
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

8-5-2010

Dynamic Behavioral Analysis of Malicious Software with Norman Dynamic Behavioral Analysis of Malicious Software with Norman

Sandbox Sandbox

Danielle Shoemake
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Shoemake, Danielle, "Dynamic Behavioral Analysis of Malicious Software with Norman Sandbox" (2010).
University of New Orleans Theses and Dissertations. 1233.
https://scholarworks.uno.edu/td/1233

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ The University of New Orleans

https://core.ac.uk/display/303943906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1233?utm_source=scholarworks.uno.edu%2Ftd%2F1233&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Dynamic Behavioral Analysis of Malicious Software
with Norman Sandbox

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Danielle Shoemake

 B.S., University of New Orleans, 2003

August 2010

ii

© 2010, Danielle Shoemake

iii

Acknowledgements

I owe the deepest gratitude to my thesis adviser, Dr. Daniel Bilar, for his encouragement,

guidance, and support. His enthusiasm in the research area of malicious software was
motivational and made this thesis a pleasure. I am also grateful for the time and input
contributed by my other committee members, Dr. Shengru Tu and Dr. Golden Richard III.

I want to give a special thanks to Dr. Jaime Nino for giving me such an amazing and
solid programming foundation and to Dr. Shengru Tu, Dr. Nauman Chaudhry, and Dr. Vassil
Roussev for their teachings in databases, distributed systems, and concurrent programming, as
these are the areas I plan to pursue.

I want to express my sincere appreciation to staff members Fareed Qaddoura and Jeanne
Boudreax. Fareed was readily available to me for lab and network support while Ms. Jean stayed
on top of my paperwork to ensure that I would not fall through the cracks.

I am indebted to Mr. Matt Allen of the Norman Sandbox & Technology team. Without
the use of the Norman Sandbox Analyzer, this thesis would not have been possible. I would also
like to thank the team members at VX Heavens. Without their large malicious software
contribution, I would most likely still be searching for samples!

Finally, I thank my mother and step-father, friends, and coworkers for their support and
assistance throughout the duration of my thesis and coursework.

iv

Table of Contents

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

ABSTRACT ..VIII

CHAPTER 1 – INTRODUCTION ... 1

Time Frame of a Virus Definition Update .. 2

Signature-Based Matching Method .. 3

Behavioral Heuristics Mechanisms ... 4

CHAPTER 2 – RELATED WORK.. 7

CHAPTER 3 – DESIGN AND IMPLEMENTATION ... 9

Overview of Approach .. 9

Setup 10

Samples .. 10

Generating System Interaction Logs ... 11

Creating the Behavior Database ... 13

Parsing Interaction Logs into the Database ... 16

CHAPTER 4 – BEHAVIOR EXTRACTION ... 19

Single Behavior Analysis ... 19

Pattern Behavior Analysis ... 20

CHAPTER 5 – STATISTICAL ANALYSIS... 24

Single Behavior Findings .. 24

v

Bayesian Inference ... 28

Discussion .. 31

CHAPTER 6 - FUTURE MALWARE ... 33

APPENDIX A: DEFINITIONS ... 34

APPENDIX B: SAMPLE LOG PRODUCED BY NORMAN SANDBOX ANALYZER 39

APPENDIX C: EXAMPLE AND EXPLANATION OF AN ORACLE EXPLAIN PLAN 41

APPENDIX D: PARSER CODE ... 43

APPENDIX E: COMBINATION GENERATOR .. 50

APPENDIX F: BEHAVIOR COUNTING SCRIPTS .. 52

BIBLIOGRAPHY ... 54

VITA... 56

vi

List of Figures

1 Goods and services available for sale on underground economy servers 1

2 New malicious code threats for 2008 ... 2

3 Graphical representation of multiple execution paths ... 8

4 Screenshot of the Norman Sandbox Analyzer ... 13

5 Diagram of ‗Behavior Database‘ ... 14

vii

List of Tables

1 Number of Malicious Software samples in their respective classes 11

2 Log extraction example... 17

3 Top 15 behaviors and probabilities that given class CApp, single behavior B is observed 24

4 Comparison of the top 4% behaviors of CApp with the other 5 classes 25

5 Comparison of the top 2% behaviors of CWorm with the other 5 classes 25

6 Comparison of the top 7% behaviors of CTrojan with the other 5 classes 26

7 Comparison of the top 10% behaviors of CVirus with the other 5 classes................................ 26

8 Comparison of the top 9% behavior of CDOS with the other 5 classes 27

9 Comparison of the top 9% behavior of CAPT with the other 5 classes 27

10 Behavior used for testing class membership .. 28

11 Given a class of programs, the probabilities we saw a behavior ... 29

12 Class probabilities in our 2000 samples... 29

13 For behavior B3, probability of class membership given execution of an unknown
 program .. 30

14 Probabilities that an unknown program, given a behavior, belongs to a class. Rows
 some up to 100% ... 28

viii

Abstract

Current signature‐based Anti‐Virus (AV) detection approaches take, on average, two weeks
from discovery to definition update release to AV users. In addition, these signatures get stale
quickly: AV products miss between 25%‐80% of new malicious software within a week of not
updating. This thesis researches and develops a detection/classification mechanism for
malicious software through statistical analysis of dynamic malware behavior.

Several characteristics for each behavior type were stored and analyzed such as function DLL
names, function parameters, exception thread ids, exception opcodes, pages accessed during
faults, port numbers, connection types, and IP addresses. Behavioral data was collected via
Norman Sandbox for storage and analysis.

We proposed to find which statistical measures and metrics can be collected for use in the
detection and classification of malware. We conclude that our logging and cataloging procedure
is a potentially viable method in creating behavior‐based malicious software detection and
classification mechanisms.

Keywords: signature, behavior, Norman, sandbox, malicious software detection

1

CHAPTER 1 – INTRODUCTION

The current trend for the purpose of writing malicious code is that the resulting attacks involve
extracting confidential financial information from their victims. The information is used for
monetary gain by the attacker; thus affecting victims financially, rather than solely disrupting the
function of their computer systems, as was the aim of the past. The figure below shows the
prices at which confidential information can be sold. Profitability is the driving force inviting
newcomers to associate themselves with the creation and distribution of malicious software. [1]

Figure 1 - Goods and services available for sale on underground economy servers

Data collected by Symantec shows that in 2008, 78 percent of confidential information threats
exported user data and 76 percent of confidential information threats used a keystroke-logging
component to steal information such as online banking account credentials. The financial
services sector had the most identities exposed due to data breaches. The average cost of a data
breach, in 2008, was $6.7 million. Total number of malicious threats detected by Symantec in
2008, was 1,656,227. As shown in the chart in figure 2, the number of new threats has
drastically increased and at an alarming rate. The number of threats discovered in 2008 account
for 60 percent of total threats since 2002. [1]

As long as there are people, computers, an accessible internet, and with all three components
growing; there may never exist an absolute solution that will rid the world of malicious software.
We can, however, look for new methods to contain the problem and minimize damages.

2

Figure 2 - New malicious code threats for 2008

Time Frame of a Virus Definition Update

Typical scenario with current signature matching technique:

A bank employee receives a Trojan containing a key-logger via an email-worm that appears to
the employee to be an application accompanying a joke that was also part of the email. It seems
safe because it was sent from a friend. The employee has all of the other employees of her bank
branch in her contacts list, several from other branches, and several friends that work for other
companies. The malware immediately replicates itself and is sent to everyone in the employee‘s

contacts list. Once downloaded by each new victim, the email-worm does the same process with
contact lists on their machines. Within a few days, the malware has spread itself to thousands of
computers.

At least one employee notices that the application is suspicious and forwards it to the security
and IT departments of the bank. By the time the IT department analyzes the application,
customers have begun to call in to customer service about missing funds from their accounts.
The bank‘s IT department begins their standard process for removing malicious software from

infected computers while the software department of the bank begins to develop a patch that will
prevent future attacks of the virus. Meanwhile, the email-worm is still spreading the Trojan, as
there has not yet been an update to AV virus definitions.

3

Eventually, AVs are wise to the new threat. Within a few days, the anti-virus developers have
updated their virus definitions to include signatures for the new malware. They push out the
update to their users. Not all computer users receive automatic updates or use anti-virus
software; so unfortunately, the email-worm is not yet completely put to rest.

On average, two weeks will elapse during this cycle before AVs have pushed out releases for
new virus definition updates. [2] Consider the number of bank transactions that occur in two
weeks time by one bank teller, let alone the rest of the branch and the other banks and companies
that could be infected as in the given scenario. This is two weeks merely to begin the process of
slowing down the financial-trauma laden attacks and is not nearly enough to minimize damages
at a satisfactory level.

This snail‘s pace practice is motivated by what is known as the signature matching method.

Signature-Based Matching Method

Signature matching is used to identify malicious software by most AV products.

―Writing virus signatures—the classic mechanism for detecting and stopping
threats—is analogous to using fingerprint matching to catch criminals. If you‘re

looking for a known criminal who has a fingerprint on file, it‘s a perfect system. If

you don‘t have their fingerprint yet, this traditional ‗blacklisting‘ mechanism isn‘t

effective.‖ [3]

A signature is a pattern that identifies malicious software and can be created from a piece of code
or a hash. The fragment is used as an identifier for the entire malicious program. Once stored in
memory, the fragment will look something like this example:

C3 7C FD 1D 31 C0 6F OF 96 18 A4

The rationale underlying these character patterns is that they are more likely to be encountered
when analyzing malicious software rather than innocent programs. Hundreds of thousands of
these signatures are stored in local AV databases. An AV scanning engine then tries to match
pre-defined file areas against this signature database. These areas are typically located at the
beginning and the end of the file and after the executable entry point of a program.

Malicious code can be tweaked to make the byte pattern mismatch. Generic matching was
introduced to add some ‗fuzziness‘ to the signature in order to catch malicious software that is

4

slightly altered so as to evade the stricter matching. Using the example above, the second, third,
fourth and ninth bytes are replaced with a wildcard denoted by ‗??‘:

C3 ?? ?? ?? 31 C0 6F OF ?? 18 A4

For example, the strings below would both match the above:

C3 99 A0 BB 31 C0 6F OF 77 18 A4

C3 A1 22 00 31 C0 6F OF FF 18 A4

 The problem with casting a wider net to catch ‗bad‘ programs is that ‗innocent‘ (non-malicious)
programs may be identified incorrectly; in other words, there is an increase in the false positive
rate. [4]

Behavioral Heuristics Mechanisms

Behavioral heuristics is the notion of how a given software program interacts with its embedded
environment. For instance, a program may interact with a file system (by opening, creating or
deleting a file) or the network (opening a connection to a server or setting up a receiving server).
These and other interactions of the program can be monitored in what is called a ‗sandbox‘. A

sandbox is a controlled, instrumented container in which the program is run and that records how
it interacts with its environment. [4] A sample sandbox output is set out below:

Some general information about the file is shown and that a message box with the caption
‗sample‘ and message ‗tikkun olam!‘ is displayed on the screen.

[General information]

* Display message box (sample) : sample, tikkun olam!

* File length: 18523 bytes.

* MD5 hash: 1188f67d48c9f11afb8572977ef74c5e.

 Here shows that the action of the program is to delete a file and recreate one with the same
name, kern32.exe.

[Changes to filesystem]

* Deletes file C:WINDOWS\SYSTEM32\kern32.exe.

* Creates file C:WINDOWS\SYSTEM32\kern32.exe.

This entry makes the file kern32.exe run when system startup begins as the computer is switched
on.

5

[Changes to registry]

* Creates key

"HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce".

* Sets value "kernel32"="C:WINDOWS\SYSTEM32\kern32.exe -sys" in

key " HKLM\Software\ Microsoft\Windows \CurrentVersion\RunOnce".

The system is instructed to intercept the strokes used on the keyboard and pass it on to a custom
function.

[Changes to system settings]

* Creates WindowsHook monitoring keyboard activity.

The program connects to a server at address 110.156.7.211 on port 6667, a typical port for
Internet Relay Chat (IRC) chat server, logs in and joins a chat channel.

[Network services]

* Connects to "110.156.7.211" on port 6667 (TCP).

