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Transmission ellipsometry on transparent unbacked or
embedded thin films with application to soap
films in air

R. M. A. Azzam

The ratio Pt = Tp/T, of the complex amplitude transmission coefficients for the p and s polarizations of a

transparent unbacked or embedded thin film is examined as a function of the film thickness-to-wavelength
ratio d/X and the angle of incidence 0 for a given film refractive index N. The maximum value of the

differential transmission phase shift (or retardance), At = argPt, is determined, for given N and X, by a simple

geometrical construction that involves the iso-k circle locus of Pt in the complex plane. The upper bound on

this maximum equals arctan[N - (1N)]I21 and is attained in the limit of grazing incidence. An analytical
noniterative method is developed for determining N and d of the film from Pt measured by transmission
ellipsometry (TELL) at (p = 45°. An explicit expression for At of an ultrathin film, d/X << 1, is derived in

product form that shows the dependence of At on N, , and d/X separately. The angular dependence is given

by an obliquity factor, fo(0) = 21/2 sino tan, which is verified experimentally by TELL measurements on a

stable planar soap film in air at X = 633 nm. The singularity of f at 4, = 90° is resolved; At is shown to have a

maximum just short of grazing incidence and drops to 0 at 4 = 900. Because N and d/ are inseparable for an

ultrathin film, N is determined by a Brewster angle measurement and d/X is subsequently obtained from At.

Finally, the ellipsometric function in reflection Pr is related to that in transmission Pt.

I. Introduction

I have shown previously1 that the thickness d and
optical properties (real and imaginary parts of the
complex refractive index n - jk or complex dielectric
function er - jEi) of an unbacked or embedded thin film
can be determined analytically by combined reflection
and transmission ellipsometry at a suitable angle of
incidence (AOI 2 45°). This is the only case that I
know of for which the inverse problem2 of obtaining
the three parameters (n,k,d) of an absorbing thin film
from ellipsometric data is solved without numerical
iteration.

In this paper I consider the special case of a trans-
parent (k,ei = 0) unbacked or embedded thin film.
Because only two film parameters (n,d) need be deter-
mined, transmission ellipsometry (TELL) alone
should suffice. And because the film is surrounded by
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transparent media of the same refractive index,
straight through TELL, without beam deviation, sim-
plifies the ellipsometer setup.

In Sec. II the behavior of the ellipsometric function
Pt = TP/T5, which is the ratio of the complex amplitude
transmission coefficients for the p and s linear polar-
izations parallel and perpendicular to the plane of
incidence, is studied by constructing its constant an-
gle-of-incidence contours (CAICs) and constant thick-
ness contours (CTCs) in the complex plane for a given
film refractive index. The CAICs provide a simple
geometrical interpretation of the maximum differen-
tial transmission phase shift, At = argpt, that can be
attained at a given AOI and the upper bound on that
maximum which occurs in the limit of grazing inci-
dence.

In Sec. III an explicit analytical method for deter-
mining n and d of the film from TELL at 450 AOI is
presented.

In Sec. IV a simple expression is derived for At of an
ultrathin film (d/X << 1, where X is the wavelength of
light) which is tested experimentally by performing
TELL on a stable soap film in air at different angles of
incidence and X = 633 nm.

Section V is a brief summary of this paper.
In an appendix the ellipsometric parameters in re-
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flection are related to those in transmission for the
same film at the same AOL.

11. Ellipsometric Function

Consider the transmission at an oblique AOI 0 of a
collimated beam of monochromatic or quasimonoch-
romatic light by a plane parallel thin film of thickness
d (medium 1) which is sandwiched between two trans-
parent media (denoted by 0) of the same refractive
index, Fig. 1. The film may be unbacked, such as a
soap film or a thin gold foil in air, or may be deposited
on a transparent substrate and immersed in an index
matching liquid. All media are assumed to be linear,
homogeneous, isotropic, and nonmagnetic. The
change in the state of polarization of light upon trans-
mission through the film is determined by the ellipso-
metric function t which is given by'

Pt = [(1 - r2)(1 - r2)][(1 - r2X)/(l - r2X)J, (1)

where

X = exp[-j47r(d/X)SJ,

S1 = (N2 - N2 sin2
k)/ 2 .

