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Abstract 
 
        The emergence of semiconducting nanowires as the new building blocks for photovoltaic 

(PV) devices has drawn considerable attention because of the great potential of achieving high 

efficiency and low cost. In special, nanowires with a coaxial structure, namely, core-shell 

structures have demonstrated significant advantages over other device configurations in terms 

of radial charge collection and cost reduction. In this dissertation, several core-shell nanowire 

structures, including ZnO/ZnSe, ZnO/ZnS, and CdSe/ZnTe, have been synthesized and the 

photovoltaic devices processed from a ZnO/ZnS core-shell nanowire array and a single 

CdSe/ZnTe core-shell nanowire have been demonstrated.  

       By combining the chemical vapor deposition and pulsed laser deposition (PLD) techniques, 

type-II heterojunction ZnO/ZnSe and ZnO/ZnS core-shell nanowire array were synthesized on 

indium-tin-oxide substrates. Their structures and optical properties have been investigated in 

detail, which revealed that, despite highly mismatched interfaces between the core and shell, 

both systems exhibited an epitaxial growth relationship. The quenching in photoluminescence 

but enhancement in photocurrent with faster response upon coating the core with the shell 

provides the evidence that the charge separation and collection in the type II core-shell 

nanowire is greatly improved. This demonstration brings much greater flexibility in designing 

next generation PV devices in terms of material selection and device operation mechanisms for 

achieving their maximum energy conversion efficiencies at a low cost and in an 

environmentally friendly manner.    

         In order to achieve a high quality interface in the core-shell nanowire, CdSe and ZnTe, 

which have close lattice parameters and thermal expansion coefficients, were chosen to 

fabricate nanowire solar cells. ZnTe and CdSe nanowires were first synthesized by thermal 

evaporation and the shells were subsequently deposited by PLD. ZnTe/CdSe nanowires 

represented an inhomogeneous coating while the CdSe/ZnTe core-shell exhibited a conformal 

coating with obvious ZnTe eptilayer. The final PV device based on an individual CdSe/ZnTe 

nanowire demonstrated an efficiency of ~1.7%. In addition, a controllable synthesis of CdSe 

nanowire array on muscovite mica substrate was presented, providing the possibility to harvest 

hybrid energies in an all-inorganic nanowire array.      

 
Keywords: Solar Cells, Nanowires, Type-II heterojunction, Epitaxial growth, Three-dimensional 
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Chapter 1 Introduction and Background 

 

1.1 Energy demand and solar energy   

      One can never underrate the importance of the energy issue, because, to some extent, the 

history of the human race is a history of energy exploration. In 2010, about 15 terawatts (TW) of 

energy was consumed to sustain the lifestyle of 6.15 billion people worldwide and 86% of the 

energy was supplied by the fossil fuels in the form of coal, oil and natural gas1,2. The world 

energy consumption rate can be roughly calculated as the product of world populations, world 

per capita gross domestic product (GDP), and world energy density. Assuming a global growth 

rate of about 0.9% per year, total energy demand in primary energy consuming countries will be 

doubled by 2050 and tripled by 2100 to maintain the current lifestyle2. Note that the urbanization 

in the developing countries, another important factor contributing to the energy demand, is not 

even taken into consideration. On the contrary, the finite reservoir of fossil fuels is depleting as 

the production of oil has recently peaked to the saturation point. Though the advance of 

technology may maximize the production of oil, an increase in the cost would certainly be 

startling. This also holds true to the production of coal and natural gas, according to the well-

known Hubbert’s prediction3-5. In other words, the fossil fuels used today will not be affordable 

in the near future. One major consequence of the reliance on fossil fuels is the global warming 

caused by the greenhouse effect. Carbon dioxide is released as a byproduct of the combustion of 

fossil fuels and around half of them remain in the atmosphere, which absorb the radiation from 

the earth and in turn lead to the increase of global temperature. Recently, reports have proven 

that the temperature of the earth has risen about 0.8oC in the past century and this is believed to 

be accelerated in the coming decades6. The exponential demand of energy and the limitations in 

the usage of current fossil fuels force us to seek more alternative resources, such as nuclear and 

renewable energy (hydroelectricity, geothermal, wind power, ocean and tide current and solar 

energy). Nuclear power can generate a high amount of electricity in a single plant, but it is 

neither environmentally friendly nor sustainable. The Chernobyl and Fukushima Daiichi nuclear 

disasters have aroused the dispute over the development of nuclear power reactors. Solar power 

stands out above all available renewable energy resources primarily because of its abundance 
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Figure 1.1 (a) Schematic illustration of carrier dynamics in a p-n junction illuminated by light. (b) A 
typical current-voltage (I-V) characteristics of a solar cell under illumination. The maximum-power of 
the solar cell is indicated by the dashed lines. 
 

and universal availability. The sun provides more energy to the earth in an hour than the world 

consumes in one year (2002).  

1.2   The basics of solar cells  

     Currently, three approaches have been explored to harvest the solar energy and they are solar 

electricity, solar fuels and solar thermal. Solar cells, namely, photovoltaic (PV) cells, are 

optoelectronic devices which convert light to electricity. Energy conversion in solar cells is 

shown to consist of four steps, i.e., light (photon) absorption, exciton creation, exciton separation 

to free carriers, and carrier collection by electrodes. The first two steps take place in every 

semiconductor but the latter two steps require structure and force to directionally drive the 

electrons and holes as current7. A solar cell structure can be depicted as a p-n homojunction, as 

shown in Figure 1.1(a).  
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     Once the p-n junction is irradiated by the sun light, electron-hole pairs (namely, the excitons) 

are created by the photons with energy greater than the bandgap, and the number of excitons is 

proportional to the light intensity. Owing to the presence of the built-in field in the depletion 

region, the electrons and holes tend to drift towards n- and p-side, respectively, which is, in fact, 

charge separation. This results in current flow from n- to p-side when an external wire is short-

circuited and generation of voltage when the p-n junction is open-circuited. Because the excess 

carriers can diffuse up to the space charge region, the electron-hole pairs created within a 

distance of diffusion length from the edge of the depletion region also contribute to the photo 

current.  From the I-V characteristics of a solar cell under illumination in the forth quadrant, as 

displayed in Figure 1.1(b), the efficiency of the solar cell, η, can be extracted as η= (Voc ×Isc ×FF) 

/Pin, where fill factor FF= (Vm× Im) / (Voc ×Isc). The short-circuit current (Isc) is a direct measure 

of the conversion efficiency from incident photons to electrical current. The open-circuit voltage 

(Voc) is determined by the balance between the corresponding photogeneration rate and the net 

rate of radiative recombination within the cell.  

 
Figure 1.2 Energy band diagram of a p-n homojunction solar cell showing the major loss mechanisms. 
(After reference8.) 
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The energy conversion efficiency of a solar cell is limited because of the energy loss occurring 

in all of the energy-conversion steps. Taking a single p-n homojunction solar cell for example, 

the origin of most energy loss, upon light illumination, is displayed in Figure 1.2. First, incoming 

photons with energies below the bandgap of the device, hv1<Eg, are not absorbed, which was 

represented as (1). Second, incoming photons with energy above the bandgap are absorbed, 

however, the excess energy, hv2-Eg, is wasted as heat, as shown as (2). Additional energy loss (3) 

occurs as the photoexcited carriers cross the junction and contact regions. Process (4) represents 

electronic states within the bandgap, such as defects or impurity atoms, which act as active 

centers where electrons and holes recombine. Process (5) represents the radiative recombination 

of the electrons and holes. Note that, in the ideal case, this is not considered as energy loss 

because the emitted photons could be reabsorbed elsewhere in the cell. However, in practical 

solar cells, photons emitted from the front of the cell back towards the incoming sunlight are lost 

forever, which ultimately limit the maximum efficiency of the cells8,9.  

 The aforementioned energy losses are depicted based on the assumption that all the photons 

that strike solar cells are absorbed. In real solar cells, part of the photons is reflected. For 

instance, as shown in Figure 1.3(a), only 70% of solar energy can be collected for the energy 

conversion, given the fact that bare silicon wafer has a reflectivity of ~30%. Several strategies 

have been developed to suppress these losses. Because sun light is polychromatic, fixing the 

bandgap gives a tradeoff between energy losses (1) and (2)9. In these regards, it is well-known to 

use multiple-junction, intermediate band and spectrum conversion approaches to maximize the 

light absorption in a wide range of light profiles. With respect to energy loss (2), a novel concept 

to harvest the hot carriers has been developed and will be discussed in Section 1.3.1. In order to 

reduce the energy loss (4), high purity materials are generally required to minimize the 

boundaries and other defects. Surface texturing or depositing an antireflection layer on bare 

silicon allows for reducing of the overall reflection down to several percent. Figure 1.3 (b) shows 

the light trapping effect of the textured surface of silicon. Other than being reflected backward, 

light incident on the side of a pyramid will be reflected onto another pyramid 10.  

      In a planar p-n junction solar cell, as shown in Figure 1.3 (c), the thickness of the absorber, L, 

must be larger than the optical thickness of the absorbers, (1/α), to absorb most of the light. The 

minority carrier diffusion length, Ln or Lp, (Here is Ln in the schematic) must be also larger than 

1/α. in order to efficiently collect the photogenerated carrier. In general, low quality materials 
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have a low minority carrier diffusion length because of the presence of high density of defects or 

high level of impurities. New concepts have been proposed to optimize the device design to 

reduce the stringent material purity and quality requirements. Of great interest is decoupling the 

requirements for light absorption and carrier extraction into orthogonal spatial directions.  A 

good example is the design of parallel multi-(p-n)-junction solar cell, where the n and p type 

material is assembled as “interdigital electrodes”. This architecture offers more junction areas, 

and the merit lies in the fact that photogenerated minority carriers have a high possibility of 

reaching the junction before recombination, thus enhancing the charge collection11.     

    Figure 1.3 (a) Schematic of light illuminates on bare silicon, showing ~30% of light is reflected. (b) 
Schematic of light illuminates on textured silicon, showing light trapping. (c) Schematic of a planar p-n 
junction solar cell architecture, indicating the thickness of the absorber, L, and the minority carrier 
diffusion length in this case, Ln, must be larger than the penetration depth of the photons,1/α. (d) 
Schematic of the parallel multi-(p-n)-junction solar cell architecture.  L is still required to be larger than 
1/α, but Ln can be tolerated. After references7,10,11. 
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So far, the PV technologies can be assorted into three generations. First generation solar cells 

are based on crystalline silicon (c-Si), which dominates the marketplace currently and holds a 

champion record of conversion efficiency (~22.3%) in single junction solar cells. Unfortunately, 

due to its relatively low absorption coefficient, the c-Si solar cells require hundreds of 

micrometers thick layer to absorb all the incident photon. Moreover, high purity silicon is also 

demanded to decrease the recombination rate, which further add up to the cost of the final device. 

The high cost of manufacturing and installation of c-Si solar cells prevent the widespread use of 

first generation solar cells.  

      Thin film solar cells (TFSCs) are generally considered as second generation solar cells, 

which include amorphous silicon (a-Si) and other chalcogenide-based polycrystalline thin films 

of cadmium telluride (CdTe), copper indium diselenide (CIS) and copper indium gallium 

diselenide (CIGS)12-14. Controversially, epilayer of indium gallium phosphide (InGaP) and 

gallium arsenide (GaAs) are also regarded as second generation solar cells. Owning to the 

availability in large scale production and less expensive raw materials, TFSC significantly bring 

down the cost. More importantly, TFSCs hold a shorter payback period (1 year) as compared to 

the c-Si solar cells. These advantages, together with the flexibility, low space usage, and light 

weight greatly extend the application of second generation solar cells. Despite the low cost of 

raw materials and manufacturing processes, TFSCs have some inherent drawbacks. Except from 

multiple junction solar cells based on InGaP and GaAs, most of the TFSCs exhibit relatively low 

energy conversion efficiency in the range of 10~18%15,16. Additionally, the stability of TFSC is 

another concern because some of the materials degenerate over time when exposed to 

sunlight17,18. Nonetheless, second generation solar cells have been gaining market share since 

2008.  

Third generation solar cells mostly involve cutting edge technology, aiming to deliver high 

efficiency at an economically viable cost9,19,20. Alternatively, third generation solar cells can be 

roughly defined as the solar technologies attempt to overcome the Schockley-Queisser efficiency 

limit. In this regard, a wide range of potential solar innovations, such as organic photovoltaic 

cells (OPV), dye-sensitized solar cells (DSSCs), quantum dots sensitized solar cells (QDSSC), 

intermediate band cells, and other nanostructured solar cells can be considered as third 

generation solar cells. 
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1.3 Nanomaterials in solar cells 

 

As the physical dimensions of the materials reduce to nanometer scales, quantization and 

surface effect begin to dominate the physical properties and drastic changes are expected to be 

observed in terms of light-mater interaction, charge carriers generation and transport dynamics. 

In this regard, the advent of nanomaterials opens the avenue to develop next generation solar 

cells that can deliver high efficiency at a relatively low cost. According to the confined 

dimensionality, nanomaterials can be classified as zero dimensional (0D), one dimensional (1D), 

and two dimensional (2D) nanomaterials, and all of them could be employed to increase the 

efficiency of solar cells. In this section, the benefit that can be taken from 0D and 2D 

nanomaterials are discussed. The application of 1D nanomaterials, focusing on nanowires, in 

solar energy harvesting will be reviewed in section 1.4. 

1.3.1 Quantum Dots in solar cells   

     Quantum dots, also known as semiconductor nanocrystals, are the crystals having sizes 

similar to or less than that of the Bohr radius of an exciton in the corresponding bulk materials. 

As a consequence of quantum confinement, several unique optical and electrical properties arise 

that can substantially contribute to the light harvesting in solar cells.  

 

    Size dependant bandgap 

 The amazing property of quantum dots in light absorption is size-dependant band gap. Due 

to the quantum confinement, the energy levels in a quantum dots are discrete and the band gap of 

a quantum dot as shown in Figure1.4, and can be mathematically described as:  

                                               (1) 

                                                                                  (2)
 

Here, Eg (QD) is the energy band gap of a nanocrystal quantum dot, Eg (bulk) is the energy band 

gap of a bulk semiconductor, h is the Planck constant, m* is the reduced mass of exciton, me is 

the effective mass of an electron, mh is the effective mass of a hole, d is the diameter of a 
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Figure1.4. Schematic drawing of discrete energy levels and possible carrier dynamical processes 
upon illumination in quantum dots. The trend of increasing bandgap with decreasing nanocrystal 
size is denoted by the dashed line. The processes of a photon with hv >3Eg generates three electron-
hole pairs is also depicted, as well as the surface states.  

nanocrystal, e is the electron charge, ε is the relative dielectric constant, and ε0 is the space 

dielectric constant. As shown in Equations, the bandgap of QD is highly dependent on its 

diameter. In detail, when the size decreases, the lowest conduction band level and highest 

valence band level significantly change with the diameter of the quantum dots, resulting in a blue 

shift of the band gap. This tunability of band gap makes quantum dots fascinating for light 

absorption and inspired a number of groups to fabricate QDSSCs21-23. In principle, narrow 

bandgap QDs are coupled with wide bandgap semiconductor nanostructures, such as TiO2, ZnO 

and SnO2, in QDSSCs; and upon light illumination, electrons are injected into wide band gap 

semiconductor while the holes are transported by the electrolyte. The whole process is similar to 

that occurred in DSSCs, except the absorbers are replaced by QDs. An optimized configuration 

of QDSSC, termed as rainbow solar cell, has been demonstrated by anchoring CdSe QDs with 

different sizes on TiO2 nanotubes array, in an attempt to effectively couple the faster electron 

injection rate of small dots and greater absorption range of large dots24.  
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Multiple exciton generation (MEG) 

         Generally, one incoming photon with energy in excess of the bandgap, hv >Eg, absorbed by 

semiconductor produces an electron-hole pair (EHP) and the excess energy, ∆=hv-Eg, will be 

transferred into the kinetic energy of the EHP. The charge carrier then has an effective 

temperature much higher than that of the crystal lattice; and therefore, the carrier is referred to as 

hot carrier. In practical bulk solar cells, the hot carrier is rapidly cooled to the band edge, and the 

excess energy is depleted in the form of lattice vibrations, i.e., phonons, resulting in the 

theoretical limit. One may imagine that the photocurrent in solar cells can be significantly 

enhanced if the hot carrier can generate one or more EHP, which is, in fact, multiple exciton 

generation25,26. In order to gain the excess energy, a straightforward approach is to slow down 

the cooling process of the hot carries. However, owing to the rapid thermalization process (less 

than 0.5 picoseconds), it is rarely observed in bulk semiconductors. In a quantum dot, the carriers 

are confined in all three dimensions and the conduction band and the valence band separate into 

a set of discrete energy levels. If the spacing between energy levels is larger than the optical 

phonon energy, the relaxation rate of hot carrier will be slower than the recombination rate, 

leading to so-called “phonon bottleneck” effects9. In this case, the hot electron must have the 

energy of at least two times the bandgap to create one additional EHP. Figure 1.4 shows the 

presumable dynamical process in a quantum dot that absorbs a photon and generates three 

electron-hole pairs. Nonetheless, up to now, there is no practical PV device that has been able to 

demonstrate the harvesting of MEG and, in fact, there has been considerable debate about the 

artifacts and reproducibility in the measurement and interpretation27.   
 

Surface effects 

Because of the high aspect ratio, the surface states of QDs play an important role in 

determining the charge transport dynamics. It is well accepted that the presence of the surface 

states is detrimental to the charge collection because the photogenerated carrier can be trapped in 

these states, as depicted in Figure1.4. However, some research suggested that the surface states 

presumably contribute to the prolonged lifetime of hot carrier due to the physical separation of 

electron and hole. The high surface-to-volume ratio of quantum dots facilitates the anchoring of 

absorber molecules. For instance, despite numerous works on replacing nanoparticles with 
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nanowires and nanotubes, the highest energy conversion efficiency of DSSC is still based on 

TiO2 nanoparticles. 

 

    Other potential advantages of employing quantum dots in solar cells rely on the synthesis 

techniques and related possible cost reductions. For some quaternary solar cell materials, the 

stoichiometry of the elements is crucial to determining the bandgap and electrical properties, 

which in turn limit the device performance28,29. However, nonstoichiometric materials are often 

obtained by tradition processing methods30,31. New approaches developed to synthesize quantum 

dots provide the possibility to accurately control the stoichiometry at nanometer scale32-34. In 

addition, small size quantum dots can be stabilized in solution and adapted to ink-inject 

technique, suggesting the feasibility to fabricate low cost thin film solar cells by greatly reducing 

the raw material wastage35-37.  

    

1.3.2 2D nanomaterials in solar cells   

     Graphene, the thinnest 2D nanomaterial, holds great promise for its potential application in 

PV because of the unique properties, such as the excellent conductance, good transparency in 

both the visible and near infrared regions, ultra-smooth surface with tunable wettability, high 

chemical and mechanical stabilities, and low cost in fabrications38. So far, graphene has been 

adapted in silicon solar cells, organic solar cells, DSSCs and QDSSCs as transparent electrode, 

counter electrode, and carrier transport.  

      Today, the major transparent electrodes used in PV industry are indium tin oxides (ITO) and 

fluorine doped tin oxide (FTO). Despite the satisfying transparency and good conductance, ITO 

still have some inherent disadvantages, such as not abundant in earth’s crust, possible ion 

diffusion, poor transparency in the near infrared region, and brittleness39.  These disadvantages 

limit ITO as an ideal transparent conductive layer in the next generation solar cells.  Many 

efforts have been dedicated to seek alternative transparent conductive materials40-43, and the 

advent of graphene offers the prospect because it exhibits transparency in both visible and near 

infrared region by atomic layer thickness, good flexibility and easy accessibility. To make a 

graphene based transparent electrode, graphene oxide (GO) solution is generally spin-coated on 

quartz substrate and then reduced chemically followed by high temperature annealing44. Despite 
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the low cost and flexibility, the graphene derived from GO has a high density of defects that limit 

the application in transparent electrodes. An Alternative strategy is to directly grow a large area 

graphene on nickel coated copper foil or thermal oxidation on silicon substrate by CVD 

technique, and transfer graphene to a glass substrate by the well-known etch-peel process45. In 

contrast to the reduced graphene thin film, CVD grown graphene exhibits a lower sheet 

resistance but still higher than that of ITO. So far, apart from the superior chemical and 

mechanical stability, solar cells using graphene as a transparent electrode show an inferior 

efficiency than that of taking ITO as the transparent electrode, which awaits further modification 

or improvement of the transmittance and conductance.  

      Owning to its high mobility at room temperature, graphene plays an important role in carrier 

transport and therefore can enhance the conversion efficiency by suppressing the competing 

recombination. A CdS QDs /graphene layered structure was reported with a high PCE value of 

16%, while the same hybrid structure consisting of multiwall carbon nanotubes exhibited a PCE 

value of 9%.  The carrier transport effect of graphene is more important in OPV, because the 

existence of problems associated with the phase separation process, such as the isolated domains 

and structural traps, which is inevitable in making the heterojunction.  

      Very recently, a new family of 2D nanomaterials, widely known as layered transition-metal 

dichalcogenides (LTMDs), has been intensively investigated46,47. Similar to graphene, MoS2, can 

be fabricated by exfoliation48 and CVD, exhibiting unique electrical and optical properties. 

Although the transmittance and sheet resistance are far from ITO, further improvement in sheet 

sizes and suppressed formation of semiconducting phase could potentially extend their 

performance48. 

 

1.4 Nanowire solar cells 

1.4.1 Individual nanowire solar cells 

      In the past decades, much attention has been attracted on the tiny solar cells processed from 

individual nanowires, i.e., single nanowire solar cells, because of a series of unique properties 

induced by the reduced dimensionality. First, these portable solar cells, upon light illumination, 

can serve as robust power source to drive nanodevices working at lower energy consumption and 
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can be easily incorporated into the existing microelectromechanical systems (MEMS) or future 

nanoelectromechanical systems (NEMS). Second, as compared to conventional solar cells, 

individual nanowire solar cells hold great potential to achieve higher energy-conversion, owing 

to its mostly single crystalline nature, strain relaxation effects, and tunablity of bandgap when 

size goes down to nanoscale. More importantly, the solar cells based on individual nanowires 

offer an ideal platform to probe the photovoltaic effects, i.e., light absorption, charge separation, 

and collection, in reduced dimensionality and thus facilitate the fundamental understanding of 

light-matter interaction and carries dynamics, in pursuit of efficient ways in designing 

macroscopic solar cells comprised of nanowire array or improving the efficiency of conventional 

planar solar cells. In principle, single nanowire solar cells are processed by bottom-up 

approaches, which enable us to investigate different parameters, such as doping level, contacts, 

junctions, and etc. 

      In this section, the light absorption enhancement in an individual nanowire will be first 

reviewed, along with the dependence of charge dynamics, including surface recombination and 

bulk recombination, on the size and morphologies of the nanowire. The current research status of 

single nanowire solar cells, categorized by material junctions will be discussed. Finally, the 

survey for the current efficiency of single nanowire solar cells will also be presented. 

