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Abstract  

The main theme of this dissertation is to develop a distributed computational 

pipeline for processing next-generation RNA sequencing (RNA-seq) data. RNA-seq 

experiments generate hundreds of millions of short reads for each DNA/RNA sample. 

There are many existing bioinformatics tools developed for the analysis and visualization 

of this data, but very large studies present computational and organizational challenges 

that are difficult to overcome manually. We designed a comprehensive pipeline for the 

analysis of RNA sequencing which leverages many existing tools and parallel computing 

technology to facilitate the analysis of extremely large studies. RNA CoMPASS provides 

a web-based graphical user interface and distributed computational pipeline including 

endogenous transcriptome quantification and additionally the investigation of exogenous 

sequences.  

Keywords 

Parallel Computing 

GUI User Interface 

Transciptomic 

Next-Generation Sequencing 

RNA-seq Pipeline 
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Chapter 1 Background and Introduction  

1.1 Microarray technology  

Microarray technology is widely applied in the research of molecular biology by using a 

multiplex lab-on-a-chip technology. It typically uses either a one-color or a two-color design to 

measure mRNA abundance [Patterson et al., 2006]. As the name implies, one-color design refers 

to that one sample is used and two-color design refers to that two independent samples are used 

[Shalon et al., 1996]. A small solid glass slide or silicon thin-film cell attaches a large amount of 

different nucleic acid probes to hybridize a cDNA or cRNA sample (called target) under high-

stringency conditions. The relative abundance of nucleic acid sequences in the target can be 

usually determined by detection and quantification of the probe-target hybridization [Scholin et 

al., 1997]. Microarray technology widely involves gene discovery, disease diagnosis, drug 

discovery, toxicological research and so on [Liu 2007]. The platform of microarray typically 

includes Affymetrix, GeneChip, Illumina and BeadArra. Microarray provides analogue measures 

of sequence abundance by measuring the fluorescence intensity of arrayed probe sequences 

because of the intrinsic design. The technology has several limitations, for example, limited to 

known genome and transcriptomes, limited dynamic range and sensitivity [Russo et al., 2003]. 

Besides, when researchers deign microarray experiments they rely on the gene annotations which 

may be incorrect or outdated.  Therefore, microarray technology has a limited ability to detect 

alternatively spliced transcripts [Roy et al., 2011]. Microarray was once as the experiment of 

choice for transcriptome analysis. Although the use of microarray technology remains active in a 

number of research areas, the promising Next Generation Sequencing (NGS) technology is 

rapidly becoming an instrumental assay for transcriptomics research.  
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1.2 Next-generation sequencing technology  

Next-generation sequencing (NGS) technology or High-throughput sequencing (HTS) 

technology is rapidly becoming transformative in many areas of biology because NGS has 

significantly improved throughput and dramatically reduced the cost compared with microarray 

technology [Corrinne et., 2012]. NGS technology generates hundreds of millions of short 

fragments from a library of nucleotide sequences in a single experiment with fewer biases. 

Currently, NGS platforms support a range of genetic analyses, including whole genome 

resequencing, gene expression analysis and small ribonucleic acid (RNA) analysis [Liu et al., 

2011]. For example, using the Illumina (http://www.illumina.com/) Genome Analyzer platform, 

recent applications include sequencing mammalian transcriptomes [Mortazavi et al., 2008], ABI 

Solid Sequencing to profile stem cell transcriptomes [Cloonan et al., 2008] or Life Science's 454 

Sequencing to discover SNPs in maize [Barbazuk et al., 2007]. Even though technical 

differences or applications exist in each platform, the information gathered from each platform 

shares similar principle. Compared with microarray technology, NGS experiments also provide 

much higher resolution measurements of expression at comparable costs [Marioni et al., 2008]. 

High-throughput sequencing technologies have overcome many limitations of microarray 

technology [Russo et al., 2003]. For example, not limited to known genomes/transcriptomes, 

potential for surveying entire genomes/transcriptomes, including novel un-annotated regions, 

providing dynamic range and allowing detection of rare sequences, high sensitivity and low 

background noise, particularly potential for determining gene structure and so on. 

The main theme of this dissertation is to develop computational software tools for RNA-

sequencing technology, which utilizes high-throughput sequencing technologies to sequence 

cDNA in order to get information about a sample's RNA content. The following sections will 
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introduce a series of relevant methods and analysis of whole-transcriptome sequencing data 

(RNA-seq). 

1.3 RNA-seq technology 

RNA-seq, also called "Whole Transcriptome Shotgun Sequencing" [Ryan et al., 2008] 

("WTSS") and dubbed "a revolutionary tool for transcriptomics" [Wang et al., 2009], quickly 

becomes an instrumental assay for transcriptomics research. For many years, the standard 

method for determining the sequence of transcribed genes has been to capture and sequence 

messenger RNA using expressed sequence tags (ESTs) [Adams et al., 1993] or full-length 

complementary DNA (cDNA) sequences using conventional Sanger sequencing technology. 

RNA-seq, as an emerging new high-throughput technology, generates far more data per 

experiment than the conventional EST sequencing, and it generates data that can be used as a 

direct measure of the level of gene expression [Trapnell et al., 2009]. RNA-seq uses next-

generation sequencing (NGS) technologies that can sample the mRNA with fewer biases and low 

background noise. We take the example of Illumina platform, the initial step is known as 

building a DNA library and then genomic DNA is randomly fragmented and ligated adapters to 

both ends of the fragments. By attaching DNA fragments to surface of the flow cell channel in 

the second step, the third step is bridge amplification in order to amplify each fragment into a 

cluster by adding enzyme and unlabeled nucleotides. The purpose of amplification is to make the 

strength of signal stronger so that it is easy to detect the signal from background noise. In the 

following steps, it is to scan each base of the clusters from each chemical circle to generate the 

sequences using laser. By using this way, RNA-seq can quickly generate hundreds of millions of 

short reads in a single run. Therefore, RNA-seq has been rapidly revolutionized the field of 
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transcriptomics allowing researchers to characterize gene expression within an organism under a 

variety of conditions [Costa et al., 2010].  

1.4 Sequence alignment 

The first step of any NGS platform consists of sequence alignment and assembly [Valerio 

et al., 2010, Metzker 2010]. In an RNA-seq experiment, the computing power to track all the 

possible alignments is nontrivial when aligning hundreds of millions of short reads to a reference 

genome [Paşaniuc et al., 2010; Manske et al., 2009; Kircher et al., 2011]. In a typical RNA-seq 

experiment, hundreds of millions of short reads are generated from a library of nucleotide 

sequences. We need to map these short reads of mRNA to identify regions of similarity on the 

reference genome. Due to the length of short read, aligning a huge volume of short reads to a 

long reference genome poses a great challenge to analysis of RNA-seq data. There are several 

tools MAQ [Li H et al., 2008], SOAP [Li R et al., 2008], RMAP [Smith et al., 2008], Bowtie 

[Langmead et al., 2009] and Novoalign (http://www.novocraft.com) available for aligning 

genomic reads to a reference genome. The Needleman–Wunsch algorithm [Needleman and 

Wunsch 1970] and the Smith-Waterman algorithm [Smith and Waterman 1981] are mainly used 

to perform sequence alignment. The Needleman–Wunsch algorithm performs a global alignment 

on two sequences [Durbin et al., 1998]. It is an example of dynamic programming which was the 

first application of dynamic programming to biological sequence comparison and it is suitable 

when the two sequences are of similar length with a significant degree of similarity throughout. 

The Smith-Waterman algorithm performs a local alignment on two sequences. It is also an 

example of dynamic programming and used for dissimilar sequences that are suspected to 

contain regions of similarity or similar sequence motifs within their larger sequence context 

[Durbin et al., 1998]. 



 

1.5 Junction mapping 

Since short reads are generated from mRNA, which 

introns removed. Aligning reads 

also a hard nut to crack for researchers.

regions, there are still a few of short reads 

aligned against to reference genome

originating from exon-exon junctions in cDNA (around 10%

researchers. However, millions of unmapped short reads originating from

denoted as Initially Unmapped Reads (IUM's), need 

expression. To address the IUM problem

al., 2009] and rSeq [Jiang et al.,

IUM's originating from exon-exo

known and novel junctions while Tophat 

et al., 2008].  

Figure 1.1 Combination of exon 
RPKM scores (a) A unique challenge for researchers working with RNA
reads (red) fail to map back to the reference genome because exons are separated by introns. (b) 
A demonstration of the ideas of combing exon reads (black
gene expression RPKM scores [Xu et al., 2011].
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t reads are generated from mRNA, which consists exclusively of exons

ligning reads originating from exon-exon junctions to references genome is 

to crack for researchers. Although most of the short reads can be 

short reads originating from exon-exon junctions 

to reference genome [Chepelev et al., 2009]. Thus, working with 

junctions in cDNA (around 10%) is a unique challenge for 

illions of unmapped short reads originating from exon

denoted as Initially Unmapped Reads (IUM's), need to be accounted for when

IUM problem, ERANGE [Mortazavi et al., 2008], Tophat [

et al., 2008] are among the recently developed approaches to map 

exon junctions back to individual genes. ERANGE uses a union of 

known and novel junctions while Tophat de novo assembles IUM's using a module in Maq [

xon reads with junction reads to accurately calculate 
(a) A unique challenge for researchers working with RNA-seq data. The junction 

back to the reference genome because exons are separated by introns. (b) 
combing exon reads (black) and junction reads (red) to calculate 

[Xu et al., 2011]. 

consists exclusively of exons with all 

exon junctions to references genome is 

 mapped on exon 

exon junctions still cannot be 

working with the short reads 

unique challenge for 

exon-exon junctions, 

to be accounted for when measuring gene 

], Tophat [Trapnell et 

the recently developed approaches to map 

genes. ERANGE uses a union of 

module in Maq [Li H 

 

alculate gene expression 
seq data. The junction 

back to the reference genome because exons are separated by introns. (b) 
) and junction reads (red) to calculate 
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1.6 Sequence searching  

BLASTN, a nucleotide alignment tool, is a very important component of the BLAST+ 

suite. It can search any properly formatted database and there are several regularly updated 

versions of common databases available online. It is compatible with multiple platforms such as 

MacOS, Linux, and Windows systems. The time cost and memory requirements of BLAST are 

greatly impacted by both the number of sequences being searched against the database and the 

size of the database being searched. BLASTN is used to infer sequence function, taxonomy, and 

phylogeny. Output in several formats is provided with varying degrees of information, for 

example: pairwise (for human readability), BLASTTAB (for ease of parsing by scripts), 

BLASTXML (for universal ability to be parsed) and Hit table format. The following table is an 

example of hit table format. 

 
Table 1.1 BLAST results in hit table format 

Query id: Name of the sequence which was used for the search 

Subject id: The name of the sequence found in the BLAST search 

Identity: The number of identical residues in the query and hit sequence 

Score: The bit score of the local alignment generated through the BLAST search 

Hit start: The start position in the hit sequence 

Hit end: The end position in the hit sequence 

Query start: The start position in the query sequence 

Query end: The end position in the query sequence 

E-value: Measure of quality of match 
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1.7 Taxonomical analysis  

Taxonomical analysis is performed to categorize potential exogenous sequences results 

generated by BLAST [Altschul et al., 1997]. The BLAST results in hit table format is imported 

into MEGAN [Huson et al., 2007] which is a tool developed for metagenomic analysis. MEGAN 

[Huson et al., 2007] automatically calculates a taxonomic classification of the reads or a 

functional classification using either the SEED or KEGG classification, or both [Huson et al., 

2007]. The SEED classification outputs a tree and each node of the NCBI taxonomical tree is 

labeled with a taxon. The size of a given node represents the number of short reads assigned to 

that taxon. The results can be interactively viewed and inspected. For example, the researcher 

can export all reads that were assigned to a specific taxon for assembling these reads into longer 

transcripts using ABySS [Birol et al., 2009]. This provides the researcher with an overview of 

reads found in their data of possible exogenous origin. The NCBI classification tree would be 

helpful for the researcher to understand the prior biological knowledge of the experiment at hand, 

or hypotheses that the researcher wants to test given the taxonomic classification displayed by 

MEGAN. Additionally, one can select a set of taxa and then use MEGAN to generate different 

types of charts for them. 

1.8 De novo assembly  

Each pool of reads exported from a given tax can be subsequently assembled into longer 

transcripts using some de novo assembly tools. For example, ABySS [Birol et al., 2009] is a de 

novo parallel sequence assembler. In the final phase of RNA CoMPASS, the researcher can 

extract reads from a taxon of interest to assemble them into longer transcripts [Birol et al., 2009], 

using a de novo parallel sequence assembler. This process provides the researcher with a broader 
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view of the particular transcripts that were found within a given taxon. This process can be 

repeated for each taxon of interest and the researcher can search the longer assembled transcripts 

against the databases again to get more precise hits. This process is the only step of RNA 

CoMPASS that is not automated and requires researcher intervention. The researcher can export 

all extracted reads from MEGAN [Huson et al., 2007] in a file and then upload this file to the 

pipeline to perform the de novo assembly. The researcher can also assemble the reads exported 

from “not assigned” or “no hits” category to perform de novo assemble in case they were 

portions of longer transcripts that simply were not found by MEGAN [Huson et al., 2007]. 

1.9 Introduction to transcriptome  

The term of transcriptome in genetics is defined as the complete set of all RNA 

molecules, including mRNA, rRNA, tRNA, and other non-coding RNA produced in one or a 

population of cells, or it can be referred to as the total of transcripts (or called isoform) or the 

specific subset of transcripts in a living cell [Pacheco et al., 2006]. Unlike the genome that nearly 

does not change in a living cell except for mutation cases, transcriptome is highly diverse, 

dynamic, complex and overlapping [Li et al., 2010]. The transcriptome dynamically varies under 

different external environmental conditions at a particular time, such as specialized tissues or cell 

lines. Most of the transcripts are processed by splicing to remove introns and generate a mature 

transcript or messenger RNA (mRNA) that only contains exons. Importantly, the range of 

transcriptome is enhanced by alternative splicing. Alternative splicing is a fundamental 

molecular process of multiple transcripts from a single gene due to variations in the splicing 

reaction of pre-mRNA [Garcia-Blanco et al., 2004]. An exon can be either included or excluded 

from the mature transcripts. Thus, different splicing variants are generated from the same gene.  
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Global transcriptome analysis is becoming important in understanding how altered 

expression of genetic variants contributes to complex diseases such as cancer, diabetes, and other 

genetic disease [Olden et al., 2011]. Analysis of the transcriptomes of human is used to 

understand the molecular mechanisms and biological signaling pathways controlling early 

embryonic development. 

1.10 Analysis of exogenous sequence 

Since the human body is a persistent host to a spectrum of not only bacterial organisms 

but also viruses, any biological contamination of foreign organisms occupying the host will be 

referred to as exogenous agents [Sekirov et al., 2010]. Harbor exogenous agents such as the 

human tumor viruses and bacterial have been found in many commonly used cell lines for 

biological studies. Therefore, contamination is an important factor that must be considered for 

any biological experiment [Coco et al., 2011]. However, the conventional approaches often have 

limitations in globally assessment of the presence of foreign organisms within cell model 

systems. With high-throughput sequencing technology, some significant evidences have been 

found in commonly used cell lines such as Epstein-Barr virus (EBV) virus transcription in type I 

Burkitt’s lymphoma cells [Lin and Xu et al., 2010]. In a RNA-seq experiment, the researchers 

often extract the mapped reads for further analysis, for example transcriptome characterization 

and quantification [Xu et al., 2011]. And the reads that do not map well to the reference genome 

are often simply discarded. However, important information could be lost by ignoring these 

unmapped reads. Some of the reads that do not map to the host genome could be indicative of 

bacterial or viral sequences in the RNA-Seq experiment [Coco et al., 2011]. Analysis of 

exogenous sequence will be referred to as exogenous agent coding reads from analysis of the 

host organism which was introduced during the procedures involved in reading the RNA 
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sequences from the host organism. BLAST is used to search the possible exogenous sequence 

reads against a very large and broad database [Benson et al., 2010] in our computational pipeline. 

1.11 Analysis of endogenous sequence  

Quantifying genomic feature abundance in cells via measurement of mRNA levels 

arouses researchers’ interest all the time [Tuller et al., 2007]. For analysis of transcriptome 

quantification, it includes estimation of gene abundance score at gene level and isoform 

(transcript) level.  

For measuring gene expression, we often have to align short reads to original positions 

against a reference genome using alignment tools such as Bowtie, Novoalign and other sequence 

aligner. Then we can count the number of short reads mapped on gene regions based on gene 

annotation table to estimate the genomic feature abundance. In RNA-seq experiment, for 

instance, ERANGE reports the number of mapped Reads Per Kilobase of exon per Million 

mapped reads (RPKM) for each gene, a measure of transcription activity [Trapnell et al., 2009]. 

