 2 H), 6.57 (d, J 

= 9.2 Hz, 2 H), 3.91 (t, J = 5.2 Hz, 2 H), 3.40 (t, J =4.8 Hz, 2 H), 1.63 (b, 2 H) ppm; 13C NMR 

(CDCl3): δ 126.7, 111.6, 61.1, 45.4 ppm. 



  118 

2-(2,4-dinitrophenylamino)ethanol (3e): 1H NMR (CDCl3) : δ 9.14 (s, 1 H), 8.82 (b, 1 H), 8.28 

(d, J = 9.6 Hz, 1 H), 6.98 (d, J = 9.6 Hz, 1 H), 4.02 (t, J = 5.6 Hz, 2 H), 3.6 (q, J = 10.8, 5.6 Hz, 2 

H ), 1.64 (b, 1 H) ppm; 13C NMR (CDCl3): δ 148.8, 130.6, 124.6, 114.3, 60.7, 45.4 ppm. 

2-(methyl(phenyl)amino)ethanol (5a): 1H NMR (CDCl3): 7.26 (t, J = 7.6 Hz, 2 H), 6.82 (d, J = 

8.4 Hz, 2 H), 6.77 (t, J = 7.2 Hz, 1 H), 3.81 (t, J = 5.6 Hz, 2 H), 3.47 (t, J = 5.6 Hz, 2 H), 2.97 (s, 

3 H), 2.06 (b, 1 H) ppm; 13C NMR (CDCl3): δ 150.3, 129.5, 117.5, 113.4, 60.3, 55.7, 39.1 ppm.  

2-(methyl(p-tolyl)amino)ethanol (5b): 1H NMR (CDCl3); δ 7.07 (d, J = 8.0 Hz, 2 H), 6.76 (d, J 

= 8.4 Hz, 2 H), 3.79 (t, J = 5.6 Hz, 2 H), 3.41 (t, J = 5.6 Hz, 2 H), 2.92 (s, 3 H), 2.28 (s, 3 H), 

2.11 (b, 1 H) ppm; 13C NMR (CDCl3): δ 148.5, 130.0, 127.2, 114.1, 60.2, 56.3, 39.2, 20.5 ppm. 

2-((2-methoxyphenyl)(methyl)amino)ethanol (5c): 1H NMR (CDCl3): δ 7.04 (t, J = 7.6 Hz, 1 

H), 7.00 (d, J = 8.0 Hz, 1 H), 6.91 (t, J = 7.6 Hz, 1 H), 6.86 (d, J = 7.6 Hz, 1 H), 3.84 (s, 3 H), 

3.71 (t, J = 5.2 Hz, 2 H), 3.24 (b, 1 H), 3.11 (t, J = 5.2 Hz, 2 H), 2.78 (s, 3 H) ppm; 13C NMR 

(CDCl3): δ 152.9, 142.1, 123.6, 121.2, 12.4, 111.5, 59.7, 58.4, 55.5, 40.1 ppm. 

2-(methyl(4-nitrophenyl)amino)ethanol (5d): 1H NMR (CDCl3): δ 8.00 (d, J = 9.6 Hz, 2 H), 

6.62 (d, J = 9.2 Hz, 2 H), 3.86 (t, J = 5.6 Hz, 2 H), 3.62 (t, J = 6.0 Hz, 2 H), 3.12 (s, 3 H), 2.2 (b, 

1 H) ppm; 13C NMR (CDCl3): δ 154.1, 137.0, 126.4, 110.7, 60.2, 54.7, 39.7 ppm. 

2-((2,4-dinitrophenyl)(methyl)amino)ethanol (5e): 1H NMR (CDCl3): δ 8.65 (s, 1 H), 8.19 (d, 

J = 9.2 Hz, 1 H), 7.22 (d, J = 9.6 Hz, 1 H), 3.91 (t, J = 5.2 Hz, 2 H), 3.61 (t , J = 5.2 Hz, 2 H), 

2.99 (s, 3 H), 1.87 (b, 1 H) ppm; 13C NMR (CDCl3): δ 149.8, 136.8, 127.8, 124.2, 118.9, 59.5, 

56.2, 40.8 ppm. 
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N-butylaniline (7a): 1H NMR (CDCl3): δ 7.19 (t, J = 8.4 Hz, 2 H), 6.71 (t, J = 7.2 Hz, 1 H), 

6.62 (d, J = 8.4 Hz, 2 H), 3.6 (b, 1 H), 3.13 (t, J = 7.2 Hz, 2 H), 1.63 (q, J = 7.2 Hz, 2 H), 1.46 

(Sextet, J= 15.2, 7.6 Hz, 2 H), 0.98 (t, J = 7.6 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 148.8, 129.5, 

117.3, 112.9, 43.9, 31.9, 20.6, 14.2 ppm. 

 N-butyl-4-methylaniline (7b): 1H NMR (CDCl3): δ 7.08 (d, J = 7.6 Hz, 2 H), 6.63 (d, J = 8.4 

Hz, 2 H), 3.46 (b, 1 H), 3.17 (t, J = 6.8 Hz, 2 H), 2.34 (s, 3 H), 1.68 (p, J = 6.8 Hz, 2 H), 1.53 (p, 

J = 7.6 Hz, 2 H), 1.06 (t, J = 7.2 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 146.7, 130.0, 126.6, 113.2, 

44.4, 32.0, 20.6, 14.3 ppm.  

N-butyl-2-methoxyaniline (7c): 1H NMR (CDCl3): δ 6.89 (t, J = 7.6 Hz, 1 H), 6.78 (d, J = 8.0 

Hz, 1 H), 6.68 (d, J = 7.6 Hz, 1 H), 6.64 (t, J = 7.6 Hz, 1 H), 4.20 (b), 3.86 (s, 3 H), 3.14 (t, J = 

7.2 Hz, 2 H), 1.66 (p, J = 7.6 Hz, 2 H), 1.47 (Sextet, J = 14.8 Hz, 7.6, 2 H), 0.98 (t, J = 7.2 Hz, 3 

H) ppm; 13C NMR (CDCl3): δ 147.0, 138.8, 121.6, 116.3, 110.0, 109.6, 55.6, 43.6, 31.9, 20.6, 

14.2 ppm. 

N-butyl-4-nitroaniline (7d): 1H NMR (CDCl3); δ 8.03 (d, J = 9.2 Hz, 2 H), 6.49 (d, J = 9.2 Hz, 

2 H), 4.78 (b, 1 H), 3.17 (q, J = 12.8 Hz, 7.2, 2 H), 1.61 (p, J = 7.6 Hz, 2 H), 1.27 (Sextet, J = 

15.2, 7.2 Hz, 2 H), 0.93 (t, J = 7.6 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 154.0, 137.6, 126.7, 

111.1, 43.3, 31.3, 20.4, 14.0 ppm. 

N-butyl-2,4-dinitroaniline (7e): 1H NMR (CDCl3) ; δ 9.03 (s, 1 H), 8.53 (b), 8.21 (d, J = 9.6 

Hz, 1 H), 6.92 (d, J = 9.6 Hz, 1 H), 3.41 (q, J = 12.4 Hz, 7.2, 2 H), 1.75 (p, J = 7.2 Hz, 2 H), 1.48 

(Sextet, J = 15.2 Hz, 8.0, 2 H), 0.98 (t, J = 7.2 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 148.7, 136.0, 

130.5, 130.3, 124.4, 114.3, 43.6, 30.9, 20.3, 13.9 ppm. 
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Diphenylamine (9a): 1H NMR (CDCl3): δ 7.33 (t, J = 8.4 Hz, 4 H), 7.13 (d, J = 8.4 Hz, 4 H), 

7.00 (d, J = 8.0 Hz, 2 H), 5.70 (b, 1 H) ppm; 13C NMR (CDCl3): δ 143.4, 129.7, 121.3, 118.1 

ppm. 

4-methyl-N-phenylaniline (9b): 1H NMR (CDCl3): δ 7.35 (t, J = 8.8 Hz, 2 H), 7.20 (d, J = 8.02 

Hz, 2 H), 7.13-7.10 (m, 4 H), 7.01 (t, J = 7.2 Hz, 1 H), 5.60 (b, 1 H), 2.43 (s, 3 H) ppm; 13C 

NMR (CDCl3): δ 144.3, 140.7, 131.2, 130.2, 129.7, 120.7, 119.3, 117.2, 21.1 ppm. 

2-methoxy-N-phenylaniline (9c): 1H NMR (CDCl3): δ 7.43 (t, J = 6.8 Hz, 1 H), 7.39 (d, J = 7.2 

Hz, 2 H), 7.27 (d, J = 8.0 Hz, 2 H), 7.06 (t, J = 8.0 Hz, 1 H), 7.02-6.99 (m, 3 H), 6.35 (b, 1 H), 

3.96 (s, 3 H), ppm; 13C NMR (CDCl3): δ 148.5, 143.0, 133.2, 129.6, 121.4, 121.1, 120.2, 118.8, 

114.9, 110.8, 55.8 ppm. 

4-nitro-N-phenylaniline (9d): 1H NMR (CDCl3): 8.12 (d, J = 9.2 Hz, 2 H), 7.39 (t, J = 7.6 Hz, 2 

H), 7.21 (d, J = 7.6 Hz, 2 H), 7.17 (t, J = 6.4 Hz, 1 H), 6.94 (d, J = 9.2 Hz, 2 H), 6.34 (b, 1 H) 

ppm; 13C NMR (CDCl3): δ 150.4, 140.0, 139.7, 130.0, 126.5, 124.9, 122.2, 113.9 ppm. 

2,4-dinitro-N-phenylaniline(9e): 1H NMR (CDCl3): δ 9.98(b, 1 H), 9.16 (s, 1 H), 8.16 (d, J = 

6.0 Hz, 1 H), 7.51 (t, J = 7.6 Hz, 2 H), 7.39 (t, J = 7.2 Hz, 1 H), 7.31 (d, J = 7.2 Hz, 2 H), 7.17 

(d, J = 9.6 Hz, 1 H), 1.60 (b, 1 H) ppm; 13C NMR (CDCl3): δ 147.4, 137.6, 136.9, 131.3, 130.5, 

130.2, 130.0, 125.8, 124.3, 116.3 ppm. 

2-phenylisoindoline-1, 3-dione (12a): 1H NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 5.5, 3.0 Hz, 

2 H), 7.79 (dd, J = 5.5, 3.0 Hz, 2 H), 7.50 (t, J = 7.3 Hz, 2 H), 7.44 (dt, J = 7.6, 1.4 Hz, 1 H), 

7.40 (dt, J = 2.7, 1.6 Hz, 1 H) ppm: 13C NMR (400 MHz, CDCl3) δ 167.5, 134.6, 132.0, 131.9, 

129.3, 128.3, 126.8, 124.0 ppm. 
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2-p-tolylisoindoline-1,3-dione (12b): 1H NMR (400 MHz, CDCl3) δ 7.93 (dd, J = 5.4, 3.1 Hz, 2 

H), 7.77 (dd, J = 5.4, 3.1 Hz, 2 H), 7.31 (s, 4 H), 2.41 (s, 6 H) ppm: 13C NMR (400 MHz, CDCl3) 

δ 167.7, 138.4, 134.6, 132.0, 130.2, 130.0, 129.9, 129.2, 126.9, 126.7, 126.6, 123.9, 21.5 ppm. 

4-(1,3-dioxoisoindolin-2-yl)benzonitrile (12c): 1H NMR (400 MHz, CDCl3) δ 7.99 (dd, J = 5.5, 

3.1 Hz, 2 H), 7.84 (dd, J = 5.5, 3.1 Hz, 2 H), 7.80 (d, J = 8.7 Hz, 2 H), 7.69 (d, J = 8.7 Hz, 2 H) 

ppm: 13C NMR (400 MHz, CDCl3) δ 166.7, 136.2, 135.2, 133.2, 131.6, 126.7, 124.3, 118.5, 

111.5 ppm. 

2-(4-nitrophenyl)isoindoline-1,3-dione (12d): 1H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 9.2 

Hz, 2 H), 8.00 (dd, J = 5.5, 3.0 Hz, 2 H), 7.85 (dd, J = 5.5, 3.0 Hz, 2 H), 7.77 (d, J = 9.2 Hz, 2 H) 

ppm: 13C NMR (400 MHz, CDCl3) δ 166.6, 146.6, 137.8, 135.2, 131.6, 126.6, 124.7, 124.4 ppm. 

1-phenylpyrrolidine-2,5-dione (14a): 1H NMR (400 MHz, CDCl3) δ 7.48 (t, J = 7.5 Hz, 2 H), 

7.41 (d, J = 7.5 Hz, 1 H), 7.28 (d, J = 7.8 Hz, 2 H), 2.90 (s, 4 H) ppm: 13C NMR (400 MHz, 

CDCl3) δ176.6, 132.2, 129.4, 128.9, 126.7, 28.6 ppm. 

1-p-tolylpyrrolidine-2,5-dione (14b): 1H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 8.1 Hz, 1 H), 

7.14 (d, J = 7.8 Hz, 1 H), 2.84 (s, 4 H), 2.37 (s, 3 H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.7, 

139.0, 130.1, 129.5, 129.4, 128.9, 126.7, 126.5, 28.6, 21.4 ppm. 

 4-(2,5-dioxopyrrolidin-1-yl)benzonitrile (14c): 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.7 

Hz, 1 H), 7.47 (d, J = 8.7 Hz, 1 H), 2.89 (s, 2 H) ppm: 13C NMR (400MHz, CDCl3) δ 175.6, 

136.1, 133.4, 133.1, 127.4, 127.1, 118.3, 112.2, 28.6 ppm. 



  122 

 1-(4-nitrophenyl)pyrrolidine-2,5-dione (14d): 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 1.2 

Hz, 2 H), 7.60 (d, J = 8.0 Hz, 2 H), 2.96 (s, 4 H) ppm: 13C NMR (400 MHz, CDCl3) δ 175.4, 

147.2, 137.6, 127.1, 124.6, 28.6 ppm. 

