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Modulated generalized ellipsometry
R. M. A. Azzam

Division of Hematology, Department of Internal Medicine, College of Medicine, The University of Nebraska
Medical Center, Omaha, Nebraska 68105

Electrical Materials Laboratory,* College of Engineering, University of Nebraska, Lincoln, Nebraska 68588
(Received 10 December 1975)

We extend ellipsometry to the direct measurement of small perturbations of the Jones matrix of any linear
nondepolarizing optical sample (system) subjected to a modulating stimulus such as temperature, stress, or
electric or magnetic field. The methodology of this technique, to be called Modulated Generalized
Ellipsometry (MGE), is presented. First an ellipsometer with arbitrary polarizing and analyzing optics is
assumed, and subsequently the discussion is specialized to a conventional ellipsometer having either the
polarizer-sample-analyzer (PSA) or the polarizer-compensator-sample-analyzer (PCSA) arrangement. MGE
provides the tool for the systematic study of thermo-optical, piezo-optical, electro-optical, magneto-optical,
and other allied effects for both isotropic and anisotropic materials that may be examined in either
transmission or reflection. MGE is also applicable to (I) modulation spectroscopy of anisotropic media, (2) the
study of electrochemical reactions on optically anisotropic electrodes, and (3) the extension of AIDER (angle-
of-incidence-derivative ellipsometry and reflectometry) to the determination of the optical properties of
anisotropic film-substrate systems.

I. INTRODUCTION

Conventional ellipsometry t' 2 is concerned with mea-
suring the ratio of reflection coefficients of an opti-
cally isotropic surface for the P and s polarizations of
an obliquely incident monochromatic plane wave of light.
The extension of ellipsometry to the determination of
the normalized Jones matrix of any linear nondepolar-
izing optical system in general, 3 and the reflection ma-
trix of an anisotropic surface in particular, 4 is now
known as generalized ellipsometry (GE). 5

-
8 Measure-

ment of small changes of the ellipsometric (z, A) and
reflectance (6) parameters of an optically isotropic
surface induced by a modulating field9g-1 has been
termed modulated ellipsometry (ME). 9'10 In this paper
we further extend ellipsometry to the measurement of
small perturbations (typically sinusoidal) of the Jones
matrix of any linear nondepolarizing optical sample
(system). This new technique is called modulated
generalized ellipsometry (MGE).

Consider the interaction of polarized light with a
linear nondepolarizing optical sample S, Fig. 1. Such
interaction is described by a Jones matrix 13,14 J char-
acteristic of S. In Fig. 1, p, s represent mutually
orthogonal axes that are transverse to, and constitute
a right-handed coordinate system with, the direction
of propagation; p is parallel and s is perpendicular to
the plane of the wave vectors of the incident and emer-
gent beams (the plane of incidence in case of light re-
flection from a surface). In the Ps coordinate system,
J is generally nondiagonal:

FJpp J]5
J=

P d t ssi

Provided that15

(1)

J55 0 O. (2)

Eq. (1) can be cast in the form

J = J3.J., (3)

where J, is the normalized Jones matrix of the sample:
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L P21

= p3

P1 = JPP1ss, P = JPS/&Ss s P3 =JSP/JSS-

It is convenient to write

pi=tanm oeAi, i=1,2,3,

and

I Jss I 2 = 5,u

(4)

(5)

(6)

(7)

J,, Eq. (4), defines the polarization response of the
sample (i. e., its effect on the ellipse of polarization
alone) and ua, Eq. (7), determines its absolute intensity
response. The angle of J,55[arg(J.5 )] represents an ab-
solute phase shift, a quantity measurable only by in-
terferometry.

If a time-harmonic1 6 modulation that varies as sinwt
is applied to the sample, its normalized Jones matrix
J, and intensity response parameter o5r will execute
small oscillations (6J,, 6uo) of amplitudes (6J oa8 )

around quiescent (average) values (J,, a) so that

- J +(8)
oSss =' Ss + gass,

to first order, where

6J, = 6J, sinwt,

6oas = 6ors sinwt.

