
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

8-5-2010 

Dynamic Behavioral Analysis of Malicious Software with Norman Dynamic Behavioral Analysis of Malicious Software with Norman 

Sandbox Sandbox 

Danielle Shoemake 
University of New Orleans 

Follow this and additional works at: https://scholarworks.uno.edu/td 

Recommended Citation Recommended Citation 
Shoemake, Danielle, "Dynamic Behavioral Analysis of Malicious Software with Norman Sandbox" (2010). 
University of New Orleans Theses and Dissertations. 1233. 
https://scholarworks.uno.edu/td/1233 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ The University of New Orleans

https://core.ac.uk/display/303943906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F1233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/1233?utm_source=scholarworks.uno.edu%2Ftd%2F1233&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

Dynamic Behavioral Analysis of Malicious Software 
with Norman Sandbox 

 
 
 

A Thesis 
 
 
 

Submitted to the Graduate Faculty of the  
University of New Orleans 
in partial fulfillment of the  

requirements for the degree of 
 
 
 

Master of Science 
in 

Computer Science 
 
 
 

by 
 

Danielle Shoemake 
 

                      B.S., University of New Orleans,  2003 
 

August 2010 



 

ii 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2010, Danielle Shoemake 



 

iii 
 

Acknowledgements 

 
I owe the deepest gratitude to my thesis adviser, Dr. Daniel Bilar, for his encouragement, 

guidance, and support.  His enthusiasm in the research area of malicious software was 
motivational and made this thesis a pleasure.  I am also grateful for the time and input 
contributed by my other committee members, Dr. Shengru Tu and Dr. Golden Richard III.  

I want to give a special thanks to Dr. Jaime Nino for giving me such an amazing and 
solid programming foundation and to Dr. Shengru Tu, Dr. Nauman Chaudhry, and Dr. Vassil 
Roussev for their teachings in databases, distributed systems, and concurrent programming, as 
these are the areas I plan to pursue.   

I want to express my sincere appreciation to staff members Fareed Qaddoura and Jeanne 
Boudreax.  Fareed was readily available to me for lab and network support while Ms. Jean stayed 
on top of my paperwork to ensure that I would not fall through the cracks. 

I am indebted to Mr. Matt Allen of the Norman Sandbox & Technology team.  Without 
the use of the Norman Sandbox Analyzer, this thesis would not have been possible.  I would also 
like to thank the team members at VX Heavens.  Without their large malicious software 
contribution, I would most likely still be searching for samples! 

Finally, I thank my mother and step-father, friends, and coworkers for their support and 
assistance throughout the duration of my thesis and coursework. 

   
   

 



 

iv 
 

Table of Contents 
 

LIST OF FIGURES .................................................................................................................................. VI 

LIST OF TABLES ................................................................................................................................... VII 

ABSTRACT ..............................................................................................................................VIII 

CHAPTER 1 – INTRODUCTION ........................................................................................................... 1 

Time Frame of a Virus Definition Update .............................................................................................................. 2 

Signature-Based Matching Method ...................................................................................................................... 3 

Behavioral Heuristics Mechanisms ....................................................................................................................... 4 

CHAPTER 2 – RELATED WORK.......................................................................................................... 7 

CHAPTER 3 – DESIGN AND IMPLEMENTATION ........................................................................... 9 

Overview of Approach .......................................................................................................................................... 9 

Setup ...  .............................................................................................................................................................. 10 

Samples  .............................................................................................................................................................. 10 

Generating System Interaction Logs ................................................................................................................... 11 

Creating the Behavior Database ......................................................................................................................... 13 

Parsing Interaction Logs into the Database ......................................................................................................... 16 

CHAPTER 4 – BEHAVIOR EXTRACTION ....................................................................................... 19 

Single Behavior Analysis ..................................................................................................................................... 19 

Pattern Behavior Analysis ................................................................................................................................... 20 

CHAPTER 5 – STATISTICAL ANALYSIS......................................................................................... 24 

Single Behavior Findings .................................................................................................................................................... 24 

 



 

v 
 

Bayesian Inference ............................................................................................................................................................... 28 

Discussion ................................................................................................................................................................................ 31 

CHAPTER 6 -  FUTURE MALWARE ................................................................................................. 33 

APPENDIX A: DEFINITIONS ............................................................................................................. 34 

APPENDIX B: SAMPLE LOG PRODUCED BY NORMAN SANDBOX ANALYZER .................. 39 

APPENDIX C: EXAMPLE AND EXPLANATION OF AN ORACLE EXPLAIN PLAN ................ 41 

APPENDIX D: PARSER CODE ........................................................................................................... 43 

APPENDIX E: COMBINATION GENERATOR ................................................................................ 50 

APPENDIX F: BEHAVIOR COUNTING SCRIPTS .......................................................................... 52 

BIBLIOGRAPHY ................................................................................................................................... 54 

VITA......................................................................................................................................................... 56 