* Connects to IRC server.

* IRC: Uses nickname CurrentUser[HBN][05].
* IRC: Uses username BoLOGNA.

* IRC: Joins channel #BaSe_re0T.

In the example above, interactions occur with the file system, the Windows registry (the internal
Windows database) and the establishment of a TCP network connection to an IRC chat server.
Connecting to a chat server is anomalous enough behavior that it should raise a concern that
something is not correct. Taken together, this set of activities is consistent with the suspicious
program being a bot, connecting to a botnet through the IRC server. [4]

 AV signature databases quickly go out-of-date. After failing to update signatures for one week,
the best AV tested missed between 26 and 31 per cent of the new malicious software, the worst
missed upwards of 80 percent. [2]

It is possible to derive a ‗behavioral signature‘ as opposed to the byte-value approach discussed
earlier. Some AVs are already employing this technique by attempting to stop a running
program that has tried to execute some particular behavior, with ―running‖ being the operative

term as to why this technique has not made significant miracles. The AV would not be aware of
the suspicious dynamic behavior until the moment of occurrence. While some AVs attempt to
‗undo‘, the program may have gotten far enough along in its processes to do irreparable damage.

AVs will look for obviously suspicious behaviors such as a registry change or file replacement.
These ―obviously suspicious‖ behaviors are most likely, at least in part, the malevolence of the

malware which is what makes it so obvious. But what about the shy, nondescript behaviors that
are not very noticeable, yet still play some part, even if diminutive? They are not easily

6

recognizable as suspicious nor are they obviously harmful. Sometimes they are part of Windows
libraries and are even more hidden by the fact that they also occur as menial tasks in non-
malicious software.

From the logging and cataloging approach we will take in this thesis, we propose that we will
find various avenues for which statistical measures and metrics can be collected for use in the
detection and classification of malware. We anticipate finding not only those behaviors that are
obviously suspicious, but also those prevalent in certain classes that are not typically considered
suspicious. We may also find interesting and usable trends based on the details of a behavior
such as the library it belongs to or the parameters associated with it. From this preliminary
assessment, if positive results are discovered, we hope to be able to conclude that new behavior-
based mechanisms, possibly involving the integration of a sandbox to work in conjunction with
AVs, can be used to stop the execution of malicious software before it begins any of its processes
and to aid in the classification of malware.

The rest of this thesis is organized as follows: Chapter 2 gives an overview of related work.
Chapter 3 delves into the design and implementation of the Norman data generated database.
Chapter 4 shows how we extracted behavioral patterns. Chapter 5 does Bayesian inference on
these results and Chapter 7 shows some malware on the horizon that may be immune to the
approach taken in this thesis.

7

CHAPTER 2 – RELATED WORK

Dynamic malware investigations were undertaken by Rozinov (2005), Ries (2005), and Bilar
(2007): Bayer and Ries‘ behavioral analysis ran the malware dynamically in a sandbox, recorded
security-relevant Win32 API calls, and constructed a syscall-based behavioral fingerprint for
malware identification and classification purposes. Rozinov, on the other hand, located calls to
the Win32 API in the binary itself. While Ries and Bayer recorded the system calls of the
malware dynamically during execution, Rozinov statically disassembled and simplified the
malware binary via slicing, scanned for Win32 API calls and constructed an elaborate Finite
State Automaton signature for later detection purposes. [10, 11, 12]

Graph-based structural approaches gained some traction when in 2005, Dullien proposed a
simple but effective signature set to characterize statically disassembled binaries: every function
in the binary was characterized by a three-tuple (number of basic blocks in the function, number
of branches and number of calls). These sets were used to compare malware variants and
localize changes. Bilar examined the static callgraphs of 120 malicious and 280 non-malicious
executables. He fitted Pareto models to the in-degree, out-degree, and basic block count
distributions, and found a statistically significant difference for the derived power law exponent
of the basic block count fit. He concluded that malware tended to have a lower basic block count
than non-malicious software, implying a simpler structure: Less interaction, fewer branches and
more limited functionality. [13, 14]

More recently (2008), Holz presented a system that classifies unknown malware samples based
on their behavior. A particular limitation is that the system requires supervised learning, using a
virus scanner for labeling the training set. [15] Lee developed a system for classifying malicious
software samples that relies on system calls for comparing executables. The scalability of the
technique is limited as the system required several hours to cluster a set of several hundred
samples. Also, the tight focus on system calls implies that the collected profiles do not abstract
the observed behavior. [16]

Leita suggest classifying malware based on the epsilon-gamma-pi-mu model. In this model,
additional information on how the malware is originally installed on the target system is
considered for classification. This can include information on the exploit and exploit payload
used to install the malware dropper and on the way the dropper in turn downloads and installs the
malware. [17]

As the use of a sandbox for dynamic behavior analysis becomes more and more prominent, so
does the examination of their abilities and usefulness. One item for which inquiries are regularly

8

expressed is that a sandbox will typically only utilize one execution path. That is, if a set of
instructions (or code) includes conditional sections based on mutable program variables, in most
cases there are situations in which multiple paths could be taken. The following is a graphical
representation:

Figure 3 – Graphical representation of multiple execution paths

Because of the possible variance in execution paths, many feel that a sandbox does not give a
true representation of what is happening between the program and system. While it can be
argued that the ultimate goal of malicious software will usually be carried out regardless of how
it gets from A to Z, there is current research to incorporate these multiple execution paths into
the sandbox technology so that a deeper dynamic analysis may be performed. The prototype for
this research uses a state capturing mechanism so that the states, at different points during
execution, can be recorded and compared after various execution paths have been forced [18]

Similarly, symbolic execution of programs as described by Brumley was proposed with the goal
of observing more than a single execution path and in particular to detect trigger-based behavior
in malware. [19]

9

CHAPTER 3 – DESIGN AND IMPLEMENTATION

Overview of Approach

System interaction logs were collected from malware using a Norman sandbox. Data from the
logs was parsed into a database in a manner such that all information is query-able and
essentially, a log could be rebuilt from its parts. From this data, counts of occurrence of
behaviors were taken per classification and per software (See the example below). From a list of
behaviors found, all possible behavior sequences (with length 3) were generated, stored, and
occurrences also counted per classification and per software.* Statistical analysis was performed
from the data counts and also on several other factors such as how often exceptions and page
faults occur within malware versus non-malicious software.

For the purposes of this paper, a ―behavior‖ is a single entity that describes an action that may

occur on a system. Behaviors can represent function calls, exceptions, page faults, port
connections, socket bindings, send to port calls, and open network calls.

Example of a function call behavior:

KERNEL32.CreateProcessA()

A system interaction is the actual event of a behavior interacting with a system; some catalyst
has caused a particular behavior to be executed on a system. The parts that comprise an
interaction make it unique: software that called or caused the behavior, the order of its
occurrence, and its parameters if there are any.

Example of a system interaction:

Agent.bz:KERNEL32.CreateProcessA

("C:\WINDOWS\MsgNet32.exe",NULL,0x00000000,0x00000000,0x00000000

,0x00000000,0x00000000,NULL,0x00000000,0x00000000)

*Per the combination formula: n! / r! (n - r)!, there are a total of 1,435,853,825 possible behavior
patterns when evaluating patterns using a set of 2,051 behaviors and with a length of three
behaviors. Due to resource constraints, the combination generator was stopped when it reached
304,999,878 patterns. This is further addressed in the Future Work section of this paper.

10

Setup

Initial processing (parsing interaction logs into the database) was done with a Dell Studio laptop
running Microsoft Windows Vista Home Premium Edition with Service Pack 2. The laptop has
an Intel® Core™2 Duo CPU P8600 @ 2.40GHz. VMware Player Version 2.5.3 build-185404
running Windows XP SP3 was used in conjunction with this machine for the handling of
malware so that the machine would not be infected.

Secondary processing (analysis of stored database data) was done with a Dell Precision
WorkStation T3400 running Microsoft Windows 7 Enterprise Edition. It has an Intel® Core™2

Quad CPU Q9550 @ 2.83GHz.

Samples

Malicious software samples were found in binary form in an online database titled VX Heavens
at http://vs.netlux.org. Initially, 67,000+ files were obtained with filename format:
OS.Classification.MalwareName.version; example: Win32.Worm.Agent.az. Files were first
filtered by operating system to only include those for Windows 32. The remaining 11,581
binaries were sorted into directories by the following twenty-seven malware classifications:
Backdoor, DoS, Email-Flooder, Email-Worm, Exploit, Flooder, IM-Flooder, IM-Worm, IRC-
Worm, Net-Worm, Nuker, P2P-Worm, Rootkit, SMS-Flooder, Sniffer, Spam-Tool, Spoofer,
Trojan, Trojan-DDoS, Trojan-Clicker, Trojan-Downloader, Trojan-Dropper, Trojan-Notifier,
Trojan-Proxy, Trojan-Spy, Virus, and Worm. Definitions for each class can be found in the
Appendix.

Similar classes were purposefully not lumped together so that specific analysis could be done
when warranted. For general analysis, classes can easily be grouped together however they are
needed. In many cases, there were several (sometimes as many as 100) versions of software
with the same name. The API logs of all versions were included when cataloging into the
database, but to limit duplication and to have a more reasonable sample size for analysis, each
class was further filtered by only using one version of each. The versions used were selected by
finding those that utilized the most behaviors. For example, if version A required the use of 50
behaviors but version B used 75 behaviors; then version B was selected for analysis. After all
filtering, there were a total of 2459 samples that are represented in the following table. For
analysis, the classes were combined into Application, Worm, Trojan, Virus, DoS, and Advanced
Persistent Threats.

http://vs.netlux.org/

11

Backdoor DoS Email Flooder Email Worm Exploit Flooder IM Flooder

27 143 1 9 2 2 57

IM Worm IRC Worm Net Worm Nuker P2P Worm Rootkit SMS Flooder

37 75 57 118 181 9 27

Sniffer Spam Tool Spoofer Trojan Trojan DDoS Trojan Clicker Trojan Downloader

13 9 3 183 63 33 5

Trojan Dropper Trojan Notifier Trojan Proxy Trojan Spy Virus Worm

203 31 69 267 358 147

Table 1: Number of Malicious Software samples in their respective classes.

Non-malicious software was obtained by scanning several Windows 32 systems for executable
files. A total of 1557 samples were found, logged, and catalogued into the database but only 340
were utilized after using the same filtering techniques that were done for malware.

Generating System Interaction Logs

In order to catalogue the behaviors of software, a method had to be selected that would log each
and every interaction between each of the executables and the system. This method would have
to prevent the system from being infected by malware and could hopefully be incorporated into
the future use of this research. There were two options considered: the first was to execute the
software in a virtual machine with an API call logger running within the virtual machine, while
the second was to execute the software within a Norman sandbox. Using a Windows virtual
machine allows a greater degree of control of the environment since it is more like a true to life
system versus the simulated Windows environment of a sandbox. It was decided however, that
less control and constant variables were more desirable.

The dependent variables, the interactions reported in an API log, should only be affected by the
independent variables, in this case, the executed software. While a VM offers more control of
the environment, allowing the manipulation of settings (i.e. installing or running other software)
per software creates a less controlled environment, as in a controlled constant for testing. If one
could guarantee that all altered settings remained exactly the same for all software that is
executed, this might be acceptable. However, there is software that will not run to completion
when it discovers that some other particular software is present, and will then usually wait for a
user response as in this example, ―Setup cannot continue because this version is incompatible

with a previously installed one.‖ The API log to represent this situation would report this
message to the screen and then stop, instead of reporting the installation or whatever the program
was trying to do before discovering the other software. For this example, the older version
would first need to be removed, which creates a change in our controlled variable and is a cause
for all software to be retested with this change. Keeping the system constant will ensure that all

12

trials of the investigation are equally impacted by the controlled variables, therefore allowing one
to see the impacts of the independent variable on the dependent variable.

The Windows API calls that are used to prepare for and to seek out those external files will be
logged and that will be sufficient. With the notion of using constant variables when logging
behavior, the behavior that occurs while executing in the sandbox can be representative of any
Windows 32 system regardless of the programs that are installed (as long as its Windows 32 files
exist as they were originally installed).