(2)

(3)

Ni and No are the refractive indices of the film and
surrounding medium, respectively, and rp and r are
the complex amplitude Fresnel reflection coefficients
at the ambient-film (0-1) interface for the p and s
polarizations, respectively.2

We will assume that

N1 > No sino,

p

d

t-

Fig. 1. Reflection and transmission of light by an unbacked or
embedded thin film at oblique incidence.
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Rep1.02.

~0.5 a

Fig. 2. Constant-angle-of-incidence contours (CAICs) of the trans-
mission ellipsometric function t for a glass film (N = 1.5) in air as a
coaxial family of circles in the complex plane. The angle of inci-

dence qk takes values from 10 to 800 in steps of 100.
(4)

so that total internal reflection does not take place at
the ambient-film interface, hence SI, rp and r are real
and X becomes a pure phase factor:

real under the condition given by Eq. (4)]. Thus each
circle CAIC is specified completely by its two points of
intersection with the real axis,

X = exp(-j27rr).

is the normalized film thickness,

= d/D, (6)

where
D = /2S1 (7)

is the AOI-dependent film thickness period.
For a given value of the relative refractive index
N = N 1/No, (8)

and a given AOL X, the locus of X, as his increased from
0 to 1 (or d is increased from 0 toDOk), is the unit circle in
the complex plane. Because t is related to X by a
bilinear transformations (BT), Eq. (1), its locus in the
complex plane, the so-called polar curve or CAIC, is
also a circle. 4 Figure 2 shows a family of CAICs for a
glass layer in air (N = 1.5) that correspond to discrete
values of k from 10 to 80° in steps of 10°. These circles
represent multiple images of the unit circle of X
through the BT of Eq. (1) whose coefficients vary with
40.

Each circle CAIC is centered on the real axis since
the substitution of X by X* (obtained by replacing by
1 - ) changes t to p* [the coefficients of the BT are

(9)

(10)P- = [(1 - r)/(l + r)]/[(l - r2)/(l + r)].

These points are denoted by A and B in Fig. 2 and
represent the images of the points X = +1 and X = -1,
respectively. Equation (9) corresponds to an invisible
film of integral multiple of the halfwave thickness ( =
m, an integer) and Eq. (10) applies to a film whose
thickness is an odd multiple of a quarterwave ( = m +
1/2). Point A is common to all CAICs which, there-
fore, become a coaxial family of circles.5 The term p-,
and the circle radius, increase monotonically with 0.
At normal incidence, 0 = 0, p- = 1 and the circle radius
is 0; i.e., pt dwells at 1 independent of film thickness, as
may be expected. We find that the grazing incidence
limit of p- = N2 = 2.25.

At a given 0, the maximum value, Atmax, of the differ-
ential transmission phase shift, At = argpt, is repre-
sented by the angle between the tangent line OTdrawn
from the origin 0 to the CAIC circle and the real axis.
From the simple geometry of Fig. 3, we have

tanAtmax = ICTI/IOTI = ICTI/(IoAIIOBI) 2 = ICTI/10B1112, (11)

where C is the circle center and IPQI represents the
length of the straightline segment joining any two
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Fig. 3. Geometrical construction for finding the maximum differ-
ential transmission phase retardance, Atmax, associated with the
passage of light through a transparent film (or dielectric slab) of a
given refractive index and at a given angle of incidence. See text.

a
&
&
(A

E

aaa
a.

0. ,ee " aa h e e e 60a e a. - a e s - -

Fig. 4. Maximum transmission phase retardance, Atmax, of a trans-
parent film or dielectric slab as a function of the angle of incidence 

for three values of the film refractive index: 1.5, 2.5, and 4.

points P and Q. From Eqs. (10) and (11), we readily
obtain

Atmax = arctan[(rl - r)/(1 - r'4)1/2(1 - r4)1/21. (12)

Figure 4 shows Atmax vs 0 calculated from Eq. (12) for N
= 1.5 (glass film in air), and for two other values of N =
2.5 and 4 (Ge film in air in the IR). These results agree
with those obtained by Holmes6 (based on a different
formulation) who suggested the use of a tilted dielec-
tric slab as a compensator for the analysis of polarized
light.