 
  

  

 

 

      



 

vi 
 

List of Figures 
 

1 Goods and services available for sale on underground economy servers .................................... 1 

2 New malicious code threats for 2008 ........................................................................................... 2 

3 Graphical representation of multiple execution paths ................................................................. 8 

4 Screenshot of the Norman Sandbox Analyzer ........................................................................... 13 

5 Diagram of ‗Behavior Database‘ ............................................................................................... 14 



 

vii 
 

List of Tables 
 

1    Number of Malicious Software samples in their respective classes ....................................... 11 

2    Log extraction example........................................................................................................... 17 

3    Top 15 behaviors and probabilities that given class CApp, single behavior B is observed ...... 24 

4    Comparison of the top 4% behaviors of CApp with the other 5 classes ................................... 25 

5    Comparison of the top 2% behaviors of CWorm with the other 5 classes ................................. 25 

6    Comparison of the top 7% behaviors of CTrojan with the other 5 classes ................................ 26 

7    Comparison of the top 10% behaviors of CVirus with the other 5 classes................................ 26 

8    Comparison of the top 9% behavior of CDOS with the other 5 classes .................................... 27 

9    Comparison of the top 9% behavior of CAPT with the other 5 classes .................................... 27 

10   Behavior used for testing class membership .......................................................................... 28 

11   Given a class of programs, the probabilities we saw a behavior ........................................... 29 

12   Class probabilities in our 2000 samples................................................................................. 29 

13   For behavior B3, probability of class membership given execution of an unknown  
  program .................................................................................................................................. 30 
 
14   Probabilities that an unknown program, given a behavior, belongs to a class. Rows  
  some up to 100% ...................................................................................................................  28 



viii 
 

 
Abstract 
 
 
 
Current signature‐based Anti‐Virus (AV) detection approaches take, on average, two weeks 
from discovery to definition update release to AV users. In addition, these signatures get stale 
quickly: AV products miss between 25%‐80% of new malicious software within a week of not 
updating. This thesis researches and develops a detection/classification mechanism for 
malicious software through statistical analysis of dynamic malware behavior.  
 
Several characteristics for each behavior type were stored and analyzed such as function DLL 
names, function parameters, exception thread ids, exception opcodes, pages accessed during 
faults, port numbers, connection types, and IP addresses. Behavioral data was collected via 
Norman Sandbox for storage and analysis.  
 
We proposed to find which statistical measures and metrics can be collected for use in the 
detection and classification of malware. We conclude that our logging and cataloging procedure 
is a potentially viable method in creating behavior‐based malicious software detection and 
classification mechanisms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: signature, behavior, Norman, sandbox, malicious software detection 
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CHAPTER 1 – INTRODUCTION 

 

The current trend for the purpose of writing malicious code is that the resulting attacks involve 
extracting confidential financial information from their victims.  The information is used for 
monetary gain by the attacker; thus affecting victims financially, rather than solely disrupting the 
function of their computer systems, as was the aim of the past.  The figure below shows the 
prices at which confidential information can be sold.  Profitability is the driving force inviting 
newcomers to associate themselves with the creation and distribution of malicious software. [1]  
 

 
Figure 1 - Goods and services available for sale on underground economy servers 

 
Data collected by Symantec shows that in 2008, 78 percent of confidential information threats 
exported user data and 76 percent of confidential information threats used a keystroke-logging 
component to steal information such as online banking account credentials.  The financial 
services sector had the most identities exposed due to data breaches.  The average cost of a data 
breach, in 2008, was $6.7 million.  Total number of malicious threats detected by Symantec in 
2008, was 1,656,227.  As shown in the chart in figure 2, the number of new threats has 
drastically increased and at an alarming rate.  The number of threats discovered in 2008 account 
for 60 percent of total threats since 2002. [1] 
 
As long as there are people, computers, an accessible internet, and with all three components 
growing; there may never exist an absolute solution that will rid the world of malicious software.  
We can, however, look for new methods to contain the problem and minimize damages.     
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Figure 2 - New malicious code threats for 2008 

 

Time Frame of a Virus Definition Update 

 

Typical scenario with current signature matching technique:  
 
A bank employee receives a Trojan containing a key-logger via an email-worm that appears to 
the employee to be an application accompanying a joke that was also part of the email.  It seems 
safe because it was sent from a friend.  The employee has all of the other employees of her bank 
branch in her contacts list, several from other branches, and several friends that work for other 
companies.  The malware immediately replicates itself and is sent to everyone in the employee‘s 

contacts list.  Once downloaded by each new victim, the email-worm does the same process with 
contact lists on their machines.  Within a few days, the malware has spread itself to thousands of 
computers.   
 