S
pS / (J)

FIG. 1. A beam of polarized light interacts with a linear non-
depolarizing optical sample S with Jones matrix J. ps is a
reference Cartesian coordinate system defined in the same
manner for both the input (i) and output (o) beams.
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and intensity response parameter or, are perturbed by
small amounts ,Jn and 6or8 ,. This induces a change of
the detector signal AD that can be obtained from Eq.
(13) by logarithmic differentiation:

YQKD

FIG. 2. A general ellipsometer arrangement with arbitrary
polarizing (P) and analyzing (A) optics. S is the sample under
measurement by MGE, and M is the source of modulation ap-
plied to S. The signal output 4D of the photodetector D can be
measured by a lock-in amplifier LIA, which receives its ref-
erence signal from M. L represents the light source.

With J, expressed in the form of Eq. (4) and pi given by
Eq. (6), the presence of modulation causes pi, Ai to
vary as

i= Oi+ 6i, Ai=Ai+6Ai,

60ii= 6b0isinwt, 6Ai=5Aisinwt, (10)

i = 1, 2, 3.

In Eqs. (8)-(10), the bar (7) over a symbol indicates
an average value, and the tilde (a) and caret r) indi-
cate a sinusoidal quantity and its amplitude, respec-
tively. Notice that we have assumed 6Jn (hence Pbi,
6-Ai) and 6u5, to be in phase with the applied modulation.
which is justified as long as w<< OPt, where wAt is the
optical frequency.

The amplitude of the normalized-Jones-matrix per-
turbation 6Jn can be constructed from (604i, 6-Ai) by

3

6 DlD= (6cSS/SS) + Z(a0i6opi + ai6Ai)
i=l

(14)

In Eq. (14), asi and a i define psi and delta sensitivity
functions that relate 60i and 6Ai to 6OD; they are given
by

a 0i = (l/f ) af/ai,

a 6i = (1/f) af/aai,

i= 1, 2, 3.

(15)

When the applied stimulus is sinusoidal, 60i, 6Ai, and
6o,, will also become sinusoidal, Eqs. (9) and (10).
Because 6-0i, 6A i, 6

ass, and 6_D have the same frequen-
cy and are in phase, Eq. (14) can be used to relate
their amplitudes:

-_ -I'l

"D/ 
4 D = (6rss/ss) +E(Uti 60i + aAiA i) ,

i=l

where cei and ai are obtained from Eqs. (15) as

Uoi = (1/f) af/aPil Zi, hi

Ai=(1/f)naf/aAd( ;i'Zi-

(16)

(17)

The left-hand side of Eq. (16) represents the ac/dc
signal ratio, 18 or modulation depth, 6m:

6m = 6/g T.,, - (18)

If 6m is measured at seven different settings of the
ellipsometer optics, we can use Eq. (16) to yield
seven linear equations. These can be combined to-
gether in matrix form as

p3 0 1

bpi = (sec2_i6-0i +j tanki FA i) eJ~i,

(11)

(12)
i = 1, 2, 3.

Equations (11) and (12) follow from Eqs. (4) and (6),
respectively.

MGE is defined as the measurement of 0J. and 6U.S
that result from the application of sinusoidal modula-
tion to the sample S. The methodology of MGE is ex-
plained in the following section.

H. METHODOLOGY OF MGE

We assume a general ellipsometer with arbitrary
polarizing (P) and analyzing (A) optics, Fig. 2. The
signal received by the photodetector D can be written as

g4D=Kssf(O1 , A 1, 2, A 2 , 03, A 3 ; at, by), (13)

where K is a proportionality factor, f is a function
whose form depends on the ellipsometer, and a", b,
(,0, v= 1, 2, 3, ... , ) are two sets of parameters that
characterize A and P, respectively. 17