An advantage of the analysis of this section and the
construction of Fig. 3 is that it also leads to a simple
expression for the upper bound, Atmax, for the phase
retardance at a given N, which is attainable in the limit
of grazing incidence. In this case, ICTI = (N2 - 1)2,
and IOTI = N, so that

Atniax = arctan[N - (1/N)]/21. (13)

Figure 5 shows a graph of this function. It is evident
from this graph and from Eq. (13) that a 90° retar-

.a0a 1.0e 2.000 3.0e0 9.000 S.00
N

Fig. 5. Upper bound on the transmission phase retardance, Atmax,
in the limit of grazing incidence, for a transparent film or dielectric

slab as a function of the film refractive index N.

dance is impossible to realize, hence a single slab can-
not perform as a quarterwave compensator

The least normalized film thickness required to
achieve Atmax for a specified N and 0 is given by

r = (1/2ir) arc cos[(r2 + r2)1(1 + r2r2)] (14)

and is plotted vs 0 in Fig. 6 forN = 1.5,2.5, and 4, which
are the same values of N used in Fig. 4. Notice that r
remains virtually stationary with 0 from 0 = 0 up to
450 but descends steeply toward 0 as grazing incidence
is approached. Equation (14) may be obtained, with-
out performing any differentiation, by finding Pt at the
point of tangency T in Fig. 3, solving Eq. (1) for the
associated X,

X = [t(l - r2) - (1 - 2)][pr2(1 - r2) - (1 - rp)] (15a)

and determining D by P = -argX/271.
Before concluding this section, we show a comple-

mentary family of constant thickness contours (CTCs)
of the complex function pt of Eq. (1) for the same glass
film in air (N = 1.5). Ten such curves appear in Fig. 7
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where X is given by the right-hand side of Eq. (15a).
At a general AOI X, the resulting equation can only be
solved numerically by iteration. The procedure is
similar to that encountered in conventional ellipso-
metry of transparent thin films on transparent or ab-
sorbing substrates.2 8

Considerable simplification and an analytical solu-
tion are achieved at 450 AOI. At this special angle the
Fresnel interface reflection coefficients are interrelat-
ed by9 rp = r2, and Eqs. (15a) and (15b) reduce to

Fig. 6. Least normalized film thickness ¢, which is required to
produce the maximum phase retardance values indicated in Fig. 4,

plotted vs the angle of incidence Ak.

ImP

0 ~ X~ A 2

Fig. 7. Family of constant thickness contours (CTCs) of the trans-
mission ellipsometric function pt in the complex plane for a glass film
(N = 1.5) in air. The film thickness as a fraction of X/2 takes values

from 0.1 to 1 in steps of 0.1.

that correspond to setting m = d/(X/2) = 0.1 to 1 in
equal steps of 0.1. Each curve is generated by increas-
ing q from 0 (pointA) to 90 (pointB). The CTC form
= 1 shows a peculiar behavior and signals the onset of
more varied CTCs at larger values of m. For certain
values of m in the chosen range (e.g., at 0.4) the CTC
intersects the real axis and indicates the existence of an
AOI at which linearly polarized light is transmitted
linearly polarized through the tilted slab. For an opti-
cally thick film (e.g., m > 10), several such intersec-
tions with the real axis occur between A and B, indicat-
ing an oscillatory behavior of the phase retardance At
with . Such angles can be determined by a PSA
(polarizer-sample-analyzer) null measurement and
provide a unique characterization of the film refractive
index and thickness. The procedure is similar to one
described previously7 for determining N and d of a
transparent film on a transparent substrate from the
angles of incidence of zero reflection-induced elliptic-
ity and is not repeated here. Finally, Fig. 7 also indi-
cates that appreciable phase retardances At are possi-
ble only at certain film thicknesses (e.g., m = 0.1 and
0.7) which is consistent with Fig. 6.