 

1.4.1.1 Light absorption in a single nanowire 

 

       When a single nanowire lying flat on a substrate is illuminated by photons, considerable 

amount of energy will be transmitted, owing to the insufficient thickness or light trapping to 

quench all the photons. However, the nanowire itself possesses the ability to collect and trap the 

light into a sub-wavelength volume; this energy loss in terms of light absorption can be 

minimized or compensated for by the resonant effect and optical cross-section effect induced by 

the nanowire morphology. The resonant optical mode was originally predicted in the case of 

spherical particle and then developed for micrometer-scale resonators. Cao et al. use the 

framework of leaky mode resonances (LMR) to probe the resonant field enhancement in 

nanoscale structures. Nanowire in these studies was considered as a sub-wavelength resonator in 

which light can be trapped in circulating orbits by multiple total internal reflections from the 

boundaries49. Given an infinitely long cylinder and by solving Maxwell’s equations with 



13 

 

boundary condition, the excitation of the leaky modes can be obtained as a function of the 

dielectric constant and wire diameters. Taking germanium nanowire as an example, they found 

that the light absorption in single nanowire is highly related to the size, geometry, and orientation 

of the nanowires. In other words, one could engineer the light absorption in a single nanowire by 

tuning the morphologies and geometry of the nanostructures. Moreover, LMR also holds true in 

coated nanowire which further enables the engineering of light absorption. For example, the 

photocurrents in Si/a-Si coaxial nanowire could be enhanced by a factor of 5.6 with respect to 

the bare silicon nanowire, and which could be further improved by introducing another non-

absorption dielectric coating50. Additionally, the use of metal nanoparticles decoration on a 

single nanowire to enhance and suppress the absorption, by harnessing the excitation of surface 

plasmons, offers an additional degree of freedom to engineering the light absorption in a single 

nanowire. For instance, the photocurrent of a silicon core-shell nanowire decorated with a silver 

nanocrystal was observed to increase or decrease depending on the wavelength with respect to 

the nanocrystal’s surface plasmon resonance or nanowire’s optical resonance, which is in a good 

agreement with the finite-difference frequency-domain (FTDT) simulation51.  

         In practical single nanowire solar cells, the nanowire itself is generally horizontally lying 

on a silicon substrate with a SiO2 layer of considerable thickness, and the interfaces, with the 

high-refractive-index silicon substrate, can be viewed as a low-quality factor Fabry-Perot cavity. 

In this case, the whole light absorption in the nanowire is therefore further enhanced by the 

Fabry-Perot resonance, which is usually taken into consideration in the form of thin film. 

Computed by full-filed FTDT simulation, the absorption in the nanowire oscillates as a function 

of the SiO2 layer thickness, concluding that the resonance was related to the substrate52.  

 

1.4.1.2 Carrier dynamics in a single nanowire 

        Single nanowire solar cells offer an ideal platform to investigate the fundamental carrier 

dynamics including the charge transport, surface recombination and minority carrier diffusion. 

In order to understand these carrier dynamics processes, it is of great importance to extract the 

carrier density, mobility, surface states density, effect life time and minor carrier diffusion 

length53,54. Due to their resolution limit with respect to the low dimensionality, facilities 

commonly used in bulk thin films, such as Hall Effect measurement and secondary ion mass 

spectrometry (SIMS), cannot be applied to measure these parameters in single nanowire device. 
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On the contrary, field effect transistor (FET), electron beam induced current (EBIC), 

photoconductance, and scanning photocurrent microscope (SPCM) are the popular approaches 

deployed to characterize the electrical properties of nanowires.  

         Single nanowire FET can be configured by drop casting a nanowire on an insulating 

substrate, and making source and drain electrodes contacts by electron beam lithography at the 

nanowire ends. The carrier density, mobility and resistivity of the nanowire can then be extracted. 

However, special concerns about the accuracy of the data arose because of the interferential 

factors, such as gate capacitance, surface depletion effect and inhomogeneous dopant distribution. 

It is also worth mentioning that there are very few papers studying the influence of these 

electrical parameters on the performances of the nanowire solar cells, which could be attributed 

to the challenging works in doping controllability. The minority carrier transport, primarily 

manifested by the minority carrier diffusion length (LD), plays a key role in determining 

performance of solar cells. For a semiconducting nanowire, it is generally measured on a two 

terminal nanowire device with Schottky junctions via EBIC and SPCM techniques.  

 

1.4.1.3 Device geometries of single nanowire solar cells 

Up to now, different prototypes of single nanowire solar cells have been proposed and 

demonstrated, which can be classified as radial, axial, and wire-on-thin film from viewpoint of 

device geometry. Alternatively, these solar cells can be divided, in view of the junction 

comprising of different materials, such as Shockley junctions, homojunction or heterojunction, 

and hybrid junctions. These junctions induce a chemical potential difference, permitting the 

charge separation. 

The solar cell is basically a diode with rectifying characteristics, and the simple way to obtain 

such behavior is by forming a Shockley junction using a metal with large/small work function in 

contact with n/p-type semiconductor. The first type of single nanowire solar cell is, therefore, 

called Shockley junction solar cells. In this kind of solar cells, two asymmetric contacts, 

including one Ohmic contact and one Shockley contact, are generally required to extract the 

opposite carries. An illustrative sample of a Shockley cell has been demonstrated in silicon 

nanowire with an Al-Si Shockley junction, showing an efficiency of around 0.46%55. It should 

be noted that the photovoltaic effect observed in the Shockley junction cells is still under debate, 



15 

 

because of doping contribution while making the contacts and axially inhomogeneous 

distribution of the defects or other surface-related states.  

Undoubtedly, most of the research activities in single nanowire solar cells are focused on 

homojunction or heterojunction solar cells. Generally, there are two device prototypes, axial and 

coaxial, in these sorts of nanowire solar cells. The latter one is also referred as core-shell 

structures. In 2008, the first nanoscale solar cell was demonstrated on coaxial p-i-n silicon 

nanowires, showing an efficiency of 3.4%56. If the single nanowire solar cells are interconnected 

in series or in parallel, a higher power can be extracted and used to drive practical nanodevices 

like PH-sensor and nanowire FET. In contrast, an axial p-i-n junction silicon solar cell was also 

developed but exhibited an efficiency of 0.5%, which indicated that, with the same p-i-n junction, 

the coaxial nanowire outperformed the axial nanowire in terms of charge collection. When 

illuminated by photons, the coaxial prototype structure facilitates the charge generation and 

separation more efficiently than the axial structure, owing to the built-in field formed across the 

p-i-n junction56. A series of work on coaxial structures, such as GaAs and n-GaN/i-InxGa1-xN/p-

GaN57,58, have also been reported. Note that all the above-mentioned nanowires are 

homojunctions, where the lattice mismatch is negligible if both the core and shell are well 

crystallized. However, it would be a great difference in the case of heterojunctions, where the 

interfacial properties should be taken into account. A CuO/C60 core-shell PV device presented 

efficiency as low as less than 0.02%, suggesting that crystallinity of the shell should be 

improved59. Excitingly, a single nanowire solar cell processed from CdS/Cu2S core-shell 

nanowire demonstrated a remarkable efficiency of ~5.4%, which rivals the equivalent planar 

cells60. The superior preference can be attributed to the excellent lattice matching between the 

core and the shell, which greatly reduced the interfacial recombination, and the device 

fabrication technique benefited from the novel materials synthesis approach.           

The third device geometry, to my knowledge, nanowire-thin film homojunction or 

heterojunction solar cells, is barely mentioned in review literatures, offering a new way to 

develop single nanowire solar cells. Bie et.al transferred an n-type ZnO nanowire to a p-type 

GaN thin film to fabricate a UV-photovoltaic device61, demonstrating a high short-circuit  

current density of ~4250 mA/cm2 under a 355 laser illumination with a power density of 

100µWµm-2. However, it may not be suitable to calculate the final efficiency using the junction 

area, because of the large-area thin film compared to nanowire.  
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Table 1.1 PV performances of current single nanowire PV devices  

 

The last type of single nanowire solar cells, hybrid single solar cells, defined as the solar cells 

comprising of both organic and inorganic semiconductors as the active materials, are scarcely 

studied. However, the macroscopic hybrid solar cells comprising of nanowire array have been 

dedicated vast efforts, despite the lower/comparable power conversion efficiency in comparison 

with the organic bilayered/ bulk solar cells. The purpose of this research is mainly centered 

around the insightful understanding of the organic/inorganic interface, in attempt to enhance the 

efficiency of macroscopic hybrid solar cells. Structurally, they also have two kinds of device 

geometries, axial and coaxial. AAO assisted electrochemical deposition have demonstrated an 

efficient way to fabricate inorganic nanowire with axial heterojunction. Single nanowire solar 

cells based on axial CdS/polypyrrole (PPY) nanowires was demonstrated in a two step 

electrochemical technique involving CdS nanowire deposition, molecular absorption, and 

polymerization62. Bridged across two symmetrical gold electrodes, a low efficiency of 0.016% 

under an illumination of 6.05mW/cm2 was achieved, possibly because of the poor interface 

between the amorphous PPY and low quality CdS crystal processed via chemical route. 

ZnO/organic hybrid nanowire solar cells with radial heterojunction were fabricated by grafting 

end functionalized oligo- and polythiophene on ZnO nanowire63. The device fabrication involved 

oxygen plasma etching the polymer, electron beam lithography (EBL) and metallization of 

electrodes. Notably, an efficiency of 0.036% was shown in ZnO/Poly(3-hexylthiophene) core-

shell single nanowire device upon a standard efficiency test condition.   
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Finally, a survey of current single nanowire solar cells is presented in Table 1.1. From the 

table, up to now, the highest efficiency of single nanowire solar cell is 5.4%, which was 

measured on a coaxial nanowire with high quality interface. 

 

1.4.2 Nanowire array solar cells 

1.4.2.1 Light absorption in nanowire array  

Figure 1.5. Schematics of the periodic silicon nanowire structure for simulation, where nanowire array is 
determined by the diameter, d, wire length, L, and the periodicity, P, while the direction of the incoming 
solar radiation is defined by the zenith, θ, and azimuthal angles, φ.  Aadapted with permission from64. 
Copyright (2007) American Chemical Society. 

 
Definitely, the resonance effects observed in single nanowire still function effectively in the 

nanowire array65. However, an array of nanowires, resembling  a natural form of light harvesting 

structures, such as forests, give more prospects to engineer the light absorption through 

manipulating the reflectance and light trapping. In the past decades, enormous efforts, both 

theoretical and experimental, have been dedicated to understand the light-nanowire array 

interaction. Because of the easy accessibility of silicon nanostructure, most of the theoretical 

works were focused on arrays of silicon nanostructure, aiming to gain intuitive guidance in 

designing high-efficiency silicon solar cells. Various approaches were used to simulate the 
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nanowire array illuminated by sun light and the typical mode is depicted in Figure1.5, which was 

first proposed by Chen et al
64. Using transfer matrix method, the effects of wire diameter, length, 

and filling ratio on the absorbtance of nanowire arrays were investigated. The simulation 

indicated that the nanowires, with diameter of 50~80 nm in a fixed periodicity (P=100nm), 

exhibited small reflection in a wide spectrum range, which can significantly improve the light 

absorption of silicon nanowire in the high-frequency regime. Owing to the small extinction 

coefficient of silicon, however, longer nanowires or other light trapping techniques were still 

required to enhance the light absorption in the low-frequency regime. The latter observation, i.e., 

poor light absorption in low-frequency regime, was argued by Li et al, who attributed it to the 

lower periodicity66. They further claimed the periodicity and the ratio of diameter/periodicity, 

(d/P), need to be taken into account in evaluating the light absorption. Furthermore, a periodicity 

of 250~1200nm of silicon nanowire array was projected to obtain comparable light absorption 

with the silicon thin film with the same thickness, while the optimal d/P to maximize light 

absorption is predicted as 0.8. Furthermore, simulation works were conducted on silicon 

nanohole array and nanopillar array. In particular, in contrast to nanorod array, silicon nanohole 

array presented a better absorption over the entire range of the investigated filling fraction, which 

can be ascribed to the effective light coupling and the large density of waveguide modes67. 

 In addition to bare silicon nanowire array, the light absorption property of silicon core-shell 

nanowire arrays was also theoretically calculated. For a radial p-n junction silicon nanowire 

array, rigorous coupled wave analysis indicated that one can gain near unity absorption by a 

square array of 20µm long wire with radii of 200 nm and a filling fraction of 30%68. Using the 

same approach, Shen et al studied the light absorption of the c-Si/a-Si:H core-shell nanowire 

arrays and predicted substantial enhancement in photocurrent by factors of 14% and 345%  per 

volume materials, in comparison to c-Si NW arrays and a-Si films, respectively69. 

The strong geometrical dependence of the light absorption in arrays of semiconductor 

nanowires has been intensively demonstrated by numerous experiments70-73. Normally, given 

other geometrical parameters are fixed, longer nanowires can absorb more photons, because of 

the sufficient optical path length and possibility of induced multiple scattering. On the other hand, 

increasing the length of nanowire will increase the chances of surface recombination. Studies 

have proven that there was a competition between the light absorption enhancement and surface 

recombination, offering the instructive principle in fabrication of nanowire array solar cells74. 
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Many investigations have shown that the diameter of nanowire array is crucial for tuning its 

transmittance and reflectance. A dual diameter germanium nanowire array showed a striking 

absorbance near unity in a wavelength range of 300~900 nm. In this structure, the small diameter 

tips were designed to minimize the reflectance and the large diameter base can facilitate the 

maximal light absorption, further demonstrating the significance of diameters in tuning the 

absorption of the nanowire array75. Very recently, InAs nanowire array has been synthesized by 

chemical beam epitaxy and the absorption of the nanowire was found highly dependent on the 

morphology of the InAs nanowire. The product of the length and fill ratio (Lf), was revealed as a 

critical factor in tuning the absorption. All the observations are consistent with the theoretical 

simulations in the same paper76.   

Compared to uniform diameter nanowires/nanorods array, tapered nanostructure arrays usually 

show a superior absorption70,77-80, which can be explained by the graded refractive index (GRI) 

effects81,82. In this regard, the nanowire array, acting as a buffer layer, intervene the difference in 

refractive indexes between air and the substrates.  

Figure 1.6. Schematics of the reflections of a substrate with (a) a homogeneous and (b) a graded-
refractive-index (GRI) coating. After Ref82. The uniform nanowire array and conical nanowire array can 
be considered as homogeneous and GRI coating, respectively. 
 

In the case of uniform diameters nanowire array, the nanowire array act only as one 

intermediate index layer and the reflection is partly suppressed due to interference of light 

reflected at the air/coating layer and at the coating layer/substrate interfaces (Figure 1.6 (a)). This 

large impendence mismatch effective refractive indexes between air and substrate can be 
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significantly compensated when a conical (i.e., tapered) structure is involved, leading to a 

remarkable reduction in reflectance, as shown in Figure 1.6 (b). In other words, the light 

absorption is greatly enhanced. Interestingly, a very recent light absorption study on InP 

nanowire array revealed that conical nanowire array present a higher absolute light absorption 

but demand a larger volume fraction of materials83. Thus, an intermediate geometry, i.e., 

cylindrical at the top and conical at the base, was proposed to balance the material cost and light 

absorption.    

      In order to standardize the fill ratio and verify the simulations, nanowires arrays are generally 

synthesized in periodic arrangements assisted by e-beam lithography. However, it was believed 

that the periodic structure would show anisotropic angular absorption profile, resulting in some 

so-called dead spots in the solar cells84. In fact, the randomly assembled nanowire array also 

exhibit noticeably increased light absorption, which has brought up the debate about the 

necessity of periodic nanostructure in light trapping85,86. To verify this, Battaglia et al compared 

the efficiencies of two a-Si:H solar cells processed on periodic nanocavity and random 

pyramidal texture substrates, finally clarifying that periodic structures rival random textures87.  

       To further enhance the light absorption in nanowire array, transitional approaches that are 

used in silicon or thin film solar cells can also be implemented. A layer of SiNx or Al2O3, acting 

as antireflective coating, was deposited on a silicon wire array, demonstrating a remarkable 

improvement in light absorption with respect to the bare wire array84. In addition, similar to that 

in single nanowire, the light absorption of nanowire array can also be efficiently enhanced by 

introducing plasmonic structure.    

 

1.4.2.2 Carrier collection in nanowire array 

     The morphologies of nanowire array offer at least two advantages in carrier collection. On 

one hand, because of its single-crystalline nature in most of the cases, it plays as an ideal carrier 

channels that directly connects to the electrodes. In a typical DSSCs or QDSSCs, the 

photoanodes are consisting of wide-bandgap semiconducting nanoparticles and the carrier 

transport in the nanoparticles obeys the trap limited diffusion mechanism, resulting in a slow 

transport velocity and a high chance of recombination88-90. By replacing the nanoparticles with 

ZnO nanowire array in a DSSC, the carrier collection efficiency was found to increase by ~100 

times due to the band conduction transport91. The lateral sizes of nanowire generally fall below 
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the carrier diffusion length, which facilitate the carrier collection by reducing the non-radiative 

recombination and carrier scattering loss92,93, through elimination of the unnecessary lateral 

transport and the resulting recombination loss. Nevertheless, the striking benefit of this 

characteristic is associated with the device configurations, which is circumstantiated in the next 

section. 

 

1.4.2.3 Possible cost reduction   

      In addition to the superiority in light absorption and charge collection, nanowire array also 

holds huge promise in reducing cost of production. First of all, because of the enhanced 

properties, fewer materials are needed to gain the comparable properties65,94.  For instance, just 

from the point view of light absorption, it was predicted that wire array with antireflective 

coating can enable an increase of the efficiency by a factor of 20 but only use 1% of the 

materials required in a traditional wafer based device84. Secondly, the radial carrier collection 

characteristics increases materials defect tolerance94. Moreover, new charge 

generation/separation phenomena only existing in low dimensionality permit the use of 

inexpensive materials in solar cells. Some wide bandgap materials, which used to act as window 

layer or charge transporter, can function as active absorbers, extending the list of available 

materials95,96. Additionally, without relying on any expensive substrates, some nanowire arrays 

with high crystalline quality can be directly grown on glass97-100, stainless steel101, fiber102, and 

alumina foil at a relatively low temperature103. Notably, the nanowire array in some scenarios 

can be fully removed, and the substrates are recyclable104. The nanowire array can aid the cost 

reduction in current solar technology. As mentioned in Section 1.2, nanowire array, solely acting 

as antireflective layer, can compensate the light absorption loss in a thinned c-Si wafer105.  

 

1.4.2.4 Device configuration in nanowire array solar cells 

In this section, we will primarily focus on the development of all-inorganic three-

dimensional PV devices based on the vertically aligned nanowire array. The achievements, 

challenges and prospects of DSSCs, QDSSCs and other electrochemical (PEC) solar cells 

processed from nanowire array, which could be referred in related reviews2,106-108, are not 

covered. Depending on the device configurations, subtopics will be addressed by three different 
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types of PV devices, (i) nanowire array integrated with the substrate, (ii) nanowire array 

embedded in thin film and (iii) core-shell nanowire array.  

 

Photovoltaic Devices Based on Nanowire Array Integrated with the Substrate 

 
Apart from the enhanced light absorption, the integration of a vertically aligned nanowire 

array on the heteroepitaxial-growth substrate could benefit from the single-crystal nature and 

aligned geometry of nanowire array, which facilitates a fast and direct conduction of the 

photogenerated carrier. Recently, the realization of direct heteroepitaxial growth of vertically-

aligned III-V nanowire arrays, such as GaN, InP, GaAs and InAs110-112, on silicon substrate paves 

the way to succeed in integrating the nanowires and the substrate for PV devices fabrication. 

Tang et al. have fabricated p-n heterojunction PV cells by integrating an array of vertically 

aligned Mg-doped GaN nanorods on n-type Si substrate113. Single-crystalline GaN nanorod array 

was found to act effectively as an antireflection coating to reduce the reflection in visible spectral 

region and a window layer to enhance spectral response at the short-wavelength region. The 

device exhibited well-defined rectifying behavior in the dark with low reverse leakage current 

and presented a high open-circuit voltage (Voc) of ∼0.95Vand a short-circuit current density 

(Jsc) of ∼7.6 mA/cm2.  The fill factor (FF) and the conversion efficiency (η) were calculated to 

be ∼0.38 and ∼2.73%, respectively, under AM 1.5G condition.  The conversion efficiency is 

expected to be further improved by optimizing the electrode thickness because only half of the 

light would transmit the top electrodes.  

P-n heterojunction PV devices processed from vertically p-type InAs nanowire array 

grown heteroepitaxially on n-type silicon substrate was also demonstrated, showing a broad 

spectral response from the visible to the infrared region. The energy conversion efficiency of the 

typical device was achieved as 2.5% at 110K, and the open circuit voltage showed temperature-

dependent characteristic114. In addition, direct integration of p-type GaAs  nanowire array on n-

type GaAs substrate as PV device was also reported115. The device performance was highly 

dependent on the morphology and doping profile of the nanowire array, which were influenced 

by the molecular beam epitaxy (MBE) growth temperature. The maximum conversion efficiency 

was determined as 1.65%, and it was anticipated to be further enhanced by manipulating the 

beryllium (Be) doping level. 



23 

 

In general, integration of the III-V semiconductor nanowire array with the Si substrate, 

forming semiconducting heterojunctions, can absorb a different wavelength of the solar 

spectrum116. Significantly, one distinguished feature of this device configuration is that it can 

easily be incorporated into the existing MEMS based on the well-developed silicon technology 

without complicated procedures. However, before being collected by the electrodes, the photo-

excited carrier still travels a long distance. In other words, the recombination in this device 

configuration cannot be substantially suppressed, similar to the planar junction solar cells.   

  

Photovoltaic devices based on nanowire array embedded in thin film 

 
Nanowire arrays embedded in a thin film of the material having a matching energy band give 

rise to an architecture where light absorption and charge carrier separation can be achieved in an 

orthogonal direction. P. D. Yang’s group developed an all-oxide solar cell composed of a 

vertically aligned n-type ZnO nanowire array covered by p-type Cu2O nanoparticles, aiming at 

low-cost, environmentally benign, and stable PV devices117. The device performance was found 

highly dependent on the thickness, morphology and phase of the nanoparticles, which was 

originally determined by the process condition. The charge transport through the Cu2O film 

could be improved by increasing the grain size in the film. More significantly, it was observed 

that introducing an immediate insulating layer (i.e. blocking layer) between the absorber and the 

electrodes directly contacted with the nanowires could greatly improve the overall conversion 

efficiency. With the atomic layer deposition (ALD) of ~10 nm TiO2 between Cu2O and 

transparent electrode, the device showed an efficiency of 0.053%, which is 50 times higher than 

that of the device without the blocking layer. In general, filling the nanowire array by absorbing 

material to contract the nanowire based PV device will result in a shunt pathway. The device 

performance, therefore, will be degraded, especially in the case that the absorber possesses a 

relatively low resistivity. These observations offer a crucial hint for designing and optimizing the 

configurations of PV device processed from nanowires directly assembled on the electrode.   