For paired-end short reads, we measure the transcript-level relative abundance 

in Fragments Per Kilobase of exon model per Million mapped fragments (FPKM).  

RPKM/FPKM �  10� � � � � 

C is the total number of mapped short reads or fragments, L is the length of exons and N 

is the total number of short reads in one lane of one experiment. When scaled to range [0, 1000], 

this value stands for the normalized depth of coverage for each gene. Using this way, we can 

estimate the abundance of mRNA in the cells. Even though it has been shown that there is no 

strong correlation between the abundance of mRNA and the related proteins [Greenbaum et al., 
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2003], measurement of mRNA levels is still very useful in determining how cells differ between 

a healthy state and a diseased state and other research problems. 

Transcript quantification using RNA-seq plays a critical role in a wide range of 

transcriptomics research. Since the diverse alternative splicing mechanisms of transcripts, it can 

pose a challenge for researchers in transcript quantification. Fortunately, there are several 

existing bioinformatics tools and computational approaches have been developed to use high 

throughput gene expression profiling data collected RNA-seq experiments such as, Cufflinks 

[Trapnell et al., 2010], rQuant.web [Bohnert and Rätsch 2010], RAEM [Deng et al., 2011] and 

iQuant [Nguyen et al., 2011]. In our pipeline, we implemented RAEM algorithm [Deng et al., 

2011] and iQuant algorithm [Nguyen et al., 2011]. 

 

Figure 1.2 Endogenous sequence analyses. 
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1.12 Motivation 

Technical limitations of microarray technology constrain its ability to comprehensive 

human transcriptome quantification and the typical endogenous RNA-Sequencing analysis along 

with the investigation of exogenous sequences. Fortunately, high-throughput multiplexed next-

generation sequencing provides a digital readout of absolute transcript levels and imparts a 

higher level of accuracy and dynamic range than microarray platforms. High-throughput RNA 

sequencing has become an instrumental assay for transcriptomics research. There are many 

existing bioinformatics tools designed for analysis and visualization of this data, but very large 

studies present computational and organizational challenges that are difficult to overcome 

manually. A dramatic increase in the size of datasets often exceeds the computing capability of 

these tools run on a single workstation. We have designed a comprehensive pipeline for analysis 

of RNA sequencing which leverages many existing tools and parallel computing technology to 

facilitate the analysis of extremely large studies. RNA CoMPASS provides a web-based 

graphical user interface and distributed computational pipeline including endogenous 

transcriptome quantification along with the investigation of exogenous sequences. RNA 

CoMPASS is deployable on either a local cluster or a grid environment managed by Portable 

Batch System (PBS) submission. 

1.13 Overview 

This thesis is organized into 6 chapters. In Chapter 1 we introduce background, 

motivation and overview. We describe the next-generation technology and the related hot 

biological problems that biologists are interested in, and then we also present out motivation that 

we design a comprehensive pipeline for endogenous sequence analysis along with the 
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investigation of exogenous sequences. In Chapter 2 we describe methods and tools. In this 

chapter, we detailed introduce the methods and tools used in RNA CoMPASS, and we show the 

limitations of the existing tools and provide our novel solution to solve these challenges. In 

Chapter 3 we present design and implementation of RNA CoMPASS. In this chapter, we 

describe two frameworks used in RNA CoMPASS, JPPF framework and PBS framework. With 

these two frameworks, the pipeline can be deployed on either a local small cluster or a grid 

system managed by PBS scheduling submission. The system greatly facilitates the analysis of 

large RNA sequencing studies through automated dataflow management and acceleration of 

processing via distributed computing over a cluster. Besides, we also adopt the layer structure 

and Model-View-Controller (MVC) model to implement the pipeline. With this design model, 

the pipeline shows the advantages of implementation over other tools, for example, extensibility, 

reusability, scalability and functionality. In Chapter 4 we discuss the key features offered by the 

pipeline including the analysis of endogenous sequence and the investigation of exogenous 

sequence, and related useful applications. In Chapter 5, we list the important results of all key 

features offered by the pipeline and compare the performance of the pipeline with the extra-large 

dataset. In Chapter 6 we draw a conclusion of the thesis and present the contribution of the 

pipeline for transcriptomics research. 

The thesis is largely based on the following list of relevant publications and software. In 

the category of discovery and visualization of exogenous sequences of non-host origin, the 

submitted paper 1) mainly focus on the implementation and contributions of the pipeline RNA 

CoMPASS which is designed and implemented by me; in the paper 2) I contributed part of 

results from the tool PARSES, which has been integrated into the new pipeline; in the paper 3) 

my contribution is that I assist them to generate most of analysis result from the pipeline RNA 
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CoMPASS. In the category of the performing of extensive endogenous RNA-Seq analysis for 

the host organism, I performed the sequence alignment, ranked the list of gene abundance and 

provided the important results in the paper 4). In the paper 5), the results are generated from the 

software SAMMate. The paper 6) is mainly focus on the implementation and contributions of 

the software SAMMate which is designed and developed by me. 

• Discovery and visualization of exogenous sequences of non-host origin 

1) Xu Guorong, Strong M, Flemington EK and Taylor C: RNA CoMPASS: RNA 
comprehensive multi-processor analysis system for sequencing. (In submission) 

 
2) Lin,Z, Puetter A, Coco J, Xu Guorong, Strong M, Wang X, Fewell C, Baddoo M, Taylor 

C and Flemington EK:  Detection of Murine Leukemia Virus in the Epstein-Barr Virus-
Positive Human B-Cell Line JY, Using a Computational RNA-Seq-Based Exogenous 
Agent Detection Pipeline, PARSES. J. Virology, 2012; doi: 10.1128/JVI.06717-11 
 

3) #Strong M, #Xu Guorong, Coco J, Concha M, Baribault C, Baddoo M, Taylor C and 
Flemington EK: Detection and transcriptome analysis of Epstein Barr virus in RNA-seq 
data from clinical Gastric Carcinoma samples using a computational pipeline 
RNACoMPASS (RNA comprehensive multi-processor analysis system for sequencing) 
(In preparation). 
 

 

• Performs extensive endogenous RNA-Seq analysis for the host organism 

4) Xu Guorong, Fewell C, Taylor C, Deng N, Hedges D, Wang X, Zhang K, Lacey M, 
Zhang H, Yin Q, Cameron J, Zhen L, Zhu D and Flemington EK: Transcriptome and 
targetome analysis in mir155 expressing cells using rna-seq. RNA (New York, N.Y.), 
2010; 16(8):1610-1622. 

 
5) #Lin Z, #Xu Guorong, Deng N, Taylor C, Zhu D and Flemington EK: Analysis of EBV 

transcriptome using RNA-seq. J. Virology, 2010; doi:10.1128/JVI.01521-10. 
 
6) Xu Guorong, Deng N, Zhao, Z, Flemington EK and Zhu D: SAMMate: A GUI tool for 

processing short read alignment information in SAM/BAM format. Source Code for 

Biology and Medicine, 2011; 6:2 
 

• Software 

RNA CoMPASS [available from, http://rnacompass.sourceforge.net] 

SAMMate [available from, http://SAMMate.sourceforge.net] 
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Chapter 2 Architecture of RNA CoMPASS 

2.1 Introduction 

RNA CoMPASS uses a Client-Server (C/S) structure to simplify installation and 

maintenance so that the researcher just needs to open a web browser to access RNA CoMPASS 

via the internet. The researcher interacts with a Graphical User Interface (GUI) to upload their 

data to the Tomcat web server portion of RNA CoMPASS and initiate the analysis.  The Tomcat 

web server connects to the computational cluster to perform processing of the analysis and 

results are stored on the Tomcat web server. The researcher can now download analysis results 

from the server for visualization and/or further downstream analysis. By using this architecture, 

RNA CoMPASS provides cross-platform compatibility. The researcher doesn’t need to install or 

upgrade any software; all installation and upgrade procedures are performed on the Tomcat 

server by the administrator. RNA CoMPASS has a very user-friendly GUI and an embedded 

FTP server providing secure and fast data transfer. 

 

Figure 2.1 Overview of RNA CoMPASS structure. 
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2.2 Java Parallel Processing Framework (JPPF) 

Java Parallel Processing Framework (JPPF) is a distributed parallel processing 

framework based on a Client and Server architecture. A JPPF grid consists of 3 kinds of 

components that communicate with each other: client submits work to the cluster, and the server 

receives work from the clients and distributes it to the computational nodes which execute the 

work in parallel. 

 

Figure 2.2 Overview of RNA CoMPASS deployed on a local cluster with JPPF structure. 

The administrator can assign one machine in a lab as the JPPF server, and assign the 

others as computational nodes. Setup a local cluster in this fashion is very simple. The 

administrator downloads one package and unzips it on the JPPF server which RNA CoMPASS is 

running on, then launches it by typing the command "ant". RNA CoMPASS can automatically 

detect the JPPF server and send tasks to the JPPF server via the JPPF API. Then the JPPF server 

assigns tasks to its attached node machines and collects results from each node machine after 

processing. 

2.3 Grid system managed by Portable Batch System (PBS) submission 

A computer grid environment consists of a set of loosely connected computers that work 

together so that they can be treated as a single system in many respects.  Portable Batch System 

(PBS) is software that performs job submission and scheduling. This software is in charge of 
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allocating computational tasks such as batch jobs across the available computing resources of the 

grid. 

RNA CoMPASS is easy to deploy to a grid system managed by PBS submission. The 

administrator copies the Novoalign and BLAST executable files, related Novoalign index and 

NT database files, and some shell scripts to the grid data storage center. Then the administrator 

enables the PBS feature by modifying a property in an RNA CoMPASS system file. A grid 

system with more than one hundred machines can greatly accelerate the data processing. 

 

Figure 2.3 Overview of RNA CoMPASS deployed on a grid system managed by PBS 
submission. 

2.4 Layer structure of RNA CoMPASS 

We now provide a description of the software architecture to enlighten users about key 

RNA CoMPASS modules and their interconnections. The architecture of RNA CoMPASS 

follows the standard Model-View-Controller (MVC), a common architectural pattern used in 

software engineering. The MVC approach decomposes the problem into input data (model), 

presentation of the data (view), and business logic (controller) (Figure 2.4). The basic software 

architecture has three components: JSP pages package (Presentation of the data processing 

module), Calculator package (Business logic processing module) and Action package (Input data 
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processing module). The advantages of adopting the MVC approach are malleability, modularity, 

reusability, flexibility and extensibility. 

RNA CoMPASS’s reusability is very robust as developers can easily reuse existing 

classes by using the new method to create an instance of a class. RNA CoMPASS is also very 

extensible. If a user wishes to expand upon a component, the user may simply use the “extends” 

key word to inherit the methods and properties of the desired class. Developers may also 

conveniently add classes to implement new features. For example, developers may add a new 

parser to process a gene annotation file in a new format by adding a class to the Alignment 

package. Furthermore, a developer may add a new tab in the Applet interface of JSP page to 

support new features. One other important feature of RNA CoMPASS is its configurability. For 

example, RNA CoMPASS allows users to flexible switch RNA CoMPASS to deploy on a local 

cluster (JPPF framework) to a grid system (PBS submission) in a configuration file. In summary, 

the RNA CoMPASS software architecture implements a number of Applied Programming 

Interfaces (API’s) so that other software developers may easily extend and build more utilities.  
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Figure 2.4 The layer structure of RNA CoMPASS: the Presentation Layer consists of View 
module and Controller module, the Business layer consists of Model module. The Third Party 
Layer consists of existing bioinformatics tools and framework used in RNA CoMPASS. 
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Chapter 3 Methods and Tools 

3.1 Introduction 

      High-throughput RNA sequencing has revolutionized the field of transcriptomics 

allowing researchers to characterize gene expression within an organism under a variety of 

conditions [Costa et al., 2010]. New sequencing technologies can rapidly and inexpensively 

generate hundreds of millions of short reads from a single experiment. There are a plethora of 

quality bioinformatics tools available for mapping these reads to a host genome and performing 

additional downstream analyses. However, the management of large studies and heavy 

computational burden can pose a challenge for researchers who may not be familiar with 

command-line tools or notions of distributed computing. To address this growing problem, we 

have developed a comprehensive system for RNA-seq analysis (RNA CoMPASS) that is 

accessed via an easy to use web-based graphical user interface. This system is deployable to a 

local cluster or a grid environment to address the growing need for computing power brought 

about by larger studies. RNA CoMPASS leverages some of the most useful open source tools 

and automates the distribution of the computational burden over the available computing 

resources. In addition to performing the typical analyses of endogenous sequences, RNA 

CoMPASS also incorporates a new method to discover exogenous agents [Coco et al., 2011].  

3.2 Data flow through RNA CoMPASS  

The data flow through RNA CoMPASS is shown in the Figure 3.1. At first, the new 

machine generates hundreds of millions of short reads; then we use Novoalign or TopHat to 

align short reads against the reference genome. The reads mapped on exon or junction regions 

are used for transcriptome quantification, for example, to calculate genomic feature abundance at 



21 
 

gene level or isoform level. Then, we extract unmapped reads and de-duplicate the short reads. In 

the following steps, we use BLAST to search unmapped reads against human RNA database and 

NT database. This step is extremely computationally intensive. Taxonomical analysis is 

performed in the next step by importing the BLAST results into MEGAN to categorize 

exogenous sequences. MEGAN generates a tree and each node of this tree is labeled by a taxon. 

This provides the researcher with an overview of reads found in their data of possible exogenous 

origin. In the last step, the researcher can export all reads that were assigned to a specific taxon 

for further analysis. For instance, we can use ABySS to assemble the reads into longer transcripts 

of specific species. 

 

Figure 3.1 Data flow through RNA CoMPASS. 
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3.3 Initial Serial Pipeline 

In the initial version, we serially run our pipeline and faced some technical challenges. 

For example, huge sized data file and many existing bioinformatics tools involved. It is hard for 

biomedical researchers to deal with many command-line tools. Some of tools need to run on a 

very powerful workstation with a lot of memory and they are time consuming. Novoalign and 

BLAST are bottle neck in the whole pipeline. We often spent more than one day to finish one 

small sample with less than 1 GB file on a very powerful Mac machine with 64G memory and 24 

CPU processors. For solving this problem, the solution is the parallel computing. 

 

Figure 3.2 The structure of Initial serial pipeline. Novoalign and BLAST are bottleneck in this 
version. 
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The key to parallelization is to split the data into many pieces and allocate these small 

dataset to many machines, then gather and merge the results together and continue the next step. 

For example, we split the large data file into N small files and send 1 small file to 1 of N 

machines to run Novoalign. It is the same as BLAST. The parallelized pipeline has several 

advantages over the previous version. Each machine can use memory more efficient and can 

speed up N times theoretically. By adding one additional step that BLAST against RNA database, 

we can improve the accuracy of hits. In particular, the new parallelized version can handle 

extremely large data file from extensive sequencing projects. We only spend several hours to 

finish one real sample data with more than 20 million of short reads data file on a local cluster 

with 3 Mac machines. 

3.4 Methods 

RNA CoMPASS incorporates many existing sequence analysis tools for alignment of 

short reads, mapping of splice junctions, estimation of transcriptome abundance at both gene and 

isoform level, searching of sequence databases and assembly of reads into longer transcripts. The 

system facilitates analysis of large RNA sequencing studies through automated dataflow 

management, access through a convenient graphical user interface, and acceleration of 

processing via distributed processing over a cluster. 

3.4.1 Exons reads alignment using Novoalign 

The first phase of RNA CoMPASS is to perform the alignment of millions of short reads 

against the host genome using a very accurate aligner, Novoalign (http://www.novocraft.com/). 

Novoalign categorizes reads into four classes: uniquely mapped reads, repeat mapped reads, 

unmapped reads and quality controlled reads. Typical endogenous RNA sequencing analysis 

concentrates on the uniquely mapped reads and repeat mapped reads, discarding the unmapped 
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reads. For the investigation of exogenous sequences, we extract unmapped reads from the 

alignment results, which typically comprise 10% to 15% of total reads in human studies [Lin et 

al., 2012]. This initial mapping phase is accelerated by deduplicating input reads and distributing 

across many computing nodes to perform alignment in parallel. 

 

Figure 3.3 Investigation of exogenous sequences. On average 87.5% of our reads from RNA-seq 
experiments in human are identified as mapped reads. The remaining 12.5% of reads that are 
unmapped could potentially indicate bacterial or viral sequences from exogenous sources. 