2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (16a): 1H NMR (400 MHz, CDCl3) δ 8.64 

(d, J = 7.3 Hz, 2 H), 8.27 (d, J = 8.3 Hz, 2 H), 7.79 (t, J = 8.0 Hz, 2 H), 7.56 (t, J = 7.5 Hz, 2 H), 

7.49 (t, J = 7.4 Hz, 1 H), 7.32 (d, J = 7.2 Hz, 2 H) ppm: 13C NMR (400 MHz, CDCl3) δ 164.6, 

135.7, 134.5, 132.0, 131.8, 129.6, 128.9, 128.9, 128.8, 127.3, 123.0 ppm. 

2-p-tolyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (16b): 1H NMR (400 MHz, CDCl3) δ 8.65 

(d, J = 7.3 Hz, 2 H), 8.27 (d, J = 8.3 Hz, 2 H), 7.79 (t, J = 7.8 Hz, 2 H), 7.36 (d, J = 8.1 Hz, 2 H), 

7.21 (d, J = 8.1 Hz, 2 H), 2.45 (s, 3 H) ppm: 13C NMR (400MHz, CDCl3): 164.6, 139.6, 135.6, 

134.5, 132.0, 131.8, 129.8, 129.5, 129.4, 128.7, 127.3, 125.8, 123.1, 21.7 ppm. 

4-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)benzonitrile (16c): 1H NMR (400 MHz, 

CDCl3) δ 8.66 (d, J = 7.3 Hz, 1 H), 8.31 (d, J = 8.4 Hz, 1 H), 7.84 (t, J = 7.8 Hz 2 H), 7.81 (d, J 

= 8.0 Hz, 1 H), 7.47 (d, J = 8.3 Hz, 1 H). 

5,5-dimethyl-3-phenylimidazolidine-2,4-dione(18a): 1H NMR (400 MHz, CDCl3) δ 7.41 (t, J = 

7.3 Hz, 2 H), 7.35 (d, J = 8.3 Hz, 2 H), 7.30 (d, J = 7.2 Hz, 1 H), 6.80 (s, 1 H), 1.44 (s, 6 H) ppm: 

13C NMR (400 MHz, CDCl3) δ 176.6, 156.0, 131.8, 129.3, 128.4, 126.4, 58.9, 25.4 ppm. 

5,5-dimethyl-3-p-tolylimidazolidine-2,4-dione  (18b): 1H NMR (400 MHz, CDCl3) δ 7.27 (s, 4 

H), 7.04 (s, 1 H), 2.38 (s, 3 H), 1.49 (s, 6 H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.7, 156.3, 

138.5, 130.0, 129.2, 126.4, 58.9, 25.3, 21.4 ppm. 
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4-(4,4-dimethyl-2,5-dioxoimidazolidin-1-yl)benzonitrile (18c): 1H NMR (400 MHz, CDCl3) δ 

7.75 (d, J = 8.0, 2 H), 7.67 (d, J = 8.0, 2 H), 6.72 (s, 1 H), 1.54 (s, 6 H) ppm: 13C NMR (400 

MHz, CDCl3) δ 175.8, 154.7, 136.1, 133.1, 126.2, 118.4, 111.5, 59.0, 29.9, 25.5 ppm. 

5,5-dimethyl-3-(4-nitrophenyl)imidazolidine-2,4-dione (18d): 1H NMR (400 MHz, CDCl3) δ 

8.29 (dd, J = 8.0, 4.0, 2 H), 7.73 (d, J = 8.0, 2 H), 7.08 (s, 1 H) ppm: 13C NMR (400 MHz, 

CDCl3) δ 175.8, 154.8, 146.6, 137.8, 126.1, 124.5, 59.0, 25.4 ppm. 
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Chapter-4: Cu (II) Mediated Formamidation and Amination of Aryl 
Halides 

 

4.1 Introduction:  

Metal catalyzed coupling reactions between aryl halides and amides have been known since long 

time for their application in academia and pharmaceutical industries.1 These reactions attract 

significant attention due to fact that many biologically active compounds possess aryl-nitrogen 

bond. In fact over 90% of commercially available drugs have at least one nitrogen in their 

structure.2 In the past, several research groups reported the Pd catalyzed formation of C-N bond 

by coupling aromatic halides with amines,3  amides 4, and imides 5. Recently Zhang group 

reported pd catalyzed amidation of aryl halides using 2-dialkylphosphino-2’-alkoxy-1,1’-
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binaphthyl as ligand. 6 In spite of its high cost and use of external ligands it is very hard to apply 

these reactions in the industrial scale, it is important to mention that removing Pd residues from 

the reaction media requires special methods, which increase its cost. 

 The copper catalyzed coupling has emerged as a very good alternate for this, because of its 

easiness to handle and lower cost and mostly less toxic. In recent years several research groups 

reported their work on this area mostly by using external ligands such as α-amino acids, 7 bis- 

pyridylimines, 8 1,2-diamines, 9 1,10 – phenanthroline, 10 and 1,3- diketones.11 However because 

the use of Cu (I) and external ligands these methods are also relatively expensive and indeed we 

have to take extra care to handle the reactions.  There are also some report regarding of copper 

catalyzed formamidation of arylboric acids.12 Therefore it is of paramount interest for both 

academic and industrial community to develop simple, safe, and economical method for 

preparation aniline and aryl formamide derivatives from readily available and inexpensive aryl 

halides.  The most economical approach to aryl coupling reactions is to use extremely 

inexpensive copper (II) sulfate as source of the coupling catalyst.13 

4.2 Results and Discussion: 

Here we would like to report a simple, efficient, ligand free, and inexpensive method for direct 

aryl formamidation and amination of readily available aryl halides.  Reaction was performed by 

simple heating formamide suspension of corresponding aryl halide, copper (II) sulfate 

pentahydrate, and potassium carbonate at 150-160°C for few hours on open air (Figure 1).  

Product was isolated by extraction of water diluted reaction mixture followed by flash 

chromatography.  Isolated yield are almost quantitative (Table 1). 

4.2.1 Aryl halides coupling with formamide: 
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Scheme 4.1 Aryl halides coupling with formamide 

 

Table 4.1 Prepared N-formyl anilines and aniline derivatives 

Entry Aryl Halide Formamide (2) Yield 2 (%) Aniline (3) Yield 3 (%) 

a 

  

93 

 

97a 

a 

  

95 
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b 

  

96 

 

98a 

b 

  

93 

 

 

c 

  

90 

 

96a 

d 

  

Trace 

 

56b 

e 

  

Trace 

 

40b 

f 

  

Trace 

 

40b 

g 

  

96 

 

97a 

 a Prepared in two steps : Formamidation followed by NaOH hydrolysis; b Isolated directly from 
formamidation without NaOH hydrolysis.  
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The coupling reaction proceeds very well with aryl chlorides, bromides, or iodides. Usually the 

ideal substrates for coupling reactions are aryl bromides because aryl chlorides are generally less 

reactive resulting in longer reaction time and lower conversion while aryl iodides are more 

reactive resulting in formation of undesired byproducts. This makes the purification process 

somewhat difficult and isolated yields lower, but in our case irrespective of the halogen we 

ended up with the same result.  

 Regardless of the nature of the aryl substituents first step of the reaction is always 

formamidation (path (a) products 2a-2g, scheme 3.1).  However with electron-withdrawing 

substituents formed aryl formamide (2d, 2e, and 2f) are too reactive and they easily hydrolyzed 

under the formamidation reaction conditions.  Consequently only products (3d, 3e, and 3f) of 

direct amination were isolated (Table 3.1).  On the other hand isolated formaidation products 

with aryl electron-donating groups were easily hydrolyzed with sodium hydroxide in aqueous 

ethanol to produce corresponding anilines and in this way aryl amination product can be 

prepared in the presence ether electron-donating or electron-withdrawing groups. 
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Figure 4.1: Proposed mechanism for CuSO4•5H2O catalyzed coupling of aryl halides with 
formamide. 

 

In the nature reaction is transom metal catalyzed aryl coupling14 between aryl halides and 

nitrogen nucleophiles such as NHCHO anion. We propose that active coupling reagent is short 

living cooper (III) complex15 with aryl and nucleophilic nitrogen moiety (Figure 3.1).  During the 

reaction color of the reaction changes from clear green, to dark blue and finally to dark read 

suspension.  If formamide suspension of cooper (II) sulfate and potassium carbonate is heated at 

160°C for few hours formed read precipitate of Cu2O that can be separated by filtration.16 If dark 

red suspension is left stirring overnight on open air colorless solution above the precipitate 

gradually becomes green (soluble copper II) and eventually all the precipitate (Cu2O) dissolves 

to form solution with the original color (copper II). On the bases of these observations we are 

proposing cooper catalytic cycle for formamidation of aryl halides as outlined in Figure 3.1. 
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4.2.2 Aryl halides coupling with N,N-dimethylformamide (DMF): 

Formamidation with N,N-dimethylformamide cannot be accomplished because formamide 

nucleophile cannot be formed during copper (II) mediated reaction, therefore does not come as 

surprise that there was no reaction with aryl halides that possess electron-donating substituents 

such as halides 1a, 1b, 1c, 1g, and 1h. However when reaction with aryl halides that possess 

electron-withdrawing substituents such as 1d and 1e, and 1f dimethylamination products were 

isolated (Scheme 3.2). 

          

Scheme 4.2: Aryl halides coupling with N,N-dimethylformamide (DMF) 

 

Table 4.2: Prepared N,N-dimethyl aniline derivatives 

Entry Aryl Halide Product (4) Yield (%) 

d 

  

95 
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e 

  

96 

 

In the course of the reaction red Cu2O precipitate was formed similar as in the case of reaction 

with formamide (Figure 3.1). Considering that reaction conditions for both formamide and DMF 

are identical we proposed similar catalytic mechanism in copper (II) reduction to copper (I) and 

generating copper (I) dimethylamide (Figure 3.2). In the case of DMF it is not possible to form 

more stable copper (I) salt as it is the case with formamide (Figure 3.1, CuNHCHO) therefore 

CuN(CH3)2 reacts as nucleophile in the classic nucleophilic aromatic substitution (SNAr)17 that is 

feasible for electron deficient aryl halides as it is in our case. 

 

Figure 4.2: Proposed mechanism for CuSO4•5H2O catalyzed coupling of aryl halides with N,N-
dimethyl formamide (DMF). 
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Up to this moment only results with copper (II) sulfate pentahydrate as the coupling mediator 

were reported.  However reactions with copper (II) chloride, copper (II) acetate as well as with 

copper (II) oxide were performed.  There is no noticeable difference neither in reaction time or 

isolated yield of the product.  Because copper (II) sulfate pentahydrate is broadly available and 

affordable only the results with this salt were reported here.  It is therefore our reasonable 

assumption that any copper (II) salt with reasonable formamides solubility will be good mediator 

of formamidation of electron rich aromatic halides. 

Initially when prepared are spectroscopically analyzes formamide products always show two sets 

of signal in both their 1H- as well as 13C-NMRs with rough ratio of 3:1 (Figure 3.3).  

Considering hydrogen-coupling constant of formamide group (HNCHO) major isomer is cis (J = 

1.6 Hz) with trans (J = 10.8 Hz) only around 30%. To our surprise the ratio of two isomers did 

not change even when DMSO-d6 solution was heated with reflux for five minutes. Similar 

finding were reported in literature.18 It was estimated that rotation barrier around the C-N 

formamide bond is around 17 kcal/mol.19 In fact it was reported that N-phenylformamide forms 

cocrystal with two its isomers.20  
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Figure 4.3: 1H NMR showing the cis and trans isomers of N-p-tolylformamide. 

 

4.3 Conclusions: 

In conclusion we developed a very good methodology for formamidation and amination of aryl 

halides. The advantages associated with this methodology such as use of in expensive Cu (II) 

salts (CuSO4•5H2O, CuO, CuCl2•2H2O, Cu(OAc)2•H2O), short reaction times, moderate to 

excellent yields and finally applicable to broad substrates makes this approach as a versatile 

method. 
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4.4 Experimental Section:  

General procedure for coupling of aryl halides with formamide: Preparation of N-p-

tolylformamide (2d):  

Formamide (10 ml) suspension of 4-bromotolune (1d) (342 mg, 2.00 mmol), potassium 

carbonate (690 mg, 5.00 mmol), and copper (II) sulfate pentahydrate (600 mg; 2.40 mmol) was 

heated with magnetic stirring at 160°C for 2.5 hours. After cooling reaction mixture was mixed 

with ice cold water (50 ml) and extracted with dichloromethane (3x20 ml). Combined organic 

layers were dried over anhydrous sodium sulfate and evaporated to give crude product. This 

product was further purified by silica gel column chromatography with hexane-ethyl acetate 

(4:1) as an eluent. Isolated 360 mg (96%) of pure product. 

General procedure for hydrolysis of aryl formamides: Preparation of aniline (3a). 

Into ethanol (10 ml) solution of N-phenylformamide (2b) (120 mg, 1.00 mmol) aqueous (2 ml) 

sodium hydroxide (40 mg, 1.0 mmol) was added. Resulting solution was refluxed for one hour. 

Volume of the solvent was reduced (2 ml) and extracted with dichloromethane (3x5 ml). 

Combined organic extracts were dried over anhydrous sodium sulfate and evaporate to give pure 

aniline (990 mg; 97%). 

General procedure for coupling of aryl halides with formamide: Preparation of N-p-

tolylformamide (4e):  

N,N-dimethylformamide (10 ml) suspension of 4-bromonitrobenzene (1e) (404 mg, 2,00 mmol), 

potassium carbonate (690 mg, 5.00 mmol), and copper (II) sulfate pentahydrate (600 mg; 2.4 

mmol) was heated with magnetic stirring at 160°C for 2.5 h. After cooling reaction mixture was 

mixed with ice cold water (50 ml) and extracted with dichloromethane (3x20 ml). Combined 

organic layers were dried over anhydrous sodium sulfate and evaporated to give crude product. 
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This product was further purified by silica gel column chromatography with hexane-ethyl acetate 

(4:1) as an eluent. Isolated 318 mg (96%) of pure product. 