Single crystalline compound semiconductor nanowire arrays have the potential in 

fabrication of next generation PV devices, but the requirement of the epitaxial match with 

substrate is not cost effective when it comes to practical solar modules. Nonetheless, non-

epitaxial catalytic growth of randomly oriented nanowires by the vapor-liquid-solid (VLS) 

method limits the realization of the novel 3D device structures and the consequent improved 
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performances. Template assisted VLS growth of highly ordered single crystalline compound 

semiconductor nanowires have been proven to be an efficient way to overcome the above 

mentioned limitations118. Specifically, an efficiency of ~ 6% is obtained under AM1.5G 

illumination. To date, this efficiency value is higher than the previously reported values of the 

devices fabricated to utilize the same concepts of orthogonal architecture for light absorption and 

charge carrier separation. Moreover, this efficiency value can, in principle, be further improved 

by optimizing several synthetic and device fabrication processes. This can be achieved by 

increasing the transparency of the top electrode, decreasing the inter-pillar spacing of the CdS 

nanopillar array, coating with antireflection layer and reducing the parasitic resistances of the 

contacts. Additionally, the stable PV devices can be achieved by embedding the semiconductor 

nanopillar array in a layer of polydimethylsiloxane (PDMS). 

In nanowire array embedded in thin film structures, the film quality affects the cell efficiency 

severely and a proper adjustment of conductivity and thickness is rather crucial to achieve novel 

PV devices. The parasitic resistances generated by contact electrodes and the increased 

reflectivity due to contact material may limit the efficiency. Further optimization of these factors 

remains a challenge. However, a PV device based on nanowire array embedded in a thin film has 

the potency for future practical solar cell modules. 

 

 

Photovoltaic Devices Based on Nanowire Array with Core-Shell Structure  

Figure 1.7Schematic of the radial p-n junction, nanowire array solar cell design, which combines two 
advantages of enhanced light absorption by multiple scattering and improved carrier collection by 
suppressing the non-radiative recombination. After reference11. 
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       Unlike the abovementioned device configurations, a device composed of core-shell 

nanowire array is believed to be an optimal nanowire solar structure, by taking full advantage of 

morphologies in terms of light absorption and radial charge collection. Apart from reducing the 

stringent requirement for material purity, this unique structure enables the use of less amount of 

material while maintaining the same/comparable power extraction. Figure 1.7 shows the 

schematics of a core-shell nanowire array with n-type core and p-type shell.      

     Single crystalline silicon nanowire array have emerged as a promising candidate for solar PV 

applications110,111,119,120. The physical model of the device using a vertically aligned Si nanowire 

array with core-shell structure for p-n junction solar cells was first developed in 2005, and the 

corresponding simulated conversion efficiency was 14.5%94.  The first Si nanowire array PV 

device with core-shell structure was demonstrated on stainless steel foil, exhibiting a low 

efficiency of ~0.1%120. The p-n junctions incorporated in the array were formed by depositing a 

thin amorphous n-type silicon layer on the quasi-aligned p-type silicon nanowire array. The 

factors affecting the performance, for instance, the impurities and junction qualities, were 

discussed, which should be taken into account for improving the performance of p-n junction 

nanowire array PV devices. Garnett and Yang reported a low-temperature wafer-scale etching 

and thin film deposition method for fabricating silicon n-p core-shell nanowire array PV 

device121. The core-shell Si array was obtained by a two-step procedure. Large area n-type 

Silicon nanowire array was first obtained by chemically etching the Si substrate, followed by 

chemical vapor deposition of a p-type Si layer. The devices were fabricated after annealing the 

core-shell nanowire array at an elevated temperature. The typical cell had a Voc of 0.29V, a Jsc 

of 4.28 mA/cm2, and a FF of 0.33 for an overall efficiency of 0.46%. The reasons for the 

relatively low efficiency lie in severe interfacial recombination and the higher series resistance, 

which can be overcome by surface passivation and conductance improvement.   

As compared to silicon, III-V semiconductors in solar applications have more advantages 

including broader spectral response, higher absorption coefficient, and higher irradiation 

impedance, which, therefore, could offer more possibilities to achieve higher energy conversion 

efficiency PV devices. GaAs, with a bandgap of 1.45eV, is the III-V semiconductor whose 

absorption is best matched with the solar spectrum. J. Czaban et al. reported the synthesis of 

core-shell GaAs nanowire arrays, and the influence of the doping process on the operating 

characteristic of the devices122. Vertically aligned GaAs nanowires were grown on GaAs(111)B 
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Table 1.2 PV  performances of current nanowire array PV devices  

 

 

substrates by the VLS method in a gas source molecular beam epitaxy (MBE) system. Te and Be 

were used for n and p doping, respectively. Te doping was found to promote radial growth at the 

expense of axial growth. Cell parameters of the GaAs nanowire device exhibited an Isc of 201 

µA, a Voc of 0.2V, and a fill factor of 0.27. The conversion efficiency of the device was 

measured as 0.83% and it degraded with increasing the duration of the Te-doping processes, 

suggesting that the morphologies and dopants distribution impact significantly on the device 

performances.  In addition to the GaAs core-shell nanowire array, a periodic arrangement of InP 

core-shell nanowire array was also investigated as a p-n homojunction solar cell123. The 

arrangement of the dense nanowire, i.e. the directions and locations, was controlled by a catalyst-

free selective-area metalorganic vapor-phase epitaxy method, while Zn and Si were chosen as the 

dopant to form p type core and n type shell. The nanowires are mainly perpendicular to the p-

type InP (111) A substrate and the average internal diameter of the nanowire was 135nm and 

thickness of the shell was 74 nm.  The device exhibited open circuit voltage, short circuit current 

and fill factor levels of 0.43 V,13.72 mA/cm2 and 0.57, respectively, under AM 1.5G 

illumination. The solar power conversion efficiency was calculated as 3.37%, which is higher 

than that of Si core-shell nanowire array possibly because of the uniformity of the array, absence 

of the impurities (catalysts), as well as the differences in the optical absorption coefficient and 

bandgap between InP and Si.  

    Table 1.2 summarizes the device performances of current nanowire array PV devices 

measured under AM 1.5G condition.  Despite tremendous works dedicated to this field,   

nanowire array PV devices have, to date, exhibited poor performance mostly due to the severe 
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surface and interface recombination arising from the large aspect ratio of nanowire array. 

Moreover, poor controllability of morphologies, inefficient device prototype for carrier 

collection and challenging manipulation in the electrical properties further deteriorate the 

expected conversion efficiency improvement. Additionally, the potential quantum effect, 

especially the size quantization property, in this system was not fully exploited because, 

currently, the diameters of the nanowires are far bigger than their corresponding Bohr radii.  

 

1.5 Motivation and overview of this dissertation 

      According to the above review, nanowires hold a great potential to facilitate the deep 

fundamental understanding of photon-electricity conversion process in nanoscale, to improve the 

energy conversion efficiency by enhancing the light absorption and carrier collection, and to 

significantly reduce the cost through expanding the materials choices and relaxing the stringent 

criterion for material quality. In particular, nanowire with core-shell geometry stands out of all 

the device configurations, largely because of the radial carrier collection characteristic. However, 

current studies about core-shell nanowire in solar cells are mostly focused on the p-n/p-i-n 

homojunction constructed by narrow bandgap semiconductors, and most nanowire solar cells 

exhibited an inferior efficiency to their planar counterparts owning to the notorious 

surface/interface recombination. There have been theoretical calculations which predicted that 

large bandgap semiconductors could be actively involved in light absorption and charge 

separation in a form of coaxial nanowire with type-II band alignment95,96. On the other hand, the 

influence of interfacial quality on the properties in core-shell nanowire solar cells has not been 

much studied to date60.    

   In view of these circumstances, this dissertation will be dedicated to address two issues: i) 

experimentally demonstrate new charge separation and absorption profile concept in a type-II 

heterojunction consisting of two wide bandgap semiconductors, and ii) probe the influence of 

interfacial properties on the PV performance of the core-shell nanowire by selecting a lattice 

matching combination. Chapter 2 will present the growth of ZnO nanostructures via different 

approach including CVD, hydrothermal and pulsed laser deposition (PLD). The electrical and 

optical properties will also be discussed. The synthesis and structural analysis of two II-VI wide 

bandgap semiconductor combinations, ZnO/ZnSe and ZnO/ZnS core-shell nanowire array, will 
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be discussed in Chapter 3, together with their optical properties and photovoltaic performance. In 

Chapter 4, the structural analysis of ZnO/CuO core-shell nanowire array will be presented. A 

new method to fabricate single core-shell nanowire device will be also introduced in this chapter. 

The synthesis of ZnTe, CdSe, ZnTe/CdSe, CdSe/ZnTe core-shell nanowire will be presented in 

Chapter 5. A photovoltaic device will be demonstrated based on an individual CdSe/ZnTe core-

shell nanowire. Moreover, a controllable synthesis of CdSe nanowire array on muscovite mica 

will also be introduced in this chapter. In the final chapter (Chapter 6), I will give brief 

concluding remarks of my work and future prospects of nanowire solar cells.  
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Chapter 2   Growth of Zinc Oxide Nanowires 

 

2.1 Background  

                 Zinc oxide, a multiple functional II-VI semiconductor, has a wide range of properties, 

including wide-bandgap semiconductivity, symmetric doping, piezoelectricity, pyroelectricity, 

high-transparency, room-temperature ferromagnetism and surface sensitivity to the environment, 

giving rise to versatile applications in facial powders, ointments, sunscreens, catalysts, lubricant 

additives, paint pigmentations, piezoelectric transducers, light emitting diodes, scintillators, 

spintronics devices, transistors, gas/biosensors, and transparent conducting electrodes, etc1-5. 

Notably, in comparison with GaN, ZnO has a large exciton binding energy (~60meV), higher 

radiation hardness and relatively low cost, which make it interesting as a laser material in the 

optoelectronics industry6-8.          

                 ZnO naturally crystallizes in wurtzite structure, in which a number of alternating planes 

composed of tetrahedrally coordinated O2- and Zn2+ ions, stacked alternately along the c-axis, 

exhibiting spontaneous polarization along the c-axis and divergent surface energy9. The {0001} 

polar surface in ZnO, together with the three fastest growth directions, <0001>,<01-10>, and <2-

1-10>, facilitate the growth of the various ZnO nanostructures10,11. These nanostructures, 

including nanowires, nanobelts, nanorods, nanorings, nanotubes, nanocombs, nanosaw, 

nanobowls and nanotrees, etc., open the opportunity to understand the size and 

morphologyrelated physical phenomena and develop novel nanodevices with superior 

performance5,9,11,12. For instance, nanolaser13,14, nanosensor15,16, nanocantilevers17 and 

nanogenerators18,19 have been demonstrated in ZnO nanowires or nanobelts.  

Due to its high  visible light transparency, ZnO is generally not considered as light absorption 

material in solar cells and is commonly used as the window layer or conducting electrode. 

However, ascribed to the development of nanotechnology, nanostructured ZnO, especially ZnO 

nanowire, plays an important role in light absorption and carrier collections, holding great 

promise for next-generation photovoltaic device fabrication. First, ZnO nanowire array can be 
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used as an efficient antireflective layer because of the light trapping effects in the nanowire array. 

Especially, the light absorption in ZnO nanowire array can be further tailored by adjusting the 

length, density and geometry of the nanowires20. Increased efficiencies have been demonstrated 

in ZnO nanowire array coated CIGS and silicon solar cells21,22. Second, an array of ZnO 

nanowire usually possesses single crystalline nature, which can act as good carrier transport 

channels and therefore significantly enhance the charges collections. So far, there have been a 

number of reports using ZnO nanowire array as photoanodes in DSSCs, QDSCCs and other 

photochemical devices23-26. Moreover, the absorption spectrum of ZnO nanowire can be tuned by 

coupling ZnO with another semiconductor to construct a coaxial nanocable27, 28. Additionally, 

several investigations have demonstrated that doping ZnO nanostructure is an efficient way to 

tailor the light absorption in ZnO nanomaterials29,30. 

     Many methods have been developed to grow ZnO nanostructures, and generally they can be 

classified as gas phase and liquid phase approaches. The former includes CVD, thermal 

evaporation, metalorganic chemical vapor deposition (MOCVD), PLD, and etc. Depending on 

whether the catalyst is involved or not, the gas phase growth of ZnO is either governed by vapor-

liquid-solid (VLS) or vapor-solid (VS) mechanism. Hydrothermal and solvothermal are generally 

recognized as representative liquid phase approaches. Different approach has its own advantages 

and drawbacks. Generally, traditional gas phase routes require economically prohibitive 

temperatures (800 oC~1300 oC) and expensive and/or insulating substrates (for instance, sapphire 

or GaN coated sapphire) for oriented nanowire growth, substantially hindering the commercial 

potential of gas-phase-growth ZnO nanowire array in optoelectronic applications. On the other 

hand, hydrothermal growth of ZnO nanowire array is appealing because of the low growth 

temperature (70oC~95oC), potential to scale-up and no clear substrate preference. However, solar 

cells consisting of hydrothermally grown ZnO nanowire array always suffer from the high series 

resistance originating from the rather low conductivity and the possible surface contamination of 

ZnO nanowires31. Therefore, it is highly desired to obtain high quality ZnO nanowire array on 

transparent conductive substrates.  

        In this chapter, large-area ZnO nanowire arrays synthesized by CVD on ITO substrates 

were demonstrated. For comparison, well-aligned ZnO nanowire arrays were also synthesized on 

sapphire substrates. The electrical properties and optical properties of the ZnO nanowires were 

investigated by measuring the I-V characteristics of a single nanowire and room temperature 
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Figure 2.1 SEM images of ZnO nanowire array on ITO substrate. (a) and (b) low magnification 
SEM image taken by 45 oC tilted view, showing large-area uniform nanowire array vertically aligned 
on ITO substrate. (c) Cross-section view SEM image of ZnO nanowire array with an average length 
of 15 µm.(d) XRD pattern of ZnO nanowire directly grown on ITO. 

photoluminescence spectroscopy. Finally, two interesting morphologies of ZnO nanostructures 

are introduced and discussed. 

 

2.2  ZnO nanowire array grown on ITO by CVD 

 Synthesis   

    The synthesis was carried out in a horizontal tube furnace. Briefly, one piece of zinc foil (Alfa 

Aesar, 0.01 inch thick, 99.9%. metals basis) with an area of ~1 cm ×1 cm was first placed on a 

silicon substrate and then loaded at the center of the quartz tube which was inserted in the 

furnace. An ITO substrate (Delta Technologies, RS=15~25 Ω) was cleaned using a standard 

wafer cleaning procedure and set to a fixed distance (1.0 inch) away from the zinc foil in the 

downstream. Prior to elevating the temperature, the tube was pumped down to 10-3 Torr by a 

rotary pump to eliminate the oxygen residue in the system. An argon flow of 50 SCCM argon 

was then introduced into the tube until the temperature ramped to 420 oC at the rate of 27 oC/min. 
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Subsequently, a mixture of argon and oxygen (5:1) with a total flow of 60 SCCM was used to 

oxidize and transport the zinc vapor to the downstream. The temperature of the furnace was then 

raised to 600 oC and maintained for 30 minutes. The pressure inside the tubes was maintained at 

8 Torr. After cooling to room temperature, the white yellow products on ITO and zinc foil 

residue on silicon substrate were taken out from the tubes for characterization.   

     The morphology and crystal structures of product harvested on ITO substrate were examined 

by SEM and XRD. Large-area vertically- aligned ZnO nanowire array was found to on the ITO 

substrate, as shown in a lower magnification SEM image (Figure 2.1 (a)). A large 45o titled SEM 

image of the nanowire array in Figure 2.1 (b) revealed that the average diameter of nanowires is 

around 150 nm. The lengths of ZnO nanowires were measured to be around 15 µm from the 

cross-section SEM images in Figure 2.1(c). XRD was employed to determine the crystal 

structure of the ZnO nanowire array. One dominant peak and one relatively weak peak, which 

respectively corresponds to (002) and (004) planes of ZnO, were observed, suggesting that the 

ZnO product has strong preferential growth direction along the c-axis. In fact, we have been able 

to obtained well-aligned ZnO nanowire array with an area of 1 inch×1 inch on ITO substrate. For 

comparison, zinc power was also used to grow nanowire array under the same condition. 

However, nanowires were barely observed on the ITO substrate. Hence, we believe that the 

source material, i.e., zinc foil, has a crucial contribution to this uniform, well-aligned and large 

area ZnO nanowire array growth. In the initial stage, zinc foil is heated to a certain temperature, 

which is generally higher than 420 oC, and generates a uniform, high density zinc vapor due to 

the thin and large surface area. This dense vapor is then transferred and condensed on the ITO 

substrate in the near downstream and instantly oxidized, leading to a c-axis oriented ZnO seed 

layer because of the polarity of the wurtzite structure11. The nutrition is then continuously 

supplied by the evaporation of zinc foil, and the oriented ZnO, acting as the seed layer, favors the 

subsequent ZnO nanowire array growth following the VS mechanism. This seed layer can be 

identified from the cross-section SEM image in Figure 2.1(c), which is heighted by the dash line.  
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Figure 2.2 SEM images of ZnO nanowire on zinc foil residue. (a) Low magnification SEM image of 
the nanowires, showing high dense nanowires collected on the residue. (b) and (c) Larger 
magnification SEM images of ZnO nanowires, indicating both aligned and non-aligned nanowire  
were obtained on the reisdu. (d) XRD pattern of ZnO nanowires directly grown on zinc foil. 

We also examined the products on the zinc foil residue on the silicon substrate by SEM and 

XRD. Lower magnification SEM image, as shown in Figure 2.2 (a), revealed that high density 

nanowires were obtained on the residue. At some location, nanowires are well aligned but most 

of them are radially distributed. This observation is consistent with previous work from our 

group32Higher magnification SEM images of the aligned and radially distributed nanowire are 

shown in Figure 2.2 (b) and (c), respectively. This growth process can be understood by the zinc 

foil evaporation and in situ oxidization, where the zinc foil acts as both template and source 

material. Figure 2.2 (d) displays a typical XRD pattern of the ZnO nanowires. The diffraction 

peaks can be indexed to a hexagonal structure of bulk ZnO with cell constants of a = 3.24 and c 

= 5.19. No diffraction peaks from Zn were found in the sample, which suggested that the zinc 

foil was totally oxidized into ZnO.  
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Figure 2.3 Room-temperature photoluminescence spectra of ZnO nanowires obtained on ITO and 
zinc foil residue.   
 

      Room temperature photoluminescence of ZnO nanowire array synthesized from zinc foil and 

nanowire harvested on the ITO substrate was shown in Figure 2.3.  The PL spectrum of the as-

grown sample on the zinc foil residue shows a weak UV emission peaking at ∼389 nm and a 

dominant, broad, visible emission centered at 520 nm. In contrast, a very strong UV emission 

and relatively weak visible emission was observed in the PL spectrum of the ZnO nanowire array 

collected on the ITO substrate. The UV emission is understood as near-band-edge (NBE) 

emission, namely the recombination of free excitons through an exciton-exciton collision process. 

The visible emission, i.e., deep level emission (DLE), is generally attributed to a variety of deep 

level defects, e.g. vacancies and both oxygen and zinc interstitials, despite numerous debates.  

For the ZnO nanowire on the residue, the zinc foil was gradually evaporated and oxidized, 

resulting in a zinc-rich atmosphere around the zinc foil. This oxygen deficiency is exacerbated 

when the introduced oxygen was partially consumed to grow ZnO nanowire array on ITO. The 

observation of a thick layer of ZnO, oxidizing from the residue of zinc foil, underneath ZnO 

nanowire array also confirmed this assumption32.  Therefore, we ascribe the green emission in 
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Figure 2.4 Electrical measurements of ZnO nanowires. The inset SEM images show the 
devices bridging across a pair of Ti/Au electrodes.   
 

the ZnO nanowire mainly to the oxygen vacancies. In the case of the ZnO nanowire array 

obtained on the ITO substrate, the sharp excitonic emission and very weak green emission 

indicates that the ZnO nanowires have a low defect concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The electrical properties of the nanowires were investigated by I-V curve measurement. The 

corresponding devices are shown in Figure 2.4. Both I-V curves show nearly linear behavior, 

suggesting Ohmic contact between the nanowire and the Ti/Au electrode. Both samples have 

resistances on the order of 109 
Ω. The resistivity, ρ, is an important parameter to evaluate the 

electrical properties of materials because it is inversely proportion to the charge carrier 

concentration, n, and to the mobility, µ . Therefore, we have also deduced the resistivity (ρ) of the 

nanowire from the I-V curve by using the formula 

ρ =Rπr
2
/L 

where R is the resistance obtained from I-V curve, r is the radius and L is the length of the 

measured  nanowire, respectively. Both samples exhibit resistivities on the order of 102 Ωcm. It 

is well-known that many factors influence the resistance measurement of a single nanowire 
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device, such as contact resistances, measurement techniques (two probes or four probes), 

crystallinity, structure/morphologies difference and ambient condition. Herein, we used a two-

probe measurement technique and the same electrode materials in the same ambient to obtain the 

resistivity. Without any doping, the general resistivity of ZnO nanowire synthesized by gas 

transport method was reported to range from 10-3 to 105 Ωcm33. Our measurement here indicates 

that ZnO nanowire synthesized on ITO substrate have a rational resistivity for device fabrication.  

Moreover, both nanowires have the same order in resistivity, implying that the high-intensity 

green emission of ZnO nanowires on the residue might originate from the oxygen-deficient layer 

underneath.       

 

2.3  ZnO nanowire array on sapphire substrate by CVD  

     Synthesis 

      The well-aligned ZnO nanowire array on the sapphire substrate was synthesized by CVD in a 

2-inch horizontal tube furnace. In brief, a mixture of equal amounts (by weight) of ZnO powder 

(Alfa Aesar, 99.99%, metal basis) and graphite powder (Alfa Aesar, -100 mesh, 99.9%, metal 

basis) were used as the evaporationsource. The a-plane sapphire substrate was cleaned by a 

piranha solution at 80oC for 30min and rinsed thoroughly with water. A layer of gold (3 nm in 

thickness) was sputtered on the cleaned substrate to initialize the nanowire growth. A crucial 

factor in obtaining a highly oriented ZnO nanowire array is the location of the source material 

and substrate. 0.5 g source materials were loaded in the two ends of the crucible while the 

substrate was loaded in the center of the crucible. Subsequently, the crucible was inserted into 

the quartz tube and placed at the center of the furnace.  Prior to the growth, the tube was pumped 

down to 30m Torr and a gas flow of argon at 50 SCCM was introduced into the tube. The 

temperature was increased to 950 oC at a ramping rate of 30 oC/min and the temperature was held 

at the peak temperature for 30min under a pressure of 200 Torr. SEM, XRD and PL spectroscopy 

were employed to investigate the morphology, structure and optical properties of the as-

synthesized nanowire array. The electrical properties and UV response were studied in a single 

nanowire device.     
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Figure 2.5 (a) 30oC tilted low-magnification SEM images, showing a large area uniform ZnO 
nanowire vertically aligned on the substrate. (b) ~ (d) large magnification SEM images taken by 30oC 
tilted, top view, and the cross-section view.  