3.4.2 Junctions reads alignment using TopHat 

The second phase utilizes TopHat [Trapnell et al., 2009] to identify splice junction reads 

that span multiple exons. These splice junction reads are not detected by Novoalign and typically 

comprise 5% to 6% of the original reads [Xu et al., 2011]. Up to half of the unmapped reads 

from Novoalign are identified as splice junction reads using TopHat.  RNA CoMPASS removes 

splice junction reads from the unmapped category of Novoalign by using an intermediate file 
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from TopHat. These reads would not be mapped by Novoalign to the human reference genome 

because of the presence of introns. Since this phase is independent of the Novoalign mapping, it 

is started in parallel with the first phase and upon completion of these two mapping tasks, the 

processing is bifurcated into analysis of endogenous sequences and investigation of exogenous 

reads. The second phase is optional and it is only designed for reference genomes which have 

transcripts that are alternatively spliced from individual genes. 

3.4.3 Sequence searching using BLAST 

Exogenous sequence analysis proceeds concurrently with the endogenous analysis. This 

phase of RNA CoMPASS utilizes BLAST [Altschul et al., 1990] to search unidentified reads 

from the initial mapping stages against the NCBI NT database for identification.  This process is 

extremely computationally intensive and is distributed across the computing cluster to minimize 

processing time and memory requirements. The running time and memory requirements of 

BLAST rely on the number of reads being searched and the size of the NCBI NT database. RNA 

CoMPASS filters out reads originating from the human genome prior to search against the NCBI 

NT database to help manage the computational requirements of this intensive BLAST analysis. 

We have also discovered that many of the reads that were not mapped to the host genome in the 

first two stages of analysis are, in fact, identified by BLAST as mapping to the host genome 

since BLAST is a more permissive search. In order to further reduce the computational burden, 

RNA CoMPASS offers an optional stage prior to the BLAST against NT where the user can 

BLAST against a host transcript database to further filter these reads from consideration. This 

stage takes advantage of the lower computational burden of BLASTing reads against a smaller 

database (the host transcript database) before BLASTing the remaining reads against a larger 

database (the NT database). 
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3.4.4 Taxonomical analysis using MEGAN 

Taxonomical analysis is performed in the next phase by importing the BLAST results 

into MEGAN [Huson et al., 2007] to categorize exogenous sequences. To allow MEGAN to 

determine the taxon associated with matches, the NCBI taxon id number is appended to each 

BLAST hit by looking up the GI accession number of the hit in the GI to TaxID file. MEGAN 

then determines the taxon associated with matches based on the hit table using a lowest common 

ancestor algorithm. MEGAN categorizes the exogenous sequences and outputs a NCBI 

taxonomy tree. Each node of the output tree is labeled by a taxon and the size of a given node 

represents the number of reads assigned to that taxon. This provides the researcher with an 

overview of reads found in their data of possible exogenous origin. The NCBI classification tree 

helps the researcher to evaluate exogenous sequence content armed with thier biological 

knowledge of the experiment at hand. The researcher can also formulate hypotheses to test given 

the taxonomic classification displayed by MEGAN (Huson et al., 2007). The researcher can 

export all reads that were assigned to a specific taxon for further analysis including de novo 

assembly of transcripts from a given taxon. 

3.4.5 De novo assembly using ABySS 

In the final phase of RNA CoMPASS, the researcher can choose taxons of interest to 

extract reads from and assemble them into longer transcripts [Birol et al., 2009] using a de novo 

parallel sequence assembler. This process provides the researcher with a broader view of the 

particular transcripts that were found within a given taxon.  De novo assembly can be repeated 

for each taxon of interest and the researcher can search the longer assembled transcripts against 

the databases again to get more precise hits. 
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Figure 3.4 Overview of RNA CoMPASS workflow. After deduplication, raw sequence data in 
FASTQ format is aligned against the reference genome using Novoalign and TopHat. Reads 
which are mapped are used for endogenous analysis by SAMMate, and unmapped reads are used 
for exogenous analysis by searching against an optional RNA database and the NCBI NT 
database by BLAST. Taxonomical analysis is performed on the BLAST results using MEGAN 
and reads from a given taxon of interest can be extracted for assembly into longer transcripts by 
assembly tools. 

3.4.6 Gene expression calculation 

Genomic feature abundance score at gene level is performed via the SAMMate analysis 

pipeline [Xu et al., 2011]. Gene expression is calculated using Reads/Fragments Per Kilobase of 

exon model per million Mapped reads (RPKM/FPKM) [Trapnell et al., 2009].  

RPKM/FPKM �  10� � � � � 
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C is the total number of mapped short reads or fragments, L is the length of exons and N 

is the total number of short reads in one lane of one experiment. When scaled to range [0, 1000], 

this value stands for the normalized depth of coverage for each gene. 

For accurate calculation of the expression abundance score for annotated genes, we need 

a gene annotation file for the host genome to calculate the total length of exons. Using the 

uniquely mapped reads and repeat mapped reads from Novoalign along with splice junction 

reads identified by TopHat to count the total number of mapped reads on the exons of annotated 

genes. Then we are able to calculate the gene RPKM/FPKM value using the RPKM/FPKM 

formula. 

3.4.7 Transcript expression calculation 

Transcript quantification is computed via RAEM algorithm [Deng et al., 2011] and 

iQuant procedure [Nguyen et al., 2011] to accurately estimate the relative proportions and 

transcript abundance scores.  

For RAEM algorithm, we infer an unobserved fragment-originating matrix (Z and Z’) 

from the observed fragment-compatible matrix (Y and Y’) for each gene. A row of the matrix 

represents one fragment and a column of the matrix represents one transcript. Then we 

implement the EM algorithm as the following [Deng et al., 2011],  

E-step:               ��,������ � ��,������
∑ ��,������ !   ,    "#, $ 

M-step:              %������ � ∑ ��,������,    "$&�'�  

    (� �  )���*�+,+� , $ � �1,2 … , /�, 
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i = (1,2…,I) is row index of the mapped fragments, j= (1,2…,J) is the column index of 

transcript index, 0�is the length of jth isoform and P = (1�, 12 … 13�, and ∑ 1�3�'� � 1. 

Then the expression abundance for each transcript is: 

(� � 41��5�060� , $ � �1,2 … , /� 

And 06is the sum of total exon length of a gene, and 0�is the sum of total exon length of a 

transcript in this gene. 

We implemented the EM algorithm [Deng et al., 2011] using Java language in RNA 

CoMPASS as the following, 

/** 
 * The following method is to estimate the proportions using EM procedures 
 * @param E 
 * @param gene 
 * @return 
 */ 
private Matrix calculate(Matrix E, double countedReadsNum, Gene gene) 
{ 

long isoNum = E.getColumnCount(); 
long readsNum = E.getRowCount(); 
Matrix newIsoProps = DenseMatrix.factory.ones(1,isoNum); 
newIsoProps = newIsoProps.divide(isoNum); 
Matrix z = DenseMatrix.factory.ones(1,isoNum); 
Matrix n = DenseMatrix.factory.zeros(1,isoNum); 
Matrix isoProps = DenseMatrix.factory.ones(1,isoNum); 
try 
{ 

while(isoProps.minus(newIsoProps).normF() > 0.0001) 
{ 
isoProps = newIsoProps.clone(); 
n = DenseMatrix.factory.zeros(1,isoNum); 
for (int i = 0; i < readsNum; i++) 
{ 

double temp = 0; 
for (int j = 0; j < isoNum; j++) 
{ 

z.setAsDouble(E.getAsDouble(i,j) * (isoProps.getAsDouble(0,j)), 0, j); 
temp += z.getAsDouble(0, j); 

} 
for (int j = 0; j < isoNum; j++) 
{ 

if (temp == 0) 
z.setAsDouble(0, 0, j); 

else 
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z.setAsDouble(z.getAsDouble(0, j)/temp, 0, j); 
n.setAsDouble(n.getAsDouble(0,j) + z.getAsDouble(0,j), 0, j); 

} 
} 
for (int j = 0; j < isoNum; j++) 

newIsoProps.setAsDouble(n.getAsDouble(0,j)/readsNum , 0, j); 
} 

}catch (Exception e) 
{ 

System.out.println("The gene cannot be calculated: " + gene.m_geneID); 
System.err.println(e.getMessage()); 
return null; 

} 
gene.m_predictedExpValue = 1000000000 * 
(double)gene.m_copies/(double)(gene.getTotalExonLength() * countedReadsNum); 
gene.m_expressionValue = gene.m_predictedExpValue; 
return newIsoProps;  

} 

 

For iQuant algorithm, we construct a relationship matrix of transcripts and exons for each 

gene from genomic annotations. In this matrix, each row represents one base of an exon and each 

column represents one transcript. Then we observe the depth at each base by calculating the 

coverage of mapped reads on genes. The mathematical framework is as the following [Nguyen et 

al., 2011], 

7 � 8 · : ; < � =1� 0 … 1+0 12 … 1+… … … …1� 12 … 0 > =?� ?2 … ?@?� ?2 … ?@… … … …?� ?2 … ?@
> ;  < 

In the matrix E, it has N samples and M rows, each row corresponds one base of exons. 

Matrix W encodes the proportions between the isoforms and the output signals. Matrix R consists 

of samples of L isoforms. 

Then we formulated this mathematical framework into a constrained convex quadratic 

problem: 

min ||7 E 8:||2  F. H. I 1� � 1, 1� J 0, # � 1,2, … , 0.+
�'�  
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It is known that the optimal solution to the above equality-only constrained estimation 

exists. And we implemented the iQuant algorithm [Nguyen et al., 2011] using Java language in 

RNA CoMPASS as the following, 

/** 
 * The following method is to estimate the proportions using one step procedure with  
 * known gene expression score. 
 * @param E 
 * @param W 
 * @param score 
 * @param gene 
 * @return proportions 
 */ 
private Matrix oneStep(Matrix E, Matrix W, double score, Gene gene) 
{ 

long sampleNum = E.getColumnCount(); 
long lengthExons = E.getRowCount(); 
long isoNum = W.getColumnCount(); 
Matrix S = W.clone(); 
Matrix A = DenseMatrix.factory.ones(1,isoNum); 
int b = 1; 
Matrix z = E.toRowVector(Ret.NEW); 
Matrix isoProps = DenseMatrix.factory.ones(1,isoNum); 
try 
{ 

Matrix H = DenseMatrix.factory.zeros(0,0); 
 
for (int i = 0; i < sampleNum; i++) 

H = H.appendVertically(S.times(score)); 
 
Matrix temp0 = (H.transpose().mtimes(H)); 
Matrix xHatLS = null; 
 
if (!temp0.isSingular()) 

xHatLS = temp0.inv().mtimes(H.transpose()).mtimes(z); 
else 

return null; 
 
Matrix temp5 = (H.transpose().mtimes(H)); 
 
if (temp5.isSingular()) 

return null; 
 
Matrix B = temp5.inv(); 
Matrix temp4 = (A.mtimes(B).mtimes(A.transpose())); 
 
if (temp4.isSingular()) 

return null; 
 

Matrix part1 = B.mtimes(A.transpose()).mtimes(temp4.inv()); 
Matrix temp1 = DenseMatrix.factory.eye(isoNum,isoNum); 
Matrix temp2 = temp1.minus(part1.mtimes(A)).mtimes(xHatLS); 
Matrix xHatCLS = temp2.plus(part1.times(b)); 
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isoProps = xHatCLS.transpose(); 
W = DenseMatrix.factory.zeros(lengthExons,isoNum); 
gene.setPredictedExpValue(score); 

} catch (Exception e) 
{ 

System.out.println("The gene cannot be calculated: " + gene.m_geneID); 
System.err.println(e.getMessage()); 
return null; 

} 
 
Matrix E_mean = DenseMatrix.factory.ones(lengthExons,1).times(E.getMeanValue()); 
Matrix rs_v = DenseMatrix.factory.ones(isoNum,1).times(gene.m_predictedExpValue); 
Matrix dif1 = E.minus(W.mtimes(rs_v)); 
Matrix dif1_square = dif1.transpose().mtimes(dif1); 
     
Matrix dif2 = E.minus(E_mean); 
Matrix dif2_square = dif2.transpose().mtimes(dif2); 
gene.m_Rsquare = 1 - dif1_square.doubleValue()/dif2_square.doubleValue(); 
 
return isoProps; 

} 

 

3.4.8 Detection of differentially expressed genes and isoforms 

In RNA CoMPASS, we allow users to detect differentially expressed genes and isoforms 

with support for edgeR. For each gene or transcript, we can count the total number of mapped 

reads and construct a matrix. In this matrix, each row represents one gene or one transcript, and 

each column represents one sample. The total number of column should be greater than 6. The 

entries of this matrix represent the total number of mapped reads for each gene or transcript. 

After we construct this matrix, we can import it to edgeR to calculate differentially expressed 

genes and isoforms. 

                     S1       S2      S3     S4    S5  S6 

KL%L 1KL%L 2KL%L 3KL%L 4KL%L 5…KL%L P QRR
RRR
S %�� %�2 %�T %�U %�V %�W%2� %22 %2T %2U %2V %2W%T� %T2 %TT %TU %TV %TW%U� %U2 %UT %UU %UV %UW%V� %V2 %VT %VU %VV %VW… … … … … …%X� %X2 %XT %XU %XV %XWYZZ

ZZZ
[
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3.4.9 Generation of reads coverage file for visualization 

RNA CoMPASS allows users to generate a reads coverage file in wiggle format for other 

important visualization tools. For example, a wiggle file can be used for UCSC Genome Browser 

visualization of gene structure variation and a signal map file at single base pair resolution can be 

used for peak detection [Xu et al., 2011]. For each strand, RNA CoMPASS generates one array 

to save the coverage depth at each base for one chromosome. For example, we have 24 

chromosomes and each chromosome has two strands. All these reads coverage information will 

be outputted into one text file following a standard wiggle format. The users can import the 

wiggle file to UCSC Genome Browser to visualize the gene structure variation. 

 

Figure 3.5 Overview of coverage file in wiggle format. 

3.5 Existing bioinformatics tools used in RNA CoMPASS 

As the RNA sequencing technology has become an instrumental assay for transcriptome 

research. There is a plethora of quality bioinformatics tools available for mapping these reads to 

a host genome and performing additional downstream analyses. However, the management of 

many existing command-line tools can pose a challenge for researchers who may not be familiar 

with command-line tools or notions of distributed computing. To address this growing problem, 

we have developed a comprehensive system for RNA-seq analysis (RNA CoMPASS) that is 
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accessed via an easy to use web-based graphical user interface. In this pipeline, we have 

integrated many popular bioinformatics tools. 

3.5.1 Novoalign 

Novoalign is a highly accurate sequence alignment tool which is optimized for short 

sequences. We need to build an index file based on the reference genome using Novoindex script, 

and then we import the sequence data files by running Novoalign against the reference genome. 

The alignment results are restored a text file in SAM format. If the sequence data is paired-end, 

we need to input one pair of sequence files into Novoalign, and Novoalign will generate one 

alignment resulting file in SAM format. 

Using different parameters of k-mer length and step size, the index file generated by 

Novoindex will have different size. For example, for searching the full human genome on a 16 

GB RAM workstation, the recommended parameters are k-mer length = 14 and step size=2, the 

theoretical index size is around 13.5GB. 

The step is very computationally intensive and we have parallelized this module in RNA 

CoMPASS to accelerate the processing. For the local cluster, we install Novoalign on each 

machine with Novoalign index files. Then we copy the executable shell scripts on each machine 

same as the Novoalign index files. The workhorse server allocates all tasks to each attached node 

machines, then the server collects the results from each node machine after the node machine 

finishes the task. After merging all results into one single file, the workhorse server will continue 

to precede the next step. For the grid system managed by Portable Batch System (PBS), we just 

need to copy the Novoalign executable file, related index files and some shell scripts to the grid 

system. Then we just need to turn on PBS feature by modifying a property in one configuration 
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file on the Tomcat web server. RNA CoMPASS can work with the grid system. Usually, a grid 

system has more than one hundred machines. That would greatly speed up the processing.  

3.5.2 Bowtie 

Bowtie is an ultrafast and memory-efficient short sequence aligner for aligning short 

sequences against large reference genome. Bowtie uses Burrows-Wheeler algorithm [Burrows 

and Wheeler, 1994] to build the index file, Burrows-Wheeler transformation (BWT) is a 

reversible permutation of the characters in a text. BWT-based indexing allows large texts to be 

searched more efficiently in memory usage. Bowtie performs a quality-aware, greedy, 

randomized, depth-first search through the space of possible alignments [Langmead et al., 2009]. 

In our pipeline, TopHat invokes Bowtie to align short sequences against reference genomes and 

constructs the contigs so that TopHat identifies all possible splice junction reads. 