 

4.5 Spectral Section: 

N-phenylformamide (2a); 1H NMR (CDCl3)(Complex): δ 9.54 (d, J = 10.8 Hz), 9.07 (s), 8.70 

(d, J = 11.2 Hz), 8.31 (s), 7.60 (d, J = 8.0 Hz), 7.30 (q, J = 14.8, 7.6 Hz), 7.17-7.09 (m) ppm; 13C 

NMR (CDCl3): δ 163.7, 160.6, 137.5, 137.3, 130.9, 129.3, 125.5, 125.1, 120.7, 119.0 ppm. 

N-p-tolylformamide (2b); 1H NMR (CDCl3) (Complex): δ 8.97 (d, J = 10.4 Hz), 8.63 (d, J = 

11.6 Hz), 8.29 (s), 8.20(b), 7.43(d, J = 8.4 Hz), 7.11 (q, J = 13.6, 8.0 Hz), 6.99 (d, J = 8.0 Hz), 

2.32 (s), 2.30 (s) ppm; 13C NMR (CDCl3): δ 163.5, 159.8, 135.3, 134.8, 134.6, 134.5, 130.5, 

129.8, 120.4, 119.3, 21.1, 21.0 ppm.   

N-(2-methoxyphenyl)formamide (2c); 1H NMR (CDCl3) (Complex): δ 8.71(d, J = 11.2 Hz), 

8.42(s), 8.34(d, J = 8.0 Hz), 8.07(b), 7.15(d, J = 8.0 Hz), 7.1 (t, J = 8.0 Hz), 7.04(t, J = 7.6 Hz), 

6.92(t, J = 8.0 Hz), 6.85(d, J = 8.4 Hz), 3.83(s), 3.81(s) ppm; 13C NMR (CDCl3): δ 161.9, 159.8, 

149.2, 148.1, 127.6, 126.5, 125.8, 124.9, 121.9, 120.1, 117.9, 111.9, 110.1, 56.1 ppm.   

N-(4-methylnaphthalen-1-yl)formamide (2g); 1H NMR (CDCl3)(complex): δ 9.13 (d, J = 9.6 

Hz), 8.57 (d, J = 11.2 Hz), 8.08-7.97 (m), 7.87 (d, J = 8 Hz), 7.75 (d, J = 8 Hz), 7.62-7.57 (m), 

7.54-7.47 (m), 7.27 (t, J = 7.6 Hz), 7.19 (d, J  = 7.2 Hz), 2.70 (s), 2.64 (s) ppm; 13C NMR 

(CDCL3): 165.0, 160.4, 133.9, 133.5, 133.3, 133.0, 130.9, 129.7, 128.5, 127.5, 126.9, 126.8, 

126.5, 126.3, 126.2, 125.1, 125.02 122.4, 121.7, 121.5, 119.6, 19.8, 19.5 ppm. 
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2,4-dinitroaniline (3e); 1H NMR (dmso); δ 8.79 (s, 1 H), 8.38 (b, 2 H), 8.16 (d, J = 7.6 Hz, 1 

H), 7.11 (d, J = 9.6 Hz, 1 H) ppm; 13C NMR (dmso): 150.5, 135.8, 130.0, 129.4, 124.1, 120.5 

ppm. 

4-nitroaniline (3e); 1H NMR (dmso): δ 7.93 (d, J = 9.2 Hz, 2 H), 6.59 (d, J = 9.2 Hz, 2 H), 3.41 

(s, 3 H) ppm; 13C NMR (dmso): 156.4, 136.3, 127.1, 113.1 ppm. 

4-aminobenzonitrile (3f); 1H NMR (CDCl3): δ 7.41 (d, J = 8.0 Hz, 2 H), 6.64 (d, J= 8.0 Hz, 2 

H), 4.20 (b, 2 H) ppm; 13C NMR (CDCL3): 114.7, 118.0, 134.1, 134.1 ppm. 

N,N-dimethyl-2,4-dinitroaniline (4d); 1H NMR (CDCl3) : δ 8.56 (s, 1 H), 8.11 (d, J = 9.2 Hz, 1 

H), 7.00 (d, J = 9.6 HZ, 1 H), 3.03 (s, 6 H) ppm; 13C NMR (CDCl3): 149.4, 136.3, 135.6, 127.9, 

124.3, 117.0, 42.6 ppm. 

N,N-dimethyl-4-nitroaniline (4e); 1H NMR (CDCl3): δ 8.10 (d, J = 9.2 Hz, 2 H), 6.59 (d, J = 

9.6 Hz, 2 H), 3.11 (s, 6 H) ppm; 13C NMR (CDCl3); 126.4, 110.4, 40.5 ppm.  
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Chapter -5: Cu(II) Mediated Coupling of Aryl Halides With Cyclic 
Imides 

 

5.1 Introduction: 

N-aryl and alkyl cyclic imides have been known since long time because of their biological 

activities (1) such as anticancer agents (2), anticonvulsants (3), anti HIV (4), Anti inflammatory (5), 

fungicides (6), herbicides (7), hypolipidemics (8), and anti hypertensives (9). 

5.1.1Imide Derivatives as Anticancer Agents: Amonafide (1) (10), a N-alkyl derivative of 

naphthylimide well known since long time for it’s anti cancer activity. Recently it was reported 

that naphthylimide derivatives inhibits the interaction between Clathrin N-terminal domain (TD) 

and endocyctic accessory proteins (11) (i.e Clathrin inhibition). We also have literature reports of 

hydantoin derivatives as anti cancer drugs (12). 

 

 
 

Figure 5.1 Naphthylimide based anticancer drug (Amonafide) 
 
 
5.1.2 Imide Derivatives as Anticonvulsants: 
 
Epilepsy is one of the most frequent neurological afflictions in man characterized by excessive 

temporary neuronal discharges resulting in uncontrolled convulsion (13). Anticonvulsants are 

more accurately called antiepileptic drugs and are sometimes referred to as antiseizure drugs. 

Although several new anticonvulsants are introduced, some types of seizures are still not 
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adequately treated with current therapy (14). 

Hydantoins (15) and Succinimides (16) a group of cyclic imides have been demonstrated to possess 

good anticonvulsant property. 

 

Figure 5.2 Hydantoin based anticonvulsants 

 

  
Figure 5.3 Succiniimide based anticonvulsants 

 
 
5.1.3 Imide Derivatives as Non Steroidal Anti Inflammatory drugs (NSAIDs): 

Recently 1,5 – diaryl hydantoin (9) (a cyclic imide) derivatives shown the activity of inhibiting 

COX-2 enzyme and there by acting as a NSAIDs (17).  
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Figure 5.4 General structure of hydantoin based NSAID   

5.1.4 Imide derivatives as peptidase inhibitors: 

In 1998 Hashimoto group reported that 2-(2,6-diethylphenyl)-l,2,3,4-tetrahydroisoquinoline-l,3-

dione (PIQ-22) (10) a N-Aryl cyclic imide as a potent specific inhibitor of amino peptidase N 

(APN) (18), later on they also reported a library of small molecules which contains a N-phenyl 

phthalimide skeleton have the capability of inhibiting the dipeptidyl peptidase IV (DPP-IV) (19). 

In feb-2013 FDA approved the pomalidomide (3-amino thalidomide) (11) as a treatment for 

relapsed and refractory multiple myeloma (20). N-aryl and alkyl succiniimide derivatives are 

famous for their potential fungicide activity; some of these derivatives can also inhibit the 

aminopeptidase N (21).   

 

 

Figure 5.5: Cyclic imide based peptidase inhibitors 

 
Along with their application in pharmaceutical industry, cyclic imide derivatives are well known 
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for their synthetic utility as intermediates (22) and for their applications in polymer industry (23).  

A comprehensive and detailed literature survey reveals that imide derivatives are generally 

synthesized by the dehydrative condensation of anhydrides with aromatic or aliphatic amines (24), 

by using ionic liquids (25), Microwave irradiation. (26) 

Recently adimurthy et all reported a transmidation process to synthesis the N-substituted 

phthalimides (27). However these low yielding condensations frequently requires high 

temperatures for extended periods of time, additional complications that can include the air 

sensitivity of many amines as well as the insolubility and hydrolytic susceptibility of the 

anhydrides (28).  

Transition metal catalyzed cross-coupling reactions have revolutionized organic synthesis over 

the past several decades (29). There have been a number of recent advances in the field of 

transition metal promoted C-N bond formation by cross coupling of various N nucleophiles such 

as amines (30), amides (31), and imides (32) with different aryl and alkyl halides (33) or boronic acids 

(34) or lead triacetates (35). So far significant improvements have been achieved in Pd catalyzed C-

N cross coupling reactions (36), but it remains hard to apply these reactions to large and industrial 

scale due to the high cost of Pd and the difficulty in removing Pd residues from polar reaction 

products (37). Despite of all these difficulties with Pd, people started employing the Cu catalysis 

for the cross coupling reactions (38). Most notably Buchwald and Hartwig published numerous 

publications on Cu catalyzed C-N bond formation by using various ligands (39). In 2005, 

Wsielewski reported a cross coupling of aryl boronic esters with cyclic imides by using 

Cu(OAc)2 as a catalyst (40), along with these we have various reports, however these are limited 

since the preparation of highly functionalized substrates usually requires multistep sequences. 

Because of all these limitations and difficulties we were in a desperate need of a simple end 
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efficient methodology for coupling of cyclic imides with readily available aryl or alkyl halides. 

We started working on developing a new methodology for coupling cyclic imides with various 

aryl halides. However, we considered of not using 

1) Any Pd/ Pt catalysts, 

2) Any external ligands, 

3) Any inert (under N2) and Harsh conditions. 

And finally (4) Applicable to diverse substrates. 

5.2 Results and discussion: 

I started working on coupling of phthalimide with 2-Iodoanisole (Scheme 5.1), the cross 

coupling reaction required a catalyst, a base and a solvent. So I tried most of the possible 

combinations by using different bases such as K2CO3, KOH, pyridine, 2,4,6-collidine and various 

solvents like DMF, DMSO, pyridine and water and finally with various copper salts as catalysts 

(Table 5.1). In most of the cases the reaction ended up with no product formation but in the case 

of water as a solvent resulted in the formation of copper complex. While in other case when I 

used the Cu (II) and Cu (I) combination instead of forming the coupled product the reaction 

ended up with N-methyl phthalimide. 

 

Scheme 5.1 Phthalimide coupling with 2-Iodoanisole: 
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Table 5.1 Different combinations of base, copper salt and solvent tested on Coupling of 
phthalimide with 2-Iodoanisole:  

Copper Reagent Base Solvent Result 

CuCN K2CO3 DMF No Reaction 

CuCN K2CO3 DMSO No Reaction 

Cu(OAC)2 KOH DMF No Reaction 

Cu(OAC)2,  Cu  K2CO3 DMF No Reaction 

Cu(OAC)2 KOH H2O Copper Complex 

Cu(OAC)2 Pyridine Pyridine No Reaction 

Cu(OAC)2 2,4,6- Collidine Pyridine No Reaction 

CuCl 2,4,6- Collidine Pyridine No Reaction 

Cu(OAC)2, CuCl K2CO3 DMF N-Methyl Phthalimide 

Cu2O, Cu K2CO3 DMF No Reaction 

Cu2O 2,4,6- Collidine Pyridine No Reaction 

Cu2O 2,4,6- Collidine Py-HCl No Reaction 

   

However when I changed the substrate from iodoanisole to p-bromotoluene, and by employing 

K2CO3 as base and CuSO4•5H2O as the catalyst, the reaction completed in 5 h with the desired 

coupled product as indicated in scheme 5.2. 

 

 

 Scheme 5.2 phthalimide coupling with p-bromotoluene 
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Later on I changed the simple phthalimide to potassium phthalimide to see the variation in 

reaction timings (scheme 5.3), and ended up with 4 h required time for reaction completion in the 

case of potassium phthalimide, which is 1 h short then the required time for simple phthalimide. 

The optimized reaction conditions required a potassium salt of phthalimide, copper sulfate 

pentahydrate as a catalyst and DMF as a solvent.  

 

Scheme 5.3 Potassium phthalimide coupling with p-bromotoluene. 

 

The progress of the reaction can be monitored visually by color change, which is shown to be in 

direct correlation with the reaction progress as followed by 1H-NMR spectroscopy (Figure 5.6). 

The reaction mixture color changes from dark blue to green, yellow, and finally a red suspension 

in the course of the reaction, as demonstrated in the example of copper (II) sulfated mediated 

coupling of potassium phthalimide with p-bromotoluene. The reaction is practically completed 

after four hours of refluxing the DMF suspension. 
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Figure 5.6 Visual and 1H-NMR reaction monitoring of DMF refluxing suspension of potassium 

phthalimide, p-bromotoluene, and copper (II) sulfate pentahydrate  
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Figure 5.7 Monitoring the reaction progress by color change 
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To explore the nature of the copper (II) mediated coupling, the red precipitate (Figure 5.7) was 

separated by filtration, washed with water and dried. The resulting red powder was not soluble in 

water but was soluble in concentrated hydrochloric acid, where the solution color quickly 

changes to green. Same red precipitate was isolated if just suspension of copper (II) sulfate 

pentahydrate was refluxed for five hours in DMF (Figure 5.8). 