Ip, - (1 + R5)I = IR2,- R,(1 + R2)I,

where
R. = 2

(16)

(17)

which is the intensity reflectance of the ambient-film
interface for the s polarization at 450 AOI. If we
substitute

pt = a + jb,

= tanipt(cosAt + j sinAt),

(18)

(19)

where It and At are the transmission ellipsometric
parameters, into Eq. (16), the following simple qua-
dratic equation is obtained:

-_ 2jR + 1 = 0,

in which

A = (a - )/[(a -1)2 + b 21.

The solution of Eq. (20) is

R = ± (A2 - 1)1/2,

(20)

(21)

(22)

and only the root for which 0 < R < 1 is accepted.
Finally, N is obtained from Rs by'

N = (1 + R.)' 12 /(1 + Rs'2 ) (23)

Once N is determined, we can go back to Eq. (15a)
and calculate complex X, and the film thickness d:

d = [-argX/(27r)] + mD, (24)

where m is an integer. Note that d can be determined
from a single TELL measurement at a single AOI only
up to an integral multiple m of the film thickness
period Do. To fix d unambiguously, measurement at a
second AOI or wavelength is needed.
IV. Transmission Differential Phase Shift of an Ultrathin
Film and the Experimental Verification of its Angular
Dependence for a Soap Film

The case of an ultrathin film with or (d/X) << 1 is of
particular interest. For such film, X = 1 - j27rt, to
first order in . Substitution of this linearized expres-
sion for X into Eq. (1) gives t = 1 + jiAt, where

At = 2 ,1r[r/(1 - r)] - [r(l -r)],

Ill. Explicit Inversion for N and d in Transmission
Ellipsometry

A separate equation for N alone is obtained by set-
ting

IxI = 1,

and the associated t = r/4, all to first order in .
Replacing rp and r by their standard expressions2 and
introducing dX instead of [Eqs. (3), (6), and (7)],
transform Eq. (25) into the more explicit form

(15b) At/(2r) = [(N1 - No)2 /2N 0NV2] (sing tanq)(d/X).

2804 APPLIED OPTICS / Vol. 30, No. 19 / 1 July 1991
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Fig. 9. Transmission phase retardance, At, at large angles of inci-
dence, 80 < P < 900, for a glass film (N = 1.5) with dIA = 0.01 in air.
Instead of the singularity predicted by the obliquity factor, Eq. (28),
At reaches a maximum at an angle ~Io away from grazing incidence

and drops to O at exactly 0 = 900.

to this index factor, a Ge thin film (N = 4) produces an
20 times larger differential transmission phase shift

than a glass film (N = 1.5) for the same d/X (which is <<
1) at 450 and over most of the range of 0(0 < 0 < 750).
Values of N < 1 are allowed in Fig. 10 to represent the
situation of partial internal reflection.

For an ultrathin film, such as the molecular bilayer
soap film, variable angle TELL does not permit the
separation ofNand d/X, as is evident from Eq. (26). In
essence, measurement at one angle foretells the results
of measurements at other angles, as the obliquity fac-
tor dictates. One way to determine N separately is to
measure the Brewster angle B of minimum p reflec-
tance. For the soap film in air this gives bB = 55.78°
and N = 1.47. (TELL at q5B provides an extra point at
that angle that appears in Fig. 8.) From this value of N
and the measured At (e.g., 0.350 at 450 AOI), d/ is
estimated using Eq. (26) to be 4.41 X 10-3; hence d =
2.8 nm and the molecular dimension = 1.4 nm.

In the foregoing analysis, the uniaxial optical anisot-
ropy or birefringence of the soap film, caused by the
molecular orientation in the direction normal to the
film boundaries, is neglected.

0:
N

N

a

N

LI

45. 0 50 0 ' 0 60 0 65, 0 2 60 0 25. 0 80. 0 05. 0

Fig. 8. Obliquity factor f(0) as a function of the angle of incidence
0. The continuous line is calculated from Eq. (28), whereas the
points marked by X are obtained from ellipsometric measurements
of the transmission phase retardance of a stable planar soap film in

air at X = 633 nm.