   

      Figure 2.5 shows the morphologies of the ZnO nanowire array directly assembled on a-plane 

sapphire substrate. Low magnification SEM images of the nanowire array, as shown in Figure 

2.5(a), indicate the nanowires are perpendicular to the substrate and are varied in length. In fact, 

our observation found that the entire sapphire substrate (1cm×1cm) was covered with nanowire 

array, with the exception of quasi-alignment on the edge of the substrate. The top-view SEM 

images confirmed that most of the nanowires were normal to the substrate. Some titled 

nanowires with thicker diameters were also observed and could be attributed to the defects of the 

recycled substrate. Interestingly, we also observed a continuous ZnO seed layer between the 

sapphire substrate and the nanowires, as shown in the cross-section SEM image (Figure 2.5(d)). 

In most cases, ZnO nanowire arrays synthesized by gas phase routes are directly grown on the 

sapphire substrate without the assistance of the seed layer, owing to the small lattice 

mismatching between sapphire and ZnO13,34. Nonetheless, if the cost of sapphire is admissable, 

the continuous ZnO layer, acting as a buffer, can be used to block/collect the carriers in 

optoelectronics and piezoelectronics. Herein, we also attributed the large area growth and buffer 

layer to our experimental design. In a traditional configuration, the collective substrates are 
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  Figure 2.6 (a) XRD pattern of well-aligned ZnO nanowire on sapphiresubstrate.(b)Photoluminescence 
spectrum of ZnO nanowire array.  

placed in the downstream, favoring the source species transport and condensation at low 

temperature. However, the condensation of the gas vapor prefers to occur at the location with the 

largest temperature gradient, leading to a variation in length, diameter, density and the resulting 

properties of nanowires. In our specific layout, the substrate is kept at the center of the tube, 

ensuring only a negligible temperature gradient along the substrate. The equal amount of source 

materials was located at both ends of the crucible, providing a uniform distribution of gas vapor 

density because of the asymmetric diffusion area. Two kinds of nanowires with different 

morphologies can be identified. The longer and thinner ones show no catalyst on the tip while 

the shorter and thicker ones exhibit catalysts at the tip. This is direct evidence proving that both 

VLS and VS growth mechanism are involved in the nanowire growth. The difference in the 

lengths of the nanowires implies that the growth rate governed by VS is faster than that governed 

by VLS at least during the initial growth period, given the possibility that the longer nanowires 

will block the accesses of ZnO species supplies to the short ones in the following stages.   

     As shown in Figure 2.6 (a), the XRD pattern of the ZnO nanowire array on the sapphire 

substrate exhibits a very sharp (002) diffraction peak at 34.52o and a small (004) one at 72.62o, 

illustrating the texture effect of the anisotropic morphology and the highly preferential 

orientation of the ZnO nanowires along the c -axis (normal to the substrate surface). An 

additional peak can be assigned to the (110) planes of the sapphire substrate. We also examine 

the optical quality of the ZnO nanowire array by PL spectroscopy. Figure 2.6 (b) was shown PL 

spectrum which consists of intense NBE UV emission with a wavelength maximum at 384 nm. 
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 Figure 2.7 Electrical and photoresponse measurements of an individual nanowire. (a) I-V 
characteristics of the ZnO nanowire under dark and UV illuminated. Inset shows the device 
morphology. (b) Time-dependent measurements of photoresponse by switching on and off UV light. 

 

However, because the nanowire array and the epilayer underneath were measured together, the 

contribution of the ZnO epilayer to both the XRD and PL spectrum cannot be ruled out. In this 

regard, we fabricated the single nanowire device and investigate its I-V characteristics and 

photoresponse.   
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      We carried out the I-V characteristics in dark and under UV illumination based on a device 

consisting of a nanowire bridged across two Ti/Au electrodes. Both I-V curves exhibit linear 

behavior, indicating the Ohmic contact between the electrode and nanowires. Comparing to the 

curve in dark, the photocurrent increased by a factor of 50, under a UV density of 8.9 mW/cm2 

and a bias of 1V. Owning to the linearity of the I-V curve, the resistance of the nanowire can be 

roughly estimated as 107 
Ω.  Correspondingly, we also deduced the resistivity of the nanowire on 

the order of 100 Ωcm. Figure 2.7 shows the time-dependant photoresponse measurement by 

monitoring the change of the photocurrent upon switching the UV illumination ON and OFF. 

With a bias of 1 V, it was found that the photocurrent increased/decreased instantly while the UV 

illumination was ON/OFF, respectively. The relatively low resistance and large photocurrent 

gain, together with the fast recover/response rate, implied that the ZnO nanowires array grown 

on sapphire substrate had good electrical and optical properties, which can be mainly attributed 

to the high temperature (950oC) synthesis approach.  
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2.4 Other ZnO nanostructures 

2.4.1 ZnO nanourchins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2.8 SEM images of nanourchins collected underneath zinc foil residue on silicon substrate. (a) 
Lower magnification SEM image shows nanourchins with different diameters. (b)~(c) enlarged SEM 
images of one urchin showing high density nanowire array directly assembled on the surface. (d) A low 
magnification SEM image of hemispheric nanourchin structures, well-aligned nanowire array are 
observed at both outer and inner surface. (e) and (f) Enlarged SEM images of the nanowire arrays on the 
urchin structure.  
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   In the experiment to synthesize the ZnO nanowire array on the ITO substrate, we also checked 

the product underneath the residual zinc foil. Interestingly, some urchin-like structures were 

observed on the silicon substrate. The diameters of these urchin-like structures ranged from tens 

to hundreds of micrometers, as shown in Figure 2.8(a). Enlarged SEM images of the nanourchin 

revealed that high dense nanowires were aligned radially over the entire surface of the 

nanourchin. The nanowires exhibited uniform diameters and lengths of around 100 nm and 4 µm, 

respectively. Figure 2.8 (b) shows several boundaries without nanowires between adjacent 

nanowire arrays. Hemispheric nanourchin structures were also observed in some locations. A 

typical SEM image of such a structure was displayed in Figure 2.8(d), showing that both the 

external and internal surfaces are covered by well-aligned ZnO nanowire array. Higher 

magnification SEM images in Figure 2.8(e) and (f) clearly present that nanowire array were 

directly assembled on a 500nm ZnO layer. By analyzing the morphologies of the nanourchins 

and referring to the ZnO nanobowls and nanocages previously reported by our group35, one 

general mechanism could be concluded. The zinc foil used in our case actually acts as both 

source and protecting cell. Firstly, once the temperature rises to 420 oC, zinc foil curves 

spontaneously to release the strain originating from different oxidization rate between the top 

and bottom surfaces, leading to a dome-like structure. Meanwhile, the bottom layer, now referred 

as internal wall, generates high density zinc vapor, which condenses on the silicon substrate and 

tends to incubate to micrometer sphere for reducing the surface energy. Because of the dome-like 

structure, the environment inside of the dome is more stable and has less oxygen than the outside 

of the dome. Secondly, while the temperature is increased, the surfaces of the micrometer Zn 

spheres are oxidized to ZnO and the cores are sublimed, leaving hollow structure on the silicon 

substrate. In fact, similar Zn/ZnO core-shell and ZnO hollow structures have been reported in 

nanowire and nanotubes by Kong et al
36. It was also demonstrated in their work that the ZnO 

layer was epitaxially grown over zinc core before the zinc completely sublime. This could also 

explain the boundaries formation between adjacent nanowire arrays. Finally, supplied by the 

vapor from inner wall of the dome, highly aligned ZnO nanowire arrays are grown on the well 

crystallized ZnO layer. Overall, we attribute the growth of the unique morphology to the 

undisturbed state offered by the curved Zn foil and the well-crystallized ZnO layer after 

oxidization. However, to optimize the large-amount of nanourchins growth, several influential 

factors, including the partial oxygen pressure, temperature ramping rate, and gas flows, need to 
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   Figure.2.9 Morphology and structure analysis of ultra-wide nanobelts. (a)~(d) SEM images of  ZnO 
nanobelt, showing the length, width and thickness, respectively.(e) TEM image of an individual ZnO 
nanobelt and corresponding SAED.(f) EDS data collected form white frame in (b), confirming no 
catalyst in the knot section of the nanobelts. 

 

be further investigated. Nanourchin structures have demonstrated potential applications in 

lithium-ion battery, supercopacitors37 and solar cells38. However, most of these urchin structures 

were synthesized by solution phase routes39-41. ZnO nanourchin synthesized by CVD in this work 

can be used as a novel 3D nanoarchitecture for nanodevice assembly and integration in the future.  

    

2.4.2 Ultra-wide ZnO nanobelts  

   Ultra wide ZnO nanobelts were also obtained by CVD techniques. The morphology and 

crystalline structure was first examined by SEM and TEM. Figure 2.9 (a) shows a lower 

magnification SEM image of the nanobelts, revealing that the nanobelts have a length of tens of 

micrometers. A higher magnification SEM was shown in Figure 2.9(b) suggesting that all the 

nanobelts were knotted together. The typical nanobelt with a very smooth surface exhibited a 

width of ~5 µm and a thickness of ~150 nm, which was measured by SEM and shown in 
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   Figure 2.10 Electrical and photoresponse measurements of an individual nanobelt.(a) Two times 
electrical measurements. Inset shows the representative SEM image of the device.(b) I-V 
characteristics of the ZnO nanobelts under different irradiances on a logarithmic scale. (c) 
Photocurrent of a single ZnO NW device measured as a function of excitation intensity with +3 V 
applied bias.(d) Time-dependent measurements of photoresponse by switching on  and off UV light 
with different irradiances. 

 

Figure.2.9 (c) and (d). TEM image of a ZnO nanobelt is presented in Figure 2.9(e), as well as the 

corresponding SAED, indicating ZnO nanobelts have a preferential growth direction along [01-

10]. As shown in Figure 2.9 (f), an EDS spectrum was recorded in the knot area of the ZnO 

nanobelts and only Zn and O peaks are identified, confirming no catalyst involved in the 

structure.    

 

     The results of electrical and photoresponse measurements were conducted on an individual 

nanobelt bridging a pair of gold electrodes. The morphology of the device was presented in the 

inset of Figure 2.10 (a). We measured the I-V curves of the device several times in 30 days. The 

reproducibility and linearity of the I-V characteristics indicated that the Ohmic contact nature and 

stability  between the electrodes and nanobelt. In order to investigate the photoresponse of the 
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nanobelt, we measured the I-V characteristics of the nanobelt under different densities of UV 

illumination and the data was plotted in logarithmic as shown in Figure 2.10 (b). Under a UV 

illumination intensity of 3.9 mW/cm2, it was found that the current of the nanobelt increased by 5 

orders in comparison to that in dark. The significant current increase can be explained by the 

absorption and desorption of oxygen molecules on the surface of ZnO nanobelts. Owing to its 

large surface aspect ratio and the resulting high density of dangling bonds, ZnO nanobelt  absorb 

a large number of oxygen molecules, which extract the electrons from the conduct band of ZnO 

and form a depletion layer on the surface. As a consequence, ZnO nanobelt has a relatively lower 

carrier density and mobility. Illumined by photos with energy higher than the bandgap of ZnO, 

electron-hole pairs are generated and the holes will migrate to the surface because of the band 

bending42. The oxygen traps electrons then recombines with the migrated holes, leading to i) 

release of the oxygen molecules, ii) large number of unpaired electrons acting as majority 

carriers. When the UV light is turned off, the oxygen molecules are reabsorbed and the whole 

status is recovered in a short time period. The intensity dependence of the photocurrent measured 

at an applied bias of 3V is shown in Figure 2.10(c). The curve exhibits linearity at low intensity 

illumination and then becomes saturated when increasing the light intensity, which has a similar 

trend with the observation in ZnO nanowire42. The linearity can be easily explained by the fact 

that the carrier generation is proportional to the absorbed photon flux while the deviation from 

the linearity at high density illumination is believed to originate from the definite numbers of 

available hole-traps. The photoresponse rate and recover rate of a ZnO nanobelt, which is 

associated with the defects in the structures, is another indicator of the quality of the crystallinity. 

Therefore, we also studied the rise and decay time upon switching UV light on and off and the 

data is shown in Figure 2.10(d). Upon illumination with UV light, the photocurrent rise instantly 

and then gradually increases until the light is off, which clearly indicates two possible 

mechanisms behind. Delaunay et al assumed that there was a competing contribution of solid-

state process and surface effect to the photocurrent increase43. The instantaneous rise of the 

current is supposed to be originated from the generation of electron-hole pairs and the gradual 

increase is associated with the surface effects. We also observed that the current decayed very 

fast in the beginning and then decreased at a very low rate, leading to a taile-shape curve. 

Considering the Ohmic contact between the electrode and nanobelt, we may rule out the possible 

contribution from the contact issue.  
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2.5 Conclusion 

     In summary, various ZnO nanostructures have been synthesized on different substrates via 

CVD approach and their morphologies, structures, electrical and optical properties have been 

investigated by comprehensive characterizations. Large-area and vertically-aligned ZnO 

nanowire array have been achieved on ITO/sapphire substrates by two different CVD approaches. 

ZnO nanowire array grown on ITO substrates exhibited a good alignment and the resistivity was 

estimated as 102 Ωcm, which was deduced from the I-V characteristics of a single nanowire 

device. In contrast, ZnO nanowire array grown on sapphire substrate at 950 oC have a resistivity 

of ~ 100 Ωcm. Considering the requirement of the solar light harvesting in a practical device, 

vertically aligned ZnO nanowire array synthesized on ITO by CVD at an intermediate 

temperature, have a great potential because it employs a transparent electrode material as the 

substrate while retaining a good optical and electrical properties. Nanourchins and ultra-wide 

nanobelts were obtained and their unique structures enrich the family of ZnO nanomaterials and 

offer the opportunity to design and fabricate novel optoelectronic device by taking advantage of 

the morphologies. 
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Chapter 3 All Inorganic Core-Shell Nanowire Array with Type II 

Heterojunction for 3D Photovoltaic Device Fabrication
∗∗∗∗
 

3.1 Background 

The charge separation of the electron and hole is a key step to generate solar power in a 

photovoltaic device. In a conventional solar cell, it is typically achieved by a planar p-n 

homojunction along the path of the current flow or longitudinally. In nano-architecture PV 

devices, however, the charge separation is often facilitated by a type II or staggered energy 

alignment of a heterojunction, constructed by two materials for which both the valance and 

conduction band of one component lie respectively lower in energy than those of the other 

component. Such heterojunctions have been intensively investigated for solar cell applications, 

including DSSCs1, QDSSCs2,3, nanocrystal-polymer hybrid4, and bilayer nanocrystal films5. To 

improve the carrier transport within the type II scheme, semiconductor nanowires have already 

been used to serve as the electron transporter in the inorganic-organic hybrid approach,6-9 and 

recently a Core-shell all-inorganic nanowire architecture has been proposed to improve the 

carrier transport for both the electron and hole and simultaneously the device stability, using the 

well-known II-VI and III-V binary semiconductors, such as ZnO/ZnSe, ZnO/ZnTe, CdSe/CdTe, 

and GaN/GaP, and GaN/GaAs10,11. Here the type II transverse heterojunction functions similarly 

as a radial p-n junction12,13  but without having to deliberately dope the nanostructure. In addition, 

the type II Core-shell structure may extend the absorption profile to a wavelength longer than 

that defined by the bandgap of any of the components through a relatively weak interface 

transition, as illustrated by the band diagrams of two semiconductors with bandgap Eg1 and Eg2 

in Figure 3.1.(a) 10,11,14. For mesoscopic scale devices15,16, combing two operation mechanisms,

   

_________________________ 

  

∗
 Adapted in part by permission from i) K. Wang et al. Advanced Materials, 2008, 20, 3248. Copyrig2008 Wiley-
VCH Verlag GmbH & Co. KGaA. ii) K.Wang et al. Applied Physics Letters, 2010, 96,123105. Copyright 2010 
American Institute of Physics. Please check Appendix. 
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Figure 3.1 Schematics of (a) Type II band-edge alignment at the heterointerface between two 
semiconductors tends to spatially separate the electron and the holes on different sides of the 
heterointerface. The interfacial emission energy is determined by Eg12. (b) Electronic energy 
levels of selected II-VI and III-V semiconductors showing the materials selection to construct 
type II heterojunction.  
 

p-n junction and type II junction, will allow a greater flexibility in optimizing the cell 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

    

 Figure 3.1.(b) depicts the energy levels of common II-VI and III-VI semiconductors, 

providing several possible materials combinations with Type-II band alignments. Using highly
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lattice-mismatched combinations such as ZnO/ZnSe, and ZnO/ZnS is more challenging in 

synthesis than less mismatched combinations such as CdSe/CdTe,but it offers more electronic 

structure tunability and better material stability. In special, ZnO and ZnS are direct wide-

bandgap semiconductors with bandgaps of 3.37, and 3.60 eV, respectively, and are commonly 

used as efficient antireflection layers and/or carrier-transport media in dye- and quantum dot-

sensitized solar cells17-19.  However, the bandgap of the ZnO/ZnS Core-shell quantum wire has 

been predicted to reach as low as 2.07 eV, corresponding to a Shockley-Queisser efficiency limit 

of up to 23%20.  Furthermore, ZnO and ZnS are environmental friendly, composed of abundant 

and chemically stable elements.  

    Vertically aligned nanowire array with the entire nanowire surface well-exposed, provides an 

ideal platform for further engineering.  In order to fabricate core-shell nanowire structures, most 

of the vapor phase thin film fabrication techniques can be used for shell layer deposition. 

However, some techniques with strong directional particle trajectory, such as evaporation, have a 

severe shadow effect that will result in uneven coating.  PLD is a versatile, effective and scalable 

technique in thin film deposition. During PLD, many experimental parameters including 

wavelength, pulse duration, repetition rate, target-to-substrate distance, substrate temperature, 

background gas and pressure, can be altered, which all influence the thin film growth.  

     In this chapter, we report a success in synthesizing ZnO/ZnSe and ZnO/ZnO core-shell 

nanowires on a large area transparent conducting substrate, using a relatively simple and low-

cost approach of combining CVD and pulsed laser deposition PLD techniques. Their structural 

and optical properties are characterized by applying a set of comprehensive techniques. Although 

there have been many reports for the vertically aligned single-component nanowire array or type 

I Core-shell nanowire array on large substrates21-24, and there is also a report on non-vertically 

aligned GaN/GaP Core-shell nanowires25, there is little effort on the synthesis of the vertically 

aligned type II Core-shell nanowire array, in particular using highly mismatched binaries. The 

success of this effort is a key step toward the demonstration of a new viable nano solar cell 

technology. 
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3.2 ZnO/ZnSe core-shell nanowire array 

3.2.1 Experimental  

Synthesis of ZnO nanowire array:  

     To synthesize large-area ZnO nanowire array, a piece of thin zinc foil was used to generate 

high pressure zinc vapor in a tube furnace. Briefly, the Zn foil and ITO substrate were 

sequentially laid down with a distance of 5 mm in a ceramic boat, which was then transferred to 

the center of a 2-in. diameter quartz tube furnace. The quartz tube was first evacuated to 10 

mTorr, and a 40 SCCM argon was introduced into the tube, which was then heated to 600oC at a 

rate of 30oC/min. When the temperature exceeded 420oC (the melting point of Zn), a 70 SCCM  

air flow was also introduced into the quartz tube. The reaction was kept for 30 min after the 

temperature reached 600oC. By controlling the pumping rate, the pressure was kept at 8 Torr 

throughout the nanowire synthesis. The tube furnace was naturally cooled down to room 

temperature in three hours. A white-yellowish layer was then obtained on the ITO substrate.  

 

Synthesis of ZnO/ZnSe nanowire array 

      The as-synthesized ZnO nanowire array taken as a template was then transferred to PLD 

chamber for ZnSe coating. The neodymium-doped yttrium aluminum garnet (Nd:YAG) laser 

was used to ablate the ZnSe disc target. The laser wavelength, energy density, and pulse 

frequency were 266 nm, 130 mJ/cm2, and 2 Hz, respectively. The distance from the target to the 

TCO substrate with ZnO nanowire array was 5 cm. Before the deposition, the vacuum system 

was first evacuated to 1x 10−3 Torr. After the deposition performed at 400 oC for 20 min, the 

sample was annealed at 500 oC for 1 h. The room-temperature PLD for ZnSe shell coating was 

also performed in the same system at 27 oC for 20min without any further annealing. 

 

Device fabrication  
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To fabricate the device for photo-response measurement, Au interdigital electrodes were first 

defined by e-beam lithography on n-type degenerately doped silicon substrates with 600 nm 

thermal oxide layer. The ZnO/ZnSe core-shell nanowires were scratched from the TCO substrate 

and spread into IPA by ultrasonic. The nanowire solution was dispensed onto silicon substrate by 

spin coating at 200 rpm. By using solution with proper nanowire concentration, we can identify 

individual nanowires lying across two interdigital electrodes. The leads are added to the 

electrodes at locations away from the nanowire/electrode contacts. 

 

Characterization and Measurements 

      A Philips X’Pert-MPD X-ray diffractometer (XRD), a Carl Zeiss 1530 VP field emission 

scanning electron microscope (FESEM), and a FEI Tecnai F20-UT high-resolution transmission 

electron microscope equipped with a nanoprobe energy-disperse x-ray spectroscope (EDS) were 

used to characterize structure, morphologies, and compositions of the nanowires. The 

transmittance measurements were performed on a Gary 5G UV-VIS-NIR Spectrophotometer 

with an integrating sphere (Labsphere DRA-CA-50), and thus the reflection and scattering loss 

were corrected. The nanowires were scraped off the substrates carefully with a blade, dispersed 

in a diluted toluene solution of ethylene-vinyl acetate copolymer (Elvax 150 or EVX, DuPont), 

then pipetted onto a microslide and air-dried. A blank control was also prepared for reference. 

PL measurements were carried out at room temperature by using a setup consisting of a SPEX 

1403 0.85m double-grating spectrometer, cooled RCA C31034 GaAs photomultiplier tube. The 

325 nm line (~5 mW) of a He-Cd laser was used for excitation, 50 µm slits were used. Raman 

measurements were performed on the same setup but a 532 nm laser with ~ 100 mW power was 

used instead, and 300 µm slits were used. The photo-response measurement was performed on a 

general purpose broadband spectroscopy system consisting of a 100 W tungsten lamp, ISA Triax 

Series 320 spectrometer, Stanford Research Systems SR570 current-preamplifier and SR30DSP 

lock-in amplifier. The spectra have been calibrated against a reference Si solar cell with a known 

quantum efficiency curve and for the ratio of the light spot size (~2x4 mm2) to the nanowire 

cross-section (~8 µm length × 110 nm diameter). The sensitivity of the measurement system is ~ 

0.5 pA. 
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Figure 3.2 (a) SEM image of a well-aligned ZnO nanowire array grown on TCO substrate by CVD. 
The average length of the nanowires is about 10 µm and the diameters are about 100 nm. (b) SEM 
image of well-aligned ZnO/ZnSe Core-shell nanowire array prepared by PLD. The insets in (a) and 
(b) are enlarged images of ZnO nanowire and Core-shell nanowire tips, respectively. 
 

3.2.2 Structures analysis of ZnO/ZnSe core-shell nanowire 

      Two step synthetic procedures have been used to fabricate the ZnO/ZnSe core-shell nanowire 

array.  First, a large area (10×20 mm) well aligned ZnO nanowire array, serving as the core for 

further deposition of the ZnSe shell, was synthesized directly on a TCO substrate using CVD. 