 

 

Figure 5.8 Reduction of CuSO4.H2O in DMF 

 

However if the DMF suspension of copper (II) sulfate penta hydrate was refluxed with vigorous 

stirring about overnight with stearic acid, fine small shiny red balls (average diameter around 0.2 

mm) were isolated. This material is not soluble in concentrated hydrochloric acid. Therefore in 

the course of the reaction Cu2O is formed by reduction of copper (II) with DMF. Because of the 

low DMF solubility, Cu2O cannot be further reduced. However copper (I) oxide can be 

solubilized in the presence of acid, as is the case with stearic acid, where further reduction of 

copper (I) to copper (0) is possible.  Therefore we proposed that the catalytic species for copper 

mediated coupling is in situ generated copper (I). After it is generated copper (I) oxide is 

removed from the reaction media and is not anymore part of the catalytic cycle (Figure 5.9). This 

explains the fact that equivalent amounts of copper (II) sulfate pentahydrate are required for the 

reaction to be completed. There is literature (12) evidence for the formation of copper (I) N,N-
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dialkylcarbamate [CuOCON(CH3)2] and our own experiments support the existence of 

CuN(CH3)2 in the reaction mixture. For instance when the DMF suspension of equimolar ratio of 

4-nitrobromobenzene and copper sulfate pentahydrate was refluxed for eight hours, 4-nitro-N,N-

dimethylaniline was isolated as the only product.  

 

 

 

 

  Figure 5.9 Proposed catalytic cycle for coupling of cyclic imides with aryl halides 
 

It is possible to use other sources of copper to perform the studied coupling reactions. We have 

explored a large number of simple copper (I) and copper (II) salts without using any external 

ligands. A few selected examples are presented in Figure 5.10. As mentioned, formed Cu2O 

precipitated from the reaction mixture and was eliminated from the catalytic cycle.  This is fully 

supported by the finding that there is no product formation with Cu2O as catalyst after the DMF 

suspension of the reactants refluxing for four hours. It seems that after the copper (III) salt, 

Ar(X)CuN(COR)2, rearranges into the  product, ArN(COR)2, and copper (I) halide later under 

the reaction condition precipitates as insoluble copper (I) oxide.  On the other hand, the solubility 
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of copper iodide is slightly higher in comparison to copper (I) oxide and therefore a small 

amount of catalytic species is present in the solution insuring about a 45% conversion after four 

hours (Figure 5.10).  It is interesting to mention that copper (II) acetate monohydrate is better 

catalyst than copper (I) iodide but not as good as copper (II) sulfate pentahydrate. It all depends 

on the solubility of these salts in DMF and in the case of copper (II) salts, the availability for 

DMF oxidation to CuOCONMe2.   

 

 

 
Figure 5.10 Progress of potassium phthalimide reaction with p-bromotoluene after four hours of 
DMF solution refluxing with various Copper Salts. 
 
 
There are other solvents that can be used as a reaction media for copper mediated reactions. 

However it is important that the copper (I) catalytic species is formed in situ either by copper (II) 

reduction with solvent or by slow titration with the appropriate reducing reagent. Later, is shown 

to be complicated due the to rate of addition and/or thermal stability of common reducing 

reagents such as zinc, ascorbic acid, or glucose.  In solvents such as dioxane, and diglyme, the 

color of copper (II) sulfate changes due to dehydration (Figure 5.11) and after four hours of 
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refluxing there was neither formation of the product nor copper (II) reduction. However, with 

cyclohexanol as solvent, after four hours 20% of the conversion was accomplished. The color of 

the reaction media also indicated the formation of copper (I) oxide. If the cyclohexanol 

suspension of copper (II) sulfate is refluxed overnight, copper (I) oxide is isolated and the 

presence of cyclohexanone was confirmed by IR spectroscopy. Therefore cyclohexanol can be 

used as reaction media but DMF is a superior solvent in respect to reaction time, yields, and 

method of product isolation. 

 

Figure 5.11 The reaction mixture color in various solvents 

 

5.2.1 Potassium phthalimide coupling with aryl halides: 

Applying optimized reaction conditions for potassium phthalimide coupling with p-

bromotoluene series of N-arylphthalinides has been prepared  (Scheme 5.4). The reaction time is 

less than six hours and isolated yields are almost quantitative except for the preparation of 

compound 3h. The reaction conditions are ideal for aldol condensation and in the case of the 

condensation of p-bromoacetophenone with potassium phthalimide, a substantial amount of the 
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aldol condensate forms as byproduct.  Bromo aromatics seem to be and ideal substrates. It is also 

possible to perform the coupling reaction with chloro aromatics but they seem to be less reactive 

resulting in longer reaction time.  In fact, bromo aromatics can be selectively substituted in the 

presence chloro aryl compounds as demonstrated in the case of preparation of 3d and 3j. The 

presence of electron withdrawing groups such as nitro and nitrile does not increase isolated 

yields or shorten reaction time when compare to alkyl (electron donating) substituents.  

Somewhat lower yields are expected for aryl compounds with acyl substituents, and aryl 

compounds with formyl (aldehyde) groups are oxidized, such as the case in preparation of 3l 

from potassium phthalimide and p-bromobenzaldehyde.  

 

Scheme 5.4 Potassium phthalimide coupling with aromatic halides 

 

 

 

 

 

Table 5.2 Prepared N-Arylphthalimides 
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Entry # Product Structure Reaction Time (h) % Yield 

3a 

 

4 96 

3b 

 

4 94 

3c 

 

6 93 

3d 

 

6 95 

3e 

 

2.5 89 

3f 

 

4 95 

3g 

 

5 92 
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3h 

 

3 62 

3i 

 

2.5 95 

3j 

 

2.5 95 

3k 

 

3 93 

 

 

5.2.2 Potassium 1,8-naphthalimide coupling with aryl halides: 

Benzoisoquinoline-1,3-diones attracted some interest because of their antitumor and 

antimicrobial activities. The majority of these compounds studied up to this point are N-alkyl 

substituted. (15) It was of our interest to develop a simple methodology for the preparation of a 

library of N-arylbenzoisoquinoline-1,3-diones (Scheme 5.5). The procedure for preparation of 

these compounds is similar to the preparation of phthalimides, with only one difference that 

these materials have in general lower solubility.  Isolated yields are almost quantitative.  
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Scheme 5.5 Potassium-1,8-naphthalimide coupling with aromatic halides. 

 

Table 5.3 Prepared N-Aryl-1,8-naphthalimides 

Entry # Product Structure Reaction Time (h) % Yield 

5a 

 

5 94 

5b 

 

5 96 

5c 

 

5 91 

5d 

 

4 94 
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5f 

 

6 89 

5f 

 

4 93 

5g 

 

3 91 

5h 

 

5 53 

 

 

5.2.3 Potassium succinimide coupling with aryl halides: 

Five membered nitrogen contain ring with carbonyl groups are a common motif in many natural 

products (16) and materials with interesting biological activity (17). Our synthetic procedure offers 

a new route to prepare a structurally diverse library of these valuable compounds with direct 

attachment of the aryl moiety nitrogen of 2,5-pyrrolidinedione as demonstrated in Scheme 5.6. 
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Scheme 5.6 Potassium succinimide coupling with aromatic halides. 

 

Table 5.4 Prepared N-arylsuccinimides 

Entry # Product Structure Reaction Time (h) % Yield 

7a 

 

5 92 

7b 

 

5 96 

7c 

 

5 94 

7d 

 

4 91 
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7e 

 

6 89 

7f 

 

4 95 

7g 

 

3 67 

7h 

 

5 91 

 

5.2.4 Potassium 5,5-dimethyl hydantoin coupling with aryl halides: 

The final group of interesting compounds that can be prepared by utilizing our synthetic 

approach are the 3- aryl hydantoins. Besides classical application of hydantoin derivatives as 

anticonvulsants (18) there is a recent renaissance of application of 3-aryl hydantoins in modern 

medicinal chemistry (19).  This warrants for a new short and efficient method for the preparation 

of 3-aryl hydantoin from readily available hydantoins that have an available 3-position for 

arylation.  As demonstrated in Scheme 5.7, our synthetic procedure can be used for the 

preparation of a diverse library of 3-aryl hydantoins, starting from 3-unsubstituted hydantoins.  
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Scheme 5.7 Potassium-5,5-Dimethyl hydantoin coupling with aromatic halides 

 

Table 5.5 Prepared N-aryl-5,5-dimethyl hydantoins 

Entry # Product Structure Reaction Time (h) % Yield 

9a 

 

3 94 

9b 

 

2 95 

9c 

 

3 96 

9d 

 

2 92 
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9e 

 

4 91 

9f 

 

2 93 

9g 

 

2 64 

9h 

 

3 90 

 

 

5.2.5 Potassium 1,3-naphthalimide coupling with aryl halides: 

Finally we also explored our developed methodology with 2,3-Naphthylimide. However the 

methodology worked with only few substrates (Scheme 5.8). 

 

 

Scheme 5.8 Potassium-2,3-Naphthalimide coupling with aromatic halides. 



  162 

Table 5.6 Prepared N-aryl-2,3-naphthalimides 

Entry # Product Structure Reaction Time (h) Yield (%) 

11a 

 

5 86 

11c 

 

5 84 

11e 

 

6 76 

 

 

5.3 Conclusions: 

In conclusion we developed a decent methodology for the preparation of N-aryl cyclic imides by 

coupling aryl halides with various cyclic imides such as phthalimide, 1,8-naphthalimide, 

succinimide, 5,5-dimethyl hydantoin and 2,3 naphthalimide. The coupling reaction was screened 

with various copper salts like CuSO4•5H2O, CuO, CuI, Cu(OAc)2•H2O, and found that 

CuSO4•5H2O is the ideal catalyst. We also found that the DMF is the ideal solvent. The 

mechanistic investigations tells us the requirement of equivalent amount of catalyst. The 

highlights of the reactions are (1) Use of inexpensive Cu (II) salt (2) Monitoring the reaction 

progress by color change (3) Relatively short reaction times (4) Applicability to diverse 

substrates and (5) Moderate to excellent yields. 
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5.4 Experimental and Spectral section: 

Preparation of imides from anhydrides; 

1,8 Naphthalimide: 1,8 Nahthalic anhydride (5000 mg, 25.00 mmol), 3.28 ml of 29% aqueous 

ammonia (2900 mg, 50.00 mmol), and water (15 ml) were mixed to form yellow slurry. The 

yellow slurry was heated with stirring to 70°C, then held at that temperature for about 2 h. The 

mixture was then cooled to room temperature and filtered. The product was then washed with 75 

to 100 ml of water until the pH of the washed water was neutral. The product, 1,8-

naphhthalimide (4720 mg, 95%) was isolated as a powder, upon drying and was used directly in 

the next step. 

2,3 Naphthalimide: 2,3 Naphthalic anhydride (5000 mg, 25.00 mmol), 3.28 ml of 29% aqueous 

aamonia (2900 mg, 50.00 mmol) and water (15 ml) were mixed to form a slurry. The slurry was 

heated with stirring to 70°C, then held at that temperature for about 2 h. The mixture was then 

cooled to room temperature and filtered. The product was then washed with 75 to 100 ml of 

water until the pH of the washed water was neutral. The product 2,3-Naphthalimide (4436 mg, 

90%) was isolated as a powder, upon drying and was used directly in the next step. 

Preparation of potassium salts of imides: 

Potassium Phthalimide (1): Phthalimide (1470 mg, 10.00 mmol) was dissolved in 30 ml of hot 

absolute ethanol and to this hot solution was added potassium hydroxide (560 mg, 10.0 mmol) 

dissolved in 4 ml of 75% alcohol. The final solution was cooled at once and the Potassium 

Phthalimide that precipitates was filtered and washed with ice-cold ethanol, dried and used for 

further reactions. 
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Potassium 1,8-Naphthalimide (4): 1,8-Naphthalimide (1970 mg, 10.00 mmol) was dissolved in 

30 ml of hot absolute ethanol and to this hot solution was added potassium hydroxide (560 mg, 

10.0 mmol) dissolved in 4 ml of 75% alcohol. The final solution was cooled at once and the 

Potassium Phthalimide that precipitates was filtered and washed with ice-cold ethanol, dried and 

used for further reactions. 

Potassium Succinimide (6): Succinimide (990 mg, 10.0 mmol) was dissolved in 30 ml of hot 

absolute ethanol and to this hot solution was added potassium hydroxide (560 mg, 10.0 mmol) 

dissolved in 4 ml of 75% alcohol. The final solution was cooled at once and the Potassium 

Phthalimide that precipitates was filtered and washed with ice-cold ethanol, dried and used for 

further reactions.  

Potassium 5,5-Dimethylhydantoin (8): 5,5-Dimethylhydantoin (1280 mg, 10.00 mmol) was 

dissolved in 30 ml of hot absolute ethanol and to this hot solution was added potassium 

hydroxide (560 mg, 10.0 mmol) dissolved in 4 ml of 75% alcohol. The final solution was cooled 

at once and the Potassium Phthalimide that precipitates was filtered and washed with ice-cold 

ethanol, dried and used for further reactions. 

Potassium 2,3-Naphthalimide (10): 1,8-Naphthalimide (1970 mg, 10.00 mmol) was dissolved 

in 30 ml of hot absolute ethanol and to this hot solution was added potassium hydroxide (560 

mg, 10.0 mmol) dissolved in 4 ml of 75% alcohol. The final solution was cooled at once and the 

Potassium Phthalimide that precipitates was filtered and washed with ice-cold ethanol, dried and 

used for further reactions. 
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Preparation of Coupled Products along with spectral data 

Preparation of 2-phenylisoindoline-1, 3-dione (3a): To a DMF suspension of Potassium 

Phthalimide (222 mg, 1.20 mmol) was added Bromo Benzene (157mg, 1.00 mmol) and 

CuSO4.5H2O (250 mg, 1.00 mmol). The reaction mixture was heated at 150°C for 4 h and 

monitored the completion reaction by TLC. The reaction mixture initially blue in color changes 

to green, then in to brown red, leaving residual cuprous oxide. After the reaction is complete the 

reaction mixture was cooled to room temperature and poured on to ice. The precipitate obtained 

was washed with 10% HCl solution, dried and washed over a bed of silica with dichloromethane 

to obtain pure product (214 mg, 96%). 1H NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 5.5, 3.0 Hz, 2 

H), 7.79 (dd, J = 5.5, 3.0 Hz, 2 H), 7.50 (t, J = 7.3 Hz, 2 H), 7.44 (dt, J = 7.6, 1.4 Hz, 1 H), 7.40 

(dt, J = 2.7, 1.6 Hz, 1 H) ppm: 13C NMR (400 MHz, CDCl3) δ 167.5, 134.6, 132.0, 131.9, 129.3, 

128.33, 126.8, 124.0 ppm. 