Therefore, the Norman sandbox was chosen to generate the system interaction logs; it simulates
a clean install of Windows and operates exactly the same for all software, regardless of the type
of system the sandbox is running on. The Norman sandbox comes with API logging features and
saves the step of having to design our own. It shows each interaction in the order of occurrence,
including its parameters when they exist. Another highly valued feature of the sandbox was that
it allowed batch running of directories. This was considerably attractive feature on account of us
wishing to log and store all 11,581 malicious and all 1557 non-malicious software samples,
which resided in only 28 directories, one for each class.

Using the Norman Sandbox Analyzer consisted of the following steps:

1. Select Browse button and choose a directory for batch processing.
2. Select the Start button.
3. Once notified of completion, find the temp directory where logs are stored.
4. Copy logs into a new location, as they will be overwritten when processing the next batch

directory.

13

Figure 4 – Screenshot of the Norman Sandbox Analyzer

For an example of an API log generated by the Norman Sandbox Analyzer, please refer to the
appendix.

 Creating the Behavior Database

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 was chosen for its parallel threading
feature. In-memory parallel execution harnesses the aggregated memory in a system to enhance
query performance by minimizing or even completely eliminating the physical I/O needed for a
parallel operation. Oracle automatically decides if an object being accessed using parallel
execution benefits from being cached in the SGA (buffer cache). The decision to cache an object
is based on a well defined set of heuristics including size of the object and the frequency that it is

14

accessed. In an Oracle RAC environment, Oracle maps fragments of the object into each of the
buffer caches on the active instances. By creating this mapping, Oracle knows which buffer
cache to access to find a specific part or partition of an object to answer a given SQL query. In-
memory parallel query harnesses the aggregated memory in a system for parallel operations,
enabling it to scale out with the available memory for data caching as the number of nodes in a
cluster increases. This new functionality optimizes large parallel operations by minimizing or
even completely eliminating the physical I/O needed because the parallel operation can now be
satisfied in memory. [6]

In creating the database schema, the goal was to have a database that would treat behaviors
generically. It was hoped that all behavior types would be captured during sample processing,
although initially, some types were unknown. More literally speaking, it was known that there
would be function calls, while there was no certainty for the others. If there was a table per
behavior type (an obvious 3NF schema); upon reaching a new type, processing would have to
stop and the user would need to be notified that a database change was required before
processing could resume. Specifically, a new table would have to be created each time a new
type was discovered. It was also necessary to maintain Third Normal Form (3NF) so that each
piece of data was query-able and also extendible; extendible in this case meaning that the value
could be used as a foreign key column if it was decided to include more information later.
Another design factor: No certain number of parameters could be assumed for any type, as this
too could cause an error during processing as well as it would result in a very large number of
empty (null) fields. To avoid the problems explained above, the schema was designed as
follows:

Figure 5 – Diagram of ‘Behavior Database’

15

Each behavior was stored once in the Behaviors table which has a one-to-many relationship to
the Behavior Details table. This arrangement was done in order to allow a behavior to have
multiple details, while at the same time, avoiding numerous empty (null) fields. Behavior details
are pieces of information that the sandbox provided with the behavior name to describe that
behavior, such as a library name. The empty fields would have been an issue if the Behaviors
table had been setup to include multiple columns for details, also for which, some random
number of columns would to be selected that would hopefully be enough for all types of
behaviors. It was found that for the data collected, each behavior type required no more than one
detail; but the described approach does avoid null space and keeps in line with the expandability
objective. The Behavior Types descriptive table was also included to maximize saved storage
space. For visual understanding, an example:

Behaviors

Behavior Types

BEHAVIOR_ID TYPE_CODE BEHAVIOR_NAME

TYPE_CODE TYPE_NAME

248 F CopyFileA

F Function

Behavior Details
 BEHAVIOR_DETAIL_ID BEHAVIOR_ID BEHAVIOR_DETAIL_TYPE BEHAVIOR_DETAIL_VALUE

657 248 DLL KERNEL32

The Interactions table is the pivotal part of the schema. Each record of this table directly
correlates to a line of an interaction log. Software_id stores a foreign key that references the
software currently being processed. Behavior_id references the particular behavior executed and
interation_order is the order in which it occurred as reported by the Norman sandbox.

The Interactions Details table was, much like the Behavior Details table, created to avoid having
empty parameter columns that would have resulted from having to randomly guess a maximum
number of parameters and making a column for each. There is no way of knowing how many
columns to use as there is no set maximum for parameters. For each Interactions record
containing one or more parameters, an Interactions Details record was created. The table is
called Interaction Details versus Parameters because not all interactions include a behavior type
that has associated parameters; some include other details such as exception fault codes. In the
Interaction Details table, interaction_id is the reference to the Interaction for which it is
associated. Int_detail_type and int_detail_value are similar to the detail type and value columns
of the Behaviors table. For an Interaction record containing a function call, the associated
int_detail_type is ―Parameter‖ and the int_detail_value is the value of the parameter.
Int_detail_order simply numbers the parameters in the order that they occur within the function.

16

Example:

Interactions

 INTERACTION_ID SOFTWARE_ID BEHAVIOR_ID INTERACTION_ORDER

9383 102 248 8725

Interaction Details

 INTERACTION_DETAIL_ID INTERACTION_ID INT_DETAIL_TYPE

28149 9383 Parameter

28150 9383 Parameter

28151 9383 Parameter

Interaction Details Continued

 INT_DETAIL_VALUE INT_DETAIL_ORDER

"C:\sample.exe" 1

"C:\WINDOWS\MsgNet32.exe" 2

0xFFFFFFFF 3

Parsing Interaction Logs into the Database

The code for this process was written in Java using JDBC and can be found in the Appendix.
The filename and lines of a log look similar to the following. There is one line to represent each
behavior type found. Line numbers were added for readability and correlate to the line numbers
of table _. This table shows how each piece will be parsed into the database by matching value
to table and column name. Note that repeated column names on any table represent multiple
records inserted into that table. Also empty cells represent the absence of a record and not null
values.

Backdoor.Win32.Agobot.gz
1)**PAGE FAULT: process 0x00000000 - cs:eip 0x0008:0xD000CA98

accessing page 0x00070019

2)**EXCEPTION: ThreadID 0x15 opcode 0xAA45 SEH=0x7C825AA5

FaultCode=0xC0000005 EFlags=0x00000204

3)-connect port 01659, ["TCP"] IP "81.164.97.92"

4)-binds socket 00001 to port 00030891

5)Open network resource "Microsoft Windows-nettverk" ("Microsoft

Windows-nettverk")

6)-sendto port 00137, IP "176.49.0.0"

7)0x7C80722C=KERNEL32!lstrcat

("C:\WINDOWS\system32\","oleaut32.dll")

17

Line 1 2 3 4 5 6 7

SOFTWARE

SW_NAME Afcore.bz Agobot.gz Ppdoor.z Dumador.z Delf.ir Seteada Zero.a

CLASSIFICATIONS

CLASS_NAME Backdoor Backdoor Backdoor Backdoor IRC-Worm Trojan Virus

BEHAVIORS

BEHAVIOR_NAME PageFault Exception ConnectPort BindSocket OpenNetwork SendToPort lstrcat

BEHAVIOR_DETAILS

BEHAVIOR_DETAIL_TYPE

DLL

BEHAVIOR_DETAIL_VALUE

 KERNEL32

INTERACTIONS

SOFTWARE_ID 101 104 126 116 1818 954 10290

BEHAVIOR_ID 100 101 102 103 104 105 118

INTERACTION_ORDER 7 4044 1260 357 2279 1562 70

INTERACTION_DETAILS

INT_DETAIL_TYPE
AccessingPag
e ThreadID Port Socket Resource Port Parameter

INT_DETAIL_VALUE 0x00072031 0x15 01659 00001

MSHOME
("Microsoft
Windows-
nettverk") 00137

"C:\WINDO
WS\system
32\"

INT_DETAIL_ORDER 1 1 1 1 1 1 1

INT_DETAIL_TYPE opcode
ConnectionT
ype Port

IP Parameter

INT_DETAIL_VALUE 0xAA45 TCP 00030891

176.49.0.0
"oleaut32.d
ll"

INT_DETAIL_ORDER 2 2 2 2 2

INT_DETAIL_TYPE SEH IP

INT_DETAIL_VALUE 0x7C825AA5 81.164.97.92

INT_DETAIL_ORDER 3 3

INT_DETAIL_TYPE FaultCode

INT_DETAIL_VALUE 0xC0000005

INT_DETAIL_ORDER 4

INT_DETAIL_TYPE Eflags

INT_DETAIL_VALUE 0x00000204

INT_DETAIL_ORDER 5

Table 2: Log extraction to database example.

The following is a list of instructions that describe how the data was recorded.

1. Obtain software name (including version) and classification from filename.

2. Determine classification id of the software.

18

3. Check the database to see if the software and version exist in the database for its class.
a. It already exists, skip file completely.
b. It does not exist; insert a software record (sw_name, classification_id,

operating_system).

For each line per log:

4. Check for line wrapping (explanation below)
a. Line appears to be a complete interaction, move to next step.
b. Line is wrapped; loop until line appears to be complete.

5. Get behavior name.

a. It already exists, move to next step.
b. It does not exist; determine behavior type, insert a behavior record (type_code,

behavior_name).

6. Check if there are associated behavior details.
a. Behavior details do not exist, move to next step.
b. Behavior details exist; insert a Behavior Details record (behavior_id,

behavior_detail_type, behavior_detail_value).

7. Insert an interaction record (software_id, behavior_id, interaction_order).

8. Check if there are associated Interaction details.
a. Interactions details do not exist; get next line of file
b. Interaction details do exist; create an Interaction Details record for each

(interaction_id, int_detail_type, int_detail_value, int_detail_order).

Within the logs, we encountered some unusual line wrapping. A single interaction might be
spread across several lines without any obvious explanation for this happening. It was not a
matter of running out of line space, as some of the broken lines were rather short. We could not
check for this simply by looking for a closing parenthesis, because often, the broken line would
end in a closing parenthesis that did not represent the end of the interaction (it was common to
have several sets of parenthesis in a line).

19

CHAPTER 4 – BEHAVIOR EXTRACTION

Single Behavior Analysis

Single behavior analysis is that which is performed on individual behaviors as they have
occurred. As a basis for other analysis, counts of the number of times a behavior occurred per
class were taken. Only one count was given per software. So if there were three Worms – A
opens a file 23 times, B opens a file 12 times, and C opens a file 0 times; the count for opening a
file is 2, 1 for A and 1 for B. Essentially, the count represents number of software for which a
behavior exists. One may question why a simple count of occurrence per software was not taken
so that the count would represent exact number of occurrences per entire class.

Amongst many of the software sampled, it could be seen from the sandbox generated logs that
there were copious amounts of looping happening within the program. In some cases, there were
tens of thousands of repeats per a set of processes. For some, it could be assumed that the
looping was because the program was waiting for a user action, for others it was clear it was
looping until completion of a task for which it was unable to complete. It was never clear if a
program stopped on its own or if the sandbox stopped running it. Number of emulation cycles
can be set with a time allowed to run or by specific number of emulation cycles. One of the two
options must be selected via a set of radio buttons; however there is no indication that software
ran out of cycles, ran out of time, or ended on its own.

With the presence of this looping, there is not a way to decipher if a behavior has been called a
large number of times independently or due to looping. There is also not a way to tell if the
looping plays an important role and if counting the behavior within each loop should be done or
not. So it was decided that the mere existence of a behavior occurring in a software item is what
would be counted.

Here is an example:

0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001)
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001)
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001)
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001)
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001)

This section of a log belongs to the Denial of Service malicious software, titled Crasher.10. It
can be noted that all components are identical. This is five instances of the same behavior and

20

perhaps five occurrences (or counts) would not greatly skew statistics, however, what cannot be
shown here is that the log belonging to Crasher.10 contains 132,833 lines. A rather sizeable
131,964 of those lines appear consecutively as the exact same function call shown in the
example. This behavior would be given a count of 131,964 for this software and would
absolutely sway statistics to show an overwhelming existence of this behavior for the class
Denial of Service.