The experimental set-up is similar to that of our previous work26. Subsequently, the TCO 

substrate with ZnO nanowire array was transferred into the hot-wall PLD chamber to perform the 

pulsed laser deposition of ZnSe. In order to investigate the influence of deposition temperature 

on the crystallization of the ZnSe shell, a room temperature PLD for ZnSe shell coating was also 

performed. In the PLD process, the thickness of the shell could be controlled by the target-to-

substrate distance, deposition duration, pulse repetition frequency, and laser energy density. 

 

 

 

Figure 3.2(a) shows a typical scanning electron microscopy (SEM) image of an as-synthesized 

ZnO nanowire array, presenting a uniform perpendicular growth of ZnO nanowires on the TCO 

substrate with an average length of 10 µm and diameters of 80 ~120 nm. After the PLD 

deposition and followed annealing, the final nanowires, as shown in Figure 2(b), exhibit 
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Figure 3.3 XRD patterns of ZnO and ZnO/ZnSe nanowire arrays. The inset shows clear 
peak shifting of ZnO/ZnSe to low angle region. 
 

increased wire diameters and rough surfaces, indicating that ZnSe was successfully deposited on 

the ZnO nanowires. The insets in Figure 3.2 (a) and (b) are enlarged images of ZnO nanowire 

and core-shell nanowire tips, respectively.  

 

 

 

 

 

 

 

 

 

         

XRD pattern of ZnO nanowire array and ZnO/ZnSe nanowire array are shown in Figure 3.3. 

The predominant ZnO peak from (002) planes indicates that the ZnO nanowires were grown with 

a c-axis orientation normal to the substrate surface. No characteristic diffraction peak of ZnSe 

was observed in XRD pattern of ZnO/ZnSe nanowire array because of the thin ZnSe layer. By 

comparing the positions of three ZnO peaks (100), (002), and (101) of wurtzite phase, all peaks 

slightly shifted to low angle region after being coated with the ZnSe layer, which suggests that 
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the ZnO lattice was enlarged. The shift might be attributed to the lattice expansion because of the 

ZnSe shell growth, which will be elaborated later.    

      Detailed microstructures of the coated nanowires were further investigated using field 

emission transmission electron microscope (TEM) equipped with an X-ray energy dispersive 

spectroscopy (EDS). Figure 3.4(a) shows a low magnification TEM image of a ZnO/ZnSe core-

shell nanowire with a rough external surface, but a sharp interface between the core and shell. 

The ZnSe shell grows directly in the radial direction from the surface of ZnO nanowire with a 

thickness of 5~8 nm. A high resolution TEM image taken from the interface region between the 

ZnO core and ZnSe shell (specified in rectangular area in Figure 3.4(a)), as shown in Figure 

3.4(b), reveals that ZnO and ZnSe are of wurtzite (WZ) and zinc blende (ZB) crystal structures, 

respectively. At the interface, an epitaxial growth of ZnSe from ZnO core is observed.   The 

interface is smooth and no transitional layer is found in between. The axis of the ZnO nanowire 

is identified to be the WZ c-axis. The epitaxial growth relationship of the WZ ZnO core and ZB 

ZnSe shell has been identified as [0001]ZnO // [001]ZnSe and (21 10)ZnO // (011)ZnSe. Figure 3.4 (c) 

and (d) are the fast Fourier transform (FFT) patterns of  ZnO core and ZnSe shell,  indexed as 

WZ and ZB structure with zone axis of [21 10] and [011], respectively, which also confirms the 

above epitaxial growth relationship.  
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   Figure.3.4 Low magnification TEM micrograph of a ZnO/ZnSe Core-shell nanowire. A 
thin layer of ZnSe was coated on the ZnO nanowire. b) High resolution TEM image of the 
interface of the Core-shell heterostructure, enlarged from the rectangular area in (a), 
showing the epitaxial growth relationship of ZnO wurtzite core and ZnSe zinc blende 
shell. c) and d) Fast Fourier transfer (FFT) patterns of rectangular areas in (b). e) EDS 
nanoprobe line-scan on elements Zn, Se, and O, across the ZnO/ZnSe Core-shell 
nanowire, indicated by a line shown in (a). 
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Figure.3.5 TEM images of room temperature PLD deposited ZnSe shell on ZnO nanowire. (a) Low-
magnification TEM image. (b) High resolution image enlarged from rectangular area in (a). (c) 
Corresponding fast Fourier transformation (FFT) pattern, indicating the ZnSe shell is polycrystalline 
without epitaxial growth.  

 

    Defects were also observed in the interface along the c-axis of ZnO due to the large lattice 

mismatch, 8.8% along the nanowire axis between c=0.521nm for ZnO and a=0.567nm for ZnSe. 

Note that the lattice mismatch along the nanowire axis would be much larger (~ 25%) if ZnO and 

ZnSe were both in the WZ phase. The spatial distributions of the atomic composition across the 

ZnO/ZnSe core-shell nanowire were obtained by a nanoprobe EDS line-scan analysis (marked by 

a line in Figure 3.4(a)), showing the ZnO nanowire was homogeneously coated, as shown in 

Figure 3.4(e). 

       It is also found that epitaxial growth only occurred during high temperature deposition and 
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   Figure 3.6. Transmission spectra of ZnO nanowires and corresponding ZnO/ZnSe core-shell 
nanowires. Two vertical lines indicate the excitonic bandgap of bulk ZnO and ZnSe, respectively.   

 

 

no epitaxial growth was found at room temperature deposition (shown in Figure 3.5), indicating 

the epitaxial growth between ZnO and ZnSe demands favorable thermodynamic as well as 

kinetic conditions.  In the case of deposition performed at room temperature, the initial deposit 

atoms, without gaining enough migrating energy from the system, condense at the very site they 

arrive at the surface of ZnO and then aggregate with the following deposit atoms, forming a thick 

layer of polycrystalline ZnSe. 

3.2.3 Optical properties of ZnO/ZnSe 

     The optical properties of the ZnO/ZnSe core-shell nanowire were investigated by 

transmission, photoluminescence, Raman, and photo-response measurements. Figure 3.6 shows 

the typical transmission spectra of bare ZnO nanowires and ZnO/ZnSe core-shell nanowires. For 

the latter, two excitonic absorption peaks are clearly observed at respective excitonic bandgaps 

(3.31 eV for WZ ZnO and 2.70 eV for ZB ZnSe), indicating good crystallinity of both core and 
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Figure 3.7. (a) Photoluminescence and (b) Raman spectra of ZnO and ZnO/ZnSe nanowire 
arrays, compared with those of a bulk single crystal ZnO. 

 

shell. Similar to the cases of type II core-shell nanocrystals,27,28 and additional absorption is 

found extending below the ZnSe bandgap into near infrared. The component below the ZnSe 

bandgap could arise from spatially indirect or interfacial transition coupling a hole state in the 

ZnSe shell with an electron state in the ZnO core. 
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Figure 3.7(a) shows the PL spectra of ZnO, ZnO/ZnSe core-shell nanowires, compared with the 

spectrum of a high quality bulk c-plane ZnO single crystal purchased from Tokyo Denpa, Ltd. 

The reference sample shows bright emission visible to the naked eyes at the excitation of ~ 5mW 

325 nm laser, with its bandgap excitonic emission at 3.265 eV and a weak defect-related 

emission band at ~2.4 eV of ~ 0.5% of the band edge peak. Despite without any intentional 

surface passivation effort, for the bare ZnO nanowire array, the PL peak (at 3.235 eV) near the 

band edge of ZnO is found to be surprisingly very strong, even exceeding that of the ZnO single 

crystal reference (that shows the strongest band edge emission among the several bulk ZnO 

samples tested) under the nominally same measurement conditions. Additionally, the ZnO 

nanowire array also shows a weak visible emission band (at ~2.49 eV, ~1.5% of the band edge 

peak). On one hand, the high PL intensity indicates the high interior crystal quality of the 

nanowires; on the other hand, two photonic crystal related effects might contribute to the high 

external quantum efficiency: (1) the waveguide effect of the nanowire eliminates the lateral 

propagation27, and (2) a smaller effective dielectric constant of the array, as a result of averaging 

between the ZnO and air, than the bulk ZnO facilitates the escaping of light from the sample. 

However, it is a puzzle that the large surface area of the nanowires, thus the expected large 

number of surface defects, does not seem to cause a detrimental effect on the carrier 

recombination. For the core-shell nanowire array, the band edge emission remains strong but 

shifted to 3.295 eV, although reduced by roughly a factor of 300 from that of the bare ZnO 

nanowire array or ~ 50 from that of the bulk ZnO reference. There could be several possible 

reasons for the reduction: (1) the charge separation between the core and shell (namely the hole 

relaxes into the shell but the electron remains in the core), (2) non-radiative recombination at the 

possible defect sites of the core-shell interface, and (3) the absorption of the shell to the 

excitation and emission photons. Although the ZnSe shell is relatively thin and the absorption of 

a single path is relatively small (~5% per 10 nm), the multiple scattering in the nanowire array 

could significantly increase the absorption. Further investigation on the carrier dynamics 

associated with the core-shell interface and growth optimization are definitely needed, but we 

could at least conclude that the interface defects are not as detrimental as one might expect for 

such highly mismatched heterostructure. No clearly identifiable emission is found from the shell, 

which is understandable giving the fact that the bandgap energy of the ZnSe shell overlaps with 

that of the defect band of the ZnO, thus, the ZnSe emission, if any, will be obscured, and also the 
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Figure 3.8. Photo-conductivity spectra for a single ZnO/ZnSe nanowire measured under 
different biases and at different days. The inset shows the SEM picture of the single-
nanowire device for photo-response measurements. 

ZnSe shell is relatively thin. However, for the core-shell nanowire array, a Raman peak of ZnSe 

LO phonon at 248 cm-1, as shown in Figure 3.7(b), is observed in addition to the Raman features 

of ZnO (e.g., E2
 mode at 438 cm-1), indicating the ZnSe shell is of crystalline or polycrystalline 

phase. 

 

3.2.4  Photoresponse  

      Photo-response measurements were performed on a very preliminary device: a single core-

shell nanowire sitting on two Au electrodes at the two ends. Since the contacts are symmetric, 

the device is not expected to function as a single nanowire solar cell13, and a bias is needed to 

generate the photo-current. Figure 3.8 shows the photo-response spectra under positive and 
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negative bias (switching the polarity of the bias voltage). A standard procedure for solar cell 

quantum efficiency measurement was followed, but with a bias, thus, the result should be 

considered as photo-conductivity gain. Despite the photo-current being rather small (a few pA 

maximum), and the gain being significantly smaller than what has been reported previously for 

pure ZnO nanowires with more robust contacts29, the result is repeatable, stable, and perhaps 

more significantly the response shows an extension to the wavelength region below that of ZnO 

bandgap. The existence of the photo-conductivity in the ZnSe spectral region indicates that the 

carriers are not fully depleted by either defects at the ZnO/ZnSe interface or the ZnSe surface, 

despite the ZnSe shell being fairly thin.   

 

 

3.3  ZnO/ZnS core-shell nanowire array  

3.3.1 Experimental 

Synthesis of ZnO/ZnS core-shell nanowire 

Briefly, vertically aligned ZnO nanowire arrays were grown on an ITO substrate at 600°C. A 

continuous ZnO seed layer formed before the actual growth of the nanowire, because of heating 

the zinc foil during the initial chemical vapor deposition process. This layer is in fact necessary 

for the PV device serving as a hole blocking layer. The nanowire array then served as a template 

for further ZnS coating by PLD. To facilitate possible epitaxial growth, the PLD was performed 

at 500oC, which is a higher temperature than that used for synthesizing the ZnO/ZnSe core-shell 

structure last section. The ZnO seed layer also prevents the ZnS coating from contacting the ITO 

electrode. 

 

Characterization  

A Philips X’Pert-MPD X-ray diffractometer (XRD), a Carl Zeiss 1530 VP field-emission 

scanning electron microscope (SEM), and a FEI Tecnai F20-UT high-resolution transmission 

electron microscope (FETEM) equipped with a nanoprobe energy-dispersive X-ray spectroscope 

(EDS) were used to characterize structure, morphologies, and compositions of the nanowires. 

Photoluminescence (PL) measurements were carried out at room temperature using a setup 
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Figure 3.9 (a) Low-magnification SEM image of a well-aligned ZnO nanowire array grown on TCO 
substrate by chemical vapor deposition. The average length of the nanowires is about 7 µm and the 
diameters are about 50~120 nm. (b) and (c) Magnified SEM images of bare ZnO and ZnO/ZnS Core-
shell nanowire arrays, respectively. (d) XRD patterns of ZnO and ZnO/ZnS nanowire arrays.  

 

consisting of a SPEX 1403 0.85-m double-grating spectrometer, cooled RCA C31034 GaAs 

photomultiplier tube. The 325-nm line (~5 mW) of a He-Cd laser was used for excitation, and 

100-µm slits were used. For Raman measurements, the slit width was increased to 400 µm. 

 

3.3.2 Structures analysis of ZnO/ZnS core-shell nanowire 
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Figure 3.9(a) shows a typical low-magnification SEM image of an as-synthesized ZnO 

nanowire array, revealing perpendicular growth of ZnO nanowires on the ITO glass with an 

average length of ~7 µm and diameters in the range of 50~120 nm. Higher-magnification SEM 

images before and after the pulsed-laser deposition of ZnS are presented in Figures. 3.9(b) and 

(c), respectively. Compared to the bare ZnO nanowire, we found a noticeable increase in the 

diameter and rough surface for the ZnO/ZnS nanowires, which implies that ZnS is successfully 

deposited over the ZnO nanowire. XRD patterns of the bare and shelled ZnO nanowire array are 

shown in Figure 3.9(d). Only the strong hexagonal ZnO (0002) diffractive peak was observed in 

XRD patterns for the bare ZnO nanowire array, indicating strong preferred orientation along the 

c axis of wurtzite (WZ) ZnO. For the XRD pattern of the ZnO/ZnS nanowire array, the intensity 

of the (0002) peak from ZnO increases significantly because the PLD was performed at the 

relatively high temperature of 500°C; thus, the crystalline quality of the ZnO core was improved 

as a result of an annealing effect. No additional diffraction peak was observed in the pattern of 

ZnO/ZnS nanowires, perhaps because the ZnS layer is fairly thin. However, a slight position 

shift of the ZnO peak to a lower angle was observed for the ZnO/ZnS core-shell structure, which 

may indicate the presence of lattice distortion. 

   Figure 3.10(a) shows a typical low-magnification TEM image of a ZnO/ZnS core-shell 

nanowire. The sharp interface between the core and shell clearly shows that the ZnO nanowire is 

fully sheathed by a ZnS layer along the entire length. The ZnS layer is ∼12 nm thick and has a 

rough surface. Figure 3.10(b) is a high-resolution TEM image of the rectangular area b in Figure 

3.10(a) that shows the detailed interface structure between the ZnO core and ZnS shell. Although 

lattice distortion (in ZnO) and stacking faults (in ZnS) can be observed along the interface, both 

the core and shell exhibit lattice fringes and can be further identified as WZ and zinc-blende (ZB) 

structures, respectively, thus indicating that the ZnS shell layer was successfully grown over the 

ZnO core. To achieve more precise information about the growth relationship, the magnified 

HRTEM image of the core and shell taken from rectangles c and d in Figure 3.10(a) and their 

corresponding fast Fourier transform (FFT) patterns are shown in Figures. 3.10(c) and (d). The 

marked inter-planar d spacings of 0.31 and 0.52 nm correspond, respectively, to the (
__

111 ) lattice 

plane of ZB ZnS with the [011] zone axis and the (0001) lattice plane of WZ ZnO with the 

[2
__

11 0] zone axis. Thus, the core and shell are determined as epitaxial growth with the growth  
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 Figure 3.10 Structural characterization of ZnO/ZnS Core-shell nanowire array. (a) Low-
magnification TEM micrograph of a ZnO/ZnS Core-shell nanowire, showing a thin layer of 
ZnS coated on the ZnO nanowire. (b) High-resolution TEM image of the interface of the 
Core-shell heterostructure, enlarged from the rectangular area in (a), showing the epitaxial 
growth relationship of ZnO wurtzite core and ZnS zinc-blende shell. (c) and (d) Atomic 
resolution images of the core and shell areas taken from the rectangular areas in (a), 
respectively. The insets in (c) and (d) represent the corresponding fast Fourier transfer 
patterns. (e) EDS nanoprobe line-scan across the Core-shell interface. 
 

 

relationship of [0001]ZnO//[
__

111 ]ZnS and [01
_

10]ZnO//[21
_

1]ZnS, in contrast to that for the previously 

studied ZnO/ZnSe system, where [0001]ZnO//[001]ZnSe was observed17. As shown in Figure. 
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3.10(e), EDS data scanned along the line labeled as “e” in Figure 3(a) reveal the spatial 

distribution of Zn, O, and S across the core-shell interface, further confirming that the ZnS was 

deposited homogeneously over the ZnO and formed the core-shell structure.  

The epitaxial growth of WZ ZnS and ZnO has been reported in many nanoheterostructures in 

the planar form even though a large mismatch (~20%) exists31-33. In our case, though the lattice 

mismatch between the WZ ZnO and ZB ZnS is still fairly large (~19%), it appears that various 

factors, including perhaps the geometry of the “substrate” (the ZnO nanowire), size of the core, 

growth temperature, and non-thermal equilibrium condition, play roles in successfully growing 

such a epitaxial core-shell heterostructure that is unlikely to be feasible in the planar form. 

However, due to the large lattice mismatch, the structure defects, such as stacking faults and 

lattice distortion as shown in Figure 3.10 (b), inevitably exist in order to release strain energy 

when the shell layer grows thicker. Furthermore, the formation of the rough external surface of 

ZnS shell could be understood as a transition from the initial cylindrical growth to the island 

growth in core-shell nanowire system34.  

 

3.3.3 Optical properties of ZnO/ZnS 

The optical properties of the ZnO/ZnS core-shell nanowire were investigated by PL 

spectrum and resonant Raman scattering. Figure 3.11 shows the PL spectra of ZnO and ZnO/ZnS 

nanowire arrays measured at room temperature. The PL spectrum of the bare ZnO nanowire 

array consists of two emission peaks at 3.228 and 2.450 eV. Although close to the bandgap, the 

higher energy peak is still likely defect- or impurity-related, because for high-quality bulk ZnO, 

the room-temperature emission peak has been found at somewhat higher energy, for instance, 

3.265 eV.30 The lower energy peak is obviously non-intrinsic and is often believed to be 

associated with oxygen-vacancy 35or surface-related states36, although the exact origin of this 

transition remains unclear. Compared with the bare ZnO nanowire array, the peak position of the 

UV emission in ZnO/ZnS sample shows a small blue shift, and the intensity is reduced by a 

factor of 63. The intensity of the visible peak is also reduced, but to a much lesser extent (by 

~30%). Qualitatively, the effect of a ZnS coating is similar to that of a ZnSe coating reported 

previously30. It was recently reported that a ZnS coating over ZnO nanotubes or nanorods 

enhanced UV emission 37,38 , which appears to agree with conventional wisdom that the coating 
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Figure 3.11 Room-temperature photoluminescence spectra of ZnO and ZnO/ZnS Core-shell 
nanowire arrays. Inset shows the resonant Raman features of ZnS shell. 

 

 

of a large-bandgap material diminishes the loss through surface recombination and the UV 

emission is from the bulk part of ZnO. However, this understanding is not expected to hold true 

for the type II combination such as ZnO/ZnS, even though ZnS has a larger bandgap. In principle, 

one should expect that the charge-separation effect should quench, instead of enhance, the PL 

signal, because the type II core-shell structure should result in depleting the holes in the ZnO 

core. However, if this mechanism were indeed responsible for the observed quenching of the UV 

emission in our core-shell structure we should have seen the quenching of both UV and visible 

emission in a similar degree, which should also hold true if the coating introduces nonradiative 

defect centers at the heterojunction interface. That the reduction is relatively small for the visible 

peak and much more significant for the UV peak may suggest that the visible emission could be 

from the volume of the ZnO nanowire, whereas the UV emission could be surface related and 

thus more sensitive to the coating that has modified the electronic structure of the bare ZnO 

nanowire surface, either by introducing nonradiative centers or inducing the transfer of holes to 

the ZnS shell from the surface bound excitons. 

Resonant Raman features with up to fifth-order longitudinal optical (LO) phonons were 

observed in the same PL measurement in the ZnO/ZnS nanowire array. The spectrum is included 
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   Figure 3.12. Schematic diagram showing the strategy to develop a PV device using a type II core-
shell nanowire array. An array of ZnO/ZnS nanowires, vertically aligned on an ITO glass substrate, 
serves as the active layer and the transport medium. A gold layer is sputtered on the tips of the 
nanowire array, contacting the ZnS shell, as the top electrode and the cell is illuminated from the 
bottom.  

 

in Figure 3.11. Following the observation of the resonant Raman features in bulk ZnS crystal,39 

such features have also been reported for ZnS hollow microspheres.40 The observation of the 

multiple orders of resonant Raman features may indicate the good crystalline quality of the 

material. The LO phonon energy is 347 cm-1, which is close to the room-temperature value 

recently reported in the literature (348 cm-1) 40.  

 

3.3.4 Photovoltaic performance of ZnO/ZnS nanowire array 

The architecture of the type II PV device, schematically shown in Figure 3.12(a), employs 

the ZnO/ZnS core-shell nanowire array as the active layer and carrier transport medium, using 

ITO and gold as the anode and cathode, respectively. The cell is illuminated from the 

bottom.Figure3.12 (b) illustrates the key steps of photo-carrier generation, charge separation, and 

transportation. Ideally, once the incident photon with energy greater than the bandgap of the type 

II herterojunction is absorbed, the photoexcited electron-hole pair will be generated and 
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Figure.3.13 (a) Top-view of the nanowire array embedded in photoresist after etching. (b)Cross-
section of photovoltaic device based on a ZnO/ZnS core-shell nanowire array. 

immediately separated into the ZnO core and ZnS shell due to the quasi-electric field near the 

interface. The ZnO nanowire cores and ZnS shells then serve as the transport channels to deliver 

the carriers to the counter electrodes.  

PV devices were fabricated using a cover-etch-deposit approach, similar to the process for 

fabricating the p-GaN/n-Si nanowire array PV device41. The air space of the ZnO/ZnS nanowire 

array was first filled with photoresist (Shipley 1813) by spin coating, followed by several-second 

acetone etching to expose the tips of the nanowires. For fabricating electrodes, a gold layer 50 

nm thick was sputtered onto the exposed nanowire tips to form the top electrode (Figure 3.13(a)), 

and the bottom (ITO) electrode was exposed by removing the ZnO nanowire near the edge of the 

substrate via diluted hydrochloride (10%). Finally, the photoresist was removed by dipping in 

acetone for several seconds. To maintain the same active area, the top gold electrodes of the 

devices were sputtered using the same mask. The cross-section of the final device was shown in 

Figure 3.13(b). 