3.5.3 TopHat 

TopHat is a fast splice junction mapper for RNA-Seq reads. It aligns RNA-Seq reads to 

reference genomes using the short read aligner Bowtie, and then analyzes the mapping results to 

identify splice junctions between exons [Trapnell et al., 2009]. In RNA CoMPASS, all splice 

junctions can be used for the typical endogenous RNA-Sequencing analysis along with the 

investigation of exogenous sequences. After combine the exons reads from Novoalign and 

junction reads from TopHat, we can accurately calculate the genomic feature abundance at gene 

level and isoform level. Then we can filter the splice junction reads from unmapped reads, we 

can proceed to search unmapped reads against NCBI NT database using BLAST to categorize 

exogenous reads.  
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3.5.4 SAMMate 

 SAMMate, a Graphical User Interface (GUI) RNA-seq analysis pipeline, allows 

biomedical researchers to quickly process Fasta/Fastq and SAM/BAM files, and is compatible 

with both single-end and paired-end sequencing technologies. SAMMate automates some of 

more standard procedures in RNA-seq analysis [Xu et al., 2011]. This pipeline calculates 

genomic feature abundance score at both gene and isoform level and detects differentially 

expressed genes and isoforms with support for edgeR, and it also generates wiggle files for 

visualization and signal maps for peak detection and generates alignment report summarizing 

distribution of read mappings. In RNA CoMPASS, the human transcriptome quantification is 

performed by using SAMMate. 

3.5.5 SAMtools 

SAM Tools provide various utilities for manipulating alignments in the SAM format, 

including sorting, merging, indexing and generating alignments in a per-position format [Li and 

Handsaker et al., 2009]. In RNA CoMPASS, we use SAMtools to convert alignment results in 

BAM format outputted by TopHat into SAM format. 

3.5.6 BLAST 

BLAST is a nucleotide alignment tool from the BLAST+ suite of tools. It can search any 

length of sequence against a properly formatted database and there are several regularly updated 

versions of common databases available online. It can provide output in several formats with 

varying degrees of information. In RNA CoMPASS, BLAST output the results in hit table 

format and the BLAST results are further import into MEGAN to categorize exogenous 

sequences. This step is extremely computationally intensive. Therefore, we need to parallelize 

this module to minimize processing time. For the local cluster, we install BLAST on each 
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machine with BLAST database files. Then we copy the executable shell scripts on each machine 

same as the BLAST database files. The workhorse server allocates all tasks to each attached 

node machines, then the server collects the results from each node machine after the node 

machine finishes the task. After merging all results into one single file, the workhorse server will 

continue to process the next step. For the grid system managed by Portable Batch System (PBS), 

we just need to copy the BLAST executable files, related database files and some shell scripts to 

the grid system. Then we need to turn on PBS feature by modifying a property in one 

configuration file on the Tomcat web server. RNA CoMPASS can work with the grid system. 

3.5.7 MEGAN 

MEGAN is a metagenomic analysis tool which means it can also perform taxonomical 

analysis. MEGAN also offers two algorithms to classify sequences, SEED algorithm and KEGG 

algorithm. In RNA CoMPASS, we import BLAST results into MEGAN to generate a NCBI tree. 

Each node in this tree is labeled with a taxon and the size of a given node represents the number 

of sequences assigned to that taxon. This provides the researchers an overview of reads found in 

their data of possible exogenous origin. The researchers can export all reads that were assigned 

to a specific taxon for assembling into longer transcripts using ABySS.  

3.5.8 ABySS 

ABySS is a de novo parallel sequence assembler designed for short reads and large 

genomes. ABySS provides two version of assembler, single-processor and parallel version. The 

single-processor version allows assembling genomes up to 100 Mbp in size. The parallel version 

is capable of assembling mammalian-sized genomes using MPI. The output of ABySS is a set of 

contigs assembled from short reads (the input). In the final of phase of RNA CoMPASS, the 
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researchers can export reads from a given taxon of interest to assemble them into longer 

transcripts for further analysis. 
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Chapter 4 Key Features 

4.1 Introduction 

In chapter 2, we introduced methods used in RNA CoMPASS, and in Chapter 3, its 

architecture. A unique challenge for working with RNA-seq data is to extract useful information 

from short reads stored in FASTQ format. Even though there are some existing bioinformatics 

tools designed for processing RNA-seq data, most of them are not very convenient for 

researchers because they are implemented with command-line interface. Besides, large studies 

also present computational challenges and it is not easy for researchers to overcome manually. In 

this section we introduce RNA CoMPASS which is a web-based GUI pipeline that allows 

biomedical researchers to comprehensively analyze RNA-seq data. A detailed documentation 

and a quick walkthrough are available at RNA CoMPASS's homepage 

[http://rnacompass.sourceforge.net]. RNA CoMPASS possesses the following key features 

(Figure 4.1): (1) Discovery and visualization of exogenous sequences of non-host origin. a) 

Aligns short RNA sequences against human, virus and bacterial genomes, b) Searches unmapped 

sequences against human RNA and NT databases, c) Visualizes taxonomic distribution of reads 

using MEGAN, d) Assembles pools of exogenous reads into longer transcripts with ABySS. (2) 

Performs extensive endogenous RNA-Seq analysis for a host organism. a) For RNA-seq 

alignment RNA CoMPASS uses short reads originating from both exons and exon-exon 

junctions to calculate gene expression scores. RNA CoMPASS's versatility allows biomedical 

researchers to combine the output from an exon alignment program, such as Novoalign 

[http://www.novocraft.com/], with the output of a splice junction analysis program, such as 

Tophat [Trapnell et al., 2009]. This intuitive combination results in a more accurate estimation of 

gene expression abundance scores. b) We have implemented two algorithms to estimate the 
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genomic feature abundance at isoform level: iQuant algorithm [Nguyen et al., 2011] and RAEM 

algorithm [Deng et al., 2011]. c) Using SAM or BED files generated from short read alignments, 

RNA CoMPASS implements an efficient and fast algorithm to calculate a base-wise signal map 

for peak detection analysis. d) RNA CoMPASS also exports a coverage file in wiggle format for 

visualization of alignment results on the UCSC genome browser. e) Lastly, RNA CoMPASS 

generates alignment report summarizing distribution of read mappings. 

 

Figure 4.1 Key features of RNA CoMPASS: A schematic diagram of the two key features of 
RNA CoMPASS. (1) Discovery and visualization of exogenous sequences of non-host origin. (2) 
Performs extensive endogenous RNA-Seq analysis for the host organism. 

4.2 Investigation of exogenous sequences of non-host origin 

4.2.1 Feature: Alignment of short RNA sequences against human, virus and 

bacterial genomes 

In RNA CoMPASS, the first phase is to perform the alignment of millions of short reads 

against the host genome using a very accurate aligner, Novoalign (http://www.novocraft.com/). 

In this phase, the administrator can build Novoalign index files with different reference genome, 

such as human, virus and bacterial genomes (Figure 4.2). Then the users can select different 
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combination of genome index files to perform the sequence alignment with Novoalign. RNA 

CoMPASS align the sequence data against these selected reference genomes and output the 

alignment results with the file names which append the suffix based on the related index file 

names. For example, the alignment result file name will be “sequenceFileName.fastq.sam.human” 

if run against human reference genome. After performed the Novoalign alignment phase, RNA 

CoMPASS will extract all non-mapped reads from Novoalign alignment resulting file and 

continue to perform the TopHat junction mapping phase if this option is checked. The junction 

mapper TopHat will output a junction mapping resulting file in SAM and BED format. This 

option is only designed for human reference genome because no alternatively spliced isoforms 

exist in virus and bacterial genomes. In the following step, RNA CoMPASS will filter out the 

human spans sequences from non-mapped reads which are extracted from Novoalign alignment 

resulting file. The rest of non-mapped reads will be used for the investigation of exogenous reads 

analysis. 

 

Figure 4.2 A screen shot of RNA CoMPASS. In the pre-built indexes selection panel, users can 
select multiple pre-built index files into system. RNA CoMPASS align the sequence data against 
the selected reference genomes with Novoalign. 
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4.2.2 Feature: Searching unmapped sequences against human RNA and NT 

databases 

RNA CoMPASS utilizes BLAST [Altschul et al., 1997] to search unidentified reads from 

the initial mapping stages against the human RNA database and NCBI NT database for 

identification.  Many of the reads that were not mapped to the host genome in the first two stages 

of analysis are still identified by BLAST as mapping to the host genome. In order to reduce the 

computational burden further, RNA CoMPASS offers an optional stage prior to the BLAST 

against NT where the user can BLAST against a host transcript database to further filter these 

reads from consideration. After added an additional stage of BLAST against human RNA 

database, the time cost of searching unmapped sequences against NT database is greatly reduced. 

The feature of using Human RNA database is optional. 

The users can run BLAST against Human RNA database and NT database with different 

e-value and other options. These options allow users conveniently increase the accuracy of hits 

by BLAST.  

 

Figure 4.3 A screen shot of RNA CoMPASS. In BLAST Parameters panel, users can input 
different e-value for each step. The feature of using Human RNA database is optional. 
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4.2.3 Feature: Visualization of taxonomic distribution of reads using MEGAN 

On average 87.5% of our reads from RNA-seq experiments in human are identified as 

mapped reads. About 12.5% of total numbers of reads are non-mapped reads. In previous studies, 

we often discarded the non-mapped reads and concentrated on the mapped reads for further 

analysis. However, important information could be lost by ignoring these unmapped reads. Since 

the human body is a persistent host to some bacterial organisms and viruses, some of the reads 

that do not map to the host genome could be indicative of bacterial or viral sequences. For the 

exogenous sequences analysis, at the first step, we extract non-mapped reads from alignment 

results then de-duplicate the redundant reads. After filtering out human spliced junction reads, 

we use BLAST to search unmapped sequences against human RNA database with specific e-

values, and extract the non-hits sequences from the BLAST results against human RNA database 

and set the hits aside. Then we continue to run BLAST to search these non-hits sequences 

against NT database. By appending taxonomical ID as final column to BLAST results in hit table, 

we perform metagenomic analysis with MEGAN in the following step. MEGAN categorizes 

these exogenous sequences into many different categories and outputs a NCBI tree (Figure 4.4). 

In this tree, each node of output tree is labeled by a taxon and the size of a given node represents 

the number of reads assigned to that taxon. The researcher can extract reads from a taxon of 

interest to assemble them into longer transcript for further analysis using assembler, for example, 

ABySS. The pie chart is another representation of the MEGAN output (Figure 4.5). The 

MEGAN output and the pie chart is from the same sample.  The pie chart represents the portion 

of reads that was assigned to each category (human, bacteria, etc). 
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Figure 4.4 A NCBI tree output by MEGAN. Each node in this tree is labeled by a taxon and the 
size of a given node represents the number of reads assigned to that taxon. 
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Figure 4.5 The pie chart is another representation of the MEGAN output. The pie chart 
represents the portion of reads that was assigned to each category. 

4.2.4 Feature: Assembling pools of exogenous reads into longer transcripts 

with ABySS 

RNA CoMPASS provides a very useful feature that the researcher can extract reads from 

a taxon of interest in a NCBI tree output by MEGAN to assemble them into longer transcripts 

[Birol et al., 2009], using a de novo parallel sequence assembler. This process can be repeated for 

each taxon of interest and the researcher can search the longer assembled transcripts against the 

databases again to get more precise hits. This stage requires users to manually export a group of 

reads from a given category from MEGAN to perform de novo assembly on. Therefore, this is 

the only stage of RNA CoMPASS that is not automated and needs users’ intervention. This 

process can provide users with a broader view of the particular transcripts that were found within 

a given taxon in their sample.  
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Figure 4.6 RNA CoMPASS uses ABySS to assemble reads that was assigned to each category 
into longer transcripts. 

4.3 Performs extensive endogenous analysis for the host organism 

4.3.1 Feature: calculation of genomic feature abundance scores at gene 

level 

Taking gene expression profiling using Illumina Genome Analyzer as an example, Read 

Per Kilobase of exon model per million Mapped reads (RPKM) was used to score gene 

expression abundance. The values obtained can be interpreted as the number of copies of each 

transcript in the living cell where the average length of transcripts is 1KB [Mortazavi et al., 

2008]. The RPKM scores can range from < 0.01 to > 10,000. There are now unprecedented and 

unparalleled opportunities to detect novel transcripts with ultra-low or ultra-high abundance. 

A unique challenge for researchers working with RNA-seq data are short reads 

originating from exon-exon junctions in cDNA (around 10%). These short reads fail to map back 

to the reference genome since the exons are separated by introns (Figure 4.7). The millions of 
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unmapped short reads originating from exon-exon junctions, denoted as Initially Unmapped 

Reads (IUM's), need to be accounted for when calculating RPKM scores [Trapnell et al., 2009]. 

Unfortunately, most alignment tools are only able to map the short reads originating from exons 

completely ignoring IUMs in the process. Hereinafter, we denote such aligners as "exon aligner". 

To address the limitations of "exon aligners", ERANGE [Mortazavi et al., 2008], Tophat 

[Trapnell et al., 2009] and rSeq [Jiang et al., 2008] are among the recently developed approaches 

to map IUM's originating from exon-exon junctions back to individual genes. ERANGE uses a 

union of known and novel junctions while Tophat de novo assembles IUM's using a module in 

MAQ [Li et al., 2008]. Hereinafter, we denote an aligner of this type as "junction mapper". Thus, 

there are now two types of aligners that complement each other. 

Performance-wise, aligners vary vastly in accuracy as well as the underlying algorithms 

used. It is highly desirable for RNA-seq data analysis to allow users the freedom to choose and 

combine a pair of their favorite exon aligner and junction mapper to estimate gene expression 

scores. RNA CoMPASS fulfills this role by calculating and exporting a gene expression score 

matrix using a user-defined combination of an exon aligner and a junction mapper (Figure 4.8). 

RNA CoMPASS then calculates the gene expression RPKM or FPKM score for gene i, R 

as :� �  �\]�^�_�^�̀ �&a� ; where i represents the gene index. �b  is the short read counts uniquely 

mapped to exons using an exon aligner (e.g. Novoalign), and �c is the IUM short read counts 

uniquely mapped to the exon-exon junctions using a junction mapper (e.g. Tophat). N represents 

all uniquely mapped read counts in a cell extract sample, and �� is the summation of the exon 

lengths. Thus, RNA CoMPASS combines short reads mapped to exons (e.g. available in 

SAM/BAM format) and to exon-exon junctions (e.g. available in BED format) to accurately 

estimate gene expression scores (Figure 4.8). 
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Figure 4.7 A unique challenge for researchers working with RNA-seq data. The junction reads 
(red) fail to map back to the reference genome because exons are separated by introns. 

 
Figure 4.8 Combination of exon reads with junction reads to accurately calculate gene expression 
RPKM scores. A demonstration of the ideas of combing exon reads (black) and junction reads 
(red) to calculate gene expression RPKM scores. 
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RNA CoMPASS can also take many pairs of SAM(BAM)/BED files simultaneously, one 

for each cell sample, to calculate a Microsoft EXCEL compatible gene expression matrix. In this 

matrix rows correspond to genes or the customized genome coordinate intervals, and columns 

correspond to different cell samples. It must be noted that RNA CoMPASS is more flexible and 

accurate than other software, such as Tophat [Trapnell et al., 2009], that also export the gene 

expression scores. We validate our claim using experimental data obtained from 3' UTR assay as 

a case study shown below. RNA CoMPASS's reporting utility for gene expression abundance 

score is also quite versatile as this utility is not limited to the annotated genes. In fact, RNA 

CoMPASS calculates genomic feature abundance scores for any user-defined genomic intervals. 

This utility dramatically simplifies the technical burdens for discovering novel genes. 

4.3.2 Feature: calculation of genomic feature abundance scores at 

isoform level 

Isoform quantification using RNA-seq is central to a wide range of transcriptomics 

research. The problem itself is challenging due to the fact that the observed exonic expression 

signal can be aggregated from a set of sibling isoforms encoded by the same gene with diverse 

alternative splicing mechanisms. In RNA CoMPASS, we have implemented two algorithms 

iQuant algorithm [Nguyen et al., 2011] and RAEM algorithm [Deng et al., 2011] to quantify 

transcript abundance score at isoform. For iQuant algorithm, we provided one-step procedure 

and iterative procedure to estimate genomic feature abundance scores at isoform level. One-step 

procedure can quickly calculate the genomic feature abundance score at isoform level but less 

accuracy than iterative procedure and RAEM algorithm [Deng et al., 2011]. For RAEM 
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algorithm [Deng et al., 2011], it is implemented using iterative Expectation-Maximization 

algorithm to accurately calculate genomic feature abundance scores at isoform level.  

4.3.3 Feature: generation of signal map for peak detection 

A signal map is a frequently demanded data format for NGS data analysis. In a signal 

map file, alignment results are represented in the per-base "pileup" format. In this format the 

single nucleotide short read coverage depth is calculated whereas the whole genome coverage is 

provided as a vector of integers with length 3.2 � 10�. A signal map is a common input for a 

number of frequently performed sequential analyses to detect a wide range of genomic features. 