Counts were found with the following query and stored in the table Patterns1. (Table is named
Patterns1 even though single behaviors are evaluated in order to keep a consistent naming
convention, i.e. Patterns1, Patterns2, Patterns3, etc, where the number represents the length of
the pattern.) This query was compared to several others that would return the same information
by running each query, observing run time, and by examining the explain plans provided by
Oracle (please refer to the Appendix for an example and explanation of explain plans). For the
full script, please refer to the appendix. Before using the script, indexes were built for both
software_id and behavior_id on the Interactions table.

SELECT COUNT(*)

FROM SOFTWARE S

WHERE S.CLASSIFICATION_ID = :CLASSIFICATION_ID

 AND S.FOR_ANALYSIS = 'Y'

 AND EXISTS (SELECT 1

 FROM INTERACTIONS I

 WHERE I.SOFTWARE_ID = S.SOFTWARE_ID

 AND I.BEHAVIOR_ID = :BEHAVIOR_ID)

Bind variables represent variables that would be passed via cursor loops.

Example of results:

Behavior, with database id 723, has name GetEnvironmentStringsA. This behavior is a

function and belongs to the DLL library KERNEL32.

GetEnvironmentStringsA occurs in only one software item in a non-malicious software
sample set of size 340 (0.29%). This behavior occurs at least once per software in all of the
malicious software sampled for each malware classification (100%).

Pattern Behavior Analysis

Pattern behavior analysis is that which is performed on a combination of behaviors. We decided
to see if there were any interesting combinations of behaviors that stood out amongst the classes

21

of malware that we tested. What we hoped to find were those behaviors that by themselves, in
the single analysis, didn‘t appear suspicious, but when grouped with other behaviors showed a
noticeable difference. For example, perhaps behaviors A, B, and C have a fairly even
distribution in all classes but could only be found grouped together in a particular class.

The combination algorithm was used to find all combinations within a set of 2051 behaviors
where the combination is three behaviors in length. In future work, other lengths will be tested;
however length three was chosen for now as it is what our resources would allow. We could
have used a length of two but it was realized that length two would not capture the simple
process of opening, reading, and writing to a file.

The basis for other analysis was found with the same method that that was used for single
behaviors. Counts of the number of times a behavior pattern occurred per software per class
were taken. Only one count was given per software. The same logic that was used to avoid
erroneous counts of single behaviors due to looping was also applied to patterns. If there were
three Backdoors – A opens a file, reads the file, updates the file 23 times, B opens a file, reads
the file, updates the file 12 times, and C opens a file, reads the file, updates the file 0 times; the
count for the pattern of opening a file, reading the file, and updating the file is 2, 1 for A and 1
for B. Patterns were generated with an application written in Java with JDBC. Please refer to
the appendix for this code.

Counting the existence of patterns was found with the following query and stored in the table
Patterns3. As with single behaviors, the query was compared to other alternatives with testing
and explain plans. Indexes were built for behavior_id1, behavior_id2, and behavior_id3 on the
Patterns3 table.

SELECT COUNT(DISTINCT S.SOFTWARE_ID)

FROM SOFTWARE S, PATTERNS3 P

WHERE P.PATTERN3_ID = :PATTERN3_ID

 AND S.FOR_ANALYSIS = 'Y'

 AND S.CLASSIFICATION_ID = :CLASSIFICATION_ID

 AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID

 FROM INTERACTIONS I1, SOFTWARE S1

 WHERE I1.SOFTWARE_ID = S1.SOFTWARE_ID

 AND I1.BEHAVIOR_ID = P.BEHAVIOR_ID1)

 AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID

 FROM INTERACTIONS I2, SOFTWARE S2

 WHERE I2.SOFTWARE_ID = S2.SOFTWARE_ID

 AND I2.BEHAVIOR_ID = P.BEHAVIOR_ID2)

AND S.SOFTWARE_ID IN (SELECT DISTINCT S3.SOFTWARE_ID

 FROM INTERACTIONS I3, SOFTWARE S3

22

 WHERE I3.SOFTWARE_ID = S3.SOFTWARE_ID

 AND I3.BEHAVIOR_ID = P.BEHAVIOR_ID3)

Bind variables represent variables that would be passed via cursor loops.

Example of result:

130:744:1091 - Application:0, Virus:10; where the first three numbers represents a pattern using
behavior ids from the database, and following the pattern is a count of that pattern‘s occurrence
in the classes Application and Virus.

For the purposes of this paper and project, non-malicious software was given the classification
‗Application‘.

Pattern table information

Results of counts were stored in the database. 3NF was maintained, however the decision to
favor speed or to favor storage space was a constant battle. Tables were given class name as
column names as can be seen in this table description:

Name Null? Type

----------------- -------- -----------

APPLICATION

NUMBER(10)

BACKDOOR

NUMBER(10)

DOS

NUMBER(10)

EMAIL_FLOODER

NUMBER(10)

EMAIL_WORM

NUMBER(10)

EXPLOIT

NUMBER(10)

FLOODER

NUMBER(10)

IM_FLOODER

NUMBER(10)

IM_WORM

NUMBER(10)

IRC_WORM

NUMBER(10)

NET_WORM

NUMBER(10)

NUKER

NUMBER(10)

P2P_WORM

NUMBER(10)

ROOTKIT

NUMBER(10)

SMS_FLOODER

NUMBER(10)

SNIFFER

NUMBER(10)

SPAMTOOL

NUMBER(10)

SPOOFER

NUMBER(10)

23

TROJAN

NUMBER(10)

TROJAN_CLICKER

NUMBER(10)

TROJAN_DDOS

NUMBER(10)

TROJAN_DOWNLOADER

NUMBER(10)

TROJAN_DROPPER

NUMBER(10)

TROJAN_NOTIFIER

NUMBER(10)

TROJAN_PROXY

NUMBER(10)

TROJAN_SPY

NUMBER(10)

VIRUS

NUMBER(10)

WORM

NUMBER(10)

PATTERN1_ID NOT NULL NUMBER(20)

BEHAVIOR_ID NOT NULL NUMBER(20)

In order to join another table to table Patterns1, by classification, one would have to use
something such as an EXECUTE IMMEDIATE SQL statement in order to pass a classification
name as a column name in a varchar2. The alternative would have been to have two columns:
classification_id and count. Since there are 2051 behaviors, this would have meant 2051 records
per classification (28 classes). For single behavior analysis this would not have been a bit ugly
but for pattern analysis it would be nothing short of atrocious. Each classification would have a
little fewer than 1.5 billion records.

24

CHAPTER 5 – DATA ANALYSIS

Single Behavior Findings

We observed roughly 2000 different ―single behaviors‖ in our sandbox environment and
investigated the proportional breakdown, i.e. given this observed behavior, what proportions of
the particular classes exhibited that behavior?

We aggregated data and fixed six classes: CApp for Applications, CWorm for Worms, CVirus for
Viruses, CTrojan for Trojans, CDOS for Denial of Service, and CAPT for Advanced Persistent Threats.
Looking first at our reference non-malicious ‗Application‘ class CApp, we see that the top 15
‗single behaviors‘ are observed during execution of almost all of them (Table 3).

Library Behavior B P(B|CApp)

KERNEL32 SetCurrentDirectory 100%

KERNEL32 _lopen 100%

KERNEL32 GetFileSize 100%

KERNEL32 CloseHandle 100%

KERNEL32 InternalExec 100%

KERNEL32 GetCurrentProcessId 100%

KERNEL32 WinExec 99%

KERNEL32 CreateProcessA 99%

KERNEL32 RtlZeroMemory 96%

KERNEL32 HeapAlloc 96%

KERNEL32 GetModuleHandleA 96%

KERNEL32 GetProcAddress 96%

KERNEL32 GetCommandLineW 96%

KERNEL32 lstrlenW 96%

KERNEL32 LoadLibraryA 96%

Table 3: Top 15 behaviors and probabilities that given class CApp, single behavior B is observed.

If we compare these behavior occurrences across other classes, i.e. given an observed behavior,
what class can it be attributed to; we find the following descriptive statistics (interesting behavior
highlighted in yellow, reference class grayed). We show most prevalent behaviors seen in the
class, meaning the behavior appears in at least 90% of the class.

These tables all show probabilities of the form: Given class Ci, what is the probability that we
see behavior B, this is P(B|Ci) We want to answer the question: Given behavior B, what is

the probability of belonging to a certain class P(Ci|B)?

The discrepancies between classes will help us to identify, by inspection, candidates for
classification based on behavior using Bayes‘ formula later on. We give six tables below:

25

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT)

KERNEL32 SetCurrentDirectory 100% 100% 100% 100% 100% 100%

KERNEL32 _lopen 100% 100% 100% 100% 100% 100%

KERNEL32 GetFileSize 100% 100% 100% 100% 100% 100%

KERNEL32 CloseHandle 100% 100% 100% 100% 100% 100%

KERNEL32 InternalExec 100% 100% 100% 100% 100% 100%

KERNEL32 GetCurrentProcessId 100% 23% 33% 6% 68% 47%

KERNEL32 WinExec 99% 99% 93% 98% 99% 96%

KERNEL32 CreateProcessA 99% 99% 93% 98% 99% 96%

KERNEL32 RtlZeroMemory 96% 99% 100% 99% 100% 100%

KERNEL32 HeapAlloc 96% 99% 100% 99% 100% 100%

KERNEL32 GetModuleHandleA 96% 99% 100% 99% 100% 100%

KERNEL32 GetProcAddress 96% 99% 100% 99% 100% 100%

KERNEL32 GetCommandLineW 96% 98% 100% 99% 100% 100%

KERNEL32 lstrlenW 96% 98% 100% 99% 100% 100%

KERNEL32 LoadLibraryA 96% 99% 100% 95% 99% 100%

Table 4: Comparison of the top 4% behaviors of CApp with the other 5 classes.

GetCurrentProcessId occurs in 100% of Application samples, but only between 6-68% of the
other malware classes exhibit that behavior.

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT)

KERNEL32 GetProcAddress 96.2% 100% 100% 99% 100% 100%

KERNEL32 ExitThread 45.9% 100% 43% 47% 42% 48%

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100%

KERNEL32 _lopen 100.0% 100% 100% 100% 100% 100%

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100%

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100%

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100%

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96%

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100%

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100%

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96%

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100%

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100%

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100%

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100%

KERNEL32 GetEnvironmentStringsA 0.3% 98% 100% 99% 45% 88%

ntdll RtlCreateHeap 0.0% 98% 100% 99% 45% 88%

NTOSKRNL NtAllocateVirtualMemory 0.0% 98% 100% 99% 45% 88%

Table 5: Comparison of the top 2% behaviors of CWorm with the other 5 classes

In Table , for the class Worm, we have four API calls which occur in other classes much less
prevalently. ExitThread occurs in 100% of Worm samples, but in 42 to 48% of the other classes.
GetEnvironmentStringsA, RtlCreateHeap, and NtAllocateVirtualMemory all occur in 98% of
worms sampled and comparatively, these behaviors all occur within 88 to 100% of Advanced

26

Persistent Threads, Viruses, and Trojans. However, they only occur in 45% of Denial of Service
attacks and 0 – 0.3% of Applications.

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT)

KERNEL32 GetProcAddress 96.2% 100% 100% 99% 100% 100%

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100%

KERNEL32 _lopen 100.0% 100% 100% 100% 100% 100%

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100%

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100%

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100%

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100%

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100%

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100%

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100%

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100%

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100%

KERNEL32 GetEnvironmentStringsA 0.3% 98% 100% 99% 45% 88%

ntdll RtlCreateHeap 0.0% 98% 100% 99% 45% 88%

NTOSKRNL NtAllocateVirtualMemory 0.0% 98% 100% 99% 45% 88%

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96%

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96%

Table 6: Comparison of the top 7% behaviors of CTrojan with the other 5 classes

In Table , for the class Trojan, we have three API calls which occur in other classes less
prevalently but 100% in Trojans. They are again, GetEnvironmentStringsA, RtlCreateHeap, and
NtAllocateVirtualMemory. Occurrence is similar to that of Trojan in Viruses, Advanced
Persistent Threats, and Worms from 88 to 99% but again occur in 45% of Denial of Service
Attacks and only 0 – 0.3% of Applications.