 

The solar cell performance was tested using a home-made solar cell testing station, at 25oC 

and under the illumination of a Xe lamp. The light intensity corresponding to 1 sun AM1.5G 

illumination was calibrated using a Si photodiode. The I-V curves were measured using a 

Keithley 238 current source measurement unit. The time-dependent photocurrent was first 

measured without external bias, as shown in Figure 3.14(a).  
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Figure 3.14 (a) Time-dependent photocurrent of bare ZnO and ZnO/ZnS core-shell 
nanowire arrays without external bias. (b) Current (I) vs voltage (V) for the solar cell in the 
dark and under simulated AM1.5G illumination with intensity of 1000 W/m2, showing the 
PV effect.  
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The photocurrent responded (rise/decay) instantly as the incident light was turned on/off. 

Although the photocurrent increase was also observed in the device composed of a bare ZnO 

nanowire array, the signal was about 30 times weaker for the same device size that was 

determined by the contacted area. Moreover, the photoresponse observed in the ZnO device was 

slower than that in the ZnO/ZnS device, which may be attributed mainly to a heating effect or 

surface-related absorbates (O2
-)42. The enhanced photocurrent and faster response observed in 

ZnO/ZnS, despite of the quenching of the UV emission, could indicate the realization of the key 

feature of the type II heterostructure – the charge separation, although we cannot exclude other 

possibilities (such as the ZnS/Au contact is different from ZnO/Au). However, because of the 

large thickness of the nanowire layer, the light absorption occurs mostly in the bulk part of the 

ZnO nanowire core, the core-shell interface has to serve the function of separating the electrons 

and holes. 

Figure 3.14(b) shows the current-voltage (I-V) curve of the device under an illumination 

of 1,000 W/m2
. The open-circuit voltage Voc is 0.09 V, with a fill factor FF of 0.28. The energy 

efficiency could not be given because of the uncertainty of the actual device area. The primary 

reason is that a significant number of nanowires might not actually be connected to the 

electrodes, because of two factors: i) some ZnO nanowires might break off from the seed layer 

during the device fabrication process; ii) the ZnO nanowires vary slightly in length, resulting in 

that some of them remained covered by photoresist after chemical etching before top electrode 

deposition. Therefore, the current density was inaccurate if simply using the area defined by the 

electrode. However, the open circuit voltage Voc should not be affected by the area. Although 

the device performance is far from satisfactory, this prototype device demonstrated the feasibility 

of fabricating a core-shell nanowire solar cell based on the type II heterostructure and a whole 

array of such devices. Several possible reasons exist for the low performance, including: (1) 

defect formation at the heterostructure interface, (2) quality of the shell material, and (3) quality 

of the top contact (between the ZnS shell and cathode). We note that because of the relatively 

large core nanowire size and the large bandgaps for both materials, this particular device cannot 

be expected to deliver a high energy efficiency, even in the ideal situation. The large core size 

means no bandgap tuning expected in the true quantum region where the bandgap of the new 

structure could be significantly smaller than those of the two components. Also, the large core 

size means more recombination loss in the bulk part of ZnO nanowire, before the carrier can 
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reach the interface. Furthermore, the crystalline quality of the shell depends on the core size and 

curvature, and in general a small core size leads to a stable shell growth. Further investigation 

will address these issues and will explore other material combinations that form type II 

heterojunctions, but with less lattice mismatch and smaller bandgaps. 

 

3.4 Conclusion 

 In summary, large area well aligned air-stable ZnO/ZnSe and ZnO/ZnS core-shell 

nanowire array was fabricated directly on TCO substrate by combining CVD and PLD 

techniques and their structures and optical properties were investigated in detail.  For ZnO/ZnSe 

core-shell nanowire array, SEM and TEM studies revealed that the ZnO nanowire were 

uniformly and perpendicularly grown on the TCO substrate and the ZnSe shell with a thickness 

of 5-8 nm were epitaxially grown on the ZnO nanowires core. Absorption and photo-

conductivity studies show an extension of photo-response into the region well below ZnO 

bandgap. Such a core-shell nanowire array represents a novel architecture that could lead to a 

stable and efficient as well as low-cost solar cell technology for solar energy harvesting. In fact, 

our successful synthesis of directly grown ZnO/ZnSe core-shell nanowire array on TCO, 

implying the potential Type-II heterojunction PV devices, has inspired a series of research 

activities on ZnO/ZnSe nanowires system43-48. Noticeably, recent studies further revealed the 

threshold of the photo-response is found to be at around 1.6 eV, which corresponds to an 

efficiency limit of 29% under one-sun,and a large open circuit voltage of 0.7 V47.  

 For ZnO/ZnS core-shell nanowire array, HRTEM study revealed another unusual epitaxial 

relationship of the heterostructure of two crystalline phases, ZnO-(0001)/ZnS-(111), which 

shows very intriguing growth phenomena for the future study in nanoheterostructure growth. A 

type II heterojunction-based PV device using a ZnO/ZnS nanowire array as the active material 

was fabricated. Although the device performance is far from satisfactory at current stage of 

development, the PV device demonstrated here would expand the opportunities for designing 

and optimizing nanoscale PV and other optoelectronic devices beyond the conventional p-n 

junction approach.  
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Chapter 4  ZnO/CuO  Core-Shell Nanowires 
 

  4.1 Background 

        High cost of the materials hinders the popularity of the solar energy. Along with improving 

the energy conversion efficiency of solar cells, numerous works have been devoted to reducing 

the cost by considering the expense of materials in terms of synthesis, manufacturing, and 

processing. Through the thin-film processing technologies, second generation solar cells 

significantly reduce the cost but exhibit a relatively low efficiency. In addition, they also rely on 

some less abundant elements, such as indium and gallium, and toxic element like cadmium1,2. 

DSSCs, using low-cost organic dyes and titanium dioxide (TiO2) nanoparticles in place of 

expensive semiconductors to absorb sunlight, leave an open question about the stability because 

of the problems arising from the liquid electrolytes3,4. Organic solar cells also suffer from the 

low efficiency and relatively short lifetime5. Generally, from materials selection point of view, 

several rules need be followed in searching for solar cell materials. First, elements involved 

should be abundant in earth’s crust and economically affordable. Second, the materials should be 

environmentally friendly, i.e., green, to impose no potential hazard/contamination to human body 

and environment. Third, the materials should be chemical stable and especially inert to oxygen in 

pursuit of a longer operating lifetime. In light of these requirements, all-oxide semiconductors 

hold great promise to harvest solar light at affordable price, while maintaining acceptable energy 

conversion efficiency6.  

      ZnO is an intrinsic n-type semiconductor because of the presence of oxygen vacancies and 

zinc interstitials. As we mentioned in Chapter 2, the band gap of ZnO is too large for visible light 

absorption, and therefore it is mainly used as widow layer or transparent conductive oxide in 

current solar industry. In the past decades, several concepts have been proposed to engineer the 

band gap of ZnO, in attempt to extend its absorption profile to visible light. One strategy to use 

ZnO in solar cells is coupling it with other narrow band gap semiconductors that act as light 

absorbing materials. CuO, another important semiconductor metal oxide, is a kind of intrinsic p-
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type semiconductor with a narrow band gap (1.2~1.9 eV), which is close to the ideal energy gap 

of 1.4 eV for solar cells and allows for good solar spectral absorption. To date, several literatures 

about ZnO/CuO nanostructures for solar energy harvesting have been reported6-9. In this chapter, 

ZnO/CuO core-shell nanowires were fabricated by using a relatively simple and low-cost 

approach that combines CVD and PVD techniques, and the structures were characterized by 

electron microscopes. 

    To fabricate a single core-shell nanowire solar cell, two asymmetric electrodes are required to 

contact the core and shell respectively. A common approach is to chemically etch the shell at one 

end of an as-synthesized core-shell nanowire, where the area is defined by lithography 

techniques. However, the etching process is very sensitive to the etching time, etchant and 

involved several-time e-beam lithography, making it time-consuming and vulnerable to 

contamination from the etchant10. Therefore, another motivation of this work is to develop a new 

approach, from synthesis point of view, to fabricate core-shell nanowires where the cores are 

partly exposed. One part of the structure is consisting of a core-shell nanowire while the other 

part consisting of a single-component nanowire. To simplify, this structure is referred as 

asymmetric core-shell nanowire in the following contexts in this dissertation.  

  

4.2 Experimental 

Synthesis of ZnO oxide nanowire array on sapphire substrate 

     The details for synthesizing well-aligned ZnO nanowire array on a-plane sapphire substrate 

were described in Section 2.3 in Chapter 2.  

Fabrication of ZnO/CuO core-shell nanowire array on sapphire substrate 

     Two geometries of ZnO/CuO core-shell nanowires were fabricated. One is ZnO/CuO core-

shell nanowire and the other one is asymmetric ZnO/CuO core-shell nanowire. In realization of 

the first geometry, ZnO nanowire array grown on sapphire substrate was loaded in PVD chamber 

to conduct CuO sputtering. The thickness of the coating can be read from the thickness monitor. 

To fabricate core-exposed ZnO/CuO core-shell nanowire, a detailed process will be described 

later.   
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Device fabrication 

   The as-synthesized nanowires were removed from the sapphire substrate and ultrasonically 

dispersed in alcohol. For device fabrication, several drops of nanowire-alcohol solution were 

then deposited onto Si/SiO2 (600nm) substrates with photolithographically defined electrodes. 

Two layer of PMMA was spin-coated on the substrate and baked at 100oC for 90s. The substrate 

was then transferred to SEM for e-beam lithography. After development and metallization, lift-

off process was conducted in acetone. The final devices were completed by connecting the lead 

to the pads defined by photolithography.  

 

   Characterization 

        The as-synthesized nanowires were first characterized by a Carl Zeiss 1530 VP FESEM and a 

JEOL 2010 conventional TEM. The initial composition analyses were conducted by the EDS 

equipped on the FESEM and TEM. Detailed structural characterization was achieved by high-

angle annual dark-field (HAADF) scanning TEM (STEM) by a JEM-2100 F field emission TEM 

with CEOS Cs-corrector and the HAADF detection angle was 73-194 mrad. The basic I-V 

characteristics of these devices were measured by Keithley 2400 source meter. 

 

4.3 Results and discussion  

4.3.1    ZnO/CuO core-shell nanowire 

         SEM images of ZnO/CuO core-shell nanowire array are shown in Figure 4.1(a)~(c). After 

CuO sputtering, the nanowire array still remained vertically aligned, although a few nanowires 

adhere together. Most of the nanowires exhibited a larger diameter in top section than that of the 

bottom section, because the nanowires had an average length of 5~µm and prevented the CuO 

species from diffusion to the bottom of ZnO nanowire array. From the high magnification SEM 

image taken from the tips of the nanowires in Figure 4.1(c), we can observe the diameter 

evolution. XRD pattern of ZnO/CuO core-shell nanowire array was shown in Figure 4.1(d). Two 

high intensity peaks were ascribed to (002) planes of ZnO and (110) planes of Al2O3, 
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    Figure 4.1  (a) Titled view magnification SEM images of ZnO/CuO core-shell nanowire 
array on sapphire substrate.  (b) and (c) are the cross-section view SEM images of ZnO/CuO 
core-shell  nanowire array and its corresponding higher magnification of the tips,respectively.  
(d) XRD pattern of ZnO/CuO core-shell nanowire array on sapphire substrate.  

 

respectively. Surprisingly, no peak corresponding to CuO was indentified, possibly owing to the 

small volume ratio of CuO with respect to ZnO in this core-shell system. 

 

 

      Figure 4.2 (a) shows a low magnification TEM image of ZnO/CuO core-shell nanowire, 

which exhibited obvious core-shell geometry. A layer of CuO with the thickness of 40 nm was 

directly deposited over the ZnO nanowire, as shown in Figure 4.2 (b) and (c), despite slightly 

thicker coating in the tip. Some Moiré fringes can be easily observed in the shell layer, indicating 

that the CuO shell was crystallized in polycrystalline form. HRTEM image was recorded along 

the interface and shown in Figure 4.2(d). ZnO core was revealed to be grown along c-axis.  
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    Figure 4.2 TEM analysis of ZnO/CuO core-shell nanowire. (a) Lower magnification TEM 
images of ZnO/CuO nanowire, showing the evident interface; (b) and (c) are the higher 
magnification TEM images of  ZnO/CuO nanowire, respectively; (d) HRTEM of the 
interface; (e) STEM analysis of the element distribution of the interface. HRTEM image was 
recorded from the interface between the core and shell.  

 

Nanoprobe EDS line scanning was conducted along the dot array in Figure 4.2(e), further 

confirming the core-shell geometry.   

 

 

 

 

4.3.2    ZnO/CuO asymmetric core-shell nanowire 

    The schematic for fabricating asymmetric ZnO/CuO core-shell nanowire is depicted in Figure 

4.3, as well as the corresponding SEM images during the procedure. A layer of PMMA was spin 

coated on the nanowire array. Note that PMMA need to be diluted by acetone to facilitate the 

filling speed. Note that a well aligned ZnO nanowire array is highly desired to facilitate the 

photoresist filling and CuO coating. 
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    Figure 4.3 The upper row shows schematics of the procedure to fabricate half-exposed nanowire. 
    (a)~(c) SEM images of nanowire array before coating PMMA, after coating PMMA and with part 

of PMMA removed by oxygen plasma.   
 

 

    The cross-section SEM images of ZnO nanowire array were recorded during the process and 

shown in Figure 4.3(a)~(c). Figure 4.3 (a) is a representative SEM image of ZnO nanowire array, 

exhibiting vertical alignment and a length of ~5 micrometers. After coated with modified PMMA, 

all nanowires were embedded in the photoresist, as shown in Figure 4.5(b). To eliminate the 

charge accumulation during SEM observation, a 5 nm-thick gold layer was sputtered over the 

cross-section. Figure 4.5(c) displays the cross section SEM image of ZnO nanowire after 10 min 

oxygen plasma etching, clearly showing that the nanowire array is partly exposed. The sample 

was then transferred to PVD chamber for CuO coating. Finally, the PMMA was removed by 

dipping the substrate in acetone for seconds. 
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    Figure 4.4 (a)Low magnification TEM image of  ZnO/CuO asymmetric core-shell nanowire.(b) 
TEM images taken from the frames labeled in (a), confirming that the top section of ZnO nanowire  
was coating with CuO.  

 

     Subsequently, the nanowires were removed from the sapphire substrate and dispersed in 

alcohol for TEM sample preparation and device fabrication. A low magnification TEM image of 

a ZnO/CuO asymmetric core-shell nanowire was shown in Figure 4.4(a), revealing a coated tip 

and a bare bottom part. Corresponding high magnification TEM images of the top and bottom 

parts have been taken from the frame (b) and (c) labeled in Figure 4.4(a), confirming that the tip 

part was fully coated with CuO and the bottom part was bare ZnO.  
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   Figure 4.5 (a) Current (I) vs voltage (V) for an individual ZnO/CuO nanowire, revealing the diode 
characteristic of ZnO/CuO heterojunction; Inset shows the device of ZnO/CuO nanowire bridged 
gold electrode. Scale bar is 300 nm. (b) Time-dependent photocurrent of ZnO/CuO nanowire with  
+1V and -2V  external bias.  

 

The device was fabricated based on a ZnO/CuO asymmetric core-shell nanowire. The process 

was simplified because no further shell etching process was required. The SEM image of a 

typical device was displayed in the inset of Figure 4.5 (a), showing a nanowire bridged across a 

pair of gold electrodes. The electrical properties of ZnO/CuO core-shell nanowire were measured 

with and without UV illumination. A rectifying behavior was observed, suggesting the possibility 

of the p-n junction formation between n-type ZnO core and p-type CuO shell. However, the 

contribution of the Schottky contact between gold and ZnO to the rectifying characteristic cannot 

be totally ruled out.  

Figure 4.5 (b) shows the dynamic photoresponses measured from the fabricated ZnO/CuO 

nanowire device. The dark current was measured for 60 sec under a dark environment, and then 

the UV lamp was turned on for 60 sec to measure the photocurrent. With a +1 V applied bias, it 

was found that the current of CuO/ZnO nanowire photodiode was around 2.5 nA.  Upon UV 

illumination, it was found that the current increased to 6.5 nA. When the UV lamp was turned 

OFF again, the current decreased to its original value. While a -2 V voltage was applied, the 

current was found to increase from 0.25nA to 0.5nA when UV lamp was switched OFF to ON. 

The response and recovery speeds are also important parameters for the photodiode. One can 

define the times required reaching 90% of the final equilibrium value as the response/recovery 
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time, in analogy to evaluate the gas sensing response/recover rate. It was found that the 

photoresponse curve had steep rise edge (less than 5s) but an obvious decay tail (more than 45s), 

when +1 V bias was applied. Given the polycrystalline CuO shell and low quality interfaces, the 

prolonged decay edge can be attributed to the gradual release of the trapped electrons after light 

is turned off. The similar results were also observed in photoconductivity of CdSe nanowire11.  

 

4.4 Conclusion 

         In summary, n-ZnO/p-CuO core-shell nanowires were successfully synthesized and the 

structural and electrical properties were investigated. In order to simplify single nanowire solar 

cell fabrication, a new approach was developed to fabricate asymmetric core-shell nanowires. As 

a demonstration, ZnO/CuO core-shell nanowires exhibited obvious rectifying behavior. Notably, 

a similar concept has been demonstrated on Si/TiO2 asymmetric core-shell nanowire array by 

Yang et al. in UC Berkley12. Although this approach needs to be optimized for depositing shell 

materials at high temperature, it provides the feasibility to fabricate a large number of 

asymmetric core-shell nanowires without any etching steps.     
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Chapter 5 Core-Shell Nanowires with High Quality Interfaces for 

Single Nanowire Photovoltaic Device Fabrication  
 

5.1 Background 

     To date, nanowire solar cells, processed from either an individual nanowire or nanowire array, 

exhibit inferior energy conversion efficiency in comparison to their counterpart planar solar 

cells, even though numerous efforts have been dedicated to this field1-4. This could be mainly 

ascribed to the severe non-radiative recombination loss in reduced dimensionality. On one 

hand, owing to its large surface-to-volume ratio, nanowires have a high surface recombination 

velocity, thus shortening the carrier lifetime by a factor of 4-55. This is the inherent drawback 

of using nanowires in carrier collection, which is notably detrimental to the device 

performance of silicon or other III-V nanostructures. In order to minimize the surface 

recombination, several groups adapted surface passivation techniques, i.e., formation of a layer 

of materials on the nanowire surface, which has demonstrated remarkable improvement of the 

device performance6,7. Alternatively, materials with lower surface recombination velocity can 

be chosen to build a nanowire solar cell. On the other hand, the interface recombination 

occurring along the material junction in nanowire solar cells, especially for those having core-

shell geometries, is another factor that drastically limits the photovoltaic performance. 

Evidently, to enhance the efficiency in core-shell nanowire solar cells, the straightforward task 

is to seek a material combination with high quality interfaces and a rational approach to realize 

it. An example of this, is the recent report of CdS/Cu2S core-shell nanowire solar cell 

fabricated by cations exchange in chemical solution, manifesting a high quality interface, and 

demonstrating a remarkable efficiency of 5.4%8. 

In general, group II-VI compound semiconductors have a relatively lower surface 

recombination velocity9,10, and therefore, hold the potential to build nanowire solar cells 

delivering high energy conversion efficiency without any further surface passivation. To 

construct a p-n heterojunction among the II-VI semiconductors, one has the option of using p-

ZnTe and p-CdTe to couple with n-type CdS, CdSe, ZnS and ZnSe, respectively, because of 
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the challenging remains in doping ZnTe to n-type. Moreover, in order to obtain the possibility 

of heteroepitaxial growth, i.e., a high quality interface, several factors, including the lattice 

mismatch, thermal expansion coefficients, cross-diffusion, auto doping, and traps and interface 

sates, etc., should be taken into account11,12. In this regard, CdSe and ZnTe stand out of all II-

VI semiconductors for heteroepitaxial junction fabrication, because of their distinguished 

parameters/properties over others in terms of less lattice mismatch, similar thermal expansion 

coefficients, type-II band offset and well-established doping capability. In detail, from a 

structure point of view, both CdSe and ZnTe can be crystallized as wurtzite and zinc-blende. 

CdSe can be easily n-doped and crystallizes in wurtzite structures naturally; however, it could 

be grown on ZnTe substrate in zinc-blende structure with a lattice mismatch of only 0.3%. 

Similarly, ZnTe could be grown on CdSe substrate to maintain a wurtzite structure with a 

lattice mismatch of 0.4%, even though its equilibrium crystal structure is zinc blende. The 

possible heteroepitaxial growth between ZnTe and CdSe enables us to obtain a high quality 

interface with extremely low defect density. Moreover, the similar thermal expansion 

coefficient between CdSe and ZnTe could contribute to the formation of a stable and reliable 

device structure. Additionally, type-II band alignment lies in between CdSe and ZnTe and the 

doping capability of ZnTe and CdSe allow for tailoring the optical and electrical properties of 

the whole device, leading to various applications in optoelectronics beyond solar energy 

harvesting.   

As a good candidate combination in solar cell applications, CdSe/ZnTe heterojunction has 

attracted considerable attention for the fabrication of thin film solar cells in the past decades. 

Double layer structured thin film solar cells, comprising of indium-doped CdSe and ZnTe, 

have been reported with a total efficiency of 1.86%13. Recent progress of CdSe/ZnTe 

heterojunction solar cell consisting of MBE grown ZnTe and CdSe on GaSb substrate, showed 

an open-circuit voltage and fill factor of 0.4V and 53% respectively14. Significantly, this 

lattice-matched materials combination is a very promising system for fabricating multiple 

junction solar cells. Covering the visible region of spectrum from 470 nm to 860 nm, a 

monolithic three-terminal tandem cell, n-ZnSe/p-ZnTe/n-CdSe, has demonstrated an efficiency 

of 10.8%, while the ZnTe/CdSe device had the largest contribution to the overall efficiency15.  

Despite several literatures about the nanocrystals or nanocables with special emphasis on the 

materials synthesis, up to date, there is no report on the CdSe/ZnTe or ZnTe/CdSe nanowire 
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optoelectronics, principally because of the interface issue and the lack of efficient approaches to 

realize the device16-19. Notably, CdSe/ZnTe core-shell nanocrystals, or quantum dots, have been 

intensively investigated as a well-known type-II system, exhibiting interesting phenomena such 

as ultra fast holes transfer17, extended absorption spectrum, interfacial band emission, etc. 

CdSe/ZnTe nanocables have been demonstrated in a solution system, though representing 

discontinuous epitaxial ZnTe shell or nanoislands on CdSe quantum wires18.  

 In this chapter, a two-step technique was employed to fabricate core-shell nanowires. Firstly, 

both ZnTe and CdSe nanowires, acting as templates for the further coating, were synthesized by 

either thermal evaporation or pulsed laser ablation on various substrates. Specially, vertically 

aligned CdSe nanowire array was synthesized on muscovite mica substrates through thermal 

evaporation. Secondly, two types of coaxial nanoheterostructures, ZnTe/CdSe and CdSe/ZnTe 

core-shell nanowire were attempted to be obtained by pulsed laser ablation of respective target 

materials over the templates. Morphologies and structural information was collected and 

analyzed by SEM, TEM, XRD and Raman spectra. Finally, solar device based on an individual 

CdSe/ZnTe core-shell nanowire was demonstrated, which suggested that such a core-shell 

geometry with heteroepitaxial growth hold the promise to improve the efficiency of nanowire 

solar cells. 