For ChIP-seq and Methyl-seq data, significant peaks in a signal map may indicate potential 

transcription factor binding sites and DNA methylation sites, respectively. For DNA-seq data, 

significant change points in the signal map might indicate a true copy number change, which is 

often a hallmark of cancer [Chen et al., 2009]. 

4.3.4 Feature: generation of wiggle files for visualization 

Biomedical researchers also need to visualize the alignment results in order to examine 

possible gene structure alterations between case and control studies. For example, shortened 3'-

UTR's in cancer cells are reflected as an abrupt dropout of the short read coverage. This 

visualization need is addressed by another key feature of RNA CoMPASS. RNA CoMPASS can 

take the alignment results and export the genome information to wiggle (.wig) files where the 

wiggle format is compatible with the UCSC genome browser and other browsers used for 

visualization. This feature will allow biomedical researchers to visually check the alignment 

quality of selected genes in selected genomic regions. For the miRNA-155 target prediction 

research, Figure 4.9 and Figure 4.10 presents two typical scenarios: the left and right panels 
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show the alignment results in the pile-up format for gene CXorf39 on Chromsome X and gene 

LBA1 on Chromsome 3, respectively. Figure 4.9 indicates no overall expression change in the 

codon regions, but a significant dropout in the 3'-UTR region occurs. On the contrary, Figure 

4.10 shows no significant difference in the 3'-UTR region but a significant difference in the 

codon region instead. These two examples demonstrate RNA CoMPASS's ability to generate 

wiggle files for biomedical researchers allowing them to visually look for possible gene structure 

alterations. While there are a number of existing alignment visualization software (e.g. [Bao et al. 

2009; Arner et al. 2010]), these systems do not allow many annotation tracks in parallel, which is 

the deterministic feature for knowledge discovery. 

 

Figure 4.9 Visualization of gene structure variation. Gene CXorf39 was called by the Change 
Point Analysis as a potential miRNA-155 target due to it's abrupt read dropout on the 3'-UTR 
end.  
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Figure 4.10 Visualization of gene structure variation. Gene LBA1 was called by the Differential 
Expression Analysis as a potential miRNA-155 target due to the overall read coverage decrease 
in codon region. 

4.3.5 Feature: generation of alignment report 

Short read alignment statistics provide indispensable resources to examine the alignment 

quality as well as comparing alignment results. RNA CoMPASS calculates and exports a number 

of alignment statistics including the percentage of uniquely mapped short reads and the 

percentage of short reads mapped to intergenic, exonic and intronic regions. 

 

Figure 4.11 The overview of alignment report. 
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Chapter 5 Performance Results 

5.1 The performance comparison in analyzing human organism dataset 

To evaluate the performance of RNA CoMPASS in analyzing large datasets, we chose 

datasets to benchmark the performance on both a local cluster with 3 node machines and a grid 

system. On the local cluster, we processed two benchmark datasets. SRR032238 and 

SRR032246 were generated on the Illumina Genome Analyzer platform in a human experiment 

with 50bp reads (NCBI Short Read Archive, Accession Number SRA010302). In these two 

samples, the size of each file is more than 5GB and the total number of raw sequence reads is 

approximately 20 million (Table 5.1).  

  SRR032238 (5GB) SRR032246 (5GB) 

Reads Number 24,221,278 22,161,215 

Unique Maps 19,337,768 17,413,299 

 
Table 5.1. Overview of samples SRR032238 and SRR032246. For each sample, total number of 
reads contained in the file and the number of unique mapped reads aligned by Novoalign is 
shown. 

We used FastQC to scan the sample files SRR032238 and SRR032246 to check the 

validation of the data. From Figure 5.1, we used the box plot for the sample SRR032238 at each 

base to check the quality distribution. The first 23 base of read has high quality and then the 

qualities of read are gradually decreased after this point. From the Figure 5.2, we plot the GC 

distribution over all sequences. The curve of the GC count per read is very close to that of 

theoretical distribution. We also plot the quality distribution and GC distribution over all 

sequences for the sample file SRR032246 in Figure 5.3 and Figure 5.4. These figures show that 

our sample file SRR032238 and SRR032246 are valid to use for comparing the performance in 

analyzing human organism. 
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Figure 5.1 The box plot of quality scores across all bases for the sample file SRR032238. The 
horizontal axis corresponds to the base position of sequence. The vertical axis corresponds to the 
quality score. 
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Figure 5.2 The overview of GC distribution over all sequences for the sample file SRR032238. 
The curve marked by red color is GC count per read and the curve marked by blue color is the 
theoretical distribution. The horizontal axis corresponds to mean GC content (%). The vertical 
axis corresponds to the number of GC count. 
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Figure 5.3 The box plot of quality scores across all bases for the sample file SRR032246. The 
horizontal axis corresponds to the base position of sequence. The vertical axis corresponds to the 
quality score. 
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Figure 5.4 The overview of GC distribution over all sequences for the sample file SRR032246. 
The curve marked by red color is GC count per read and the curve marked by blue color is the 
theoretical distribution. The horizontal axis corresponds to mean GC content (%). The vertical 
axis corresponds to the number of GC count. 

These data sets were processed in the same fashion on a single machine and using a local 

cluster of 3 machines. Figure 5.5 shows that the performance of the Novoalign and BLAST 

modules, which have been parallelized, has a speeded up of nearly N times (where N is the 

number of node machines in the parallel run). The performance of other non-parallelized 

modules has no speedup. The overall speedup of the entire process is roughly 2 times with only 3 

machines in the cluster. For further comparing the performance, we have presented a detailed 

comparison of the performance between a single machine and local cluster of three machines as 

the file size increases in section 5.3.  
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Figure 5.5 Performance and speed up for sample SRR032238 running on a local cluster with 3 
node machines. The horizontal axis corresponds to the modules used in RNA CoMPASS. The 
left vertical axis shows the run time of each module and total time spent processing the sample. 
The right vertical axis shows the corresponding speedup of the parallelized version for each 
module. 

5.2 The performance comparison in analyzing non-human organism 

dataset 

In order to show the capability of RNA CoMPASS to process other non-human 

organisms, we also performed RNA CoMPASS on a grid system with a benchmarked dataset. 

SRR006514 is generated from the Illumina Genome Analyzer platform in a caenorhabditis 

elegans experiment with 36bp reads (NCBI Short Read Archive, Accession Number 

SRA003622). The size of the sample file is 1.6GB with about 10 million of reads. This dataset 

was run on both a single machine of the grid and on the grid system with 24 cores allocated for 

processing.  
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We used FastQC to scan the sample files SRR006514 to check the validation of the data. 

From Figure 5.6, we plot the box plot for the sample SRR006514 at each base to check the 

quality distribution. The first 10 base of read has high quality and then the qualities of read are 

gradually decreased after this point. From the Figure 5.7, we plot the GC distribution over all 

sequences. The curve of the GC count per read is very close to that of theoretical distribution. 

These figures show that our sample file SRR006514 is valid to use for comparing the 

performance in analyzing non-human organism. 

 

Figure 5.6 The box plot of quality scores across all bases for the sample file SRR006514. The 
horizontal axis corresponds to the base position of sequence. The vertical axis corresponds to the 
quality score. 
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Figure 5.7 The overview of GC distribution over all sequences for the sample file SRR006514. 
The curve marked by red color is GC count per read and the curve marked by blue color is the 
theoretical distribution. The horizontal axis corresponds to mean GC content (%). The vertical 
axis corresponds to the number of GC count. 

Figure 5.8 shows the performance of parallelized Novoalign and BLAST modules has a 

speedup of roughly √N times (where N is the number of cores used). The performance of other 

non-parallelized modules has a very slight change. Since the grid system is managed by PBS 

submission, the speedup can be affected by many factors including internet congestion, the load 

on the grid and the length of the PBS queue. In section 5.3, we have also presented a detailed 

comparison of the performance between single machine and a grid system as the file size 

increases. 
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Figure 5.8 Performance and speed up for sample SRR006514 running on a grid system with 24 
cores. The horizontal axis corresponds to the modules used in RNA CoMPASS. The left vertical 
axis shows the run time of each module and total time spent processing the sample. The right 
vertical axis shows the corresponding speedup of the parallelized version for each module. 

5.3 The performance comparison between time cost and speedup on 

local cluster 

To further assess the performance of RNA CoMPASS in analyzing large data sets, we 

performed a detailed comparison of the run time and speedup achieved as the file size increases. 

Each of the benchmarked data sets SRR032238 and SRR032246 (Table 5.2 and Table 5.3) from 

human experiment was split into three pieces. These files were then analyzed using RNA 

CoMPASS on both a single machine and a small local cluster with 3 node machines. Figure 5.9 

and Figure 5.10 show that the run time of Novoalign on single machine is nearly twice as long as 

on local cluster using three machines.  The run time of BLAST on single machine is nearly three 

times as long as on the local cluster with three machines. The performance of other non-

parallelized modules has no significant change. This shows that the testing results between 
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sample SRR032238 and SRR032246 are consistent and parallelized modules can significantly 

accelerate the speed of processing a large data set up to the theoretical limit of N. 

 

Figure 5.9 Performance of a single machine versus a local cluster with three machines for sample 
SRR032238. The horizontal axis shows the modules used in RNA CoMPASS. The vertical axis 
shows the speedup of each module for this sample. 
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Figure 5.10 Performance of a single machine versus a local cluster with three machines for 
sample SRR032246. The horizontal axis shows the modules used in RNA CoMPASS. The 
vertical axis shows the speedup of each module for this sample. 

  

SRR032238 

SRR032238(2GB) SRR032238(4GB) SRR032238(5GB) 

Total Number 9,987,937 19,975,860 24,221,278 

Unique Maps 7,973,379 (79.8%) 15,947,676 (79.8%) 19,337,768 (79.8%) 

Table 5.2 The sample SRR032238 has been split into 3 pieces. For each piece, we list the total 
number of reads contained and the number of unique mapped reads aligned by Novoalign. 

  

SRR032246 

SRR032246(2GB) SRR032246(4GB) SRR032246(5GB) 

Total Number 8,869,340 17,738,741 22,161,215 

Unique Maps 6,970,645 (78.6%) 13,942,557 (78.6%) 17,413,299 (78.6%) 

Table 5.3 The sample SRR032246 has been split into 3 pieces. For each piece, we list the total 
number of reads contained and the number of unique mapped reads aligned by Novoalign. 

5.4 The performance comparison between time cost and speedup on 

grid system 

For the benchmarked data set SRR006514 from the caenorhabditis elegans experiment, 

we also performed a detailed comparison of the run time using a single machine versus a grid 

system as the file size increases. Again we split the dataset into three files with different sizes 

(Table 5.4). Then we ran these files both using a single machine of the grid and also using the 

grid system with 6 cores allocated. An additional test was also performed where we ran the file 

(SRR006514-1600MB) on a grid system with 24 cores allocated. Figure 5.11shows the speedup 

of Novoalign on the grid system with 6 cores is roughly 2, and the speedup of BLAST on the 

grid system with 6 cores is nearly 3. When we run the file (SRR006514-1600MB) on the grid 

system with 24 cores allocated, the speedup of Novoalign is roughly 4, and the speedup of 

BLAST is roughly. Performance of the parallelized modules has attained a speedup of roughly 
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√N times (where N is the number of used cores). The performance of other non-parallelized 

modules has no significant changes. 

SRR006514 

SRR006514(400MB) SRR006514(800MB) SRR006514(1600MB) 

Total Number 2,741,725 5,483,380 10,966,805 

Unique Maps 971,410 (35.4%) 1,989,411 (36.2%) 4,142,311 (37.8%) 

Table 5.4 The sample SRR006514 has been split into 3 pieces.For each piece, we list the total 
number of reads contained and the number of unique mapped reads aligned by Novoalign. 

  

Figure 5.11 Performance of a single machine versus a grid system with 6 and 24 cores allocated 
for sample SRR006514. The horizontal axis shows the modules used in RNA CoMPASS. The 
vertical shows the speedup of each module for this sample. 

5.5 Microarray platform versus next generation sequence platform 

Having demonstrated a preferential distribution of genes with MIR155 seeds in down-

regulated fractions, we next sought to assess the performance of next generation sequencing 

relative to microarray analysis. We performed differential expression analysis on our RNA-seq 

data set and on data sets from two previously published microarray studies in which MIR155 
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expression vectors were introduced into either a mouse macrophage cell line [O’Connell et al. 

2008] or human 293 cells [Skalsky et al. 2007]. Using only gene identifiers common to all four 

platforms and using a false discovery rate (FDR) of zero, 2165 genes were determined to be 

down-regulated by NGS, whereas 38 and 58 down-regulated genes were identified in our 

analysis of the two published microarray data sets (Figure 5.12). NGS identified 102 down-

regulated genes (FDR = 0) with 3’ UTR 8-mer seeds, while seven and two down-regulated genes 

with 8-mer seeds were identified in the two microarray data sets. To more stringently assess the 

relative robustness of NGS for transcriptome and targetome studies, we generated additional 

control and MIR155 retrovirally transduced Mutu I cell lines and subjected four control and four 

MIR155 expressing cell lines to Agilent microarray analysis with dye swaps for each comparison. 

This resulted in better concordance relative to previous microarray studies, but the number of 

down-regulated genes and the number of down-regulated genes with 8-mer seed sequences were 

threefold and 2.6-fold lower than that observed using the NGS data set (Figure 5.6). 
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Figure 5.12 Cross-platform comparison of targetome prediction using bitmap. Downregulated 
genes were identified at a false discovery rate (FDR) = 0 for NGS and each microarray platform. 
Each gene was determined to be significantly down-regulated (at FDR =0) or not in each of the 
four platforms; down-regulated genes were assigned to one of the 24 = 16 possible clusters, 
represented by color/white patterns and corresponding to 16 rows in the bitmap. Numbers at the 
top refer to the total number of down-regulated genes for the indicated platform (summation of 
the number of genes represented by all colored patterns in column). Numbers to the right refer to 
the number of genes common to platforms with colored patterns in each respective row. 
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5.6 Expression analysis 

Microarray technologies can readily be used to generate information regarding the 

relative expression of genes between samples. Due in part to cross-hybridization and sensitivity 

issues as well as the analog nature of microarray platforms, however, the determination of 

absolute transcript levels is challenging. In contrast, NGS provides a digital readout of the 

number of reads mapping to each gene, and Li et al. (2010a) have shown that when the mean 

expressed transcript length is 1 kb, 1 RPKM corresponds to roughly one transcript per cell in 

mouse. It is reasonable to assume that transcript levels falling below this threshold may be of 

limited functional significance to the overall cell population. At the very fundamental level of 

RPKM analysis, NGS allows the user to tentatively absolve this group of genes from playing a 

direct global role in altering cell signaling/phenotype in a particular system. Such genes can be 

set aside and perhaps considered at a later point in the context of paracrine or subpopulation 

effects. In control Mutu I cells, approximately half of all annotated genes were found to be 

expressed below 1 RPKM (Figure 5.13). Approximately 800 genes bearing MIR155 3’ UTR 

seed sequences were found to be expressed below 1 RPKM. Even at a 0.1 RPKM cutoff, more 

than 600 seed containing genes were found to fall below this threshold and are therefore likely to 

have limited functional significance in these cells irrespective of whether they are true MIR155 

targets. Notably, a higher percentage of MIR155 seed containing genes are expressed in Mutu I 

B-cells compared to the percentage of all genes expressed, possibly reflecting the critical role of 

MIR155 in immune cell development [O’Connell et al. 2007; Rodriguez et al. 2007]. 

Alternatively, this enrichment may simply reflect a general bias toward targeting a group of 

genes that are universally expressed.  
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Figure 5.13 The total number of genes and the number of genes containing any MIR155 seed 
type that are expressed above and below the indicated RPKM cutoffs in control Mutu I cells 
were counted and graphed. 

5.7 3’ UTR reporter analysis 

Luciferase reporter plasmids bearing ectopic 3’ UTRs can be used to assess microRNA 

targeting through the respective 3’ UTR. To further analyze the inferred targetome derived from 

NGS, a 3’ UTR reporter data set was generated using 170 3’ UTRs containing MIR155 7-mer or 

8-mer seeds and nine 3’ UTRs with no MIR155 seeds (Figure 5.14). The relative expression of 

reporters lacking MIR155 seeds in cells cotransfected with a MIR155 expression vector versus a 

control expression vector fell in the range of 0.8 to 1.04. The relative expression of genes with 
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MIR155 seed sequences spanned a range from 0.13 to 1.2, allowing us to analyze a spectrum of 

MIR155 target regulatory classes. 

 
 

 
 
Figure 5.14 Comparison between 3’ UTR analysis and RNA-seq analysis. Distribution of 3’ 
UTR suppression by MIR155 in reporter assays. 