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT)

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100%

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100%

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100%

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100%

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100%

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100%

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100%

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100%

KERNEL32 GetEnvironmentStringsA 0.3% 98% 100% 99% 45% 88%

ntdll RtlCreateHeap 0.0% 98% 100% 99% 45% 88%

NTOSKRNL NtAllocateVirtualMemory 0.0% 98% 100% 99% 45% 88%

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100%

KERNEL32 GetProcAddress 96.2% 99% 100% 99% 100% 100%

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96%

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96%

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100%

KERNEL32 CreateFileA 7.6% 86% 83% 92% 37% 88%

KERNEL32 lstrcpynA 3.8% 87% 88% 91% 40% 87%

KERNEL32 FindFirstFileA 77.9% 59% 74% 90% 80% 74%

Table 7: Comparison of the top 10% behaviors of CVirus with the other 5 classes

27

For the class Virus, we have 6 API calls which occur in other classes less prevalently. Once
more, the three behaviors GetEnvironmentStringsA, RtlCreateHeap, and
NtAllocateVirtualMemory occur significantly less in Applications, from 0 – 0.3%, and in Denial
of Service, 45%. CreateFileA and lstrcpynA occur in Viruses 91% to 92%, and in Worms,
Trojans, and Advanced Persistent Threats 83 to 88%; but only 37 - 40% in Denial of Service and
7.6 and 3.8% in Applications. FindFirstFileA occurs in 90% of Viruses and much lower with
59% in Worms, but is somewhat close to Viruses in the other four classes with 74 – 80%.

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT)

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100%

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100%

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100%

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100%

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100%

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100%

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100%

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100%

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100%

KERNEL32 GetProcAddress 96.2% 99% 100% 99% 100% 100%

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96%

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96%

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100%

KERNEL32 _lclose 78.5% 84% 91% 49% 91% 90%

Table 8: Comparison of the top 9% behavior of CDOS with the other 5 classes

In Table for class DoS, there are three behaviors that occur less in other classes than in Denial of
Service. CreateProcessA and WinExec exist in fewer software than Denial of Service but not
with a significant difference at 93 to 99.4%. _lclose has a somewhat significant difference with
91% occurrence in Denial of Service and 49% in Viruses; but a close 78.5 – 91% in the four
other classes.

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT)

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100%

KERNEL32 _lopen 100.0% 100% 100% 100% 100% 100%

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100%

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100%

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100%

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100%

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100%

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100%

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100%

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100%

KERNEL32 GetProcAddress 96.2% 99% 100% 99% 100% 100%

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100%

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96%

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96%

Table 9: Comparison of the top 9% behavior of CAPT with the other 5 classes.

28

In Table , we see that no behavior in the top 4% of the class APT is much different in other
classes. This is both expected and disheartening: Expected because Advanced Persistent Threats
are persistent precisely because they blend in with normal behavior, and disheartening because it
looks like no specific behavior of APTs is less common in other classes.

Bayesian Inference

We have now the most prevalent behaviors, given a class (these are the P(B|CApp),
P(B|CWorm), P(B|CTrojan), P(B|CVirus), P(B|CDOS) and P(B|CAPT)).

From the yellow highlights, we pick 11 candidate behaviors as potential discriminators. We list
them below:

ID Library Behavior B Prevalent Behavior in Class
0 KERNEL32 GetCurrentProcessId Application
1 KERNEL32 ExitThread Worm
2 KERNEL32 GetEnvironmentStringsA Worm, Trojan, Virus
3 ntdll RtlCreateHeap Worm, Trojan, Virus
4 NTOSKRNL NtAllocateVirtualMemory Worm, Trojan, Virus
5 KERNEL32 CreateFileA Virus
6 KERNEL32 lstrcpynA Virus
7 KERNEL32 FindFirstFileA Virus
8 KERNEL32 CreateProcessA DOSers
9 KERNEL32 WinExec DOSers
10 KERNEL32 _lclose DOSers

Table 10: Behavior used for testing class membership

The more interesting question remains: Given an observed behavior Bi, 0<=i< 10, what is the
most likely class Cj, j {App, Worm, Virus, Trojan, DOS, APT} the behavior characterizes?
This P(Cj|Bi) can be solved using Bayes‘s formula [22] for six classes and those twelve
behaviors. We proceed to solve it as an example for one behavior and the six classes, and then
give the complete numerical results in a table.

Bayes‘s formula is

P(C j |Bi)
P(Bi |C j) P(C j)

P(B |Cy) P(Cy)
y 0

5

Bi are the eleven behaviors and Cj are the 6 classes. The P(Bi|Cj) we get partially from the tables
above and partially from our aggregated Norman data. The resulting relevant data is given in

29

Table . When we have zero probability of occurrence, we attribute that to sampling error and use
a very low probability value of 0.0001, as per best practices to not blow up the formula.

Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT)

GetCurrentProcessId 1 0.23 33 0.06 0.68 0.47

ExitThread 0.46 1 0.43 0.47 0.42 0.48

GetEnvironmentStringsA 0.003 0.98 1 0.99 0.45 0.88

RtlCreateHeap 0.0046 0.98 1 0.99 0.45 0.88

NtAllocateVirtualMemory 0.0001 0.98 1 0.99 0.45 0.88

CreateFileA 0.076 0.86 0.83 0.92 0.37 0.88

lstrcpynA 0.038 0.87 0.88 0.91 0.4 0.87

FindFirstFileA 0.78 0.59 0.74 0.9 0.8 0.74

CreateProcessA 0.99 0.99 0.93 0.98 0.99 0.96

WinExec 0.99 0.99 0.93 0.98 0.99 0.96

_lclose 0.79 0.84 0.91 0.49 0.91 0.9

Table 11: Given a class of programs, the probabilities we saw a behavior

 The probabilities P(Cj) – the probability of the classes - we get from the class frequencies of our
2000 or so samples from our aggregated Norman data. These are 0.17, 0.17, 0.24, 0.18, 0.13,
and 0.11 for App, Worm, Virus, Trojan, DOS, and APT, respectively (see Table 1).

P(CApp) P(CWorm) P(CTrojan) P(CVirus) P(CDOS) P(CAPT)

0.17 0.17 0.24 0.18 0.13 0.11

Table 12: Class probabilities in our 2000 samples

Let‘s compute this, as an example, for behavior B3 in Table , RtlCreateHeap. The question we
proceed to answer as an example: If we execute something unknown and see RTLCreateHeap,
what is the probability that it belongs to one of the classes?

We have for B3 and CApp :

P(CApp |B3)
P(B3 |CApp) P(CApp)

P(B3 |Cy) P(Cy)
y 0

5

0.0046 0.17

0.0046 0.17 0.098 0.17 1 0.24 0.99 0.18 0.45 0.13 0.88 0.11

0.1%

We can compute this for all six classes in Table

Behavior B3 P(CApp|B3) P(CWorm|B3) P(CTrojan|B3) P(CVirus|B3) P(CDOS|B3) P(CAPT|B3)

RtlCreateHeap 0.1% 22.5% 32.4% 24.1% 7.9% 13.1%

Table 13: For behavior B3, probability of class membership given execution of an unknown program

30

We interpret this as seeing that behavior RtlCreateHeap is most strongly associated with class
Trojan. It is also interesting to note that RtlCreateHeap is almost never found in the class
Application. This is consistent with this API call being an undocumented function. [23]

We now give the entire computation and highlight relevant results in yellow in Table

ID Behavior B P(CApp|BID) P(CWorm|BID) P(CTrojan|BID) P(CVirus|BID) P(CDOS|BID) P(CAPT|BID)

0 GetCurrentProcessId 2.1% 0.5% 95.7% 0.1% 1.1% 0.6%

1 ExitThread 14.4% 31.3% 19.0% 15.6% 10.0% 9.7%

2 GetEnvironmentStringsA 0.1% 22.5% 32.4% 24.1% 7. 9% 13.1%

3 RtlCreateHeap 0.1% 22.5% 32.4% 24.1% 7.9% 13.1%

4 NtAllocateVirtualMemory 0.1% 22.5% 32.4% 24.1% 7.9% 13.1%

5 CreateFileA 1.9% 21.9% 29.8% 24.8% 7.2% 14.5%

6 lstrcpynA 1.0% 21.8% 31.2% 24.2% 7.7% 14.1%

7 FindFirstFileA 17.5% 13.2% 23.4% 21.4% 13.7% 10.7%

8 CreateProcessA 17.3% 17.3% 23.0% 18.2% 13.3% 10.9%

9 WinExec 17.3% 17.3% 23.0% 18.2% 13.3% 10.9%

10 _lclose 16.8% 17.8% 27.3% 11.0% 14.8% 12.4%

Table 14: Probabilities that an unknown program, given a behavior, belongs to a class. Rows some up to 100%

31

Discussion

We find that of the 11 behaviors we chose to test from our 2000 samples of six classes, most
behaviors are associated strongest with class Trojan with GetProcessID being very strongly
represented. Behavior ExitThread is seen most in class worms, also an interesting find, which
may be related to the propagation module of worms. We further note that for class Application
behaviors 2,3,4,5 and 6 are rarely seen.

These are hopeful results. There were many other interesting items found by digging and
prodding around in our database, with a human eye, that we were unfortunately unable to capture
with an automated or statistical measure. For instance, there appears to be behaviors that show
consistency in the average of occurrences per software per class. This however is diluted by the
looping we spoke of earlier. We will continue to attempt to work around this looping. We have
seen that the looping seems to be more prevalent in malicious software and we hypothesize that
this is related to non-malicious software having better conditions and cleaner exit strategies.

We saw two slightly different types of looping. Sometimes there are a set of behaviors that
appear to be aimlessly and infinitely looping. In other cases, there was one particular behavior,
FindNextFileA, which could either be a programming issue or could intentionally be
searching through files.

Besides infinite looping, another trend consistent with particular classes was the use of foul
language within function call parameters. This isn‘t to say it happens often, just that when it

does happen, it is more often than not, within a malicious class of software. We believe we can
find other consistency within parameters and other types of interaction details.

We conclude that our procedure is a potentially viable method to test class association and for
malicious software detection with observed behavior, with a few caveats. We did our inference
for the behaviors picked for high prevalence in a class. We should repeat these experiments for
rare behavior prevalence in classes in future work. We will create several sets of sample data for
each class instead of working with large numbers. Also, we will update our database with newer
malware. It was discovered that our non-malicious software samples were biased to Windows
32, and this most likely affected our counting data for the Application class. We need to include
more independent applications. This is possibly in line with our
GetEnvironmentStringsA example mentioned much earlier and also in our analysis
represented in the above tables. It is an interesting but strange fact that we see this behavior so
prevalent amongst malicious software and not in non-malicious. Therefore it is also our
conclusion that while many of these processes can be automated, before any behavior
observation can be utilized in detection and classification mechanisms, it should be individually
analyzed for explanations of the finding.

32

As mentioned in related work, we hope that we begin to see the availability of logging multiple
execution paths, as this would further enhance our analysis.

33

CHAPTER 6 - FUTURE MALWARE

It is hard to gauge how much mileage signature-matching-based AV detection techniques still
have in them in light of polymorphic and metamorphic threats. Some industry researchers are
optimistic.

We briefly mention k-ary malware, a worrisome development, in this context, k-ary malware, of
which at this time only laboratory or very trivial examples are known to exist, seem able to elude
conventional deployed defenses in principle, not just in practice. [21]

This feat is accomplished by partitioning the malware‘s functionality spatio-temporally into k
distinct parts, with each part containing merely an innocuous subset of the total instructions. In
serial or parallel combination, they subsequently become active. Current AV models seem
unable to detect this threat (or disinfect completely upon detection), which may be due to
fundamental theoretical model assumptions. [21]

To understand the limitation of current approaches, one has to remember a simple explanation:
You cannot make a good (as in justifiable) decision if you do not have all the information
needed.