 

5.2 Synthesis and structural analysis of ZnTe/CdSe heterostructured 

nanowires 

     Previous works on ZnTe/CdSe heterojunction and superlattice in thin film majorly fabricated 

CdSe on ZnTe substrates12,20 or grew the CdSe layer after the ZnTe layer was done13. In the same 

manner, we first grew ZnTe nanowire and then coated the ZnTe with CdSe in order to obtain 

ZnTe/CdSe core-shell nanowire. ZnTe, a direct band gap semiconductor, has wide application in 

green-light emitting diodes, X-ray detectors and solar cells. Various techniques have been used 

to synthesize ZnTe nanostructures, such as hydrogen assisted thermal evaporation21, molecular 

beam epitaxy22, and pulsed electrochemical deposition23. Moreover, the p-type conductivity of 

ZnTe nanostructures have been reported in as-synthesized, copper and nitrogen doped ZnTe 

nanowires and nanoribbons24,25. 
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Experimental 

 Synthesis of ZnTe nanowires  

      Herein, a modified hydrogen assisted-thermal evaporation technique was used to obtain 

ZnTe nanowires. Specifically, 0.3g commercial-grade ZnTe power (99.99%, Alfa Aesar) was 

located in an alumina crucible and placed in the center of a 1-inch diameter horizontal tube 

furnace. A piece of silicon substrate sputtered with 2nm gold was located in the downstream to 

collect the products.  A gas mixture of 160:40 SCCM of Ar/H2 was introduced into the tubes and 

the pressure in the tube was maintained at 760Torr. The furnace was elevated to 800oC at a 

ramping rate of 25oC/min and the duration of reaction was 45 minutes. The dark-brownish 

product was collected on the silicon substrate after the furnace was cooled down to room 

temperature. 

Synthesis of ZnTe/CdSe nanowires 

      In order to synthesize ZnTe/CdSe core-shell nanowires, the silicon substrate with as-grown 

ZnTe nanowires was transferred into a home-made pulsed laser ablation system. CdSe powder 

(99.95%, Alfa Aesar) was cold-pressed into a pellet as the ablation source. The distance between 

target and silicon substrate was measured as 40mm. Before the laser beam was directed to the 

target, the system was pumped down to 30mTorr and the temperature was increased to 350oC. A 

Nd:YAG laser (LOTIS-TII,LS2147) with wavelength 1064 nm was used in the deposition. The 

energy flux of the laser beam was set as 360mJ/cm2 with a wavelength of 1064 nm and a 

frequency of 5Hz. The ablation was performed for 15min, and the final product was collected for 

structure characterization.  

 

  5.2.1 Structure analysis of ZnTe nanowires  

     As shown in the SEM image in Figure 5.1(a), ZnTe nanowires obtained by thermal 

evaporation had a diameter of 100nm and most of them exhibited a length of tens of micrometers. 

Figure 5.1(b) shows XRD pattern of ZnTe nanowires on silicon substrate. All the diffraction 

peaks can be indexed to a standard diffraction card (JCPDS No. 15-0746), indicating that ZnTe 

nanowire crystallizes in zinc blende structures (space group F-43m (216)). Two representative 

microstructures of ZnTe nanowires were revealed by low-magnification TEM images in Figure 
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5.1 (c) and (e). One is straight and the other one exhibits periodic twins through the entire 

nanowire. HRTEM and corresponding SEAD analysis of the straight nanowire, as shown in 

Figure 5.1 (d), suggested the single crystalline nature of ZnTe nanowire and the preferential 

growth direction. The lattice plane distance measured as 0.35nm corresponds to the planes {111}. 

Figure 5.1 (f) shows the HRTEM image of the twin nanowires. The twin nanowire still grows 

along the [111] direction and the angle between two symmetry facets is 141o. The formation of 

periodic twins is believed to result from periodic surface tension because of eutectic liquid 

droplet in VLS growth mechanism, which had been elucidated in references21,26. Note that an 

amorphous layer, as marked by dashed lines in Figure 5.1 (c) and (e), was observed in the 

surfaces of the both nanowires. Because the entire growth process was carried out in hydrogen 

contained atmosphere, the amorphous layer could be ascribed to the exposure to air during the 

transfer and storage. The outside layer was also observed in ZnTe nanowires synthesized by 

molecular beam epitaxy, and it was identified as ZnO nanocrystal embedded in amorphous 

layer27,28. This native oxide layer plays a crucial role to hinder the growth of an epitaxial shell on 

the nanowire, which will be discussed later in this section. 
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Figure 5.1 Structure analyses of ZnTe nanowires synthesized by thermal evaporation. (a) SEM image of 
ZnTe nanowires collected on silicon substrate.(b)XRD pattern of ZnTe nanowires.(c) and (d) Low 
magnification TEM images of ZnTe nanowires, implying two different microstructures. (e) and (f) 
HRTEM images of ZnTe nanowire, corresponds to the frame marked in (c) and (e), respectively. The 
native oxide layer was highlighted by dash line. 
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Figure 5.2 Structure analysis of ZnTe/CdSe nanowires.(a) Low magnification TEM images of 
ZnTe/CdSe nanowires.(b) and(c) HRTEM images of CdSe nanocrystals epitaxially grown over 
ZnTe nanowires. (c) Interface of ZnTe/CdSe nanowire exhibiting epitaxial relationship. (e)A 
low magnification TEM images of ZnTe/CdSe nanowires showing the inhomogeneous coating 
because of non-alignment. (f) Nanoprobe EDS result recorded along the dash line marked in 
(e). 

 

 

5.2.2 Structure analysis of ZnTe/CdSe nanowires 
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To investigate the possible growth relationship between the ZnTeZB and CdSe, we carried out the 

coating procedure. SEM image was not shown here because no obvious change in morphologies 

before and after coating were observed, except a rough surface. Detailed morphologies and 

structural information were recorded and analyzed by TEM. Low magnification TEM image in 

Figure 5.2 (a) revealed that several CdSe nanocrystals were attached on one side of the ZnTe 

nanowire and the other side of the ZnTe was covered by a continuous layer. Higher 

magnification TEM images of the nanocrystals, taken from the white frames in Fig.5.2 (a), were 

shown in Figure 5.2 (b) and (c). Zinc blende CdSe nanocrystal, stacking in a sequence of 

······ABCABCAB······, was observed in Figure 5.2 (b). Additionally, HRTEM image in Figure 5.2 

(b) revealed that both wurtzite and zinc blende crystal structures coexisted in an individual CdSe 

nanocrystal. Note that all the CdSe nanocrystals indeed, grow epitaxially over the surface of 

ZnTe nanowire with a continuous lattice fringe. Especially, wurtzite CdSe nanocrystals were 

formed by taking zinc-blende CdSe layer as a barrier in conjunction to the zinc blende ZnTe 

nanowire. On the thick layer side, CdSe layer crystallized in zinc blende structure, despite a 

number of dislocations and other defects. A epitaxial relationship between the core and shell 

layer could be identified as (011)ZnTe//(011)CdSe and (11-1)ZnTe//(11-1)CdSe. It should be noting 

that most of the nanowires were inhomogeneous coated, primarily because they were randomly 

distributed and the ablated CdSe vapor was blocked. This assumption was further verified by the 

low magnification TEM image and corresponding nanoprobe line-scan EDS spectrum. Clearly, 

the ZnTe nanowire shown in Figure 5.2 (e) had one side coated and the other side barely coated. 

Notably, as compared to the clean and sharp surface of CdSe nanocrystals, the native oxide was 

still observed in ZnTe nanowires, which possibly hinders the epitaxial growth in this system.  

     ZnTe nanowires synthesized by thermal evaporation exhibited different structures and tended 

to form amorphous layer, which are not ideal candidates to obtain conformal shells. However, 

significantly, the observation that the nanocrystals epitaxially grew over the nanowires fabricated 

by pulsed laser ablation, provides potential way to synthesize quantum dots in a gas phase and 

enhance the efficiency of current quantum dots optoelectronics. To date, most of the quantum 

dots are synthesized in the solution phase because this route offer more parameters to tailor the 

size, shape and composition and therefore the properties of quantum dots. However, the 

unavoidable surfactants in this method generally degrade the device performance. Even though 

some challenges, such as dispersion, shape controllability, and yield, can be expected, pulsed 
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laser ablation is a promising way to achieve surfactant-free QDs. This, together with the possible 

epitaxially gown quantum dots on nanowire, will benefit for the charge collection and transport 

in optoelectronics. For instance, QDSSCs composed of nanowire, taking QDs as light absorber, 

suffer from the recombination loss arising from the interfaces between the nanocrystals and 

nanowires. By deliberately controlling the deposition parameters and the materials, nanocrystals 

can be epitaxially grown on nanowires, leading to enhanced energy conversion efficiency by 

dramatically minimizing the interfacial recombination.  

 

5.3 Synthesis and structural analysis of CdSe/ZnTe core-shell nanowires 

5.3.1 Synthesis and structure analysis of CdSe nanowire 

      1D CdSe nanostructures, such as nanowires, nanobelts, and nanorods, have been synthesized 

by different techniques, ranging from thermal evaporation, pulsed laser deposition to cation-

exchange, chemical electrodeposition and hydrothermal/solvothermal routes, which are believed 

to have wide applications in optoelectronics, laser, luminescence, and biomedical imaging. 

Among of all the techniques, gas vapor transport is the most popular method to obtain CdSe 

nanostructures. In this section, various CdSe nanostructures were synthesized by thermal 

evaporation and pulsed laser ablation methods on silicon and muscovite mica substrates. The 

morphologies and structures were characterized by electron microscopes and X-ray 

diffractometer. Finally, a well separated CdSe nanowire on silicon substrate, acting as templates, 

was then transferred to a coating system in pursuit of CdSe/ZnTe core-shell nanowires. 

 

Experimental 

Synthesis of CdSe nanowires on silicon substrate by pulsed laser ablation 

      First, a disc-shaped target of CdSe was fabricated by cold pressing the commercially 

available powder (Alfa Aesar, 99.95% purity, metal basis). The target was then positioned in the 

middle of quartz tube, which was inserted in the horizontal tube furnace. Subsequently, a silicon 

substrate coated with ~ 10 nm gold thin films was used to collect the products. In order to 

investigate the influence of laser power, temperature, and pressure on the morphologies of CdSe 
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nanostructures, two sets of parameters were used for the laser ablation processes. In the first set 

of parameters, the collecting substrate was placed in front of the target at a distance of 2 cm and 

the entire system was pumped down to 40mTorr. The laser wavelength used for the ablation was 

the fundamental wave (1064 nm) with the repetition rate of 5 Hz, and the energy of 27mJ/pulse. 

After the temperature of the furnace was increased to 450oC, the laser beam was directed to 

ablate CdSe target. The pressure of the system was maintained at 45mTorr, and the samples were 

collected for an ablation time of 5mins and 15mins. In the second set of parameters, the system 

was pumped down to 40mTorr and backfilled with argon three times to ensure no oxygen 

remains. Finally, a 200 SCCM Ar/H2 (88%/12%) gases was introduced and the whole system 

was maintained at atmospheric pressure. The temperature was increased to 750oC at a ramping 

rate of 25 oC/min. A 30mJ/pulse pulsed Nd:YAG laser (1064 nm,10 Hz) was used to ablate the 

target and the substrates were located in the downstream at a distance of 8cm from the center of 

the furnace. After the furnace was cooled down to room-temperature, the substrates were taken 

out from the tube. A very thin yellowish layer from the first set parameters and a thick brown 

layer of products from the second set parameters were observed by naked eyes, respectively. 

Both samples were then characterized by electron microscopes and XRD. 

 

 Synthesis of CdSe nanowires on silicon substrate by thermal evaporation 

     The thermal evaporation of CdSe was conducted in a horizontal tube furnace in Ar/H2(4:1) 

mixtures atmosphere. Briefly, 0.1g CdSe powder (Alfa Aesar, 99.95% purity, metal basis) was 

loaded in to a crucible and positioned in the center of quartz reactor which was placed in the 

furnace. Prior to increasing temperature, the quartz reactor was pumped down to 30mTorr in 

order to eliminate oxygen. The quartz reactor was then backfilled with Ar/H2 gases and 

maintained at atmospheric pressure. While the source was allowed to evaporate at 770oC for 

45min under a 150 SCCM Ar/H2 gases, the CdSe nanowires were collected from the 10nm-gold 

coated silicon substrate in the downstream. The substrate was taken out at room temperature and 

a dark -grey- product on the substrate was observed. 
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   Figure 5.3 Structure analysis of CdSe nanowires synthesized at 450oC. (a) and (b) SEM images of 

CdSe nanowires collected after 5 min and 10 min laser ablation. (b) Low magnification TEM image 

of CdSe nanowires collected after 5mins laser ablation. (d) High magnification TEM image from the 

frame labeled in (c), showing both stacking sequence of zinc blende and wurtzite structure. 

 

5.3.1.1 CdSe nanowires on silicon substrate by pulsed laser ablation 

     Figure 5.3 (a) and (b) shows the typical SEM images of CdSe nanowires collected after laser 

ablation for 5min and 15min, respectively. With 5min ablation, nanowires with length of several 

micrometers were observed directly grown on CdSe layer, which was formed in the initial vapor 

deposition.  High aspect ratio CdSe nanowires were harvested after 15mins ablation, as shown in 

Figure 5.3(b), exhibiting tangled morphologies with a few tapered ribbon structures. TEM 
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Figure 5.4 (a) and (b) low and high magnification SEM images of CdSe nanostructures synthesized 
by laser ablation with a higher energy flux. (c) Low magnification TEM image of CdSe 
nanostructures, showing nanowires, nanobelts and branched structures. (d)~(f) Representative TEM 
images of CdSe nanowires with growth directions, [0002], [ 0] and [ 010], respectively.(g)~(i) 
SEAD patterns recorded from the CdSe nanowires labeled the growth direction in 
(d)~(f),respectively. 

 

sample was prepared from the sample collected at 5mins and the corresponding TEM images 

were shown in Figure 5.3(c) and (d). The diameters of the nanowires were measured around 

20nm and mixed with CdSe nanoparticles, which are assumed to be scratched from the substrate 

during the TEM samples preparation. In an enlarged area marked in Figure 5.3(c), both wurtzite 

and zinc blende structures of CdSe were identified. The lattice plane distances of 0.69nm and 
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0.35nm could be indexed as (0001) of wurtzite and (111) of zinc blende, respectively. The mixed 

crystalline structures observed in CdSe nanowires could be attributed to the lower temperature 

during the ablation. It is well known that CdSe crystallizes in both wurtzite and zinc blende 

structure and generally stabilizes as zinc blende structure if the fabrication temperature is low29,30.  

     SEM images of CdSe nanowires synthesized by laser ablation at 750oC with higher energy 

flux were shown in Figure 5.4(a) and (b), revealing a high density of CdSe nanostructures with 

different morphologies. Most of them were observed with gold catalysts sitting on the tips, as 

shown in the enlarged SEM image in Figure 5.4(b), which confirms the classical VLS 

mechanism mediated the growth. The results were further confirmed by a typical low-

magnification TEM image, as shown in Figure 5.4(c). Several morphologies of CdSe 

nanostructures, such as straight wires, tapered belts and branched wires, were observed. 

Considering the objective of core-shell nanowire fabrication, we further focused on the crystal 

structures of the straight CdSe nanowires. Figure 5.4 (g)~(i) show the SEAD patterns 

corresponding to the CdSe nanowires in Fig.5.4(d)~(f), respectively. Three different growth 

directions of CdSe nanowires, i.e., [0002], [01 0] and [ 010], were determined by indexing the 

SEAD patterns. No zinc blende CdSe nanowire was observed. Various growth directions of 

CdSe nanowires originate from the polarity of wurtzite structures, similar to that of ZnO 

nanowires. The high density and randomly distributed CdSe nanowires with different growth 

directions, making it an intriguing platform for structural analysis, hinders the exploration of 

coaxial heterostruture fabrication. A new approach needs to be developed in order to gain an 

ideal template for shell coating.  

 

5.3.1.2 CdSe nanowires on silicon substrate by thermal evaporation 

      Figure 5.5(a) and (b) shows the SEM images of the CdSe nanowires collected on silicon 

substrates. The nanowires exhibited several micrometers in length and very rigid morphology. 

Regardless of their random orientations on substrate, the nanowires were well separated at low 

density. Inset of Figure 5.5(a) is a higher magnification SEM image showing that the nanowires 

were terminated with catalysts. As shown in the cross-section view SEM images (Figure 5.5(b)), 

the nanowires were directly grown on the micrometer oriented CdSe grains with a thickness of 

around 2µm. TEM images were also recorded to figure out the crystal structure of CdSe 

nanowires. The diameters of the nanowires were around 80 nm and, clearly, the growth was 
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Figure 5.5 (a) SEM image of low density rigid CdSe nanowires synthesized by thermal 
evaporation. Inset is the high magnification image showing the catalysts on the tip of 
nanowires. (b)cross-section of CdSe nanowires directly grown on a thick CdSe oriented 
layer.(c) TEM image of an individual CdSe nanowire with a catalyst on the tip.(d) HRTEM of 
CdSe nanowire taken from the frame in (c). Inset displays the corresponding FFT of the high 
magnification image. 

 

governed by VLS because of the catalysts observed on the tip of nanowire, as shown in Figure 

5.5(c). The lattice planar distance was measured as 0.69 nm and the growth direction of CdSe 

nanowire was then identified as (0001), which is also confirmed by FFT shown in the inset. 

Unlike the surface of the ZnTe nanowires, no amorphous layer was observed on the surface of 

the CdSe nanowire. The clean surface, together with the rigidity and low density of the CdSe 

nanowires, implies the possible homogenous coating and high quality interfaces in the core-shell 

nanowires.  
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                       Figure 5.6 XRD pattern of CdSe nanowires collected on silicon substrate. 

 

     XRD pattern of the CdSe nanowires grown on silicon substrate was shown in Figure 5.6. A 

very intense diffraction peak, (002), indicated CdSe product has a c-axis preferred orientation. 

Because a relatively thicker CdSe layer was observed in SEM, we cannot solely attribute this to 

the c-axis growth habit of CdSe nanowires. In fact, similar to ZnO, CdSe naturally crystallizes in 

wurtzite structures, preferring a c-axis growth. Once the furnace is heated to a certain 

temperature, CdSe is evaporated and the high density vapor in the initial period condensed on the 

silicon substrate, leading to a c oriented thin film on silicon substrate. The thickness of the thin 

film is determined by the temperature gradient and the amount of the source vapor. Meanwhile, 

gold catalysts initialize the nanowire growth by using this oriented thin film as a seed layer. This 

could explain why the CdSe nanowires grown by this method were rigid in this method.  
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Figure 5.7 SEM images of CdSe/ZnTe core-shell nanowires (a) top-view and (b) cross-section. 

 
 

5.3.2 Structure analysis of CdSe/ZnTe core-shell nanowires 

      Figure 5.7 (a) and (b) represents the top-view and cross-section view of the CdSe nanowire 

coated with ZnTe by pulsed laser ablation of ZnTe target for 15min. A few small particles 

covered the catalyst particles on the tips of the nanowires, exhibiting flower-bud morphology. A 

few nanoparticles were also observed on the surface of nanowires.  

      Detailed structure characterization was further performed by TEM equipped with nanoprobe 

EDS.  Figure 5.8(a) shows a lower magnification TEM image of several CdSe/ZnTe nanowires. 

The morphology of coated nanowires presented some nanoparticles on the surface, in good 

agreement with the observation in SEM images. This presence of these nanoparticles could be 

attributed to the emission of microscopic particulates from solid targets when irradiated by a 

laser beam, which is an intrinsic disadvantage in pulsed laser deposition techniques for 

production of thin films31. The geometry for deposition on a substrate that placed at a 90o angle 

with respect to the target surface in our home-made pulsed laser ablation aggravates the 

generation of particulates. One representative lower magnification TEM image of a single coated 

nanowire in Figure5.8 (b) revealed that the nanowire exhibited core-shell geometry, regardless of 

microscopic particulates on the surface. The interface of core and shell can be easily 

distinguished by the phase contrast, as highlighted by the dash lines. The core had a diameter of 

80nm and the thickness of the shell was around 20nm. To obtain detailed information about the 

interface, a high resolution TEM image was recorded at the interface area and shown in 
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Figure 5.8 (a) Low magnification TEM image of CdSe/ZnTe core-shell nanowires.(b) A 
representative TEM image of an individual CdSe/ZnTe core-shell nanowire, clearly showing the 
smooth surface and core-shell geometry.(c) HRTEM images of a typical core-shell interface 
manifesting the epitaxial growth relationship of CdSeWZ and ZnTe WZ; Inset shows the FFT of the 
area marked as dashed frame ; (c) Ball and stick model of the relaxed CdSe (WZ) /ZnTe (WZ) 
structure. (d) Nanoprobe EDS scanning along the line marked in(b), suggesting the conformal 
shelling and absence of interfacial diffusion. 
 

Fig.5.8(c). Most of the lattice fringes of the core and shell along the interface of the nanowire 

were well matched and continuous, in spite of few dislocations. Further structural analysis 

revealed that both the core and shell were crystallized in wurtzite structures and an epitaxial 

growth relationship could be assigned as (0001)CdSe//(0001)ZnTe and (01 )CdSe//(01 )ZnTe. The 

FFT of the area labeled in the white frames across the interface shows one set of diffraction 

pattern, further confirming the well epitaxial growth between the core and shell. An atomistic 

model of a wurtzite/wurtzite heterostructure was illustrated in Figure5.8 (d). The Cd and Se 

atoms have been marked in green and red, for wurtzite CdSe, respectively, while Zn and Te 

atoms have been marked in cyan and grey, respectively, for wurtzite ZnTe. Owing to the same 
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wurtzite crystal structure and close lattice parameters, the near identical atom arrangement was 

demonstrated. A special concern in fabricating core-shell nanowire is the interfacial diffusion 

between the core and shell. To clarify this in CdSe/ZnTe core-shell nanowire, we employed 

nanoprobe EDS line scanning along the white line marked in Figure 5.8(a). The element 

dispersive distribution data, as shown in Figure 5.8 (e), verified that there was no interfacial 

diffusion occurring between the core and shell in this synthesis condition. Additionally, this 

result also further confirmed the conformal coating of ZnTe on CdSe nanowires.  Note that ZnTe 

is thermodynamically stable in cubic zinc blende structures and it has barely been reported as 

hexagonal wurtzite structure in nanocrystalline regime32. To our best knowledge, this is the first 

time to achieve single-crystalline wurtzite ZnTe by taking wurtzite CdSe as the template. From 

the structure point of view, this interesting observation opens the avenue to explore unique 

structures such as wurtzite ZnTe nanotubes and 1D CdSe-ZnTe superlattice33,34. Moreover, both 

the core and shell crystallize in wurtzite structure with non-neglected strains along the interface 

which can generate a piezoelectric field, facilitate the axial charge separation and hence have a 

potential in other optotronics35.   
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  Figure 5.9 (a) and (d) AFM images of an individual CdSe and CdSe/ZnTe core-shell nanowire. (b) 
PL image of a single CdSe nanowire. (c) A spectrum of CdSe nanowire collected from the area 
marked by circle in (b). (e) Band diagram of CdSe/ZnTe core-shell nanowires, displaying the charge 
separation and possible interfacial transition. 
 