5.8 Splicing evidence in Mutu I and Akata 

While RNA-seq can provide digital quantification of gene expression, reads that span 

exon junctions can provide information about gene isoform usage.  We used the junction mapper, 

Tophat [Trapnell et al. 2009], to identify junction mapped reads throughout the EBV genome for 

Mutu I and Akata.  While no evidence of Cp or Wp derived EBNA1 transcripts was found, 

evidence for Qp derived EBNA1 splice junctions was observed in both Mutu I and Akata cells 

(Figure 5.15A).  Junction reads were also detected for EBV lytic genes in both Mutu I and Akata 

cells including junction reads for both BZLF1 (Figure 5.15B) and BSLF2/BMLF1. Further, 
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evidence for multiple isoform expression (i.e. alternative splicing events) was detected for many 

genes such as BLLF1/BLLF2 (Figure 5.15C) as well as the complex BamHI A region [Edwards 

et al. 2008; Reddy et al. 2009]. Within the BamHI A region, for example, there is evidence for 

alternative splicing at the A73 gene in both Akata and in Mutu I with JUNC00000180 from Mutu 

I cells providing evidence of exon skipping (skipping of exons 2 and 3).  Within the genomic 

regions spanning the two BART microRNA clusters, there are very few reads, consistent with 

these microRNAs being produced from excised introns that are presumably unstable and non-

polyadenylated (and therefore not enriched during our poly(A)+ selection procedure).  In both 

Mutu I and Akata, there is evidence for two large introns that span the entire region of both of 

these clusters of microRNAs (JUNC00000094 and JUNC00000178 in Mutu I and 

JUNC00000053 and JUNC00000084 in Akata).  Consistent with this junction evidence, there are 

pronounced read spikes in Akata cells immediately upstream from the first junction (centered at 

position 139,270), between these two junctions (centered at position 147,770), and immediately 

downstream from the second junction (centered at position 151,115) supporting the idea that a 

stable, poly(A)+ spliced transcript is generated from this transcription unit.  The two introns 

excised from this transcript can conceivably give rise to all BART microRNAs within these two 

clusters. 
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Figure 5.15 Visualization of junction evidence for EBNA1 (A), BZLF1 (B), and BLLF1/BLLF2 
(C).  Coverage file in wiggle format was generated by SAMMate which has been integrated into 
RNA CoMPASS. 
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5.9 Performance comparison of SAMMate, TopHat and Novoalign 

SAMMate has been integrated into RNA CoMPASS and is also a central component of 

RNA CoMPASS for human transcriptome analysis. For comparing gene expression scores 

generated using SAMMate, TopHat and Novoalign to predict miRNA targets, we have studied a 

pair of control and treatment transcriptomes. The control transcriptome was derived from the 

wild-type MutuI cell line while the treatment transcriptome was derived from the miRNA-155 

retrovirally transduced MutuI cell line [Xu et al., 2010]. MicroRNAs plays pivotal roles in 

controlling normal and pathology associated cellular processes. Moreover, the importance of 

miRNA dysregulation in cancer is well known and a number of tumor promoting miRNA’s have 

been identified. As a member of this class of microRNAs, miR-155 is implicated in 

lymphomagenesis and a wide array of nonlymphoid tumors including breast, colon, and lung. 

Despite the strong evidence for miRNA-155 as an oncogene, the underlying pathological 

mechanisms remain unclear, possibly due to limited knowledge of miRNA-155 targets and how 

these targets are involved in tumorigenesis[Yin et al., 2010; Lin and Xu et al., 2010]. Both 

transcriptomes were profiled using the Illumina Genome Analyzer II platform with a 50-mer in 

read length. For each transcriptome, two biological replicates were used. Each biological 

replicate has 2 to 4 technical replicates nested within it. Each technical replicate of the 

transcriptome (a single lane in each instrument run) contains around 6 to 12 million short reads. 

This NGS data set is available at the National Center for Biotechnology Information (NCBI) 

Short Read Achive (SRI) website http://www.ncbi.nlm.nih.gov/sra with access code SRA011001. 

We aligned the short reads generated from each transcriptome to the reference human genome 

(Build 37 version 1) using Novoalign, Bowtie and TopHat respectively allowing up to two 

mismatches. The alignment information of the exons and exon-exon junctions were stored in 
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SAM/BAM and BED formats. Our biological goal is to predict a list of miRNA-155 direct 

targets on the genomic scale. Accurate calculation of the gene expression scores is a central 

problem for achieving this goal since down-regulated genes are likely to be potential miRNA-

155 direct targets. We used SAMMate to calculate RPKM gene expression scores for each 

transcriptome and compared these results with RPKM gene expression score distributions 

calculated using TopHat and Novoalign alone. We compare the accuracy of the RPKM score 

reporting capability for the three tools using a selected set of 170 genes for which a 3’-UTR 

assay was performed for each gene. To make the RPKM scores calculated from the in vivo 

whole genome sequencing experiments comparable with the fluorescent intensity scores 

calculated from the in vitro 3’-UTR  assay,  we  used  the  expression  fold  change method 

between treatment (miRNA-155 transduced) and control (wild type) for each gene. Thus, the 

best tool at reporting gene expression possesses fold changes that are closest to those calculated 

from 3’-UTR assays. Figure 5.10 shows SAMMate is more accurate than the competitors for 

gene expression score calculation in 84 out of 170 genes (49%). The numbers for TopHat and 

Novoalign are 46 (27%) and 40 (24%), respectively (Figure 5.16). Our validation study using 3’-

UTR analysis provides compelling evidence that SAMMate exports gene expression RPKM 

scores more accurately than its competitors. 

 

Figure 5.16 Pie chart of percentages of gene fold changes calculated by each tool that is closest 
to the 3’-UTR experimental results. SAMMate is superior to the other competing tools. 
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5.10 Genome-wide change-point analysis to identify potential miRNA 

targets 

Other than down-regulation at the whole gene locus level, another characteristic response 

of potential miRNA-155 targets is only visible from the signal map: an abrupt drop-out of the 

base-wise coverage in the 3 prime end. For this case study, we have the same biological goal as 

the previous case study, i.e., to predict miRNA-155 targets. We used SAMMate to calculate a 

signal map for each biological replicate. We then applied a genome-wide change point analysis 

to all of the annotated 3’ UTR regions to identify potential miRNA targets.  We also compared 

the predicted miRNA-155 targets generated using RPKM gene expression scores (previous case 

study) with the ones generated using signal maps (this case study). We hope these two 

orthogonal and complementary case studies that share the same biological goal will be more 

than adequate to demonstrate the robustness and key features of SAMMate. For the sake of 

completeness, we briefly introduce the change point analysis method that we have applied [Chen 

et al., 2009]. For each annotated 3’UTR, we test the null hypothesis of the equal mean and 

variance parameters in the sequence of base-wise signal. The alternative hypothesis is the 

unknown number of change points’ position exists. For statistical analysis we applied a Mean 

and Variance Change point Model (MVCM) based approaches [Chen et al., 2009]. The input of 

the change point analysis algorithm is two sets of signal map files generated by SAMMate 

where each set is a series of replicates of a genome sample. In each signal map file, there are 

over 249,000 bases. The output for each annotated 3’ UTR is a list of change point positions 

sorted by ascending order according to their Schwarz Information Criterion (SIC) values [Chen 

et al., 2009]. The 3’ UTR coordinates were determined by the human genome annotation file 

(version hg19) with over 34,000 annotated 3’ UTR’s in total. We calculated the difference 
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between the base-wise average for each set of signal map files, representing a single differential 

signal map for wild-type Mutu I cell line and miRNA-155 transfected Mutu I cell line. It was 

then followed by a calculation of the SIC values for each annotated 3’ UTR. The change point 

analysis on the differential signal map between wild type and miRNA-155 transduced Mutu I 

cells was parallelized for multithreading with OpenMP to overcome computational challenges. 

Figure 5.17 presents a comparison of the ranked gene lists called by Differential Expression 

Analysis (DEA) and Change-Point Analysis (CPA). The horizontal axis represents the gene 

number cut-offs starting from 100 to 5,000. Three sets of genes are shown at each cut-off: 

putative miRNA targets predicted exclusively by CPA, exclusively by DEA, and by both DEA 

and CPA. Both methods for miRNA target prediction are able to identify a common set of genes, 

and each method has a unique gene list. Figure 5.11 shows the validation studies of the putative 

miRNA targets against the set of 170 genes for which 3’ UTR assays were performed. Figure 

4.9 and Figure 4.10 are consistent with one another. The results support the notion that a 

combination of DEA and CPA is able to predict a comprehensive and a conserved list of 

miRNA targets. SAMMate provided the essential input, i.e. gene expression scores and signal 

maps, for both DEA and CPA as reported in the two case studies. In summary, SAMMate is a 

highly valuable tool to compare two orthogonal and complementary approaches to detect gene 

structure alterations. 



 

 

Figure 5.17 Comparison of Differential Expression Analysis (DEA) and Change Point Analysis 
(CPA) in Prediction of miRNA-155 Targets.

5.11 iQuant algorithm to quantify transcriptomes 

For testing the performance of iQuant algorithm

transcriptomes at isoform level, we simulated RNA

is able to simulate whole transcriptome sequencing experiments with the Illumina Genome 

Analyzer platform. From our simulation experiment, we used the

reference genome. Mouse annotation 

corresponding to 21, 711 protein coding genes 41M paired

simulated. After simulation, 18, 731 isoforms were expressed

From Figure 5.18, the calculated proportions of most of isoforms are closed to the true 

proportions. This simulation study provides a compelling evidence for the excellent accuracy of 

our algorithm in quantifying isoform a

76 

Comparison of Differential Expression Analysis (DEA) and Change Point Analysis 
155 Targets. 

iQuant algorithm to quantify transcriptomes at isoform

For testing the performance of iQuant algorithm [Nguyen et al., 2011

transcriptomes at isoform level, we simulated RNA-seq experiments using FluxSimulator, which 

is able to simulate whole transcriptome sequencing experiments with the Illumina Genome 

Analyzer platform. From our simulation experiment, we used the mouse genome as the 

Mouse annotation file (NCBI 37/mm9), 27, 150 protein coding isoforms 

corresponding to 21, 711 protein coding genes 41M paired-end short reads (75 bases) were 

simulated. After simulation, 18, 731 isoforms were expressed, corresponding to 15, 419 genes.

From Figure 5.18, the calculated proportions of most of isoforms are closed to the true 

proportions. This simulation study provides a compelling evidence for the excellent accuracy of 

our algorithm in quantifying isoform abundance. 

 

Comparison of Differential Expression Analysis (DEA) and Change Point Analysis 

at isoform-level  

et al., 2011] to quantify 

seq experiments using FluxSimulator, which 

is able to simulate whole transcriptome sequencing experiments with the Illumina Genome 

mouse genome as the 

file (NCBI 37/mm9), 27, 150 protein coding isoforms 

end short reads (75 bases) were 

, corresponding to 15, 419 genes. 

From Figure 5.18, the calculated proportions of most of isoforms are closed to the true 

proportions. This simulation study provides a compelling evidence for the excellent accuracy of 
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Figure 5.18 Simulation study to evaluate the performance of iQuant algorithm implemented in 
RNA CoMPASS using FluxSimuloator. We plot predicted isoform abundance scores against true 
abundance scores. 
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Chapter 6 Conclusion 

6.1 Conclusion 

RNA CoMPASS is a comprehensive multi-processor analysis system for RNA 

sequencing. It provides a convenient graphical user interface and automates analysis and 

visualization of reads against the host transcriptome and investigation of exogenous sequence 

reads. This latter task has proven to be extremely computationally intensive, but can be 

instrumental in the identification of bacterial or viral sequences found in RNA sequencing 

experiments. For example, Lin et al., (2012) utilized this approach to find Epstein-Barr virus and 

murine leukemia virus sequences in some commonly used cell lines. RNA CoMPASS manages 

the computational burden associated with such extensive analysis on large sequencing studies 

automatically through distribution of tasks over a computing cluster.  

This computational pipeline provides biological researchers with convenient approaches 

to investigate the presence of exogenous sequences in RNA-seq data. Since RNA CoMPASS 

has been integrated many popular bioinformatics tools, it provides the typical endogenous RNA-

Sequencing analysis along with the investigation of exogenous sequences. Besides, we 

parallelize the modules which are extremely computational intensive, it is able to greatly 

accelerate the progress of research for researchers.  

This computational pipeline can be also used to analyze transcriptome changes induced 

by the human microRNA MIR155 using RNA-seq. A comparison with 3’ UTR reporter assay 

demonstrated general concordance between NGS and corresponding 3’ UTR reporter results. 

Nonharmonious results were investigated more deeply using transcript structure information 

assembled from the NGS data. This analysis revealed that transcript structure plays a substantial 

role in mitigated targeting and in frank targeting failures.  
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In analysis of EBV transcriptome, our results also showed robust detection of EBV 

derived transcripts by RNA-seq using the pipeline outlined here. From a quantitative standpoint, 

several studies have shown this approach to outperform microarrays since it is more accurate 

[Marioni et al. 2008; Mortazavi et al. 2008; Xu et al. 2010] and since there is an inherently broad 

dynamic range. The digital nature of RNA-seq allows users to better compare the relative 

expression of distinct genes through the calculation of RPKMs. This should result in an 

improvement over microarrays in the analysis of virus-associated transcriptomes not only for 

EBV but for other viruses. With its high level of accuracy, its broad dynamic range, its utility in 

assessing transcript structure, and its capacity to accurately interrogate global direct and indirect 

transcriptome changes, NGS is a useful tool for investigating the biology and mechanisms of 

action of microRNAs.  

For efficiently processing NGS data, our GUI software RNA CoMPASS allows 

biomedical researchers to quickly process raw sequence data in FASTQ format and is 

compatible with multiple RNA-seq file formats. RNA CoMPASS also automates some standard 

procedures in DNA-seq and RNA-seq data analysis. Using either standard or customized 

annotation files, RNA CoMPASS allows users to accurately calculate the short read coverage of 

genomic intervals. In particular, for RNA-seq data RNA CoMPASS can accurately calculate the 

gene expression abundance scores for customized genomic intervals using short reads 

originating from both exons and exon-exon junctions. Furthermore, RNA CoMPASS can 

calculate a whole-genome signal map at base-wise resolution in a short time allowing 

researchers to solve an array of bioinformatics problems. Finally, RNA CoMPASS can export 

both a wiggle files for alignment visualization in the UCSC genome browser and an alignment 
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statistics report. The biological impact of these features has been already demonstrated via 

several case studies that predict miRNA targets using short read alignment information files. 

With just a few mouse clicks, RNA CoMPASS will provide biomedical researchers all-

in-one functionality including human transcriptome quantification and the typical endogenous 

RNA-Sequencing analysis along with the investigation of exogenous sequences. RNA 

CoMPASS is deployable on either a local cluster or a grid environment managed by PBS 

submission. Our software is constantly updated and will greatly facilitate the downstream 

analysis of NGS data. Both the source code and the executable files are freely available under 

the GNU General Public License at http://rnacompass.sourceforge.net. 
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Appendix A 

Tables 

The following tables are raw data generated by RNA CoMPASS for performance comparisons 
between single machine and local cluster (or grid system). These tables record the start time, end 
time and duration of each module during the whole test processing. 
 