The notion of computability rests largely on the Church-Turing thesis. Although the Church-
Turing thesis refers explicitly to the computation of functions, this small but important caveat is
not emphasized to the extent that it should be; instead it is understood to mean that Turing
machines model all computation. Herein lies the flaw: not only are there some functions that
cannot be computed by Turing machines, but more fundamentally, not all computable problems
are function-based to begin with (Bilar08). Function-based or algorithmic (with loops)
computation requires the input to be specified at the start of the computation; it is a closed
transformation from input to output. This cannot take later triggers from the outside into account,
as we saw with the brouhaha about Conficker in 2009.

In light of emerging malware, new models and methods are being developed. In the theoretical
realm, this entails moving beyond Turing machine models premised on the strong Church-Turing
thesis (‗computation-as-functions‘) towards more expressive models premised on ‗Interactive

Computations‘ through Join Calculus, for instance (Jacob10).

34

Appendix A: Definitions

Advanced Persistent Threat (APT) - require a high degree of stealth over a prolonged duration
of operation in order to be successful. The attack objectives typically extend beyond immediate
financial gain, and compromised systems continue to be of service even after key systems have
been breached and initial goals reached. APTs can best be summarized by their named
requirements:

Advanced: Criminal operators behind the threat utilize the full spectrum of computer
intrusion technologies and techniques. While individual components of the attack may not
be classed as particularly ―advanced‖ (e.g. malware components generated from commonly

available DIY construction kits, or the use of easily procured exploit materials), their
operators can typically access and develop more advanced tools as required. They combine
multiple attack methodologies and tools in order to reach and compromise their target.
Persistent: Criminal operators give priority to a specific task, rather than opportunistically
seeking immediate financial gain. This distinction implies that the attackers are guided by
external entities. The attack is conducted through continuous monitoring and interaction in
order to achieve the defined objectives. It does not mean a barrage of constant attacks and
malware updates. A ―low-and-slow‖ approach is usually more successful.
Threat: means that there is a level of coordinated human involvement in the attack, rather
than a mindless and automated piece of code. The criminal operators have a specific
objective and are skilled, motivated, organized and well funded. [20]

Backdoor – A backdoor program is a remote administration utility that, once installed on a
computer, allows a user access and controls it over a network or the Internet. A backdoor is
usually able to gain control of a system because it exploits undocumented processes in the
system's code. A typical backdoor consists of 2 components- client and server. An attacker will
use the client application to communicate with the server components, which are installed on the
victim's system. [6]

Behavior – A behavior is a single entity that describes an action that may occur on a system.
Behaviors can represent function calls, exceptions, page faults, port connections, socket
bindings, send to port calls, open network calls, and any other behavior type that may be found in
an API log.

DoS – A type of Internet-based attack that aims to deny legitimate users access to a service (for
example, a website or a network) by overloading a relevant computer resource or network
device. [6]

Email-Flooder – Email-Flooder programs are designed to flood email channels with
meaningless messages. [9]

35

Email-Worm – A standalone program that distributes copies of itself through e-mail networks,
usually in an infectious e-mail attachment. Often, these infected e-mails are sent to e-mail
addresses that the worm harvests from files on an infected computer. [6]

Exploit – Exploits are programs that contain data or executable code which take advantage of
one or more vulnerabilities in software running on a local or remote computer for clearly
malicious purposes. [6]

Flooder – A flooder is a Trojan that allows an attacker to send massive amount of data to a
specific target. Usually flooders are used in IRC channels to jam communications as sending a
massive amount of data to a channel or to a selected user disrupts normal communication. [6]

IM-Flooder – IM-Flooder programs are designed to flood instant messenger channels (such as
ICQ, MSN Messenger, AOL Instant Messenger, Yahoo Pager, Skype etc.) with meaningless
messages. [9]

IM-Worm – IM Worms spread via instant messaging systems (such as ICQ, MSN Messenger,
AOL Instant Messenger, Yahoo Pager, Skype, etc.) In order to spread, IM-Worms usually send a
link (URL) to a list of message contacts. The link leads to a network resource where a file
containing the body of the worm has been placed. This tactic is almost exactly the same as that
used by Email-Worms. [9]

Interaction – A system interaction is the actual event of a behavior interacting with a system;
some catalyst has caused a particular behavior to be executed on a system.

IRC-Worm – A type of worm that uses Internet Relay Chat (IRC) networks to spread copies of
itself to new victim machines. [6]

Malware – Short for "malicious software," malware refers to software programs designed to
damage or do other unwanted actions on a computer system. [5]

Net-Worm – A type of worm that propagates by copying itself to other computers connected the
infected computer by a network, most commonly a Local Area Network (LAN). [6]

Nuker – Nuker is a network-related Trojan that allows an attacker to reboot, slowdown or crash
a selected computer connected to Internet. Typically a Nuker needs only the IP address of a
target computer. When the IP address is entered, a Nuker sends specific packages to a target
computer and makes it restart, slowdown or crash. [6]

P2P-Worm – A P2P-worm is a type of worm that takes advantage of the mechanics of a peer-to-
peer (P2P) network to distribute a copy of itself to unsuspecting P2P users. When a user

36

searches the P2P network for a file and finds the deceptively named worm copy, they would
download the file onto their own computer and run it, thereby infecting themselves with the
worm. Once active on the new machine, the P2P-worm can continue the cycle of finding new
victims to infect. [6]

Rootkit – A standalone software component that attempts to hide processes, files, registry data
and network connections. [6]

Sandbox – A sandbox is a controlled, instrumented container in which the program is run and
that records how it interacts with its environment. [4]

Signatures – A signature is a pattern that identifies malicious software and can be created from a
piece of code or a hash. The fragment is used as an identifier for the entire malicious program.

SMS-Flooder – An SMS Flooder is a Trojan that sends a massive amount of SMS (text)
messages to a single or multiple targets. A big amount of SMS messages can cause a lot of
inconvenience and annoyance and in some cases crash specific hardware or perform a denial of
service attack on a service. [6]

Sniffer – Usually a standalone program to intercept and analyze certain data. For example a
sniffer can intercept and analyze network traffic and catch certain data, for example passwords.
Trojans sometimes use sniffing capabilities to steal passwords and user information from
infected computers. [9]

Spam-Tool – Malicious programs of this type are designed to harvest email addresses from a
computer and then send them to the malicious user via email, the web, FTP, or other methods.
Stolen addresses are then used by cyber criminals to conduct mass mailings of malware and
spam. [9]

Spoofer – A program used for the act of falsifying characteristics or data, usually in order to
conduct a malicious activity. For example, if a spam e-mail‘s header is replaced with a false

sender address in order to hide the actual source of the spam, the e-mail header is said to be
spoofed‖. These programs may be used for a range of purposes (for example, to prevent the
recipient from identifying the sender or to transmit a message sent by another party). [6]

Third Normal Form (3NF) – 3NF specifies that a data model meets the requirements of 2NF,
and adds the requirement that there be no transitive dependencies. A transitive dependency exists
when a non-key attribute of an entity relies on another non-key attribute that relies on the
primary key in the same entity. In other words, if there is an attribute that relies on another
attribute that isn‘t part of the primary key, then that attribute has a transitive dependency. 2NF

specifies requirements of 1NF are met and that all non-key attributes rely on the entire primary

37

key. For a data model to meet 1NF, all of the entities in the model must have a primary key. [7]
[8]

Trojan – Trojans are malicious programs that perform actions which are not authorized by the
user: they delete, block, modify or copy data, and they disrupt the performance of computers or
computer networks. Unlike viruses and worms, the threats that fall into this category are unable
to make copies of themselves or self-replicate. Trojans are classified according to the type of
action they perform on an infected computer. [9]

Trojan-Clicker – A Trojan-Clicker is a type of Trojan that remains resident in system memory
and continuously or regularly attempts to connect to specific websites. This is done to inflate the
visit counters for those specific pages. [6]

Trojan-DDoS – (Distributed Denial of Service) A type of Trojan that distributes DoS programs,
typically via email. This Trojan essentially turns its victims, the receivers, into the attackers, as
when the DoS programs are run, they will all send numerous request to the victim machine,
leading to a denial of service for its intended users.

Trojan-Downloader – A type of Trojan that, once installed on computer, silently downloads
files from remote web and ftp sites. Once downloaded, the Trojan-downloader installs and runs
the files on the infected computer. Both the download and execution of files is done without the
user's knowledge or authorization. [6]

Trojan-Dropper – A Trojan-Dropper is a type of Trojan that drops different type of standalone
malware (Trojans, worms, backdoors) to a system. It is usually an executable file that contains
other files compressed inside its body. When a Trojan-Dropper is run, it extracts these
compressed files and saves them to a folder (usually a temporary one) on the computer. [6]

Trojan-Notifier – A type of Trojan that gives a notification of some event. In this context, the
event is usually malicious - for example, the Trojan may inform a backdoor's controller that the
malicious program has been successfully installed on a computer with specific IP address on a
specific port. Notifiers can send e-mails, instant messages or contact certain websites in order to
post the notification information. [6]

Trojan-Proxy – A type of Trojan that, once installed, allows an attacker to use the infected
computer as a proxy to connect to the Internet. Trojan-proxies are often used by hackers to hide
the location of the original host from any investigating authorities, as the connection can only be
traced back to the computer where the Trojan is installed. [6]

Trojan-Spy – A type of Trojan that, once installed, allows a hacker to monitor the user's
activities on an infected computer. A Trojan-Spy has a wide range of capabilities, including

38

performing key-logging, monitoring processes on the computer and stealing data from files
saved on the machine. [6]

Virus – A malicious program which integrates into and affects a program or file on a computer
system, without the knowledge or consent of the user. A virus almost always arrives on a
computer system as an executable file, most popularly as an e-mail attachment. The term ‗virus‘

is commonly incorrectly used as a catch-all for all malicious software. [6]

Worm – A program that replicates by sending copies of itself from one infected system to other
systems or devices accessible over a network. Unlike a virus, a worm does not integrate itself
into a host file and does not need the host file to be executed in order to replicate; it exists and
replicates as an independent unit. Also, unlike a Trojan, a worm usually does not camouflage
itself by performing any superficially beneficial functions. Most commonly, it will simply focus
on sending out copies of itself over the network. [6]

39

Appendix B: Sample Log produced by Norman Sandbox Analyzer

Partial log for Agobot.z

0x7C80D896=KERNEL32!SetCurrentDirectory ("C:\WINDOWS\TEMP\")

0x7C80D8B6=KERNEL32!WinExec ("C:\sample.exe",0x00000000)

0x7C804D75=KERNEL32!CreateProcessA

("C:\sample.exe",NULL,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

NULL,0x00000000,0x00000000)

0x7C802220=KERNEL32!_lopen ("C:\sample.exe",0x00000000)

0x7C803FF0=KERNEL32!GetFileSize (0x00000078,0x00000000)

0x7C8022C4=KERNEL32!CloseHandle (0x00000078)

0x7C80D60F=KERNEL32!InternalExec ("C:\sample.exe",0x00000000,0x00000000)

0x7C80513C=KERNEL32!GetCurrentProcessId ()

**PAGE FAULT: process 0x00000000 - cs:eip 0x0008:0xD000499D accessing page

0x00072030

**PAGE FAULT: process 0x00000000 - cs:eip 0x0008:0xD000CA98 accessing page

0x00070019

PageFault tbl process 0x00000109 - 0x00000001 entries, 0x7FFDF000-0x7FFDFFFF.

fhandle=0xFFFFFFFF.

 |offset 0x7FFDF000, seek 0x00000000, size 0x00001000, flags=0x00000008

PageFault tbl process 0x00000109 - 0x0000000C entries, 0x00400000-0x0040BFFF.

fhandle=0x7202FEEA.

 |offset 0x00400000, seek 0x00000000, size 0x00001000, flags=0x00000004

 |offset 0x00401000, seek 0x00001000, size 0x00001000, flags=0x00000000

 |offset 0x00402000, seek 0x00002000, size 0x00001000, flags=0x00000000

 |offset 0x00403000, seek 0x00003000, size 0x00001000, flags=0x00000000

 |offset 0x00404000, seek 0x00004000, size 0x00001000, flags=0x00000000

 |offset 0x00405000, seek 0x00005000, size 0x00001000, flags=0x00000000

 |offset 0x00406000, seek 0x00006000, size 0x00001000, flags=0x00000000

 |offset 0x00407000, seek 0x00007000, size 0x00001000, flags=0x00000000

 |offset 0x00408000, seek 0x00008000, size 0x00001000, flags=0x00000000

 |offset 0x00409000, seek 0x00009000, size 0x00001000, flags=0x00000000

 |offset 0x0040A000, seek 0x0000A000, size 0x00001000, flags=0x00000000

 |offset 0x0040B000, seek 0xFFFFFFFF, size 0x00001000, flags=0x00000008

**PAGE FAULT: process 0x00000109 - cs:eip 0x0008:0xD00053AA accessing page

0x0007FFDF

PageFault tbl process 0x00000109 - 0x00000002 entries, 0x20120000-0x20121FFF.

fhandle=0xFFFFFFFF.

 |offset 0x20120000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20121000, seek 0x00000000, size 0x00001000, flags=0x00000008

**PAGE FAULT: process 0x00000109 - cs:eip 0x0008:0xD00053D4 accessing page

0x00020121

**PAGE FAULT: process 0x00000109 - cs:eip 0x0008:0xD00053F6 accessing page

0x00020120

PageFault tbl process 0x00000109 - 0x0000000A entries, 0x20130000-0x20139FFF.

fhandle=0xFFFFFFFF.