2-p-tolylisoindoline-1,3-dione (3b): Title compound was prepared according to general method 

described above using p-bromo toluene and potassium phthalimide. The product was purified by 

running on a bed of silica with dichloromethane to obtain a white powder: 1H NMR (400 MHz, 

CDCl3) δ 7.93 (dd, J = 5.4, 3.1 Hz, 2 H), 7.77 (dd, J = 5.4, 3.1 Hz, 2 H), 7.31 (s, 4 H), 2.41 (s, 6 

H) ppm: 13C NMR (400 MHz, CDCl3) δ 167.7, 138.4, 134.6, 132.0, 130.2, 130.0, 129.9, 129.24, 

126.9, 126.7, 126.6, 123.9, 21.5 ppm. 

2-m-tolylisoindoline-1,3-dione (3c): Title compound was prepared according to general method 

described above using m-bromo toluene and potassium phthalimide. The product was purified by 

running on a bed of silica with dichloromethane to obtain a white powder: 1H NMR (400 MHz, 

CDCl3) δ 7.96 (dd, J = 5.4, 3.1 Hz, 1 H), 7.79 (dd, J = 5.4, 3.1 Hz, 1 H), 7.39 (t, J = 7.8 Hz, 1 H), 
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7.22 (d, J = 7.8 Hz, 2 H), 2.42 (s, 6 H) ppm: 13C NMR (400 MHz, CDCl3) δ 167.6, 139.4, 134.6, 

132.0, 131.7, 129.3, 129.2, 127.5, 124.0, 124.0, 21.6. 

2-(3,5-dimethylphenyl)isoindoline-1,3-dione (3i): Title compound was prepared according to 

general method described above using 5-bromo m-xylene and potassium phthalimide. The 

product was purified by running on a bed of silica with dichloromethane to obtain a white 

powder: 1H NMR (400 MHz, CDCl3) δ 7.95 (dd, J = 5.4, 3.1 Hz, 2 H), 7.78 (dd, J = 5.4, 3.1 Hz, 

2 H), 7.05 (s, 1 H), 7.01 (s, 2 H), 2.37 (s, 6 H) ppm: 13C NMR (400 MHz, CDCl3) δ 167.7, 139.1, 

134.5, 132.1, 131.6, 130.4, 124.7, 123.9, 21.5 ppm. 

2-(4-propylphenyl)isoindoline-1,3-dione (3j): Title compound was prepared according to 

general method described above using 1-bromo 4-propyl benzene and potassium phthalimide. 

The product was purified by running on a bed of silica with dichloromethane to obtain a yellow 

powder: 1H NMR (400 MHz, CDCl3) δ 7.94 (dd, J = 5.4, 3.1 Hz, 2 H), 7.78 (dd, J = 5.4, 3.1 Hz, 

2 H), 7.37 - 7.28 (m, 4 H), 2.64 (t, J =7.6 Hz, 2 H), 1.67 (sextet, J =7.2Hz, 2 H), 0.98 (t, J = 7.2 

Hz, 3 H) ppm: 13C NMR (400 MHz, CDCl3) δ 167.7, 143.1, 134.6, 132.1, 129.4, 126.6, 123.9, 

38.0, 24.7, 14.1 ppm. 

2-(4-chlorophenyl)isoindoline-1,3-dione (3d): Title compound was prepared according to 

general method described above using 1-bromo 4-chloro benzene and potassium phthalimide. 

The product was purified by running on a bed of silica with dichloromethane to obtain a pale 

yellow powder: 1H NMR (400 MHz, CDCl3) δ 7.97(dd, J = 5.4, 3.1 Hz, 2 H), 7.81 (dd, J = 5.4, 

3.1 Hz, 2 H), 7.48 (d, J = 8.8 Hz, 2 H), 7.42 (d, J = 8.8 Hz, 2 H) ppm: 13C NMR (400 MHz, 

CDCl3) δ 167.2, 134.8, 134.0, 132.5, 131.8, 130.4, 129.5, 128.2, 127.9, 124.1 ppm. 
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2-(naphthalen-2-yl)isoindoline-1,3-dione (3e):  Title compound was prepared according to 

general method described above using 2-bromo naphthalene and potassium phthalimide. The 

product was purified by running on a bed of silica with dichloromethane to obtain a pale yellow 

powder: 1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 3.1 Hz, 1 H), 7.99 - 7.96 (m, 2 H), 7.95 (d, J 

= 1.8 Hz, 1 H), 7.90 (dd, J = 5.9, 3.5 Hz, 2 H), 7.82 (dd, J = 5.9, 3.5 Hz, 2 H), 7.57 - 7.52 (m, 3 

H) ppm: 13C NMR (400 MHz, CDCl3) δ 167.7, 134.7, 133.5, 132.8, 132.0, 129.2, 128.5, 128.0, 

126.9, 126.8, 125.8, 124.4, 124.0 ppm. 

2-(3,4-dichlorophenyl)isoindoline-1,3-dione (3k): Title compound was prepared according to 

general method described above using 4-bromo-1,2-dichlorobenzene and potassium phthalimide. 

The product was purified by running on a bed of silica with dichloromethane to obtain a white 

powder: 1H NMR (400 MHz, CDCl3) δ 7.97 (dd, J = 5.5, 3.0 Hz, 2 H), 7.82 (dd, J = 5.5, 3.1 Hz, 

2 H), 7.64 (d, J = 2.4 Hz, 1 H), 7.58 (d, J = 8.6 Hz, 1 H), 7.37 (dd, J = 8.6, 2.4 Hz, 1 H) ppm: 13C 

NMR (400 MHz, CDCl3) δ 166.9, 135.0, 133.2, 132.3, 131.7, 131.3, 131.0 128.4, 125.8, 124.2 

ppm. 

4-(1,3-dioxoisoindolin-2-yl)benzonitrile (3f): Title compound was prepared according to 

general method described above using 4-bromo benzonitrile and potassium phthalimide. The 

product was purified by running on a bed of silica with dichloromethane to obtain a white 

powder: 1H NMR (400 MHz, CDCl3) δ 7.99 (dd, J = 5.5, 3.1 Hz, 2 H), 7.84 (dd, J = 5.5, 3.1 Hz, 

2 H), 7.80 (d, J = 8.7 Hz, 2 H), 7.69 (d, J = 8.7 Hz, 2 H) ppm: 13C NMR (400 MHz, CDCl3) δ 

166.7, 136.2, 135.2, 133.2, 131.6, 126.7, 124.3, 118.5, 111.5 ppm. 

2-(4-nitrophenyl)isoindoline-1,3-dione (3g): Title compound was prepared according to 

general method described above using 1-bromo 4-nitro benzene and potassium phthalimide. The 



  168 

product was purified by running on a bed of silica with dichloromethane to obtain a yellow 

powder: 1H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 9.2 Hz, 2 H), 8.00 (dd, J = 5.5, 3.0 Hz, 2 H), 

7.85 (dd, J = 5.5, 3.0 Hz, 2 H), 7.77 (d, J = 9.2 Hz, 2 H) ppm: 13C NMR (400 MHz, CDCl3) δ 

166.6, 146.6, 137.8, 135.2, 131.6, 126.6, 124.7, 124.4 ppm. 

2-(4-acetylphenyl)isoindoline-1,3-dione (3h): Title compound was prepared according to 

general method described above using 4- bromo acetophenone and potassium phthalimide. The 

product was purified by running on a bed of silica with 20% ethyl acetate, hexane to obtain a 

yellow powder: 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 8.6 Hz, 2 H), 7.92 (dd, J = 5.4, 3.1 

Hz, 3 H), 7.83 (dd, J = 5.4, 3.1 Hz, 2 H), 7.63 (d, J = 8.6 Hz, 2 H), 2.65 (s, 3 H) ppm: 13C NMR 

(400 MHz, CDCl3) δ 197.3, 167.0, 136.3, 136.2, 135.0, 131.8, 129.4, 126.3, 124.2, 26.9 ppm. 

Preparation of 2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (5a): To a DMF suspension 

of Potassium salt of 1,8 Naphthalimide (282 mg, 1.20 mmol) was added bromobenzene (157 mg, 

1.00 mmol) and CuSO4.5H2O (250 mg, 1.00 mmol). The reaction mixture was heated at 150°C 

for 5 h and monitored the completion reaction by TLC. The reaction mixture initially blue in 

color changes to green, then in to brown red, leaving residual copper. After the reaction is 

complete the reaction mixture was cooled to room temperature and poured on to ice. The 

precipitate obtained was washed with 10% HCl Solution, dried and run over a bed of silica to 

obtain pure product (256 mg, 94%): 1H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 7.3 Hz, 2 H), 

8.27 (d, J = 8.3 Hz, 2 H), 7.79 (t, J = 8.0 Hz, 2 H), 7.56 (t, J = 7.5 Hz, 2 H), 7.49 (t, J = 7.4 Hz, 1 

H), 7.32 (d, J = 7.2 Hz, 2 H) ppm: 13C NMR (400 MHz, CDCl3) δ 164.6, 135.7, 134.5, 132.0, 

131.8, 129.6, 128.9, 128.9, 128.8, 127.3, 123.0 ppm. 
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2-p-tolyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (5b): Title compound was prepared 

according to general method described above using p-bromo toluene and potassium 1,3-dioxo-

1,3-dihydrobenzo[de]isoquinolin-2-ide.. The product was purified by running on a bed of silica 

with 5% ethyl acetate, hexane to obtain a pale yellow powder: 1H NMR (400 MHz, CDCl3) δ 

8.65 (d, J = 7.3 Hz, 2 H), 8.27 (d, J = 8.3 Hz, 2 H), 7.79 (t, J = 7.8 Hz, 2 H), 7.36 (d, J = 8.1 Hz, 

2 H), 7.21 (d, J = 8.1 Hz, 2 H), 2.45 (s, 3 H) ppm: 13C NMR (400MHz, CDCl3): 164.6, 139.6, 

135.6, 134.5, 132.0, 131.8, 129.8, 129.5, 129.4, 128.7, 127.3, 125.8, 123.1, 21.7 ppm. 

2-m-tolyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (5c): Title compound was prepared 

according to general method described above using m-bromo toluene and potassium 1,3-dioxo-

1,3-dihydrobenzo[de]isoquinolin-2-ide.. The product was purified by running on a bed of silica 

with 5% ethyl acetate, hexane to obtain a pale yellow powder: 1H NMR (400 MHz, CDCl3) δ 

8.64 (d, J = 7.3 Hz, 2 H), 8.25 (d, J = 8.1 Hz, 2 H), 7.77 (t, J = 7.8 Hz, 2 H), 7.45 (t, J = 7.6 Hz, 1 

H), 7.30 (d, J = 7.5 Hz, 1 H), 7.14 (d, J = 8.4 Hz, 2 H) ppm: 13C NMR (400 MHz, CDCl3) δ 

164.7, 138.8, 134.4, 133.0, 132.0, 131.8, 130.4, 128.8, 128.5, 127.2, 123.1, 21.6 ppm. 

2-(4-chlorophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5d): Title compound was 

prepared according to general method described above using 1-bromo 4-chloro benzene and 

potassium 1,3-dioxo-1,3-dihydrobenzo[de]isoquinolin-2-ide.. The product was purified by 

running on a bed of silica with 5% ethyl acetate, hexane to obtain a white powder: 1H NMR (400 

MHz, CDCl3) δ 8.65 (d, J = 7.3 Hz, 2 H), 8.29 (d, J = 8.3 Hz, 2 H), 7.80 (t, J = 7.8 Hz, 2 H), 

7.49 (d, J=7.6 Hz, 2 H), 7.27 (d, J = 7.6 Hz, 2 H) ppm: 13C NMR (400 MHz, CDCl3) δ 164.4, 

134.8, 134.7, 134.1, 132.0, 130.7, 130.3, 129.9, 128.7, 127.3, 122.8 ppm. 
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2-(naphthalen-2-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5e): Title compound was 

prepared according to general method described above using 2-bromo naphthalene and 

potassium 1,3-dioxo-1,3-dihydrobenzo[de]isoquinolin-2-ide.. The product was purified by 

running on a bed of silica with 5% ethyl acetate, hexane to obtain a yellow powder: 1H NMR 

(400 MHz, CDCl3) δ 8.68 (d, J = 7.3 Hz, 2 H), 8.29 (d, J = 8.3 Hz, 2 H), 8.02 (d, J = 8.7 Hz, 1 

H), 7.93 (d, J = 7.6 Hz, 1 H), 7.89 (d, J = 7.6 Hz, 1 H), 7.85 (s, 1 H), 7.81 (t, J = 7.8 Hz, 2 H), 

7.51-7.57 (m, 2 H), 7.41 (dd, J = 8.6, 2.0 Hz, 1 H) ppm: 13C NMR (400 MHz, CDCl3) δ 164.8, 

134.6, 133.9, 133.4, 133.1, 132.0, 131.9, 129.5, 128.8, 128.5, 128.1, 128.0, 127.3, 126.9, 126.6, 

126.4, 123.1 ppm. 

4-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)benzonitrile (5f): Title compound was 

prepared according to general method described above using 4-bromo benzonitrile and 

potassium 1,3-dioxo-1,3-dihydrobenzo[de]isoquinolin-2-ide. The product was purified by 

running on a bed of silica with 5% ethyl acetate, hexane to obtain a white powder: 1H NMR (400 

MHz, CDCl3) δ 8.66 (d, J = 7.3 Hz, 1 H), 8.31 (d, J = 8.4 Hz, 1 H), 7.84 (t, J = 7.8 Hz 2 H), 7.81 

(d, J = 8.0 Hz, 1 H), 7.47 (d, J = 8.3 Hz, 1 H). 