  

SRR032238_2GB.fastq 

Single Machine Local Cluster 

Start End Duration Start End Duration 

Novoalign 9:59:46 11:16:06 1:16:20 12:11:06 12:49:46 0:38:40 

TopHat 11:17:29 12:58:10 1:40:41 12:51:12 14:26:58 1:35:46 

SAMtools 12:58:10 12:58:41 0:00:31 14:26:58 14:27:35 0:00:37 

BLAST 12:59:43 15:22:14 2:22:31 14:28:38 15:17:50 0:49:12 

Add Gids 15:22:15 15:27:57 0:05:42 15:17:50 15:23:25 0:05:35 

MEGAN 15:27:58 15:31:20 0:03:22 15:23:25 15:26:48 0:03:23 

 

  

SRR032238_4GB.fastq 

Single Machine Local Cluster 

Start End Duration Start End Duration 

Novoalign 15:31:20 18:08:52 2:37:32 15:26:49 16:36:58 1:10:09 

TopHat 18:12:08 21:29:45 3:17:37 16:41:46 19:52:12 3:10:26 

SAMtools 21:29:45 21:30:52 0:01:07 19:52:12 19:53:42 0:01:30 

BLAST 21:32:58 2:18:12 4:45:14 19:55:57 21:24:33 1:28:36 

Add Gids 2:18:13 2:24:22 0:06:09 21:24:34 21:30:28 0:05:54 

MEGAN 2:24:22 2:30:01 0:05:39 21:30:29 21:37:08 0:06:39 

 

  

SRR032238_5GB.fastq 

Single Machine Local Cluster 

Start End Duration Start End Duration 

Novoalign 2:30:02 5:38:38 3:08:36 21:37:09 23:01:49 1:24:40 

TopHat 5:42:24 9:58:00 4:15:36 23:06:13 3:02:15 3:56:02 

SAMtools 9:58:00 9:59:22 0:01:22 3:02:15 3:04:13 0:01:58 

BLAST 10:01:54 15:29:25 5:27:31 3:06:57 4:51:51 1:44:54 

Add Gids 15:29:27 15:35:55 0:06:28 4:51:51 4:58:07 0:06:16 

MEGAN 15:35:55 15:42:41 0:06:46 4:58:07 5:05:59 0:07:52 
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SRR032246_2GB.fastq   

Single Machine Local Cluster 

Start End Duration Start End Duration 

Novoalign 15:42:43 16:42:31 0:59:48 5:06:00 5:37:43 0:31:43 

TopHat 16:43:50 17:53:58 1:10:08 5:39:01 6:46:10 1:07:09 

SAMtools 17:53:58 17:54:20 0:00:22 6:46:10 6:46:40 0:00:30 

BLAST 17:55:18 20:12:07 2:16:49 6:47:40 7:35:51 0:48:11 

Add Gids 20:12:07 20:18:07 0:06:00 7:35:52 7:41:12 0:05:20 

MEGAN 20:18:07 20:20:51 0:02:44 7:41:12 7:44:20 0:03:08 

 

  

SRR032246_4GB.fastq 

Single Machine Local Cluster 

Start End Duration Start End Duration 

Novoalign 20:20:52 22:23:32 2:02:40 7:44:20 8:41:26 0:57:06 

TopHat 22:26:23 0:58:38 2:32:15 8:44:44 10:55:49 2:11:05 

SAMtools 0:58:38 0:59:46 0:01:08 10:55:49 10:56:51 0:01:02 

BLAST 1:01:44 5:43:41 4:41:57 10:58:44 12:31:47 1:33:03 

Add Gids 5:43:41 5:50:08 0:06:27 12:31:47 12:38:02 0:06:15 

MEGAN 5:50:08 5:55:35 0:05:27 12:38:02 12:43:23 0:05:21 

 

  

SRR032246_5GB.fastq 

Single Machine Local Cluster 

Start End Duration Start End Duration 

Novoalign 5:55:36 8:28:33 2:32:57 12:43:24 13:49:16 1:05:52 

TopHat 8:31:58 11:41:56 3:09:58 13:53:40 16:41:06 2:47:26 

SAMtools 11:41:56 11:43:22 0:01:26 16:41:06 16:42:47 0:01:41 

BLAST 11:45:47 17:27:28 5:41:41 16:45:16 18:32:37 1:47:21 

Add Gids 17:27:30 17:34:13 0:06:43 18:32:38 18:39:13 0:06:35 

MEGAN 17:34:13 17:40:45 0:06:32 18:39:13 18:45:52 0:06:39 

 

  

SRR006514_400MB.fastq 

Single Machine Local Cluster - 6 

Start End Duration Start End Duration 

Novoalign 9:20:39 10:15:53 0:55:14 9:19:36 9:53:30 0:33:54 

BLAST 10:16:14 12:47:10 2:30:56 9:53:51 11:07:24 1:13:33 

Add Gids 12:47:10 12:51:15 0:04:05 11:07:24 11:11:30 0:04:06 

MEGAN 12:51:15 12:52:55 0:01:40 11:11:30 11:13:11 0:01:41 
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SRR006514_800MB.fastq 

Single Machine Local Cluster - 6 

Start End Duration Start End Duration 

Novoalign 15:44:45 17:10:18 1:25:33 16:57:21 17:43:08 0:45:47 

BLAST 17:10:59 22:22:06 5:11:07 17:43:51 19:17:34 1:33:43 

Add Gids 22:22:06 22:26:26 0:04:20 19:17:34 19:21:55 0:04:21 

MEGAN 22:26:26 22:29:29 0:03:03 19:21:55 19:25:01 0:03:06 

 

  

SRR006514_1600MB.fastq 

Single Machine Local Cluster - 6 Local Cluster - 24 

Start End Duration Start End Duration Start End Duration 

Novoalign 9:23:37 11:41:02 2:17:25 16:52:51 18:03:08 1:10:17 11:24:40 11:59:06 0:34:26 

BLAST 11:42:29 17:13:42 5:31:13 18:04:37 20:27:06 2:22:29 12:00:50 13:05:33 1:04:43 

Add Gids 17:13:42 17:18:03 0:04:21 20:27:06 20:31:35 0:04:29 13:05:33 13:10:13 0:04:40 

MEGAN 17:18:03 17:21:15 0:03:12 20:31:35 20:36:52 0:05:17 13:10:13 13:16:19 0:06:06 
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Glossary 

Definitions are collected here for easy reference. In general, the accepted definitions for 

terms are used, although some terms are used in a more restricted sense than their usual 

interpretation. 

3'-UTR region - sequences on the 3' end of mRNA but not translated into protein. 3' UTR may 

contain sequences that regulate translation efficiency, mRNA stability, and polyadenylation 

signals. 

7-mer seed - mRNA bind to the 2-8 nucleotides of the 5'UTR of miRNA seed. 

8-mer seed - mRNA bind to the 2-8 nucleotides of the 5'UTR of miRNA seed. 

ABI Solid - ABI Solid Sequencing to profile stem cell transcriptomes. 

ABySS - assembly By Short Sequences - a de novo, parallel, paired-end sequence assembler. 

Alternative splicing - is a process by which the exons of the RNA produced by transcription of 

a gene (a primary gene transcript or pre-mRNA) are reconnected in multiple ways during RNA 

splicing.  

Assembly - a process to reconstruct a long DNA sequence from numerous fragments. 

BAM format - a BAM file (.bam) is the binary version of a SAM file. 

BED format - is a tab-delimited text file that defines a feature track. 

BLAST - is an algorithm for comparing primary biological sequence information, such as the 

amino-acid sequences of different proteins or the nucleotides of DNA sequences.  
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Bowtie - is an ultrafast, memory-efficient short read aligner. It aligns short DNA sequences 

(reads) to the human genome at a rate of over 25 million 35-bp reads per hour. 

Bridge amplification - is a Illumina's bridge amplification sequencing technology. 

Browser and Server (B/S) structure - is the rise of a WEB Network Models, WEB Browser is 

the client the most important applications. This model unifies the client, the system functions to 

achieve the core focus to the server, simplifying the system development, maintenance and use. 

Burkitts lymphoma - is a cancer of the lymphatic system (in particular, B lymphocytes). 

Burrows-Wheeler transformation (BWT) - is an algorithm used in data compression 

techniques such as bzip2. 

cDNA - complementary DNA; a form of DNA artificially synthesized from a messenger RNA 

template and used in genetic engineering to produce gene clones. 

Change Point Analysis - it is an analytical method that attempts to find a point along a 

distribution of values where the characteristics of the values before and after the point are 

different. 

Chromosome - is an organized structure of DNA and protein found in cells. It is a single piece 

of coiled DNA containing many genes, regulatory elements and other nucleotide sequences.  

Client and Server architecture - is a computing model that acts as distributed application 

which partitions tasks or workloads between the providers of a resource or service, called 

servers, and service requesters, called clients. 
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Constrained convex quadratic - is an optimization problem in which both the objective 

function and the constraints are quadratic functions. 

Contamination - is the presence of a minor and unwanted constituent (contaminant) in material, 

physical body, natural environment, at a workplace, etc. 

Contig - a series of overlapping clones or a sequence defining an uninterrupted section of a 

chromosome. 

De novo - is a Latin expression meaning "from the beginning," "afresh," "anew," "beginning 

again." 

Differential Expression Analysis - differential expression using the simplified exon union or 

exon intersection methods reports no changes between conditions while estimating read counts 

and expression for the individual isoforms detects both differential expression at the gene and 

isoform level. 

Dynamic programming - is a method for solving complex problems by breaking them down 

into simpler subproblems. It is applicable to problems exhibiting the properties of overlapping 

subproblems which are only slightly smaller and optimal substructure. 

edgeR - a Bioconductor package for differential expression analysis of digital gene expression 

data. 

EM algorithm - in statistics, an expectation maximization (EM) algorithm is an iterative 

method for finding maximum likelihood or maximum a posteriori (MAP) estimates of 

parameters in statistical models, where the model depends on unobserved latent variables.  
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Embryonic - is a multicellular diploid eukaryote in its earliest stage of development, from the 

time of first cell division until birth, hatching, or germination. 

Endogenous - originating or produced within an organism, tissue, or cell 

Enzyme - any of numerous proteins or conjugated proteins produced by living organisms and 

functioning as biochemical catalysts. 

Epstein-Barr virus (EBV) - also called human herpesvirus 4 (HHV-4), is a virus of the herpes 

family and is one of the most common viruses in humans. 

ERANGE - is a Python package for doing RNA-seq and ChIP-seq (hence the "dual-use"), and is 

a descendant of the ChIPSeq mini peak finder (Johnson, 2007). 

Exogenous - Biology Derived or developed from outside the body; originating externally. 

Exon - a sequence of DNA that codes information for protein synthesis that is transcribed to 

messenger RNA. 

Exon-exon junctions - a sequence fragment cross two exons. One end is mapped on first exon 

and the other is mapped on the second exon.  

False Discovery Rate (FDR) - a statistical method used in multiple hypothesis testing to correct 

for multiple comparisons. 

FASTA - is a DNA and protein sequence alignment software package first described (as FASTP). 

FASTQ - is a text-based format for storing both a biological sequence (usually nucleotide 

sequence) and its corresponding quality scores.  
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Fluorescence - is the emission of light by a substance that has absorbed light or other 

electromagnetic radiation. 

FPKM - Fragments Per Kilobase of exon model per Million mapped Fragments. 

Fragment - refers to long DNA strands break or separate (something) into fragments. 

Gene annotations - is the process of identifying the locations of genes and all of the coding 

regions in a genome and determining what those genes do. 

Gene expression - is the process by which information from a gene is used in the synthesis of a 

functional gene product. 

Grid network - is a kind of computer network consisting of a number of (computer) systems 

connected in a grid topology. 

High-throughput sequencing (HTS) - is a technology that can parallelize the sequencing 

process, producing thousands or millions of sequences at once. 

Hit table format - a file format that is used for BLAST stores output results. 

Hybridization probe - is a fragment of DNA or RNA of variable length (usually 100-1000 

bases long), which is used in DNA or RNA samples to detect the presence of nucleotide 

sequences (the DNA target) that are complementary to the sequence in the probe. 

Hybridize - to form base pairs between complementary regions of (two strands of DNA that 

were not originally paired). 
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Illumina Genome Analyzer platform - is a platform of Illumina (company), the recent 

applications include sequencing mammalian transcriptomes. 

Initially Unmapped Reads (IUM's) - the short sequences which are not able to aligned to 

reference genome using aligners.  

Intergenic - is a stretch of DNA sequences located between clusters of genes that contain few or 

no genes. 

Intron - a segment of a gene situated between exons that is removed before translation of 

messenger RNA and does not function in coding for protein synthesis. 

Isoform - is any of several different forms of the same protein. Different forms of a protein may 

be produced from related genes, or may arise from the same gene by alternative splicing.  

Java Parallel Processing Framework (JPPF) - JPPF enables applications with large 

processing power requirements to be run on any number of computers, in order to dramatically 

reduce their processing time.  

Life Science's 454 - Life Science's 454 Sequencing to discover SNPs in maize. 

Lowest common ancestor - is a concept in graph theory and computer science. Let T be a 

rooted tree with n nodes. The lowest common ancestor is defined between two nodes v and w as 

the lowest node in T that has both v and w as descendants (where we allow a node to be a 

descendant of itself). 
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Mammalian - any of various warm-blooded vertebrate animals of the class Mammalia, 

including humans, characterized by a covering of hair on the skin and, in the female, milk-

producing mammary glands for nourishing the young. 

MAQ - a Bioinformatics Tool for Automatic Macroarray Analysis. 

MEGAN - (MEtaGenome ANalyzer) is a computer program that allows optimized analysis of 

large metagenomic datasets. 

Metagenomic - is the study of metagenomes, genetic material recovered directly from 

environmental samples.  

Microarray - a multiplex lab-on-a-chip. It is a 2D array on a solid substrate (usually a glass 

slide or silicon thin-film cell) that assays large amounts of biological material using high-

throughput screening methods. 

miRNA-155 - a short RNA molecule that plays a crucial role in various physiological and 

pathological processes. 

Model-View-Controller (MVC) - is a design pattern for computer user interfaces that divides 

an application into three areas of responsibility. 

Molecular - an electrically neutral group of two or more atoms held together by covalent 

chemical bonds. Molecules are distinguished from ions by their electrical charge. 

mRNA -  is a molecule of RNA that encodes a chemical "blueprint" for a protein product. 

mRNA is transcribed from a DNA template, and carries coding information to the sites of 

protein synthesis, the ribosomes. 
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Mutation - in molecular biology and genetics, mutations are changes in a genomic sequence: 

the DNA sequence of a cell's genome or the DNA or RNA sequence of a virus.  

Mutu I cell line -  is derived from Burkitt's lymphoma (BL) and retain the in vivo phenotype of 

Epstein Barr virus (EBV) expression that is characterized by expression of EBV-determined 

nuclear antigen 1 (EBNA1), EBV-encoded RNAs (EBERs) and transcripts from the BamHI A 

region (BARF0). 

Needleman-Wunsch algorithm - the Needleman Wunsch algorithm performs a global 

alignment on two sequences (called A and B here). It is commonly used in bioinformatics to 

align protein or nucleotide sequences.  

Next-Generation Sequencing - refers to a group of new DNA sequencing technologies that can 

rapidly sequence DNA on the gigabase scale. 

non-coding RNA -  is a functional RNA molecule that is not translated into a protein. Less-

frequently used synonyms are non-protein-coding RNA (npcRNA), non-messenger RNA 

(nmRNA), small non-messenger RNA (snmRNA) and functional RNA (fRNA). 

Novoalign - gapped alignment of single end and paired end Illumina GA I & II reads and reads 

from the new Helicos Heliscope Genome Analyzer. High sensitivity and specificity, using base 

qualities at all steps in the alignment. Includes adapter trimming, base quality calibration, Bi-Seq 

alignment, and option to report multiple alignments per read. 

Nucleic acid - any of a group of complex compounds found in all living cells and viruses, 

composed of purines, pyrimidines, carbohydrates, and phosphoric acid. Nucleic acids in the 

form of DNA and RNA control cellular function and heredity. 
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Nucleotide - any of various compounds consisting of a nucleoside combined with a phosphate 

group and forming the basic constituent of DNA and RNA. 

One-color design - refers one sample is used in a microarray technology experiment. 

OpenMP - is an application programming interface (API) that supports multi-platform shared 

memory multiprocessing programming in C, C++, and FORTRAN. 

Organism - in biology, an organism is any contiguous living system (such as animal, plant, 

fungus, or micro-organism). 

Parallelization - is a form of computation in which many calculations are carried out 

simultaneously, operating on the principle that large problems can often be divided into smaller 

ones, which are then solved concurrently ("in parallel"). 

Phylogeny - the evolutionary development and history of a species or higher taxonomic 

grouping of organisms. 

Pipeline - a chain of data-processing stages. 

Portable Batch System (PBS) - is the name of computer software that performs job scheduling. 

Its primary task is to allocate computational tasks, i.e., batch jobs, among the available 

computing resources. 

Probe-target hybridization - is usually detected by optically labeled targets, which determines 

the relative abundance of each target in the sample. 

Protein - is organic compounds made of amino acids arranged in a linear chain and folded into a 

globular or fibrous form.  
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Reference genome - is a digital nucleic acid sequence database, assembled by scientists as a 

representative example of a species' set of genes.  

Regulation of gene expression (or gene regulation) - the processes that cells and viruses use to 

regulate the way that the information in genes is turned into gene products. 

Relationship matrix - a matrix that constructs from gene annotations to reflect the relationship 

between isoforms and exons. 

Repeat mapped reads - reads which are mapped on multiple locations against reference 

genome using aligners. 

Ribonucleic acid (RNA) - is part of a group of molecules known as the nucleic acids, which are 

one of the four major macromolecules (along with lipids, carbohydrates and proteins) essential 

for all known forms of life. Like DNA, RNA is made up of a long chain of components called 

nucleotides. 

RNA-seq - also called "Whole Transcriptome Shotgun Sequencing" ("WTSS") and dubbed "a 

revolutionary tool for transcriptomics", refers to the use of high-throughput sequencing 

technologies to sequence cDNA in order to get information about a sample's RNA content, a 

technique that is quickly becoming valuable in the study of diseases like cancer. 