40

 |offset 0x20130000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20131000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20132000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20133000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20134000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20135000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20136000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20137000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20138000, seek 0x00000000, size 0x00001000, flags=0x00000000

 |offset 0x20139000, seek 0x00000000, size 0x00001000, flags=0x00000008

0x7C80527D=KERNEL32!RtlZeroMemory (0x72030B87,0x00000032)

0x7C805316=KERNEL32!GetCurrentProcessId ()

0x7C804B4E=KERNEL32!HeapAlloc (0x00000000,0x00000008,0x00000330)

**PAGE FAULT: process 0x00000109 - cs:eip 0x001B:0x7C825C2E accessing page

0x00043004

**PAGE FAULT: process 0x00000109 - cs:eip 0x001B:0x7C804B6F accessing page

0x00000400

**PAGE FAULT: process 0x00000109 - cs:eip 0x001B:0x7C804E0E accessing page

0x00000407

0x7C804E73=KERNEL32!LoadLibraryA ("ADVAPI32.dll")

0x7C8066F2=KERNEL32!GetModuleHandleA ("ADVAPI32.dll")

0x7C804EA6=KERNEL32!GetProcAddress (0x77DC0000,"SetServiceStatus")

0x7C804EA6=KERNEL32!GetProcAddress (0x77DC0000,"RegisterServiceCtrlHandlerA")

0x7C804EA6=KERNEL32!GetProcAddress (0x77DC0000,"StartServiceCtrlDispatcherA")

0x7C804E73=KERNEL32!LoadLibraryA ("KERNEL32.dll")

0x7C8066F2=KERNEL32!GetModuleHandleA ("KERNEL32.dll")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"FlushFileBuffers")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetStringTypeW")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetCommandLineA")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetVersion")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"ExitProcess")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"TerminateProcess")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetCurrentProcess")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetLastError")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetFileAttributesA")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"UnhandledExceptionFilter")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetModuleFileNameA")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"FreeEnvironmentStringsA")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"FreeEnvironmentStringsW")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"WideCharToMultiByte")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetEnvironmentStrings")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetEnvironmentStringsW")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"SetHandleCount")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetStdHandle")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetFileType")

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetStartupInfoA")

41

Appendix C: Example and Explanation of an Oracle Explain Plan

An explain plan is a representation of the access path that is taken when a query is executed
within Oracle.

Query processing can be divided into 7 phases:

[1] Syntactic Checks the syntax of the query
[2] Semantic Checks that all objects exist and are accessible
[3] View Merging Rewrites query as join on base tables as opposed to using views
[4] Statement
 Transformation

Rewrites query transforming some complex constructs into simpler ones
where appropriate (e.g. subquery merging, in/or transformation)

[5] Optimization Determines the optimal access path for the query to take. With the Rule
Based Optimizer (RBO) it uses a set of heuristics to determine access
path. With the Cost Based Optimizer (CBO) we use statistics to analyze
the relative costs of accessing objects.

[6] QEP Generation QEP = Query Evaluation Plan
[7] QEP Execution QEP = Query Evaluation Plan

Steps [1]-[6] are handled by the parser. Step [7] is the execution of the statement.

The explain plan is produced by the parser. Once the access path has been decided upon it is
stored in the library cache together with the statement itself. We store queries in the library cache
based upon a hashed representation of that query. When looking for a statement in the library
cache, we first apply a hashing algorithm to the statement and then we look for this hash value in
the library cache. This access path will be used until the query is reparsed.

Terminology

Row Source
A set of rows used in a query may be a select from a base object or the
result set returned by joining 2 earlier row sources

Predicate where clause of a query
Tuples rows

Driving Table
This is the row source that we use to seed the query. If this returns a lot
of rows then this can have a negative effect on all subsequent operations

Probed Table
This is the object we lookup data in after we have retrieved relevant key
data from the driving table.

http://www.akadia.com/services/ora_interpreting_explain_plan.html

42

43

Appendix D: Parser Code

import java.util.regex.*;

import java.awt.Toolkit;

import java.io.*;

public class Parser {

 private Database db;

 private BufferedReader input;

 private static Console console;

 private String filename;

 private String line;

 private int swId;

 private int intOrder;

 private int linenum;

 public Parser (Console console, Database db) throws Exception {

 this.db = db;

 this.console = console;

 this.line = "";

 }

public void parseFile (File file, String wareType) throws Exception

{

 input = new BufferedReader(new FileReader(file));

 filename = file.getName();

 String name;

 int classId;

 if (wareType.equals("m") || wareType.equals("M")) {

 name =

filename.replaceFirst("(\\w+\\.){2}","").replace(".log","");

 classId = db.getClassId(filename.replaceFirst("\\..*",""));

 }

 else {

 name = filename.replace(".log","");

 classId = 100;

 }

 swId = db.getSoftwareId(name,classId);

 if (swId == 0) {

 db.insertSoftware(name,classId);

 swId = db.getMaxSoftwareId();

 intOrder = 0;

 linenum = 0; //DELETE

 while ((line = input.readLine()) != null) {

 linenum++;

 parseLine();

 }

 }

44

 }

 private void parseLine () throws Exception {

 if (isFunction()) {

 handleFunction();

 }

 else if (isPageFault()) {

 if (line.contains("PageFault tbl process")) {

 handlePageFault();

 }

 }

 else if (isException()) {

 if (line.contains("**EXCEPTION: ThreadID")) {

 handleException();

 }

 }

 else if (isPortConnection()) {

 handlePortConnection();

 }

 else if (isBindSocket()) {

 handleSocketBind();

 }

 else if (isOpenNetwork()) {

 handleOpenNetwork();

 }

 else if (isSendToPort()) {

 handleSendToPort();

 }

 else {

 updateElses();

 }

 }

 private boolean isFunction() {

 if (line.matches("(^0x\\w{8}=.*)|(^0x\\w{6}=.*)|

(^0x\\w{7}=.*)|(^MSVBVM60!.*)"))

 return true;

 else

 return false;

 }

 private boolean isPageFault() {

 if (line.matches("(.***PAGE FAULT.*)|

(.*PageFault.*)|(.*\\|offset.*)"))

 return true;

 else

 return false;

 }

 private boolean isException() {

 if (line.matches("(.***EXCEPTION.*)|(.*==>cs:eip.*)|

(.*<==cs:eip.*)|(^\\s*dr0=.*)"))

45

 return true;

 else

 return false;

 }

 private boolean isPortConnection() {

 if (line.matches("^-connect port.*"))

 return true;

 else

 return false;

 }

 private boolean isOpenNetwork() {

 if (line.matches("^Open network.*"))

 return true;

 else

 return false;

 }

 private boolean isBindSocket() {

 if (line.matches("^-binds socket.*"))

 return true;

 else

 return false;

 }

 private boolean isSendToPort() {

 if (line.matches("^-sendto port.*"))

 return true;

 else

 return false;

 }

 private void handlePageFault() throws Exception {

 intOrder++;

 db.insertInteraction(swId, 100, intOrder, "");

 int intId = db.getMaxInteractionId();

 String[] arr = line.split("\\s");

db.insertInteractionDetail(intId, "Table Process",

Integer.toString(Integer.parseInt(arr[3].replace("0x",""),16)),1

);

db.insertInteractionDetail(intId, "Entries",

Integer.toString(Integer.parseInt(arr[5].replace("0x",""),16)),2

);

 }

 private void handleException() throws Exception {

 intOrder++;

 db.insertInteraction(swId, 101, intOrder, "");

 int intId = db.getMaxInteractionId();

 String[] arr = line.split("\\s");

 db.insertInteractionDetail(intId, "ThreadID", arr[2], 1);

46

 db.insertInteractionDetail(intId, "Opcodee", arr[4], 2);

db.insertInteractionDetail(intId, "SEH",

arr[5].replaceFirst("SEH=",""), 3);

db.insertInteractionDetail(intId, "FaultCode",

arr[6].replaceFirst("FaultCode=",""), 4);

db.insertInteractionDetail(intId, "EFlags",

arr[7].replaceFirst("EFlags=",""), 5);

 }

 private void handlePortConnection() throws Exception {

 intOrder++;

 db.insertInteraction(swId, 102, intOrder, "");

 int intId = db.getMaxInteractionId();

 String[] arr = line.split("\\s");

db.insertInteractionDetail(intId, "Port",

arr[2].replaceFirst(",$",""), 1);

 db.insertInteractionDetail(intId, "Connection Type", arr[3], 2);

 db.insertInteractionDetail(intId, arr[4], arr[5], 3);

 }

 private void handleSocketBind() throws Exception {

 intOrder++;

 db.insertInteraction(swId, 103, intOrder, "");

 int intId = db.getMaxInteractionId();

 String[] arr = line.split("\\s");

 db.insertInteractionDetail(intId, "Socket Number", arr[2], 1);

 db.insertInteractionDetail(intId, "Port", arr[5], 2);

 }

 private void handleOpenNetwork() throws Exception {

 intOrder++;

 db.insertInteraction(swId, 104, intOrder, "");

 int intId = db.getMaxInteractionId();

db.insertInteractionDetail(intId, "Resource",

line.replaceFirst("^Open network resource ",""), 1);

 }

 private void handleSendToPort() throws Exception {

 intOrder++;

 db.insertInteraction(swId, 105, intOrder, "");

 int intId = db.getMaxInteractionId();

 String[] arr = line.split("\\s");

db.insertInteractionDetail(intId, "Port",

arr[2].replaceFirst(",$",""), 1);

 db.insertInteractionDetail(intId, "To Port", arr[4], 2);

 }

 private void handleFunction() throws Exception {

 //INSERT BEHAVIOR

 String function = checkFunctionEnd();

 String type = "Function";

47

 String detail = "DLL";

 String name = "";

 String detail_value = "";

 if (function.charAt(10) == '=') {

name =

function.replaceFirst("^0x\\w{8}=\\w*\\!","").replaceAll("(\\s|)

\\(.*","");

detail_value =

function.replaceFirst("^0x\\w{8}=","").replaceAll("\\!.*","");

 }

 else if (function.charAt(9) == '=') {

name =

function.replaceFirst("^0x\\w{7}=\\w*\\!","").replaceAll("(\\s|)

\\(.*","");

detail_value =

function.replaceFirst("^0x\\w{7}=","").replaceAll("\\!.*","");

 }

 else if (function.matches("^MSVBVM60!.*")) {

name =

function.replaceFirst("MSVBVM60!","").replaceAll("(\\s|)\\(.*","

");

 detail_value = "MSVBVM60";

 }

 else if (function.charAt(8) == '=') {

name =

function.replaceFirst("^0x\\w{6}=\\w*\\!","").replaceAll("(\\s|)

\\(.*","");

detail_value =

function.replaceFirst("^0x\\w{6}=","").replaceAll("\\!.*","");