8

0oThe proportionality of At with d/X is anticipated.
To emphasize the angular dependence of At, we in-

troduce an obliquity factor defined by

(27)

(28)

to(0) = A)/t(45),

= 21/2 sino tano.

We tested the validity of this theoretical expression,
Eq. (28), by performing TELL on a stable planar soap
film10 in air. The film is supported by a small-diam
(-1 cm) copper 0 ring and null ellipsometry is carried
out at multiple angles of incidence, q5 = 45, 50, 60, 70,
80, and 850, using a 633-nm He-Ne laser as a source and
a Gaertner ellipsometer arranged in the straight
through configuration. The results appear in Fig. 8 in
which the continuous line represents Eq. (28) and the
crosses (X) are the experimental points. The mea-
sured absolute values of At at 45 and 850 are 0.35 and
5.59°, and the theoretical and experimental values of
the obliquity factor f (850) are 16.10 and 15.97, respec-
tively. The agreement of theory and experiment is
satisfactory.

A peculiarity of Eq. (28) is that it predicts a singular-
ity at grazing incidence. Such a singularity does not
exist; it merely indicates the failure of the linear ap-
proximation in the immediate neighborhood of grazing
incidence. In fact, At reaches a maximum near grazing
incidence before it drops to 0 at exactly 0 = 90°. The
true behavior of At with 0 at large angles (80 < 5 900)
is illustrated in Fig. 9 for a thin film with N = 1.5 and dl
X = 0.01 and is calculated based on the exact Eq. (1).
Maximum At occurs at 1° away from grazing inci-
dence and has a value of 22.5° or the equivalent of 1/
16th wave.

The dependence of At on the refractive index of the
film N (assuming that light is incident from air, No = 1)
is given by the factor

f&(N) = [At(45)/2r]/(d/A), (29)

= (1/215 )[N - (1N)] 2 , (30)

and is plotted as a function of N in Fig. 10. According

1 July 1991 / Vol. 30, No. 19 / APPLIED OPTICS 2805



(Al)p, = G(NO)pt,

where

G(N,O) = (rp/r,)[(I - r)/(1 - r2)] (A2)

is real because we have excluded total internal reflec-
tion. In the Nebraska (Muller) conventions," which
we follow, G < 0 for 4 < B and G > 0 for 0 > fB, where
OB is the Brewster angle. Consequently, from Eq.
(Al), the reflection phase retardance Ar is simply relat-
ed to the transmission phase retardance At by

Ar = At 7r, 0 < B,

Ar = At, 95 > FIB.

(A3)

(A4)

Thus, for an unbacked or embedded transparent thin
film, Ar and At are not independent and it suffices to
measure only one of them.' 2 The retardance At is
easier to measure because the transmitted beam is
more intense and passes through the film with no
angular deviation. The diattenuations in reflection
and transmission are related by

tankr = IGI tanPt, (A5)

IW O 55t 5 .a 2 5. 3.1 z N 4

Fig. 10. Index factor, Eq. (30).

V. Summary

5. 1tt

A transparent unbacked (pellicle) or embedded thin
film provides an interesting object for transmission
ellipsometry (TELL). TELL alone (with no measure-
ments in reflection) is sufficient to determine the re-
fractive index and thickness (N, d) of the film. An
explicit analytical method for determining N and d
from TELL at 450 incidence is given. An expression
for the transmission phase retardance At in light pass-
ing through an ultrathin film (d/A << 1) is derived in
product form that clearly separates the dependence of
At on incidence angle 4 (an obliquity factor that varies
as sino tano) and film index N. TELL measurements
on a stable soap film in air have confirmed the validity
of the theoretical obliquity factor. Variable angle
TELL on an ultrathin film does not permit the separa-
tion of N and d/X. However, this ambiguity is easily
resolved by a Brewster angle measurement of N. (Al-
ternatively, combined reflection and TELL can be
used as described in Ref. 1.) Finally, the relations
between the ellipsometric parameters of reflection and
transmission by the same film at the same angle are
given in the following appendix.

Appendix

The ratio of complex reflection coefficients for the p
and s polarizations Pr is related to Pt byl

where Vi = arctanlpil (i = r or t) is the second ellipsome-
tric parameter, as usual.
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