When a modulation (from the source M in Fig. 2) is
applied to the sample, its normalized Jones matrix J,,
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6m=16S, (19)

where 6m is a 7X 1 measurement vector whose ele-
ments are the seven values of 6m:

F6mi
6m=

M1
(20)

I is a 7x 7 instrument matrix that is specified by the
ellipsometer and its chosen seven settings, and also
by the average (without modulation) Jones matrix J of
the sample:

1 Et1 Oil All a 021 Ca A21 C~031 (aA31

I=1 012 Oa A2 a022 a A22 a 032 a A32 ;(1

L a01 7 aA17 a0 2 7 aA 27 a 3 7 a4 3 7 j

6S is a 7x 1 sample-perturbation vector whose elements
are the seven sample-perturbation parameters:
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tively. A is the azimuth angle of the transmission axis
of the analyzer measured from the p axis positive in a
counterclockwise sense looking into the beam. If we
substitute Ej from Eq. (24), J from Eqs. (3), (4),
and13

, 14

ta SS/ ask

6$1

612

6*3

- 6A3 -

(27)

Inverting Eq. (19), we obtain

6S = r'1 6m, (23)

where t1' is the inverse of I given by Eq. (21).

Equation (23) represents the basis of MGE. It shows
how the seven sample-perturbation parameters 1 9 6/ss/
rss and (60i, Oh ), i= 1, 2, 3, can be obtained from

seven measurements of the ac/dc signal ratio 6nm at
seven different settings of the ellipsometer optics.

III. EVAULATION OF THE INSTRUMENT MATRIX
I FOR THE PCSA AND PSA ELLIPSOMETER
ARRANGEMENTS

In the previous section we presented the methodology
of MGE assuming an ellipsometer with arbitrary po-
larizing and analyzing optics. We have found [Eq.
(23)] that the sample-perturbationvector 6S [Eq. (22)]
can be determined by premultiplying the measurement
vector 6m [Eq. (20)] by the inverse -1' of the instru-
ment matrix I [Eq. (21)]. Therefore the use of an el-
lipsometer for MGE requires the evaluation of I. In
this section, we evaluate I for the PSA (polarizer-sam-
ple-analyzer) and PCSA (polarizer-compensater-sam-
ple-analyzer) commonly used ellipsometer arrange-
ments. The Jones vector of light incident on the sam-
ple is

Ei = Eis (24)

where

Eip=cosP, Ei,=sinP, (25a)

if a polarizer alone is used, and

Eip= cosC cos(P - C) - Pc sinC sin(P -C),

Eis= sinC cos(P - C) +Pc cosC sin(P -C), (25b)

if both polarizer and compensator are used. 20 P and C
are the azimuth angles of the transmission axis of the
polarizer and the fast axis of the compensator, respective-
ly, measured from the p axis positive in a counter-
clockwise sense looking into the beam. Pc is the slow-
to-fast complex-amplituderelative transmittance of the
compensator. The Jones vector of light incident on
the photodetector, referenced to the transmission and
extinction axes of the analyzer, is related to Ei by

E D= TAR(A) JE i, (26)

where J, R(A), and TA are the Jones matrices of the
sample, rotation A, and ideal linear analyzer, respec-
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ED= (28)

where

L = Js, [(p1 cosA + p3 sinA) Ei, + (p2 cosA + sinA)Ei].

The detected signal is given by (29)

g = K L I 2 (30)

where K is a proportionality constant. If we substitute
pi from Eq. (6) and Eip, Ej, from Eqs. (25a) into Eq.
(29), and use the result in Eq. (30), we obtain

4D=KUSSf(l, A1 , 02, A2 , 03, A3 ;A,P) (31)

for the PSA ellipsometer, where as, is defined by Eq.
(7), and

f=lj+l2,

11 = cosA cosP (tanol cosA1 + tanP tanO2 cosA2

+ tanA tanO3 cosA3 + tanA tanP),

12 = cosA cosP (tangl sinA, + tanP tanO2 sinA 2

+ tanA tanO3 sinA3)

(32)

(33)