Preparation of 1-phenylpyrrolidine-2,5-dione (7a): To a DMF suspension of Potassium 

Succinimide (164 mg, 1.20 mmol) was added Bromo Benzene (157 mg, 1.00 mmol) and 

CuSO4.5H2O (250 mg, 1.00 mmol). The reaction mixture was heated at 150°C for 5 h and 

monitored the completion reaction by TLC. The reaction mixture initially blue in color changes 

to green, then in to brown red, leaving residual copper. After the reaction is complete the excess 

solvent was removed under vacuum and the residue was diluted with 50 ml of dichloromethane, 

washed with 30 ml 10% HCl, followed by 30ml of water. The organic layer was then dried with 

anhydrous Sodium sulphate and evaporated the solvent under vacuum, to obtain the product. It 
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was the run over a bed of silica, using Dichloromethane as solvent to obtain pure product 

(161mg, 92%): 1H NMR (400 MHz, CDCl3) δ 7.48 (t, J = 7.5 Hz, 2 H), 7.41 (d, J = 7.5 Hz, 1 H), 

7.28 (d, J = 7.8 Hz, 2 H), 2.90 (s, 4 H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.6, 132.2, 129.4, 

128.9, 126.7, 28.6 ppm. 

1-p-tolylpyrrolidine-2,5-dione (7b): Title compound was prepared according to general method 

described above using p-bromo toluene and potassium succinimide. The product was purified by 

running on a bed of silica with 25% ethyl acetate, hexane to obtain a white powder: 1H NMR 

(400 MHz, CDCl3) δ 7.27 (d, J = 8.1 Hz, 1 H), 7.14 (d, J = 7.8 Hz, 1 H), 2.84 (s, 4 H), 2.37 (s, 3 

H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.7, 139.0, 130.1, 129.5, 129.4, 128.9, 126.7, 126.5, 

28.6, 21.4 ppm. 

1-m-tolylpyrrolidine-2,5-dione (7c): Title compound was prepared according to general method 

described above using m-bromo toluene and potassium succinimide. The product was purified by 

running on a bed of silica with 25% ethyl acetate, hexane to obtain a white powder: 1H NMR 

(400 MHz, CDCl3) δ 7.36 (t, J = 7.6 Hz, 1 H), 7.21 (d, J = 7.6 Hz, 1 H), 7.07 (s, 1 H), 7.05 (s, 1 

H), 2.88 (s, 5 H), 2.39 (s, 3 H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.5, 139.5, 132.0, 129.8, 

129.2, 127.3, 123.8, 28.7, 21.6 ppm. 

1-(4-chlorophenyl)pyrrolidine-2,5-dione (7d): Title compound was prepared according to 

general method described above using 1-bromo 4-chloro benzene and potassium succinimide. 

The product was purified by running on a bed of silica with 25% ethyl acetate, hexane to obtain a 

white powder: 1H NMR (400 MHz, CDCl3) δ 7.45(d, J = 8.6Hz, 2 H), 7.25 (d, J = 8.6 Hz, 2 H), 

2.90 (s, 4 H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.1, 134.6, 130.6, 129.6, 127.9, 115.6, 28.6 

ppm. 
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1-(naphthalen-2-yl)pyrrolidine-2,5-dione (7e): Title compound was prepared according to 

general method described above using 2-bromo naphthalene and potassium succinimide. The 

product was purified by running on a bed of silica with 25% ethyl acetate, hexane to obtain a 

white powder. 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.7 Hz, 1H), 7.89 - 7.84 (m, 2 H), 7.80 

(s, 1 H), 7.53 (dt, J = 5.4, 3.2 Hz, 2 H), 7.38 (dd, J = 8.7, 2.0 Hz, 1 H), 2.95 (s, 5 H) ppm: 13C 

NMR (400 MHz, CDCl3) δ 176.7, 133.4, 133.1, 129.6, 129.4, 128.5, 128.0, 127.2, 126.9, 125.88, 

124.1, 28.7 ppm. 

4-(2,5-dioxopyrrolidin-1-yl)benzonitrile (7f): Title compound was prepared according to 

general method described above using 4-bromo benzonitrile and potassium succinimide. The 

product was purified by running on a bed of silica with 25% ethyl acetate, hexane to obtain a 

white powder: 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.7 Hz, 1 H), 7.47 (d, J = 8.7 Hz, 1 H), 

2.89 (s, 2 H) ppm: 13C NMR (400MHz, CDCl3) δ 175.6, 136.1, 133.4, 133.1, 127.4, 127.1, 

118.3, 112.2, 28.6 ppm. 

1-(4-nitrophenyl)pyrrolidine-2,5-dione (7g): Title compound was prepared according to 

general method described above using 1-bromo 4-nitro benzene and potassium succinimide. The 

product was purified by running on a bed of silica with 25% ethyl acetate, hexane to obtain a 

white powder: 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 1.2 Hz, 2 H), 7.60 (d, J = 8.0 Hz, 2 H), 

2.96 (s, 4 H) ppm: 13C NMR (400 MHz, CDCl3) δ 175.4, 147.2, 137.6, 127.1, 124.6, 28.6 ppm. 

1-(4-acetylphenyl)pyrrolidine-2,5-dione  (7h): Title compound was prepared according to 

general method described above using 4- bromo acetophenone and potassium succinimide. The 

product was purified by running on a bed of silica with 50% ethyl acetate, hexane to obtain a 

white powder: 1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.5 Hz, 2 H), 7.46 (d, J = 8.5 Hz, 2 H), 
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2.93 (s, 4 H), 2.62 (s, 3 H) ppm: 13C NMR (400 MHz, CDCl3) δ 197.2, 176.0, 136.8, 136.2, 

129.3, 126.6, 28.7, 26.9 ppm. 

Preparation of 5,5-dimethyl-3-phenylimidazolidine-2,4-dione(9a): To a DMF suspension of 

Potassium salt of 5,5- dimethyl Hydantoin (166 mg, 1.00 mmol) was added Bromo Benzene (157 

mg, 1.00 mmol) and CuSO4•5H2O (250 mg, 1.00 mmol). The reaction mixture was heated at 

150°C for 4 h and monitored the completion reaction by TLC. The reaction mixture initially blue 

in color changes to green, then in to brown red, leaving residual copper. After the reaction is 

complete the reaction mixture was cooled to room temperature and poured on to ice. The 

precipitate obtained was washed with 10% HCl Solution, dried and run over a bed of silica with 

Dichloromethane to obtain pure product (192mg, 94%):  1H NMR (400 MHz, CDCl3) δ 7.41 (t, J 

= 7.3 Hz, 2 H), 7.35 (d, J = 8.3 Hz, 2 H), 7.30 (d, J = 7.2 Hz, 1 H), 6.80 (s, 1 H), 1.44 (s, 6 H) 

ppm: 13C NMR (400 MHz, CDCl3) δ 176.6, 156.0, 131.8, 129.3, 128.4, 126.4, 58.9, 25.4 ppm. 

5,5-dimethyl-3-p-tolylimidazolidine-2,4-dione  (9b): Title compound was prepared according 

to general method described above using p-bromo toluene and potassium 4,4-dimethyl-2,5 

dioxoimidazolidin-1-ide. The product was purified by running on a bed of silica with 50% ethyl 

acetate, hexane to obtain a white powder: 1H NMR (400 MHz, CDCl3) δ 7.27 (s, 4 H), 7.04 (s, 1 

H), 2.38 (s, 3 H), 1.49 (s, 6 H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.8, 156.3, 138.5, 130.0, 

129.2, 126.4, 58.9, 25.3, 21.4 ppm. 

5,5-dimethyl-3-m-tolylimidazolidine-2,4-dione (9c): Title compound was prepared according 

to general method described above using m-bromo toluene and potassium 4,4-dimethyl-2,5 

dioxoimidazolidin-1-ide. The product was purified by running on a bed of silica with 50% ethyl 

acetate, hexane to obtain a white powder: 1H NMR (400 MHz, CDCl3) δ 7.36 (t, J = 7.6 Hz, 1 
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H), 7.20 (s, 2 H), 7.18 (s, 1 H), 2.39 (s, 3 H), 1.48 (s, 6 H) ppm: 13C NMR (400 MHz, CDCl3) δ 

176.8, 156.2, 139.3, 131.7, 129.4, 129.2, 127.2, 123.7, 58.9, 25.3, 21.6 ppm. 

3-(4-chlorophenyl)-5,5-dimethylimidazolidine-2,4-dione (9d): Title compound was prepared 

according to general method described above using 1-bromo 4-chloro benzene and potassium 

4,4-dimethyl-2,5 dioxoimidazolidin-1-ide. The product was purified by running on a bed of silica 

with 50% ethyl acetate, hexane to obtain a white powder: 1H NMR (400 MHz, CDCl3) δ 7.42 (d, 

J = 7.3 Hz, 2 H), 7.38 (d, J = 8.9 Hz, 2 H), 7.21 (s, 1 H), 1.48 (s, 6 H) ppm: 13C NMR (400 MHz, 

CDCl3) δ 176.4, 155.7, 134.1, 130.4, 129.5, 127.6, 59.0, 25.3 ppm. 

5,5-dimethyl-3-(naphthalen-2-yl)imidazolidine-2,4-dione (9e): Title compound was prepared 

according to general method described above using 2-bromo naphthalene and potassium 4,4-

dimethyl-2,5 dioxoimidazolidin-1-ide. The product was purified by running on a bed of silica 

with 50% ethyl acetate, hexane to obtain a pale yellow powder: 1H NMR (400 MHz, CDCl3) δ 

7.95 (d, J = 9.3 Hz, 2 H), 7.91-7.85 (m, 2 H), 7.53 (dd, J = 6.1, 3.1 Hz, 3 H), 6.99 (s, 1 H), 1.53 

(s, 6 H) ppm: 13C NMR (400 MHz, CDCl3) δ 176.7, 156.1, 133.4, 132.9, 129.2, 128.4, 128.0, 

127.0, 126.9, 125.5, 124.1, 59.0, 25.4 ppm. 

4-(4,4-dimethyl-2,5-dioxoimidazolidin-1-yl)benzonitrile (9f): Title compound was prepared 

according to general method described above using 4-bromo benzonitrile and potassium 4,4-

dimethyl-2,5 dioxoimidazolidin-1-ide. The product was purified by running on a bed of silica 

with 50% ethyl acetate, hexane to obtain a white powder: 1H NMR (400 MHz, CDCl3) δ 7.75 (d, 

J = 8.0, 2 H), 7.67 (d, J = 8.0, 2 H), 6.72 (s, 1 H), 1.54 (s, 6 H) ppm: 13C NMR (400 MHz, 

CDCl3) δ 175.8, 154.7, 136.1, 133.1, 126.2, 118.4, 111.5, 59.0, 29.9, 25.5 ppm. 
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5,5-dimethyl-3-(4-nitrophenyl)imidazolidine-2,4-dione (9g): Title compound was prepared 

according to general method described above using 1-bromo 4-nitro benzene and potassium 4,4-

dimethyl-2,5 dioxoimidazolidin-1-ide. The product was purified by running on a bed of silica 

with 50% ethyl acetate, hexane to obtain a white powder. 1H NMR (400 MHz, CDCl3) δ 8.29 

(dd, J = 8.0, 4.0, 2 H), 7.73 (d, J = 8.0, 2 H), 7.08 (s, 1 H) ppm: 13C NMR (400 MHz, CDCl3) δ 

175.8, 154.8, 146.6, 137.8, 126.1, 124.5, 59.0, 25.4 ppm. 

Preparation of 2-phenyl-1H-benzo[f]isoindole-1,3(2H)-dione (11a): To a DMF suspension of 

Potassium salt of 2,3 Naphthalimide (282 mg, 1.2 mmol) was added Bromo Benzene (157 mg, 

1.0 mmol) and CuSO4.5H2O (250 mg, 1.0 mmol). The reaction mixture was heated at 150Οc for 5 

hours and monitored the completion reaction by TLC. The reaction mixture initially blue in color 

changes to green, then in to brown red, leaving residual cuprous oxide (Cu2O). After completion 

of the reaction, the reaction mixture was cooled to room temperature and poured on to ice. The 

precipitate obtained was washed with 10% HCl Solution, dried and run over a bed of silica to 

obtain pure product (230mg, 86%): 1H NMR (400 MHz, CDCl3): δ 8.46 (s, 2 H), 8.10 (dd, J = 

6.1, 3.3 Hz, 2 H), 7.73 (dd, J = 6.1, 3.3 Hz, 2 H), 7.57 - 7.48 (m, 3 H), 7.43 (t, J = 7.0 Hz, 2 H) 

ppm; 13C NMR (400 MHz, CDCl3) δ 167.3, 135.9, 132.1, 130.6, 129.6, 129.4, 128.4, 127.7, 

126.9, 125.5 ppm. 

2-p-tolyl-1H-benzo[f]isoindole-1,3(2H)-dione (11b): Title compound was prepared according 

to general method described above using p-bromo toluene and potassium 1,3-dioxo-1,3-

dihydrobenzo[f]isoindol-2-ide. The product was purified by running on a bed of silica with 10% 

ethyl acetate, hexane to obtain a pale yellow powder: 1H NMR (400 MHz, CDCl3) δ 8.44 (s, 2 

H), 8.09 (dd, J = 6.1, 3.3 Hz, 2 H), 7.72 (dd, J = 6.2, 3.3 Hz, 2 H), 7.37 (d, J = 8.3 Hz, 2 H), 7.33 
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(d, J = 8.3 Hz, 2 H), 2.42 (s, 3 H) ppm; 13C NMR (400 MHz, CDCl3): δ167.4, 138.5, 135.9, 

130.6, 130.0, 129.5, 129.4, 127.8, 126.7, 125.4 ppm. 