RPKM - Reads Per Kilobase of exon model per Million mapped reads. 

rRNA - is the RNA component of the ribosome, the protein manufacturing organelle of all 

living cells.  
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SAM format - SAM (Sequence Alignment/Map) format is a generic format for storing large 

nucleotide sequence alignments. 

SAMMate - a Graphical User Interface (GUI) RNA-seq analysis pipeline, allows biomedical 

researchers to quickly process Fasta/Fastq and SAM/BAM files, and is compatible with both 

single-end and paired-end sequencing technologies. SAMMate automates some of more 

standard procedures in RNA-seq analysis. 

SAMtools - is a set of utilities for interacting with and post-processing short reads alignments in 

the SAM/BAM format.  

SEED algorithm - is an algorithm for choosing the initial values (or "seeds") for searching or 

mapping sequences. 

Sequence alignment - in bioinformatics, a sequence alignment is a way of arranging the 

sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence 

of functional, structural, or evolutionary relationships between the sequences. 

Serial Pipeline - a number of software are executed in sequential order. 

Shotgun Sequencing - is a method used for sequencing long DNA strands. It is named by 

analogy with the rapidly-expanding, quasi-random firing pattern of a shotgun. 

Smith-Waterman algorithm - the Smith-Waterman algorithm is a well-known algorithm for 

performing local sequence alignment; that is, for determining similar regions between two 

nucleotide or protein sequences. Instead of looking at the total sequence, the Smith Waterman 

algorithm compares segments of all possible lengths and optimizes the similarity measure. 
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SOAP - is a bioinformatics package used for the assembly and analysis of DNA sequences. 

SOAP is particularly well-suited for Illumina next generation sequences. There are 5 members 

in this package. 

Strand - a term commonly used to describe one of the two complementary polynucleotide 

chains found in double-stranded DNA. 

Target - a cell or organ that is affected by a particular agent, e.g., a hormone or drug. 

Taxon - is a group of (one or more) organisms, which a taxonomist adjudges to be a unit. 

Taxonomical analysis - a Taxonomic Analysis is a search for the way that the cultural domains 

are organized. It usually involves drawing a graphical interpretation of the ways in which the 

individual participants' moves, form groups and patterns that structure the conversation. 

Taxonomy - the scientific classification of organisms into specially named groups based either 

on shared characteristics or on evolutionary relationships as inferred from the fossil record or 

established by genetic analysis. 

Tomcat web server - is an open source web server and servlet container developed by the 

Apache Software Foundation (ASF). Tomcat implements the Java Servlet and the JavaServer 

Pages (JSP) specifications from Oracle Corporation, and provides a "pure Java" HTTP web 

server environment for Java code to run. 

TopHat - is a fast splice junction mapper for RNA-Seq reads. It aligns RNA-Seq reads to 

mammalian-sized genomes using the ultra high-throughput short read aligner Bowtie, and then 

analyzes the mapping results to identify splice junctions between exons. 
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Transcript - is the process of creating an equivalent RNA copy of a sequence of DNA. 

Transcript quantification - refers to quantify the transcript abundance using RNA-seq data. 

Transcriptome - the transcriptome is the set of all RNA molecules, including mRNA, rRNA, 

tRNA, and other non-coding RNA produced in one or a population of cells. 

tRNA -  is a small RNA molecule (usually about 73-95 nucleotides) that transfers a specific 

active amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis 

during translation. 

Two-color design - refers two independent samples are used in a microarray technology 

experiment. 

UCSC Genome Browser - is an on-line genome browser hosted by the University of California, 

Santa Cruz (UCSC).  It is an interactive website offering access to genome sequence data from a 

variety of vertebrate and invertebrate species and major model organisms, integrated with a 

large collection of aligned annotations. 

Uniquely mapped reads - reads which are uniquely mapped on reference genome using 

aligners. 

Unmapped reads - Reads which are not mapped any location on reference genome using 

aligners. 

Wiggle format - is for display of dense, continuous data such as GC percent, probability scores, 

and transcriptome data.  
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Appendix B 

Important codes 

Example: parallelized Novoalign module for JPPF framework: 

public void submitJob(String jobName, int nbTasks, String filePath, String fileName, String indexFileName)  
{ 

        JPPFJob job = null; 
        try { 
            job = new JPPFJob(); 
            job.setId(jobName); 
 
            for (int i = 0; i < nbTasks; i++) { 
                NovoAlignTask task = new NovoAlignTask(); 
                task.setHostName(m_FTPCredential.m_hostName); 
                task.setFTPUserName(m_FTPCredential.m_FTPUserName); 
                task.setFTPPassword(m_FTPCredential.m_FTPPassword); 
                task.setPort(m_FTPCredential.m_port); 
                task.setHomeDirectory(m_FTPCredential.m_homeDirectory); 
                task.setId("NovoAlign_Task_" + i); 
                task.setFileName(fileName + "." + i); 
 
                if (!m_mateFileName.equalsIgnoreCase("")) { 
                    task.setMateFileName(m_mateFileName + "." + i); 
                } 
 
                task.setIndexFileName(indexFileName); 
                task.setFASTQFormat(m_fastqFormat); 
                job.addTask(task); 
            } 
 
            m_logWriter.info("Submitting Novoalign jobs to machines.", false); 
 
            List<JPPFTask> results = getClient().submit(job); 
            int totalofMean = 0; 
            for (JPPFTask result : results) { 
                File file = new File(filePath + fileName + ".sam." + indexFileName); 
                FileWriter filewriter = new FileWriter(file, true); 
                String resultString = (String) result.getResult(); 
                int position = resultString.indexOf(", MeanValue:"); 
                String novoFileName = resultString.substring(9, position); 
                int mean = Integer.parseInt(resultString.substring(position + 12)); 
                totalofMean += mean;  
                m_logWriter.info("Mean:" + mean, false); 
                 
                String stringLine; 
                BufferedReader in = new BufferedReader(new FileReader(filePath + novoFileName)); 
 
                while ((stringLine = in.readLine()) != null) { 
                    if (!stringLine.startsWith("#")) { 
                        filewriter.write(stringLine + "\n"); 
                    } 
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                } 
 
                in.close(); 
                filewriter.close(); 
            } 
             
            m_meanofHumanPairedEnd = (int)((double)totalofMean/(double)results.size()); 
            m_logWriter.info("m_meanofHumanPairedEnd:" + m_meanofHumanPairedEnd, false); 
             
        } catch (Exception e) { 
            System.err.println(e); 
        } 

} 

 

Example: calculate gene RPKM expression: 

public void calculate(HashMap<String, HashMap<String, Gene>> chromosome, HashMap<String, Vector<String>> 
geneRPKMs, double countedReadsNum) 
{ 

Set<String> keySet = chromosome.keySet(); 
 Iterator<String> itChromosome = keySet.iterator(); 
  
 while (itChromosome.hasNext())  
 { 
  String chromName = itChromosome.next(); 
  HashMap<String, Gene> genes = chromosome.get(chromName); 
   
  Set<String> keys = genes.keySet(); 
  Iterator<String> itGene = keys.iterator(); 
  while (itGene.hasNext())  
  { 
   String geneID = itGene.next(); 
   Gene gene = genes.get(geneID); 
   gene.m_expressionValue = 1000000000 * 

(double)gene.m_copies/(double)(gene.getTotalExonLength() * countedReadsNum); 
     
   if (countedReadsNum == 0) 
    gene.m_expressionValue = 0; 
 
   if (!geneRPKMs.containsKey(chromName + geneID)) 
   {  
    Vector<String> geneRPKM = new Vector<String>(); 
    geneRPKM.add(chromName); 
    geneRPKM.add(gene.m_geneName); 
    geneRPKM.add(gene.m_geneID); 
    geneRPKM.add(String.valueOf(gene.getTotalExonLength())); 
    geneRPKM.add(String.valueOf(gene.m_copies)); 
    geneRPKM.add(String.valueOf(gene.m_expressionValue));    
    geneRPKMs.put(chromName + geneID, geneRPKM); 
   } 
   else 
   { 
    Vector<String> geneRPKM = geneRPKMs.get(chromName + geneID); 
    geneRPKM.add(String.valueOf(gene.m_copies)); 
    geneRPKM.add(String.valueOf(gene.m_expressionValue)); 
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   } 
  } 
 } 

} 

 

Example: calculate transcript expression using iterative procedure of iQuant algorithm: 

/** 
 * The following method is to estimate proportions using iterative procedure 
 * with known gene expression score. 
 * @param E 
 * @param W 
 * @param gene 
 * @return proportions 
 */ 
private Matrix calculate(Matrix E, Matrix W, double score, Gene gene) 
{ 
 long sampleNum = E.getColumnCount(); 
 long lengthExons = E.getRowCount(); 
 long isoNum = W.getColumnCount(); 

 
 Matrix S = W.clone(); 
 Matrix A = DenseMatrix.factory.ones(1,isoNum); 
 int b = 1; 
 Matrix z = E.toRowVector(Ret.NEW); 
 Matrix isoProps = DenseMatrix.factory.ones(1,isoNum); 
 Matrix newIsoProps = DenseMatrix.factory.zeros(1,isoNum); 
 int iter = 0; 
 
 try 
 { 
  while(isoProps.minus(newIsoProps).normF() > m_epsl && iter < m_maximalSteps) 
  { 
   isoProps = newIsoProps.clone(); 
   Matrix rs = DenseMatrix.factory.zeros(1,sampleNum); 
 
   for (int i = 0; i < sampleNum; i++) 
   { 
    Matrix zero = DenseMatrix.factory.ones(isoNum,1); 
    Matrix one = (Matrix)E.selectColumns(Ret.NEW, 

i).transpose().mtimes(W).mtimes(zero); 
    Matrix two = DenseMatrix.factory.ones(isoNum,1); 
    double three = (W.mtimes(two)).normF(); 
    Matrix value = one.divide(three*three); 
 
    if (iter == 0) 
     rs.setAsDouble(score, 0, i); 
    else 
     rs.setAsDouble(value.doubleValue(), 0, i); 
   } 
 
   Matrix H = DenseMatrix.factory.zeros(0,0); 
 
   for (int i = 0; i < sampleNum; i++) 
    H = H.appendVertically(S.times(rs.getAsDouble(0,i))); 
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   Matrix temp0 = (H.transpose().mtimes(H)); 
   Matrix xHatLS = null; 
    
   if (!temp0.isSingular()) 
    xHatLS = temp0.inv().mtimes(H.transpose()).mtimes(z); 
   else 
    return null; 
    
   Matrix temp5 = (H.transpose().mtimes(H)); 
   if (temp5.isSingular()) 
    return null; 
    
   Matrix B = temp5.inv(); 
   Matrix temp4 = (A.mtimes(B).mtimes(A.transpose())); 
    
   if (temp4.isSingular()) 
    return null; 
    
   Matrix part1 = B.mtimes(A.transpose()).mtimes(temp4.inv()); 
    
   Matrix temp1 = DenseMatrix.factory.eye(isoNum,isoNum); 
   Matrix temp2 = temp1.minus(part1.mtimes(A)).mtimes(xHatLS); 
   Matrix xHatCLS = temp2.plus(part1.times(b)); 
     
   newIsoProps = xHatCLS.transpose(); 
   W = DenseMatrix.factory.zeros(lengthExons,isoNum); 
 
  Matrix temp = DenseMatrix.factory.eye(isoNum,isoNum); 
   for (int i = 0; i < isoNum; i++) 
    temp.setAsDouble(newIsoProps.getAsDouble(0,i), i,i); 
   W = S.mtimes(temp); 
    
   iter++; 
    
   gene.setPredictedExpValue(rs.getAsDouble(0,0)); 
  } 
 } catch (Exception e) 
 { 
  System.out.println("The gene cannot be calculated: " + gene.m_geneID); 
  System.err.println(e.getMessage()); 
  return null; 
 } 
 
 Matrix E_mean = DenseMatrix.factory.ones(lengthExons,1).times(E.getMeanValue()); 
 Matrix rs_v = DenseMatrix.factory.ones(isoNum,1).times(gene.m_predictedExpValue); 
 Matrix dif1 = E.minus(W.mtimes(rs_v)); 
 Matrix dif1_square = dif1.transpose().mtimes(dif1); 
      
 Matrix dif2 = E.minus(E_mean); 
 Matrix dif2_square = dif2.transpose().mtimes(dif2); 
 gene.m_Rsquare = 1 - dif1_square.doubleValue()/dif2_square.doubleValue(); 
 
 return isoProps; 

} 
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Example: Detects differentially expressed genes and isoforms with support for edgeR: 

public String assembleCommands(String inputFile, String outputFile) 
{ 

 inputFile = "'D:/EdgeR Data/LungDataTransReadCounts.txt'"; 
 outputFile = "'D:/EdgeR Data/output.txt'";*/ 
 inputFile = "'" + inputFile + "'"; 
 outputFile = "'" + outputFile + "'"; 
  
 StringBuffer commands = new StringBuffer(); 
 commands.append("library(edgeR);"); 
 commands.append("raw.data<-read.delim(" + inputFile + ");"); 
 commands.append("d<-raw.data[,2:" + (m_sampleNum + 1) + "];"); 
 commands.append("rownames(d)<-raw.data[,1];"); 
 commands.append("group<-c(rep('GroupA'," + m_groupANum + "),rep('GroupB'," + m_groupBNum + 

"));"); 
 commands.append("d<-DGEList(counts=d,group=group);"); 
 commands.append("d<-estimateCommonDisp(d);"); 
 commands.append("de.com<-exactTest(d);"); 
 commands.append("write.table(topTags(de.com, n=" + m_featureNum + ")$table,"+ outputFile + 

",sep=\"\t\");"); 
   
 return commands.toString(); 

} 

 

Example: Generates coverage file in wiggle format for visualization: 

private void buildForwardWig(String outputFile)  
{ 

 int maxReadLength = SystemProperties.getInstance().getProperty("maxReadLength", 100); 
 m_logWriter.info("The maximal length of short read is: " + maxReadLength, false); 
 
 try  
{ 
            Set<String> keySet = m_samCoordinates.keySet(); 
            Iterator<String> itChromosome = keySet.iterator(); 
 
            if (m_isBuildCoverage) { 
                File file = new File(outputFile); 
                String fileIndex = outputFile.substring(outputFile.lastIndexOf("\\") + 1, outputFile.length()); 
 
                m_filewriter = new FileWriter(file, false); 
                m_filewriter.write("track type=bedGraph name=\"read coverage " + fileIndex + "\"" + "\r\n"); 
            } 
 
            while (itChromosome.hasNext()) { 
                String chromName = itChromosome.next(); 
                int[][] samCoverages = m_samCoverages.get(chromName); 
                int[][] bedCoverages = null; 
                if (m_bedCoverages != null) { 
                    bedCoverages = m_bedCoverages.get(chromName); 
                } 
 
                CombinedCoordinate combinedCoordinate = null; 
                if (m_bedCoordinates != null) { 
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                combinedCoordinate = new CombinedCoordinate(m_samCoordinates.get(chromName), 
m_bedCoordinates.get(chromName)); 

                } else { 
                    combinedCoordinate = new CombinedCoordinate(m_samCoordinates.get(chromName), null); 
                } 
 
                int startPosition = 0; 
                int endPosition = 0; 
                ArrayList<Integer> positions = new ArrayList<Integer>(); 
                positions.add(startPosition); 
 
                while (combinedCoordinate.hasNextPosition()) { 
                    int currentPosition = combinedCoordinate.getNextPosition(); 
                    if (currentPosition < 0) { 
                        continue; 
                    } 
 
                    positions.add(currentPosition); 
 
                    int[][] read = m_util.getRead(samCoverages, currentPosition); 
                    if (read == null && bedCoverages != null) { 
                        read = m_util.getRead(bedCoverages, currentPosition); 
                    } 
 
                    if (currentPosition == combinedCoordinate.getLastPosition() && read != null) { 
                        positions.add(currentPosition + read[2][0]); 
                    } 
 
                    if (currentPosition - endPosition <= maxReadLength && currentPosition != 

combinedCoordinate.getLastPosition()) { 
                        endPosition = currentPosition; 
                    } else { 
                        // build coverage file from start position to end position; 
                        outputForwardWigFile(samCoverages, bedCoverages, chromName, positions, outputFile); 
                        positions = new ArrayList<Integer>(); 
                        startPosition = currentPosition; 
                        endPosition = currentPosition; 
                        positions.add(startPosition); 
                    } 
 
                    if (currentPosition == combinedCoordinate.getLastPosition()) { 
                        outputForwardWigFile(samCoverages, bedCoverages, chromName, positions, outputFile); 
                    } 
                } 
            } 
 
            if (m_isBuildCoverage) { 
                m_filewriter.close(); 
            } 
 
        } catch (IOException e) { 
            e.printStackTrace(); 
        } 

} 
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