For the PCSA ellipsometer, we pursue only the
special case2 1 when the compensator acts as a quarter-
wave retarder (Pc = -j) and the azimuth of its fast axis
is set at C = 7r/4. With Pc = -j and C = 7r/4, Eqs. (25b)
yield Ei,= exp{j[P- (7v/4)]} and Eis= exp{-j[P -(7/4)]

Substituting these values of Eip and Ej, into Eq. (29),
with Pi given by Eq. (6), and using the result in Eq. (30),
we obtain equations that are identical in form with Eqs.
(31) and (32), except that

11 = cosA[tan*l sin(2P + A1) + tanO2 cosA2

+ tanA tanO3 sin(2P + A3 ) + tanA],

(34)12 = cosA[tano, cos(2P + Al) - tang2 sinA2

+ tanA tan*3 cos(2P + A 3)].

To evaluate I, Eq. (21), we need to determine (xi
and asj. From Eqs. (15) and (32), we have

a = (2lali/a*i + 2l2Dl2/8*s)/(l2 +12),

A= (2lal1 /aAi + 212 al2 /aAi)/(1 +12 ),

i = 1, 2, 3.

(35)

The twelve partial derivatives a11/api, al1 /aAi, 8l2/80i,

and 0l 2/a I (i 1, 2, 3) that appear in Eqs, (35) can be
readily derived from Eqs. (33) and Eqs. (34) for the
PSA and PCSA ellipsometers, respectively. The re-
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R(A) = cosA sinAi T [. 0j

l-sinA cosAj L 00 ]

into the right-hand side of Eq. (26), we obtain

6S = (22)



TABLE I. Partial derivatives required for the evaluation of the instrument matrix I for the PSA ellipsometer using Eqs. (35) and
(21).

s1/an, w/aA, ai/a2 al/8A, 8l/WM3  ai/Ea3

1, cosA cosP sec
2

%, cosA, - cosA cosP tangy sinA, cosA sinP sec% cosA2  -cosA sinPtan 4 2 sinA2  
sinA cosP se

2
i, 3 cosA3  - sinA cosP tan4, sinA3

12 cosA cosP sec'4, sinA, cosA cosP tang , cosAt cosA simP sec
2

2 sinA2
cosA sinP tan0 2 cosA2

sinA cosP sec
2

43 sinA3
sinA cosP tanO3 cOSA3

sults are summarized in Table I (PSA) and Table II
(PCSA). With these tables, the analytical procedure
to evaluate I becomes complete. Notice that I, Eq.
(21), is expressed in terms of cdi and ani, which are
the values of aci and a i when O4)i = and Ai= i [see
Eqs. (15) and (17)]. Therefore (' i, A i), i = 1, 2, 3, (or,
equivalently J,) have to be either known or, more like-
ly, should be measured. This means that both GE
(measurement of J5) and MGE (measurement of 6J, and
6-rss/s) are expected to be conducted jointly. This is
discussed in the following section.

IV. COMBINED GE AND MGE

Measurements of the average (dc) and alternating
(ac) components of the detector signal 4D at seven dif-
ferent settings of the ellipsometer polarizer and ana-
lyzer optics provide adequate information to determine
both Jn(GE) and 6Jn, 6-u5s/6s(MGE). From Eq. (13),
we can write

_4Dn=KFsswf(4),, m, 42,A2, p3, ,an,], bn,

n=1,2,.7, (36)

which relates the dc signal WD, at the nth measurement
to (0it, Ai), i = 1, 2, 3, and the corresponding ellipsome-
ter settings an, bn. Division of six of Eqs. (36) by the
seventh yields six equations that can be solved for the six
unknowns (Ti, Ai), i = 1, 2, 3. Thus Jn is determined.
From measurements of 6m [Eq. (18)] at the seven
settings and Jn, we can calculate 6Jn and 60Ss/a6 S. as
explained in Secs. II and III.