2-(naphthalen-2-yl)-1H-benzo[f]isoindole-1,3(2H)-dione (11c): Title compound was prepared 

according to general method described above using 2-bromo naphthalene and potassium 1,3-

dioxo-1,3-dihydrobenzo[f]isoindol-2-ide. The product was purified by running on a bed of silica 

with 10% ethyl acetate, hexane to obtain a yellow powder: 1H NMR (400 MHz, CDCl3) δ 8.49 

(s, 2 H), 8.12 (dd, J = 6.0, 3.2 Hz, 2 H), 8.00 (d, J = 9.1 Hz, 2 H), 7.91 (dd, J = 8.5, 4.2 Hz, 2 H), 

7.75 (dd, J = 6.0, 3.2 Hz, 2 H), 7.61 (d, J = 8.7 Hz, 1 H), 7.55 (dd, J = 5.7, 3.6 Hz, 2 H) ppm; 13C 

NMR (400 MHz, CDCl3) δ 167.4, 136.0, 133.5, 132.9, 130.6, 129.6, 129.6, 129.2, 128.5, 128.0, 

127.7, 127.0, 126.8, 125.9, 125.6, 124.4 ppm. 
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Chapter-6: CuSO4•5H2O Mediated Coupling of Aryl Halides With 
N-Formyl Amines 

 

6.1 Introduction: 

Transition metal catalyzed C-N bond formations are one of the revolutionized reactions in the 

modern era of organic synthesis (1), especially arylation of amines plays an important role in the 

modern era of organic synthesis because of its use in synthesizing including drugs, materials, 

natural products agro chemicals and optical devices (2). 

Copper was the first metal used by Ullmann and Goldberg for the construction of C-N bond (3). 

However the use of high temperatures and low percentage yields with long reaction timings and 

finally lack substrate tolerability (4) force us to develop the new methods for the cross coupling 

reactions.  

In recent literature we have some references where they are producing some good results in the 

arylation of amines with Cu catalysis by using external ligands such as diols (5), trios (6), rac-

binols (7), diamines (8), imines (9), amino phosphates (10), amino acids (11), amino alcohols (12), 

salicyl amides (13), phosphoramidites (14), oxime- phosphine oxides (15), pyridine N- oxide (16), 

beta diketones (17), beta ketoesters (18), and diazaphospholanes (19). But including the difficulties 

in the synthesis of these ligands and of purification problems we are in need of developing a 

good catalytic system for aryl amination reactions. 
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6.2 Results and Discussion: 

I started working on N-arylation of amino alcohols because of their importance in the medicinal 

chemistry and in organo metallic chemistry 20, in this contest I found a method in the literature 

developed by Buchwald group by using CuI but this method limited to few substrates only 21.  

We also have some references where we can use amides as N-nucleophiles for cross coupling 

reactions, and they achieved success with Pd 22. However, high cost of Pd and use of external 

ligands it is very hard to apply these reactions in the industrial scale, it is important to mention 

that removing Pd residues from the reaction media requires special methods, which increase its 

cost furthermore. 

6.2.1 Aryl halides coupling with N-formyl-2-aminoethanol 

I started coupling of simple N-formyl ethanolamine with aromatic halides in the presence of 

CuSO4•5H2O catalysis (Scheme 6.1). The coupling reaction required relatively short reaction 

time and ends with moderate to excellent yields. It is important to mention that, the reaction 

doesn’t require any additional solvent, because N-formyl amines act as solvent as well as 

substrates. 

The reaction has a broad scope of substrates including simple bromo benzene, to electron rich 

aromatic halides such as 2-iodo anisole, 4- methyl benzene and strong electron deficient halides 

like 4-bromo nitrobenzene, 1-chloro-2, 4-dinitro benzene. The most important thing we are 

selectively getting N-arylation over o-arylation. 
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Scheme 6.1 Aryl halides coupling with N-formyl-2-aminoethanol 

 

Table 6.1 Prepared N-aryl-2-aminoethanol derivatives  

Entry # Product Structure Reaction Time (h) % Yield 

3a 
 

4 80 

3b 
 

4 78 

3c 

 

4 84 

3d 

 

4 89 

3e 

 

4 95 
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3f 

 

4 88 

3g 

 

4 95 

 
3h 

  
 

 
4 
 

 
90 
 

 

6.2.2 Aryl halides coupling with N-formyl-2-(methylamino)ethanol 

After getting decent results with N-formyl ethanolamine, I would like expand the scope of 

methodology to the 2o amines such as N,N-methyl formyl ethanolamine (Scheme 6.2), and ended 

up with similar results except in this case electron deficient aromatic halides requires less 

reaction timings then electron rich aromatic halides.  

 

Scheme 6.2 Aryl halides coupling with N-formyl-2-(methylamino)ethanol 
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Table 6.2 Prepared N-aryl-2-(methylamino)ethanol derivatives 

Entry# Product Reaction Time 
(Hrs) % Yield 

1 
 

4 87 

2 
 

4 82 

3 

 

6 80 

4 

 

4.5 85 

5 

 

            2.5   91 

6 

 

            1.5 82 

7 

 

 
             3 
 

93 

8 

 

2.5 91 
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6.2.3 Aryl halides coupling with N-formylbutylamine 

To expand the scope the reaction furthermore, I moved onto the long chain amines such as N-

formyl butyl amine (Scheme 6.3) and N-formyl nonylamine, and found that the reaction timings 

are very high for N-formyl butyl amine and in the case of N-formyl nonylamine only 1-chloro-

2,4-dinitrobenzene is reacting (Scheme 6.4). We thought that the low boiling points of butyl 

amine and nonyl amine are the reason for long reaction times.  

 

 

Scheme 6.3 Aryl halides coupling with N-formylbutylamine 

Table 6.3 Prepared N-arylbutylamine derivatives 

Entry # Product Structure Reaction Time (h) % Yield 

7a 

 

24 65 

7b 

 

24 60 
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7c 

 

24 73 

7d 

 

24 84 

7e 

 

24 87 

 
7f 
 

 

 
12 
 

 
95 
 

 
7g 
 

 

 
 

24 
 
 
 

85 

7i 

 

24 76 

 

6.2.4 Aryl halides coupling with N-formyl nonylamine 

 

Scheme 6.4 Aryl halides coupling with N-formylnonylamine 
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6.2.5 Aryl halides coupling with N-formyl aniline 

So far we have seen the coupling reactions only with aliphatic amines such as ethanolamine, 

methyl ethanolamine, butyl amine and nonyl amine. I also screened the reaction on aromatic 

amines such as N-formyl aniline (Scheme 6.5). However, the aryl halides coupling with N-formy 

anilines required additional solvents like DMF, because of the reported aliphatic amines are 

liquids where as N-formyl aniline is a solid.  

 

Scheme 6.5 Aryl halides coupling with N-formyl aniline 

 

Table 6.4 Prepared N-aryl aniline derivatives 

Entry # Product Structure Reaction Time (h) % Yield 

11a 
 

18 91 

11b 
 

18 89 
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11c 

 

24 76 

11d 

 

18 83 

11e 

 

12 91 

 
11f 

 
 

 
12 
 

 
89 
 

 
11g 

  

 
 

12 
 
 
 

83 

11i 

 

24 73 

 
11j 

 

 

12 86 
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6.3 Conclusions:  

In conclusion we developed a very good method for N-arylation of amines by using N-formyl 

amines as nitrogen nucleophiles. The N-arylation is achieved by coupling of aryl halides with N-

formyl amines by using CuSO4•5H2O. The methodology has the selectivity of N-arylation over 

O-arylation while coupling the ethanolamines with aryl halides. It also had the broad 

applicability to various amines such as primary (2-ethanolamine), secondary (2-

(methylamino)ethanol)) and aromatic amines (aniline).  

 

6.4 Experimental Section:  

General procedure for N-formylation of amines: Synthesis of N-formyl-2-ethanolamine (2):  

Ethanolamine (30.5 g, 0.500 mol) was dissolved in (53.6 g, 0.500 mol) of trimethyl orthoformate 

and to this solution (2000 mg, 10.50 mmol) p-toluenesulfonic acid and few drops of water is 

added, the whole reaction mixture is stirred in a microwave at a power of 200 about over night. 

Bring down the temperature to room temperature and the formed N-formy-2-ethanolamine was 

used directly for the coupling reactions without further purification. 

General procedure for coupling of aryl halides with N-formyl-2-ethanolamine: 

Synthesis of 2-(p-tolylamino)ethanol (3c):    

p-bromotoluene (342 mg, 2.00 mmol), (306 mg, 2.20 mmol) of potassium carbonate and (500 

mg, 2.00 mmol) of CuSO4•5H2O were dissolved in 12 ml of N-formyl-2-ethanolamine and the 

whole reaction mixture was stirred at 150°C about 4 h and monitored the reaction progress by 
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TLC. After completion of the reaction cool it down to the room temperature and washed with 

water thoroughly and one time wash with 1% HCl solution, and finally extracted the organic 

layer with DCM. Combined layers were dried under sodium sulfate and a flash column required 

getting 254 mg of 2-(p-tolylamino)ethanol (3c) with 84% yield. 

General procedure for aryl halides coupling with N-formyl-2-(methylamino)ethanol: 

Synthesis of 2-(methyl(p-tolyl)amino)ethanol (5c):  

p-bromotoluene (342 mg, 2.00 mmol) , (306 mg, 2.20 mmol) of potassium carbonate and (500 

mg, 2.00 mmol) of CuSO4•5H2O were dissolved in 12 ml of N-formyl-2-(methylamino)ethanol 

and the whole reaction mixture was stirred at 160°C about 6 h and monitored the reaction 

progress by TLC. After completion of the reaction cool it down to the room temperature and 

washed with water thoroughly and one time wash with 1% HCl solution, and finally extracted 

the organic layer with DCM. Combined layers were dried under sodium sulfate and a flash 

column required getting 264 mg of 2-(methyl(p-tolyl)amino)ethanol (5c) with 80% yield. 

General procedure for aryl halides coupling with N-formylbutylamine: 

Synthesis of N-butyl-4-methylaniline (7c): 

p-bromotoluene (342 mg, 2.00 mmol) , (306 mg, 2.20 mmol) of potassium carbonate and (500 

mg, 2.00 mmol) of CuSO4•5H2O were dissolved in 12 ml of N-formyl-2-(methylamino)ethanol 

and the whole reaction mixture was stirred at 100°C about 24 h and monitored the reaction 

progress by TLC. After completion of the reaction cool it down to the room temperature and 

washed with water thoroughly and one time wash with 1% HCl solution, and finally extracted 
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the organic layer with DCM. Combined layers were dried under sodium sulfate and a flash 

column required getting 228 mg of N-butyl-4-methylaniline (7c) with 70% yield. 

General procedure for aryl halides coupling with N-formylnonylamine: 

Synthesis of 2,4-dinitro-N-nonylamine (9):  

1-chloro-2,4-dinitrobenzene (505 mg, 2.50 mmol), (382 mg, 2.70 mmol) of potassium carbonate 

and (613 mg, 2.50 mmol) of CuSO4•5H2O were dissolved in 12 ml of N-formyl nonylamine and 

the whole reaction mixture was brought to reflux about 3 h, after that cool it down to the room 

temperature and washed with water thoroughly and one time wash with 1% HCl solution,  and 

finally extracted the organic layer with DCM. Combined layers were dried under sodium sulfate 

and a flash column required getting 673 mg of 2,4-dinitro-N-nonylamine with 87% yield. 

General procedure for aryl halides coupling with N-formylaniline: 

Synthesis of 4-methyl-N-phenylaniline (11c): 

 N-formyl aniline (660 mg, 2.20 mmol) was dissolved in 10 ml of DMF, to this stirring solution 

(342 mg, 2.00 mmol) of p-bromotoluene, (306 mg, 2.20 mmol) of potassium carbonate and (500 

mg, 2.00 mmol) of CuSO4•5H2O were added and the whole reaction mixture was stirred at 

150°C about 24 h and monitored the reaction progress by TLC, after completion of reaction cool 

it down to the room temperature and washed with water thoroughly and one time wash with 1% 

HCl solution, and finally extracted the organic layer with DCM. Combined layers were dried 

under sodium sulfate and a flash column required getting 278 mg of 4-methyl-N-phenylaniline 

(11c) with 76% yield. 
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6.5 Spectral Section: 

2-(phenylamino)ethanol: (3a & 3b): 1H NMR (CDCl3): δ 7.20 (t, J = 7.2 Hz, 2 H), 6.76 (t, J = 

7.2 Hz, 1 H), 6.69 (d, J = 8.0 Hz, 2 H), 3.84 (t, J = 4.4 Hz, 2 H), 3.32 (t, J = 5.2 Hz, 2 H), 2.72 

(b, 2 H) ppm; 13C NMR (CDCl3): δ 148.1, 129.6, 118.5, 113.7, 61.4, 46.6 ppm. 

2-(p-tolylamino)ethanol(3c & 3d): 1H NMR (CDCl3): δ 7.01 (d, J = 8.0 Hz, 2 H), 6.59 (d, J = 

8.0 Hz, 2 H), 3.79 (t, J = 4.8 Hz, 2 H), 3.25 (t, J = 5.2 Hz, 2 H), 3.08 (b, 2 H), 2.26 (s, 3 H) ppm; 

13C NMR (CDCl3): δ 146.1, 130.1, 127.5, 113.8, 61.4, 46.8, 20.2 ppm. 

2-(2-methoxyphenylamino)ethanol(3e): 1H NMR (CDCl3): δ 6.88 (t, J = 7.6 Hz, 1 H), 6.79 (d, 

J = 7.6 Hz, 1 H), 6.72 (d, J = 8.0 Hz, 1 H), 6.68 (t, J = 6.0 Hz, 1 H), 3.84 (t, J = 5.6 Hz, 2 H), 

3.32 (t, J = 4.8 Hz, 2 H) ppm; 13C NMR (CDCl3): δ 147.4, 138.1, 121.5, 117.4, 110.6, 109.8, 

61.5, 55.7, 46.2 ppm. 

2-(2,4-dinitrophenylamino)ethanol(3f): 1H NMR (CDCl3) : δ 9.14 (s, 1 H), 8.82 (b, 1 H), 8.28 

(d, J = 9.6 Hz, 1 H), 6.98 (d, J = 9.6 Hz, 1 H), 4.02 (t, J = 5.6 Hz, 2 H), 3.6 (q, J = 10.8, 5.6 Hz, 2 

H ), 1.64 (b, 1 H) ppm; 13C NMR (CDCl3): δ 148.8, 130.6, 124.6, 114.3, 60.7, 45.4 ppm. 