 }

 else {

 System.out.println("\nFUNCTION DID NOT MEET ANY

CONDITIONS!\n"+function+"\n");

 }

 int bId = db.getBehaviorId(name,detail_value);

 if (bId == 0) {

 db.insertBehavior(name,type,detail,detail_value);

 bId = db.getMaxBehaviorId();

 }

 //INSERT INTERACTION

 intOrder++;

 Pattern pattern = Pattern.compile("\\(.*\\)");

 Matcher matcher = pattern.matcher(function);

 String parameters;

 if (matcher.find()) {

 parameters = matcher.group().replaceAll("'","''");

 }

else if (detail_value.equals("gdi32") &&

name.equals("CreateDIBitmap")) {

 parameters = "Parameters incomplete";

 }

48

 else {

 parameters = "No parameters";

 }

 db.insertInteraction(swId, bId, intOrder, parameters);

 int intId = db.getMaxInteractionId();

 }

 private String checkFunctionEnd() throws Exception {

 String current = line;

 boolean append = true;

 while (append) {

 input.mark(1000);

 if ((line = input.readLine()) != null &&

 !isFunction() &&

 !isPageFault() &&

 !isException() &&

 !isPortConnection() &&

 !isBindSocket() &&

 !isOpenNetwork() &&

 !isSendToPort()) {

 if (!autoAppend(current)) {

System.out.println("\n"+filename+"\n\nPrevious line:

"+current+"\nNext line: "+line+"\n");

 prompt();

 String option = console.readLine("Enter option number: ");

 if (option.equals("1")) {

 input.reset();

 append = false;

 }

 else if (option.equals("2")) {

 current = current+" "+line;

 append = true;

 }

 else if (option.equals("3")) {

 append = false;

 }

 }

 else { //append without prompts

 current = current+" "+line;

 append = true;

 }

 }

 else {//is fucntion, pagefault, exception, port connection, bind

socket, or open network

 input.reset();

 append = false;

 }

 }

 return current;

 }

 private boolean autoAppend(String current) {

49

 if (line.matches("\",0x\\w{8}\\.\\.\\.\\.\\)") ||

!current.matches(".*\\)$") || line.equals(""))

 return true;

 else

 return false;

 }

 private void prompt() {

System.out.println("1. Previous line is complete, continue parsing

next line.\n" +

 "2. Previous line is not complete, append next

line.\n" +

 "3. Next line is a new behavior type. It will

be added manually; continue.\n");

 }

}

50

Appendix E: Combination Generator

public class Pattern3 {

 private static Database db;

 public static void main(String[] args) throws Exception {

 Database db = new Database();

 int[] elements = db.getBehaviorIdPerm();

 int[] indices;

 int[] pattern = new int[3];

CombinationGenerator cg = new CombinationGenerator

(elements.length, 3);

 while (cg.hasMore()) {

 indices = cg.getNext();

 for (int i = 0; i < indices.length; i++) {

 pattern[i] = elements[indices[i]];

 }

 db.insertPattern3(pattern);

 }

 db.close();

 }

}

This class was created by Michael Gilleland, http://www.merriampark.com/comb.htm#Source

import java.math.BigInteger;

public class CombinationGenerator {

 private int[] a;

 private int n;

 private int r;

 private BigInteger numLeft;

 private BigInteger total;

 public CombinationGenerator (int n, int r) {

 this.n = n;

 this.r = r;

 a = new int[r];

 BigInteger nFact = getFactorial (n);

 BigInteger rFact = getFactorial (r);

 BigInteger nminusrFact = getFactorial (n - r);

 total = nFact.divide (rFact.multiply (nminusrFact));

 reset ();

 }

http://www.merriampark.com/comb.htm#Source

51

 public void reset () {

 for (int i = 0; i < a.length; i++) {

 a[i] = i;

 }

 numLeft = new BigInteger (total.toString ());

 }

 public BigInteger getNumLeft () {

 return numLeft;

 }

 public boolean hasMore () {

 return numLeft.compareTo (BigInteger.ZERO) == 1;

 }

 public BigInteger getTotal () {

 return total;

 }

 private static BigInteger getFactorial (int n) {

 BigInteger fact = BigInteger.ONE;

 for (int i = n; i > 1; i--) {

 fact = fact.multiply (new BigInteger (Integer.toString (i)));

 }

 return fact;

 }

 public int[] getNext () {

 if (numLeft.equals (total)) {

 numLeft = numLeft.subtract (BigInteger.ONE);

 return a;

 }

 int i = r - 1;

 while (a[i] == n - r + i) {

 i--;

 }

 a[i] = a[i] + 1;

 for (int j = i + 1; j < r; j++) {

 a[j] = a[i] + j - i;

 }

 numLeft = numLeft.subtract (BigInteger.ONE);

 return a;

 }

}

52

Appendix F: Behavior Counting Scripts

This script counts occurrences of each behavior in the class Flooder.

CREATE OR REPLACE PROCEDURE PATTERN1_COUNT AS

 V_PATTERN_ID NUMBER;

 V_COUNT NUMBER;

 CURSOR GET_PBEHAVIOR_ID IS

 SELECT BEHAVIOR_ID

 FROM PATTERNS1

 WHERE FLOODER IS NULL

 ORDER BY PATTERN1_ID DESC;

BEGIN

 FOR REC IN GET_PBEHAVIOR_ID LOOP

 SELECT COUNT(*) INTO V_COUNT

 FROM SOFTWARE S

 WHERE S.CLASSIFICATION_ID = 106

 AND S.FOR_ANALYSIS = 'Y'

 AND EXISTS (SELECT 1

 FROM INTERACTIONS I

 WHERE I.SOFTWARE_ID = S.SOFTWARE_ID

 AND I.BEHAVIOR_ID = REC.BEHAVIOR_ID);

 UPDATE PATTERNS1

 SET FLOODER = NVL(V_COUNT,0)

 WHERE BEHAVIOR_ID = REC.BEHAVIOR_ID;

 END LOOP;

 COMMIT;

END;

This script counts occurrences of each pattern in the class Virus.

CREATE OR REPLACE PROCEDURE PATTERN3_126 AS

 V_COUNT NUMBER;

 CURSOR GET_PATTERN IS

 SELECT PATTERN3_ID

 FROM PATTERNS3

 WHERE VIRUS IS NULL;

BEGIN

 FOR REC IN GET_PATTERN LOOP

53

 SELECT COUNT(DISTINCT S.SOFTWARE_ID)

 FROM SOFTWARE S, PATTERNS3 P

 WHERE P.PATTERN3_ID = :PATTERN3_ID

 AND S.FOR_ANALYSIS = 'Y'

 AND S.CLASSIFICATION_ID = :CLASSIFICATION_ID

 AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID

 FROM INTERACTIONS I1, SOFTWARE S1

 WHERE I1.SOFTWARE_ID = S1.SOFTWARE_ID

 AND I1.BEHAVIOR_ID = P.BEHAVIOR_ID1)

 AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID

 FROM INTERACTIONS I2, SOFTWARE S2

 WHERE I2.SOFTWARE_ID = S2.SOFTWARE_ID

 AND I2.BEHAVIOR_ID = BEHAVIOR_ID2)

 AND S.SOFTWARE_ID IN (SELECT DISTINCT S3.SOFTWARE_ID

 FROM INTERACTIONS I3, SOFTWARE S3

 WHERE I3.SOFTWARE_ID = S3.SOFTWARE_ID

 AND I3.BEHAVIOR_ID = P.BEHAVIOR_ID3)

 UPDATE PATTERNS3

 SET VIRUS = V_COUNT

 WHERE PATTERN3_ID = REC.PATTERN3_ID;

 END LOOP;

 COMMIT;

END;

54

Bibliography

[1] Symantec Global Internet Security Threat Report: Trends for 2008, Volume XIV. 2009.

[2] Anti-Virus Comparatives: Proative/Retrospective Test, On-Demand Detection of
Virus/Malware. 2010

[3] Trilling, Stephen. ―Security Technology and Response: To Catch a Theif.‖ CIO Digest:
Upload. Jan. 2009

[4] Bilar, Daniel. Known Knowns, Known Unknowns and Unknown Unknowns: Anti-virus
issues, malicious software and Internet attacks for non-technical audiences. 2009

[5] ―Malware.‖ TechTerms.Com: The Tech Terms Computer Dictionary.

<http://www.techterms.com/definition/malware>.

[6] Virus Encyclopedia. < http://www.f-secure.com/en_EMEA/security/virus-removal/virus-
information/encyclopedia/>.

[7] S. Kolahi and L. Libkin. On Redundancy vs Dependency Preservation in Normalization: An
Information-Theoretic Study of 3NF.

[8] J. Jones and E. Johnson. Database Modeling and Design in Information Systems.

[9] ―Malicious Programs.‖ SecureList. <http://www.securelist.com/en/threats/detect/malware>.

[10] Rozinov K., Efficient Static Analysis of Executables for Detecting Malicious Behavior,
 M.Sc. Thesis (unpublished), Polytechnic University (NY), May 2005.

[11] Ries C., Automated identification of malicious code variants, BA CS Honors Thesis
 (unpublished) , Colby College (ME), May 2005.

[12] Bilar D., Fingerprinting Malicious Code Through Statistical Opcode Analysis

(unpublished), Wellesley College (MA)

[13] T. Dullien and R. Rolles, Graph-based comparison of executable objects, Proceedings of

the Symposium sur la Securite des Technologies de L‘information et des communications,

2005.

[14] Bilar D., Opcodes as predictor for malware, Int. J. Electronic Security and Digital

Forensics, Vol. 1, No. 2, 2007.

[15] Tony Lee and Jigar J. Mody. Behavioral Classification. In EICAR Conference,
 2006.

55

[16] Thorsten Holz, Carsten Willems, Konrad Rieck, Patrick Duessel, and Pavel Laskov.
Learning and Classification of Malware Behavior. In Fifth Conference on Detection of

Intrusions and Malware & Vulnerability Assessment (DIMVA 08), June 2008.

[17] Corrado Leita and Marc Dacier. SGNET: a worldwide deployable framework to support the

analysis of malware threat models. In EDCC 2008, 7th European Dependable Computing

Conference, May 7-9, 2008, Kaunas, Lituania, 2008.

[18] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple execution paths

for malware analysis. In Security and Privacy, 2007. SP ’07. IEEE Symposium on, pages
231–245, 2007.

[19] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Pongsin Poosankam,

Dawn Song, and Heng Yin. Automatically identifying trigger-based behavior in malware. In
Book chapter in ”Botnet Analysis and Defense”, Editors Wenke Lee et. al., 2007.

[20] ―Advanced Persistent Threats (APTs) – A Brief Definition‖. Damballa.

< http://www.damballa.com/downloads/r_pubs/advanced-persistent-threat.pdf>

[21] Filiol E., Blonce A., Frayssignes L. Portable Document Format (PDF) Security Analysis and
Malware Threats. Army Signals Academy – Virology and Cryptology Laboratory.

[22] Axelsson, Stefan. The Base-Rate Fallacy and its Implications for the Difficulty of Intrusion
Detection. Chalmers University of Technology, 2009.

[23] Undocumented Functions of NTDLL. RtlCreateHeap.
<http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/Memory%20
Management/Heap%20Memory/RtlCreateHeap.html>

http://www.damballa.com/downloads/r_pubs/advanced-persistent-threat.pdf

56

Vita

Danielle Louise Shoemake was born in New Orleans, Louisiana and received her B.S. degree in
Business Management – Management Information Systems from the University of New Orleans.
She was admitted to the graduate school of the University of New Orleans in Fall 2006, where
she worked under the guidance of Professor Daniel Bilar.

Through part of her studies, she worked as a graduate assistant to Dr. Daniel Bilar, building a
malicious software behavior mining database. She also interned at the University of New
Orleans‘ Research and Technology Park with the Space and Naval Warfare (SPAWAR)
department of the Navy. Her graduate studies were concentrated on distributed systems,
concurrent programming applications, and databases.

	Dynamic Behavioral Analysis of Malicious Software with Norman Sandbox
	Recommended Citation

	tmp.1322754141.pdf.unbua