 

5.4 AFM and optical spectra of CdSe nanowire and CdSe/ZnTe core-shell 

nanowire 

      A typical AFM and PL images were shown in Figure 5.9(a) and (b). The morphologic 

information obtained in AFM, catalyst on the tip and smooth surface, is in good agreement with 

the observation in previous electron microscope analysis. The spectrum with a central peak 

located at 750 nm, which was collected from the area marked in white circle in Fig.5.9(b), 

corresponds to the band emission of CdSe. AFM image of CdSe/ZnTe core-shell nanowire 

exhibited a rough surface, which also confirmed the TEM result. However, no 

photoluminescence was recorded on the shelled CdSe nanowires. Considering their band energy 

diagrams, as shown in the Figure 5.9 (e), we attribute this photoluminescence quench to the 

charge separation induced by the type-II band alignments, similar to that we observed in 

ZnO/ZnSe and ZnO/ZnS core-shell combinations. 

 



 

109 

 

Figure 5.10 Schematics of the procedures for fabricating a PV device based on an individual core-
shell nanowire.  
 

5.5 Photovoltaic properties of an individual CdSe/ZnTe core-shell nanowire 

Device fabrication 

     To fabricate photovoltaic devices, the CdSe/ZnTe core-shell nanowires were first removed 

from the collecting substrates and then dispersed in alcohol. The nanowire suspension was then 

dropped on the silicon substrate, which has a thermal oxide layer and electrodes fabricated by 

photolithography. Three times EBLs were carried out in the whole process, as illustrated in 

Figure 5.10. Briefly, two layers of PMMA were spin-coated on the silicon substrates with 

nanowires, followed by the first time EBL to expose one end of the core-shell nanowire. 

Chemical etching then was used to remove the shell layer of the nanowires. Here, we used 39% 
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Figure 5.11 (a) SEM image of an individual CdSe/ZnTe core-shell nanowire solar cell. (b) Current-
Voltage (I-V) characteristics for efficiency extraction. (c)  Photoresponse of nanowire device at 0V 
bias. 

 

FeCl3 solution as the etchant, referring to the treatment process for contact interface in 

CdS/CdTe thin film solar cells36. The etch rate was estimated about 3nm/second in our process. 

After removal of the etching residue and the photoresist, the second EBL was performed 

followed by metallization. To ensure the Ohmic contact, indium was selected as the electrode to 

CdSe. Finally, the third EBL, metallization and lift off were conducted. Nickel was used as 

electrode materials to ZnTe, because of its high work functions. The devices were completed by 

contacting the leads and the electrodes with silver paste. After stabilized in air for 12 hours, the 

devices were ready for photovoltaic properties testing. 

 

 



 

111 

Measurement  

A standard solar simulator (Newport, Oriel) with calibrated 1-sun intensity was used in 

conjunction with semiconductor characterization system (Keithley,4200SCS) to obtain all device 

transport characteristics. 

      Figure 5.11(a) shows a representative SEM image of photovoltaic device processed from 

CdSe/ZnTe core-shell nanowire. Upon illumination, core-shell nanowire exhibited obvious 

photovoltaic behavior. A current-voltage (I-V) curve was measured with and without 1 sun light 

illumination of 100mW/cm2 light intensity at 25oC. The total efficiency, η, was calculated by 

dividing the maximum generated power density, Pout, by the total incident energy density, Pin. 

The best cell exhibited an open circuit voltage, Voc, of 0.18V, a short-circuit current, Isc, of 38 

pA, and a fill factor of 0.38, which yields an overall solar energy conversion efficiency of 1.7%. 

Without applying external bias, we also investigated the photoresponse of the devices and the 

plot was shown in Figure 5.11(c). A stable photocurrent of ~38 pA generated and annihilated 

instantaneously while the illuminated light was on and off, indicating the efficient charge 

separation and  transport between the core and shell.   

 

5.6 Synthesis of CdSe nanowires on muscovite mica substrate by vapor 

transport method 

 Experimental        To obtain vertically aligned CdSe nanowire array with controllable diameters 

and density, a seed layer and the catalysts are highly desired. In detail, fresh cleaved muscovite 

mica substrate (SPI, Grade V-5 research quality) was loaded into electron beam evaporation 

system (Kurt J. Lesker, PVD75) for CdSe seed layer deposition. CdSe (Alfa Aesar, 99.999% 

purity, metal basis) loaded in the molybdenum crucible was used as the source materials. The 

evaporation rate was set as 0.3 Å/s and the substrate temperature was maintained 380oC. After 

coated with 100nm CdSe thin film, the substrate was transferred to sputtering system 

(Cressington coating system, 308R) for catalyst deposition. Then the mica substrate with seed 

layer and catalyst is ready for CdSe nanowire array growth. Subsequently, the growth was 

carried out in a typical thermal evaporation horizontal tube furnace. As usual, the substrate was 

located in the downstream in order to collect the products. The gas flow, temperature, pressure, 

duration of this process were 150 SCCM mixture gases of Ar/H2 (4:1), 750oC, 760Torr and 20 
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Figure 5.12 (a) 30o tilted view and (b) top-view of SEM images of CdSe nanowire array. (c) High 
magnification SEM image showing gold catalyst on tips of nanowires. (d)~(f) CdSe nanowire array 
harvested on different area of mica substrate. 
 

mins, respectively. The color of the final product on mica varied due to the difference of the 

nanowire density. In general, the color is black in high density and brownish in lower density, 

which can be easily distinguished by the naked eye and confirmed by SEM observation later on. 

     In order to investigate the influence of seed layer and catalysts on the morphologies of the 

nanowires, other samples were also synthesized for comparison. In detail, mica substrates 

without the seed layer and with the seed layer in different thicknesses were also used to collect 
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samples. Gold colloid (Ted Pella) with a diameter of ~200 nm was used to catalyze CdSe 

nanowire growth for a better understanding of the catalysis process. A TEM copper grid was also 

used to generate pattern and lower density catalysts. 

 

     Figure 5.12 shows representative SEM images of CdSe thin film and CdSe nanowire array 

obtained on muscovite substrates. Large-area CdSe nanowire array was observed to have 

vertically grown from substrates, as shown in SEM image (Figure 5.12 (a)) with a 30o titled view. 

The diameters of nanowires are around 60 nm and show a uniform distribution. Top-view SEM 

image of CdSe nanowire array was also recorded in Figure 5.12(b), manifesting a well separated 

alignment normal to substrate. The density of the nanowires was hence calculated as 5 nanowires 

per µm2. Large magnification SEM of CdSe nanowires clearly manifested that each nanowire 

was terminated with a spherical or semi-spherical catalyst on the tip, revealing that the growth of 

CdSe herein was governed by the classical VLS mechanism. Owning to the temperature gradient, 

CdSe nanowire array harvested in a one-inch-long mica substrate varied in density, length and 

diameter. Figure 5.12 (d)~(f) represents the influence of the temperature and location on the 

morphologies of  the CdSe nanowire array. Shorter and lower density of CdSe nanowire array 

was collected at higher temperature zone (740oC), while longer and higher density of nanowire 

was obtained at zone where temperature was around 720 oC. Array of CdSe nanowire with high 

aspect ratio, as shown in Figure 5.12 (f), tended to collapse and tangle together under the 

electrons illuminate in SEM. It should be noted that beyond this temperature window, high 

density of CdSe nanowires can be obtained at around ~700oC but in a random dispersion, which 

was not shown here; no nanowire could be observed on mica at the temperature above 750 oC, 

and the mica will be totally damaged while be loaded in the high temperature zone(760oC).  
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Fig.5.13 XRD patterns of muscovite mica, mica with CdSe seed layer and mica with CdSe nanowire 
array, clearly showing that both CdSe seed layer and CdSe nanowire array have a preferential growth 
direction along (002). 
 

       XRD patterns of mica, mica with CdSe thin film and mica with nanowires were shown in 

Figure 5.13. Muscovite mica substrate has very tense peaks that can be identified as (004) to 

(0014), which indicated the highly crystallinity of the substrate. In contrast, only one additional 

diffraction peak, which can be identified as (002) of CdSe, was observed in the mica coated 

CdSe thin film, implying the high oriented growth of the CdSe thin film. A comparable 

intensity peaks, (002) peak form CdSe and (006) peak of mica substrate, and the large intensity 

ratio of (002) and (004) peaks form CdSe, suggesting that the nanowires we obtained were 

preferentially grown along c-axis. 
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   Figure 5.14 Raman spectra from muscovite mica, mica with CdSe seed layer and mica with CdSe 

nanowire array, respectively. Inset shows large magnification section to highlight the LO mode of 
nanowire located at 206 cm-1. 

 
 

     The crystal structures of the mica, mica with CdSe thin film and nanowire were further 

investigated by Raman spectroscopy. Note that the phonon frequencies of the second order 

longitudinal optical (2LO) mode of CdSe nanowire array, which is supposed to be located at 

418.8 cm-1, could be overlapped by that of the mica substrate (Figure 5.14). However, the peak 

centered at 206cm-1 can be indexed to the longitudinal optical phonon (LO) of CdSe nanowires. 

A little deviation to that of the corresponding bulk materials could arise from the lattice 

contraction and phonon confinement37.  
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Figure 5.15 (a) and (b)SEM images of CdSe nanostructures collected on muscovite mica without any 
seed layer and catalysts.(c)and(d) low and higher magnification SEM images of CdSe nanowires 
obtained on mica substrate with 150 nm CdSe seed layer. 
 

     Figure 5.15 (a) and (b) display the SEM images of CdSe nanostructures on a fresh cleaved 

mica substrate. Only few CdSe nanowires varied in diameter were found to randomly distribute 

on mica, as well as some micrometers CdSe crystals. Interestingly, several tripod nanocrystals 

were also obtained on bared mica substrate, similar to the recent report38. These observations 

implied that no vertically aligned nanowire array could be achieved without any further 

modification of the freshly cleaved mica substrates. It is also found that the thickness of CdSe 

seed layer deposited on mica through e-beam evaporation is crucial in obtaining a well-aligned 

CdSe nanowire array. Figure 5.15(c) and (d) presents low and high magnification SEM images 

of the CdSe nanowire array grown on mica with a 150nm-thick CdSe seed layer. Obviously, 

the vertical alignment of the nanowire was not as good as the one achieved on the 50nm-thick 

CdSe coated mica substrates. 
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Figure 5.16 SEM images of (a) 200nm gold colloids dispersed on CdSe seed layer coated mica 
substrate. (b) CdSe nanostructures catalyzed by gold colloids. (c)and(d) low and higher magnification 
SEM images of CdSe nanowires with patterned catalysts via a TEM copper grid. 
 

       

   Different types of catalysts were used to initialize the CdSe nanowire growth. Figure 5.16(a) is 

the SEM image of gold colloids deposited on CdSe thin film/mica. The diameter of the gold 

colloid is around 200 nm and some of them still aggregated together. The morphologies of CdSe 

nanowire catalyzed by colloid gold were shown in Figure 5.16(b). Definitely, no alignment of 

nanowire was observed. All nanowires exhibit curved shape at the initial stage and then straight 

in the top section. In the further experiments, we also realized that the density of catalyst, i.e., the 

thickness of the metal film, was a crucial factor in achievement of aligned CdSe nanowire array. 

Because the edge of the copper grid (pattern mask) is not perfectly smooth, a few metal 

nanoparticles could be diffused to the area near to the edge of the patterns. Vertically aligned 
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CdSe nanowire with small diameters was hence observed on the edge of the patterns, as shown 

in Figure 5.16(c) and (d). In the area with thicker gold catalysts, however, the alignment did not 

sustain anymore and longer, higher density and tangled CdSe nanowires were observed. 

Meanwhile, we also conducted the similar growth using mica substrate with CdSe seed layer but 

without any catalyst. However, no nanowire was collected, which evidently highlights the 

importance of the catalyst.  

     All the observations about catalysts and seed layer implied that the seed layer with an 

appropriate thickness and lower density of catalysts are the two important parameters in 

fabrication of a vertically-aligned array of CdSe nanowire. The whole process actually involved 

two significant epitaxial strategies, i.e., van der Waals epitaxy and homoepitaxy. Generally, 

epitaxy between two materials requires the small lattice mismatch and close thermal expansion 

coefficient. However, the interface of the van der Waals epitaxial heterojunction between the 

material and substrate is controlled by van der Waals interaction instead of chemical bonding. 

Unlike traditional heteroepitaxy, this permits the release of the train induced by lattice mismatch 

and then enables the growth of monocrystalline film from various semiconductors, regardless of 

their lattice mismatching to the substrates39-41. Muscovite mica, with a layered structure and inert 

cleavage surface, is a popular substrate to facilitate van de Waals epitaxy of monocrystalline 

epilayer42,43. The CdSe thin film deposited on mica by e-beam evaporation show smooth surface 

and high orientation is obvious an epilayer, which was confirmed XRD data. Still, the strain in 

the epilayer could not be entirely released while the thickness increase, resulting in slight 

misorientation of the seed layer. This could explain the alignment of nanowire array obtained on 

the 150 nm seed layer is poor compared to that obtained on the 50 nm seed layer. The process of 

CdSe nanowire array directly grown from CdSe epilayer is a typical homoepitaxy. Without any 

seed layer, i.e., epilayer, the nanowires and tripod nanocrystallines were still achieved but in 

poor quantity. The whole process is still governed by Van der Waals epitaxial. Yet, the detailed 

underlying mechanism behind is not very clear so far. Recent papers claimed that it was a 

general route to obtain II-VI tripod nanocrystals by using muscovite mica as collecting 

substrates38. We attempted to control the diameters of CdSe nanowires by controlling the catalyst 

size, especially using gold colloids, which is a universe way in controlling the diameters of most 

oxides and semiconducting nanowires44,45. Surprisingly, this strategy did not function well in the 

case of CdSe nanowires array growth. We attribute the failure to i) the solvent for stabilizing 
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gold particles passivated/contaminate the surface of CdSe epitaxy layer; ii) gold particles are also 

covered by surfactant, which hinders the adhesion of gold nanoparticles on CdSe layer. Notably, 

the latter reason could be responsible for the initial curved morphologies of the nanowires. It is 

interesting to find that the vertical alignment of nanowire occurred only at low density catalysts. 

Technically, thin layer of catalyst tends to aggregate as bigger particles at higher temperature, 

leading to nanowires with larger diameters. However, CdSe is a material that is easy to sublime; 

thus, the catalyst assisted growth may be initialized before aggregation, given the fact that the 

growth could be initialized at 450oC in section 5.1. Numerous catalysts have likelihood to 

interfere each other and lose the possible homoepitaxy. It should be pointed out that there is still 

much room for controlling the diameters and density of CdSe nanowire in our approach. For 

example, a novel catalyst generating system for fabricate aerosol gold nanoparticles46, which is 

well-known for III-V nanowire growth, could be adapted to provide better controllability. 

     In fact, vertically aligned CdSe nanowire array directly grown on muscovite mica substrate 

was recently reported47. However, the surface of freshly cleaved mica requires surface 

modification by poly-l-lysine to enhance the quality of nanowire. In addition, the yield is 

relatively low and the density and diameters of the nanowire are difficult to control. More 

importantly, the integration of the nanowire array with substrate as an electrical unit confronts 

big challenges, because the muscovite mica is naturally insulating. By contrast, our approach 

using CdSe seed layer and catalysts to grow nanowire allows for size and density controllability 

and the direct integration in existing MEMS, offering more degrees of freedom of and a useful 

platform to investigate the array of CdSe nanowire physical properties. 
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 5.7 Conclusion  

     In summary, we have been able to synthesize wurtzite CdSe and zinc blende ZnTe nanowires 

on silicon substrates by thermal evaporation or pulsed laser ablation. Especially, by combining 

van de Waals epitaxy and homoepitaxy, a vertically aligned CdSe nanowire array was 

successfully achieved on muscovite mica substrates, where a layer of CdSe thin film and metal 

thin film were deposited as seed layer and catalysts, respectively. By using the as-grown ZnTe 

and CdSe nanowires as the templates, ZnTe/CdSe and CdSe/ZnTe coaxial nanoheterostrutures 

have been sought via laser ablation of a target. It turned out that ZnTe/CdSe heterojunction 

exhibited a rough surface with CdSe nanoislands, either in wurtzite or zinc blende, partly 

because of the oxides layer in ZnTe nanowires. CdSe/ZnTe core-shell nanowires exhibited a 

sharp interface between the core and shell, and both the core and shell crystallize in wurtzite 

structure. An epitaxial relationship, (0001)CdSe//(0001)ZnTe and (01 0)CdSe //(01 0)ZnTe, could be 

indentified in the CdSe and ZnTe in the core-shell structure. The photovoltaic device based on a 

single CdSe/ZnTe core-shell nanowire was also fabricated, demonstrating an overall energy 

conversion efficiency of ~1.7%. Considering the well-established doping capability of n-type 

CdSe and p-type ZnTe, there is still much room to improve the efficiency by optimizing the 

device configuration and materials modification. For instance, core-multiple shells nanostructure, 

in analogy to tandem-cell structures, could be exploited by taking advantage of lattice-matched 

interfaces, core-shell geometry and aligned morphology. The intriguing growth relationship 

observed in the coaxial heterostructure, offer the opportunity of manipulating the crystalline 

structure of the shell by controlling that of the core, regardless of the equilibrium crystalline 

structure of the shell. These findings in this section also provided the possibility to understand 

the coupling effects of photovoltaic and piezoelectric in low dimensionality and harvesting 

hybrid energy in either array or single core-shell nanowire.  
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Chapter 6 Conclusion and Perspective 

 

In this dissertation, my focus is on the use of II-VI core-shell nanowire, both single and array, 

in photovoltaic applications, with a special emphasis on materials synthesis and structure 

analysis.  

ZnO nanowire arrays have been employed in nanowires solar cells as antireflective layer, 

carrier transport, and received extensively attraction in the last decades. Nonetheless, the optical 

and electrical properties of ZnO nanowire array synthesized by different techniques have not 

been systematically studied.  In Chapter 2, ZnO nanowire arrays have been synthesized by CVD 

on different substrate and their properties were compared by photoluminescence spectrum of 

arrays and photoconductivity/ photoresponse of individual nanowire devices. These studies 

offered a deep insight to the potential application of ZnO nanowire array in solar cells. In 

addition, two interesting morphologies of ZnO nanostructures, i.e., nanourchins and ultra-wide 

nanobelts, were also reported, which enriched the family of ZnO nanomaterials. 

In the type-II band alignment functioned in DSSCs and QDSSCs, the absorbers, i.e., dye 

molecular or narrow bandgap semiconductor QDs, were coupled with a wide bandgap 

semiconductor. In chapter 3, two type-II combinations constructed by wide band gap materials, 

ZnO/ZnSe and ZnO/ZnS, were synthesized in arrays of core-shell nanowires on ITO substrates. 

The photovoltaic devices based on a type-II ZnO/ZnS core-shell nanowire array have been 

demonstrated, which suggested the potential to use wide band gap semiconductors as active 

materials in solar energy harvesting.  

One major concern of core-shell nanowires solar cells is the interfacial recombination that 

originates from the low-quality interface between the core and shell. In Chapter 5, a lattice 

matching II-VI combination of CdSe/ZnTe was selected to construct core-shell nanowires. ZnTe 

and CdSe nanowires were synthesized to act as templates for following shell deposition, 

respectively. It turned out that CdSe nanocrystals and high density defects epilayer was formed 

over ZnTe nanowire, which can be attributed the native oxide layer and the random distribution 

of ZnTe nanowires. A conformal ZnTe shell with smooth external surface was revealed to 
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epitaxially grow over CdSe nanowires. A photovoltaic device has been demonstrated in an 

individual CdSe/ZnTe core-shell nanowire, exhibiting an open-circuit voltage, Voc , of 0.18V, a 

short-circuit current, Isc, of 38 pA, a fill factor of 0.38, and an overall solar energy conversion 

efficiency of 1.7%.  Moreover, a controllable synthesis of CdSe nanowire array on muscovite 

mica substrate was discussed, opening the avenue to exploit a three dimension nanowire array 

device for hybrid energies harvesting.  

 

Several works have to be done in the future in order to develop nanowire solar cells with 

comparable efficiency to that of the current planar photovoltaic device. 

To improve the overall conversion efficiency, both theoretical and experimental work on 

optical engineering, electrical manipulation, and material and device design need to be conducted. 

For optical engineering, future work will need to be centered on optimization of various 

dimensional parameters including the length, diameter, arrangement, fill ratio, and unique feature, 

to further tailor the light absorption spectrum and reduce the material consumption. Detailed 

investigations of the nanowire arrangement would clarify the above mentioned confusions and 

determine the optimal arrangement. Along with the effort to develop novel architecture, 

theoretical calculation and modeling  on the optical coupling have to be carried out on specific 

materials in different geometry, which may predict the optimal nanowire diameter to achieve 

maximum photons absorption. So far, apart from silicon nanowires and nanoholes array, there is 

little theoretical work focused on other nanostructures, which hinders the development of other 

nanowire array PV devices beyond silicon. In addition, to push the envelope of the photons 

collection, traditional concepts, such as antireflective coating, could also be incorporated in the 

nanowire array PV devices, even though the nanowire array itself could reduce the reflection.   

In term of charge separation and collection, coaxial nanocable array has demonstrated 

advantages over the axial and planar devices. Furthermore, controllability of doping 

concentration and homogeneity, which is curial in tuning the bandgap and the electrical 

properties of materials, has to be fully explored to achieve broader absorption spectrum and 

lower series resistance.  Additionally, novel device design is highly expected to reduce the shunt 

and contact resistance, which could further improve the charge collection.  

Currently, the lack of low-cost, large-size and high-quality nanowire array still remains an 

obstacle. Thus, more effort is required to explore new synthetic routes in order to obtain large-
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area nanowire arrays. Given the multiple functionalities of the nanowire and their possible 

coupling effects, such as piezoelectricity and thermoelectricity, the use of nanowire arrays for 

three dimensional PV applications is still a burgeoning field with outstanding potential. 



 

126 

Appendix:Copyright Permissions  

  
 



 

127 

 
 
 
 

 



 

128 

 

 

 



 

129 

VITA 

 
   Kai Wang was born in Kaixian County, Chongqing Municipality, China. In 1999, he attended 

Southwest Jiaotong University in Chengdu, China, where he received his Bachelor’s and 

Master’s degree in Materials Science and Engineering in 2003 and 2006, respectively. After 

that, he was employed as a visiting scholar in Advanced Materials Research Institute at 

University of New Orleans (UNO). In January, 2008, he joined the Ph.D program of 

Engineering and Applied Science in UNO and, under the guidance of Dr.Weilie Zhou, 

conducted research on nanostructured materials and devices for environment monitoring and 

solar energy harvesting 

 

 
 
 
 
 


	II-VI Core-Shell Nanowires: Synthesis, Characterizations and Photovoltaic Applications
	Recommended Citation

	Microsoft Word - 303142-text.native.1341507621.doc