2-(4-nitrophenylamino)ethanol(3g): 1H NMR (CDCl3): δ 8.09 (d, J = 9.2 Hz, 2 H), 6.57 (d, J = 

9.2 Hz, 2 H), 3.91 (t, J = 5.2 Hz, 2 H), 3.40 (t, J =4.8 Hz, 2 H), 1.63 (b, 2 H) ppm; 13C NMR 

(CDCl3): δ 126.7, 111.6, 61.1, 45.4 ppm. 

2-(naphthalen-1-ylamino)ethanol(3h):  1H NMR (CDCl3): δ 7.84 (q, J = 14.0, 8.0 Hz, 2 H), 

7.46 (p, J = 5.6 Hz, 2 H), 7.37 (t, J = 7.6 Hz, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 6.62 (d, J = 8.0 Hz, 

1 H), 3.90 (t, J = 4.8 Hz, 2 H), 3.38 (t, J = 4.8 Hz, 2 H) ppm; 13C NMR (CDCl3): δ 143.6, 134.6, 

128.9, 126.8, 126.1, 125.1, 124.0, 120.3, 118.2, 105.1, 61.2, 46.4 ppm. 
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2-(methyl(phenyl)amino)ethanol (5a & 5b): 1H NMR (CDCl3): 7.26 (t, J = 7.6 Hz, 2 H), 6.82 

(d, J = 8.4 Hz, 2 H), 6.77 (t, J = 7.2 Hz, 1 H), 3.81 (t, J = 5.6 Hz, 2 H), 3.47 (t, J = 5.6 Hz, 2 H), 

2.97 (s, 3 H), 2.06 (b, 1 H) ppm; 13C NMR (CDCl3): δ 150.3, 129.5, 117.5, 113.4, 60.3, 55.7, 

39.1 ppm.  

2-(methyl(p-tolyl)amino)ethanol (5c & 5d): 1H NMR (CDCl3); δ 7.07 (d, J = 8.0 Hz, 2 H), 6.76 

(d, J = 8.4 Hz, 2 H), 3.79 (t, J = 5.6 Hz, 2 H), 3.41 (t, J = 5.6 Hz, 2 H), 2.92 (s, 3 H), 2.28 (s, 3 

H), 2.11 (b, 1 H) ppm; 13C NMR (CDCl3): δ 148.5, 130.0, 127.2, 114.1, 60.2, 56.3, 39.2, 20.5 

ppm. 

2-((2-methoxyphenyl)(methyl)amino)ethanol (5e): 1H NMR (CDCl3): δ 7.04 (t, J = 7.6 Hz, 1 

H), 7.00 (d, J = 8.0 Hz, 1 H), 6.91 (t, J = 7.6 Hz, 1 H), 6.86 (d, J = 7.6 Hz, 1 H), 3.84 (s, 3 H), 

3.71 (t, J = 5.2 Hz, 2 H), 3.24 (b, 1 H), 3.11 (t, J = 5.2 Hz, 2 H), 2.78 (s, 3 H) ppm; 13C NMR 

(CDCl3): δ 152.9, 142.1, 123.6, 121.2, 120.4, 111.4, 59.7, 58.4, 55.5, 40.1 ppm. 

2-((2,4-dinitrophenyl)(methyl)amino)ethanol (5f): 1H NMR (CDCl3): δ 8.65 (s, 1 H), 8.19 (d, 

J = 9.2 Hz, 1 H), 7.22 (d, J = 9.6 Hz, 1 H), 3.91 (t, J = 5.2 Hz, 2 H), 3.61 (t , J = 5.2 Hz, 2 H), 

2.99 (s, 3 H), 1.87 (b, 1 H) ppm; 13C NMR (CDCl3): δ 149.8, 136.8, 127.8, 124.2, 118.90, 59.5, 

56.2, 40.8 ppm. 

2-(methyl(4-nitrophenyl)amino)ethanol (5g): 1H NMR (CDCl3): δ 8.00 (d, J = 9.6 Hz, 2 H), 

6.62 (d, J = 9.2 Hz, 2 H), 3.86 (t, J = 5.6 Hz, 2 H), 3.62 (t, J = 6.0 Hz, 2 H), 3.12 (s, 3 H), 2.2 (b, 

1 H) ppm; 13C NMR (CDCl3): δ 154.1, 137.0, 126.4, 110.7, 60.2, 54.7, 39.7 ppm. 

2-(methyl(m-tolyl)amino)ethanol (5i): 1H NMR (CDCl3): δ 7.15 (t, J = 7.6 Hz, 1 H), 6.66-6.60 

(m, 3 H), 3.81 (t, J = 5.6 Hz, 2 H), 3.46 (t, J = 5.6 Hz, 2 H), 2.95 (s, 3 H), 2.33 (s, 3 H), 2.0 (b, 
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1H) ppm; 13C NMR (CDCl3): δ 150.4, 139.2, 129.3, 118.6, 114.3, 110.7, 60.3, 55.8, 39.1, 22.1 

ppm. 

N-butylaniline (7a & 7b): 1H NMR (CDCl3): δ 7.19 (t, J = 8.4 Hz, 2 H), 6.71 (t, J = 7.2 Hz, 1 

H), 6.62 (d, J = 8.4 Hz, 2 H), 3.6 (b, 1 H), 3.13 (t, J = 7.2 Hz, 2 H), 1.63 (q, J = 7.2 Hz, 2 H), 

1.46 (Sextet, J= 15.2, 7.6 Hz, 2 H), 0.98 (t, J = 7.6 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 148.8, 

129.5, 117.3, 112.9, 43.9, 31.9, 20.6, 14.2 ppm. 

 N-butyl-4-methylaniline (7c & 7d): 1H NMR (CDCl3): δ 7.08 (d, J = 7.6 Hz, 2 H), 6.63 (d, J = 

8.4 Hz, 2 H), 3.46 (b, 1 H), 3.17 (t, J = 6.8 Hz, 2 H), 2.34 (s, 3 H), 1.68 (p, J = 6.8 Hz, 2 H), 1.53 

(p, J = 7.6 Hz, 2 H), 1.06 (t, J = 7.2 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 146.7, 130.0, 126.6, 

113.2, 44.4, 32.0, 20.6, 14.3 ppm.  

N-butyl-2-methoxyaniline (7e): 1H NMR (CDCl3): δ 6.89 (t, J = 7.6 Hz, 1 H), 6.78 (d, J = 8.0 

Hz, 1 H), 6.68 (d, J = 7.6 Hz, 1 H), 6.64 (t, J = 7.6 Hz, 1 H), 4.20 (b), 3.86 (s, 3 H), 3.14 (t, J = 

7.2 Hz, 2 H), 1.66 (p, J = 7.6 Hz, 2 H), 1.47 (Sextet, J = 14.8 Hz, 7.6, 2 H), 0.98 (t, J = 7.2 Hz, 3 

H) ppm; 13C NMR (CDCl3): δ 147.0, 138.8, 121.6, 116.3, 110.0, 109.6, 55.6, 43.6, 31.9, 20.6, 

14.2 ppm. 

N-butyl-2,4-dinitroaniline (7f): 1H NMR (CDCl3) ; δ 9.03 (s, 1 H), 8.53 (b), 8.21 (d, J = 9.6 

Hz, 1 H), 6.92 (d, J = 9.6 Hz, 1 H), 3.41 (q, J = 12.4 Hz, 7.2, 2 H), 1.75 (p, J = 7.2 Hz, 2 H), 1.48 

(Sextet, J = 15.2 Hz, 8.0, 2 H), 0.98 (t, J = 7.2 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 148.7, 136.0, 

130.5, 130.3, 124.4, 114.3, 43.6, 30.9, 20.3, 13.9 ppm. 

N-butyl-4-nitroaniline (7g): 1H NMR (CDCl3); δ 8.03 (d, J = 9.2 Hz, 2 H), 6.49 (d, J = 9.2 Hz, 

2 H), 4.78 (b, 1 H), 3.17 (q, J = 12.8 Hz, 7.2, 2 H), 1.61 (p, J = 7.6 Hz, 2 H), 1.27 (Sextet, J = 
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15.2, 7.2 Hz, 2 H), 0.93 (t, J = 7.6 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 154.0, 137.6, 126.7, 

111.1, 43.3, 31.3, 20.4, 14.0 ppm. 

N-butyl-3-methylaniline (7i): 1H NMR (CDCl3): δ 7.13 (t, J = 7.6, 1 H), 6.58 (d, j = 8.0, 1 H), 

6.49 (d, j = 7.2, 2 H), 3.47 (b, 1 H), 3.16 (t, j = 7.2, 2 H), 2.34 (s, 3 H), 1.65 (p, j = 7.2, 2 H), 1.49 

(Sextet, j = 15.2, 7.6, 2 H), 1.02 (t, J = 7.6, 3 H) ppm; 13C NMR (CDCl3): δ 148.9, 139.2, 129.4, 

118.3, 113.8, 110.2, 44.0, 32.0, 21.9, 20.6, 14.2 ppm.  

2,4-dinitro-N-nonylaniline (9): 1H NMR (CDCl3): δ 9.12 (s, 1 H), 8.56 (b, 1 H), 8.26 (d, J = 9.6 

Hz, 1 H), 6.92 (d, J = 9.6 Hz, 1 H), 3.40 (q, J = 12.4 Hz, 6.8, 2 H), 1.77 (p, J = 7.6 Hz, 2 H), 

1.46-1.27 (m, 12 H), 0.87 (t, J = 6.8 Hz, 3 H) ppm; 13C NMR (CDCl3): δ 148.6, 136.1, 130.6, 

130.4, 124.6, 114.1, 43.9, 32.0, 29.6, 29.4, 28.9, 27.2, 22.9, 14.3 ppm. 

Diphenylamine (11a & 11b): 1H NMR (CDCl3): δ 7.33 (t, J = 8.4 Hz, 4 H), 7.13 (d, J = 8.4 Hz, 

4 H), 7.00 (d, J = 8.0 Hz, 2 H), 5.70 (b, 1 H) ppm; 13C NMR (CDCl3): δ 143.4, 129.7, 121.3, 

118.1 ppm. 

4-methyl-N-phenylaniline (11c & 11d): 1H NMR (CDCl3): δ 7.35 (t, J = 8.8 Hz, 2 H), 7.20 (d, 

J = 8.02 Hz, 2 H), 7.13-7.10 (m, 4 H), 7.01 (t, J = 7.2 Hz, 1 H), 5.60 (b, 1 H), 2.43 (s, 3 H) ppm; 

13C NMR (CDCl3): δ 144.30, 140.7, 131.24, 130.2, 129.7, 120.7, 119.3, 117.2, 21.1 ppm. 

2-methoxy-N-phenylaniline (11e): 1H NMR (CDCl3): δ 7.43 (t, J = 6.8 Hz, 1 H), 7.39 (d, J = 

7.2 Hz, 2 H), 7.27 (d, J = 8.0 Hz, 2 H), 7.06 (t, J = 8.0 Hz, 1 H), 7.02-6.99 (m, 3 H), 6.35 (b, 1 

H), 3.96 (s, 3 H), ppm; 13C NMR (CDCl3): δ 148.5, 143.0, 133.2, 129.6, 121.4, 121.1, 120.2, 

118.8, 114.9, 110.8, 55.8 ppm. 
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2,4-dinitro-N-phenylaniline(11f): 1H NMR (CDCl3): δ 9.98(b, 1 H), 9.16 (s, 1 H), 8.16 (d, J = 

6.0 Hz, 1 H), 7.51 (t, J = 7.6 Hz, 2 H), 7.39 (t, J = 7.2 Hz, 1 H), 7.31 (d, J = 7.2 Hz, 2 H), 7.17 

(d, J = 9.6 Hz, 1 H), 1.60 (b, 1 H) ppm; 13C NMR (CDCl3): δ 147.4, 137.6, 136.9, 131.3, 130.5, 

130.2, 130.0, 125.8, 124.3, 116.3 ppm. 

4-nitro-N-phenylaniline (11g): 1H NMR (CDCl3): 8.12 (d, J = 9.2 Hz, 2 H), 7.39 (t, J = 7.6 Hz, 

2 H), 7.21 (d, J = 7.6 Hz, 2 H), 7.17 (t, J = 6.4 Hz, 1 H), 6.94 (d, J = 9.2 Hz, 2 H), 6.34 (b, 1 H) 

ppm; 13C NMR (CDCl3): δ 150.4, 140.1, 139.7, 130.0, 126.5, 124.9, 122.2, 113.9 ppm. 

5-methyl-N-phenylaniline (11i): 1H NMR (CDCl3): δ 7.32 (t, J = 7.6 Hz, 2 H), 7.21 (t, J = 8.4 

Hz, 1 H), 7.11 (d, J = 8.4 Hz, 2 H), 6.99 (d, J = 7.2 Hz, 1 H), 6.94 (t, J = 5.2 Hz, 2 H), 6.81 (d, J 

= 7.2 Hz, 1 H) 5.73 (b, 1 H), 2.36 (s, 3 H) ppm; 13C NMR (CDCl3): δ 143.5, 143.3, 139.5, 129.6, 

129.5, 122.2, 121.2, 118.8, 118.1, 115.2, 21.8 ppm. 

5-nitro-2-(phenylamino)benzoic acid (11j): 1H NMR (dmso): δ 9.75 (s, 1 H), 8.09 (d, J = 8.8 

Hz, 1 H), 7.79 (s, 1 H), 7.47 (d, J = 7.6 Hz, 1 H), 7.43 (t, J = 7.6 Hz, 2 H), 7.31 (d, J = 8.4 Hz, 2 

H), 7.19 (t, J = 7.2 Hz, 1 H), 3.6-3.2 (b, 1 H) ppm; 13C NMR (dmso): δ 169.4, 151.5, 148.5, 

139.9, 134.3, 130.5, 125.4, 123.4, 117.7, 111.4, 108.2 ppm.  
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