The above procedure represents a practically at-
tractive method of combined photometric GE and MGE.
The principal disadvantage of this method lies in the
difficulty of extracting (0i, A i), i = 1, 2, 3, (hence Jn)
from the dc-signal data using the set of six equations
mentioned above. In addition, the accuracy of the
photometric measurement of Jn may be unacceptable,
although small errors of Jn do not affect the determina-
tion of the perturbation parameters Jn and 6asslass to
first order.

An alternate procedure for combined GE and MGE is
to measure J: by a null method3'4 (from the mapping
of three different polarization states by the sample),
then use Jn to determine OJn and 6oass/ss, as explained
in Secs. II and LI. To minimize the number of adjust-
ments of the ellipsometer components, a null may first

TABLE II. Partial derivatives required for the evaluation of the
and (21).

be reached and the appropriate data (nonphotometric,
usually azimuth angles) is recorded at that null; then
the polarizer or analyzer is offset to two different
settings (e.g., in opposite directions) away from the
null and the ac and dc photometric signals are re-
corded. With three nulls, six measurements can be
obtained in this manner. The seventh required mea-
surement can be taken by choosing a third different off-
null setting at any one (e.g., the last) of the three nulls.

In this section we have briefly mentioned only two
modes of carrying out combined GE and MGE. Obvi-
ously, other modes of operation of the ellipsometer for
this type of application are possible. The choice of a
mode that realizes optimum accuracy and/or precision
for a given sample has not been discussed. Generally,
such an investigation will be based on the psi and delta
sensitivity functions a., and cii (obtained, e. g., by use of
Tables I and II) and would be directed to an evaluation
of the accuracy and precision of inverting the instru-
ment matrix I [Eq. (21)]. Another important practical
consideration is the use of more than the theoretical
minimum amount of data required to determine J,
and 6Jn, 6cas,/ss These and other extensions of the
present work (such as automation) are beyond the scope
of this paper.

V. APPLICATIONS OF MGE

Up to this point we have not attempted to specify the
nature of the sample, the type of modulation, or the
manner in which light interacts with the sample. This
leaves the scope of MGE wide open. The following are
broad areas of application:

(1) the study of thermo-optical, piezo-optical, elec-
tro-optical, and magneto-optical effects (among others)
in reflection and transmission for samples that are
initially anisotropic (J is nondiagonal), or that become
anisotropic as a result of the application of modulation,
(e.g., stress, electric or magnetic field);

(2) the systematic extension of modulation spectros-
copy22 to the study of band structure of anisotropic
crystals from spectra of (64) , 61i), i = 1, 2, 3, and 6Uss/
c,, measured as functions of photon energy;

(3) the study electrochemical processes 1
112 on opti-

cally anisotropic electrodes under periodic potentials;
and

instrument matrix I for the PCSA ellipsometer using Eqs. (35)
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8l/80, 8l/8A, aW/aO2 al/aA2  al/WM al/aA3

l1 cosA sec%1 sin(2P+ Al) cosA tanO, cos(2P+ A) cosA secd, cosA2  - cosA tanm2 sinA2  siA sec'0 3 sin(2P+ A3) sinA tamP3 cos(2P+ A3)

12 cosA sec
2

01 Cos(2P+ Al) - cosA tank, sin(2P+ Al) -cosA seC
3

b 2 sinA2 -cosA tanp2 COSA2 sinA seC
2

k3 cos(2P+ A3) -sinA tanO3 sin(2P+ A3 )
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(4) the generalization of the recently introduced tech-
nique of AIDER23 (angle-of-incidence-derivative el-
lipsometry and reflectometry) to anisotropic surfaces.
In this case we determine R., aR,/a(p, and aln (s,/8p,
where Rn is the normalized reflection matrix, (R,,
= IR, 12, and q' is the angle of incidence. This allows
the determination of up to thirteen optical parameters
that characterize an anisotropic film-substrate sys-
tem, e.g., all of the optical constants and film thickness
of an absorbing biaxial film on a biaxial substrate.2 4
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