At least one employee notices that the application is suspicious and forwards it to the security 
and IT departments of the bank.  By the time the IT department analyzes the application, 
customers have begun to call in to customer service about missing funds from their accounts.  
The bank‘s IT department begins their standard process for removing malicious software from 

infected computers while the software department of the bank begins to develop a patch that will 
prevent future attacks of the virus.  Meanwhile, the email-worm is still spreading the Trojan, as 
there has not yet been an update to AV virus definitions.   
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Eventually, AVs are wise to the new threat.  Within a few days, the anti-virus developers have 
updated their virus definitions to include signatures for the new malware.  They push out the 
update to their users.  Not all computer users receive automatic updates or use anti-virus 
software; so unfortunately, the email-worm is not yet completely put to rest.   
 
On average, two weeks will elapse during this cycle before AVs have pushed out releases for 
new virus definition updates. [2] Consider the number of bank transactions that occur in two 
weeks time by one bank teller, let alone the rest of the branch and the other banks and companies 
that could be infected as in the given scenario.  This is two weeks merely to begin the process of 
slowing down the financial-trauma laden attacks and is not nearly enough to minimize damages 
at a satisfactory level.   
 
This snail‘s pace practice is motivated by what is known as the signature matching method. 

 

Signature-Based Matching Method 

 

Signature matching is used to identify malicious software by most AV products. 
 

―Writing virus signatures—the classic mechanism for detecting and stopping 
threats—is analogous to using fingerprint matching to catch criminals.  If you‘re 

looking for a known criminal who has a fingerprint on file, it‘s a perfect system.  If 

you don‘t have their fingerprint yet, this traditional ‗blacklisting‘ mechanism isn‘t 

effective.‖  [3]  
 

A signature is a pattern that identifies malicious software and can be created from a piece of code 
or a hash.  The fragment is used as an identifier for the entire malicious program.  Once stored in 
memory, the fragment will look something like this example:  
 
C3 7C FD 1D 31 C0 6F OF 96 18 A4  

 

The rationale underlying these character patterns is that they are more likely to be encountered 
when analyzing malicious software rather than innocent programs.  Hundreds of thousands of 
these signatures are stored in local AV databases.  An AV scanning engine then tries to match 
pre-defined file areas against this signature database.  These areas are typically located at the 
beginning and the end of the file and after the executable entry point of a program. 
 
Malicious code can be tweaked to make the byte pattern mismatch.  Generic matching was 
introduced to add some ‗fuzziness‘ to the signature in order to catch malicious software that is 
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slightly altered so as to evade the stricter matching.  Using the example above, the second, third, 
fourth and ninth bytes are replaced with a wildcard denoted by ‗??‘: 
 

C3 ?? ?? ?? 31 C0 6F OF ?? 18 A4 

 

For example, the strings below would both match the above: 
 
C3 99 A0 BB 31 C0 6F OF 77 18 A4 

 
C3 A1 22 00 31 C0 6F OF FF 18 A4 

 

 The problem with casting a wider net to catch ‗bad‘ programs is that ‗innocent‘ (non-malicious) 
programs may be identified incorrectly; in other words, there is an increase in the false positive 
rate. [4] 
 

Behavioral Heuristics Mechanisms 

 

Behavioral heuristics is the notion of how a given software program interacts with its embedded 
environment.  For instance, a program may interact with a file system (by opening, creating or 
deleting a file) or the network (opening a connection to a server or setting up a receiving server). 
These and other interactions of the program can be monitored in what is called a ‗sandbox‘.  A 

sandbox is a controlled, instrumented container in which the program is run and that records how 
it interacts with its environment. [4] A sample sandbox output is set out below: 
 
Some general information about the file is shown and that a message box with the caption 
‗sample‘ and message ‗tikkun olam!‘ is displayed on the screen. 
 
[ General information ] 

* Display message box (sample) : sample, tikkun olam! 

* File length: 18523 bytes. 

* MD5 hash: 1188f67d48c9f11afb8572977ef74c5e. 

 

 Here shows that the action of the program is to delete a file and recreate one with the same 
name, kern32.exe.   
 
[ Changes to filesystem ] 

* Deletes file C:WINDOWS\SYSTEM32\kern32.exe. 

* Creates file C:WINDOWS\SYSTEM32\kern32.exe. 

 

This entry makes the file kern32.exe run when system startup begins as the computer is switched 
on.   
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[ Changes to registry ] 

* Creates key 

"HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce". 

* Sets value "kernel32"="C:WINDOWS\SYSTEM32\kern32.exe -sys" in 

key " HKLM\Software\ Microsoft\Windows \CurrentVersion\RunOnce". 

 

The system is instructed to intercept the strokes used on the keyboard and pass it on to a custom 
function. 
 
[ Changes to system settings ] 

* Creates WindowsHook monitoring keyboard activity. 

 
The program connects to a server at address 110.156.7.211 on port 6667, a typical port for 
Internet Relay Chat (IRC) chat server, logs in and joins a chat channel.  
 
[ Network services ] 

* Connects to "110.156.7.211" on port 6667 (TCP). 

* Connects to IRC server. 

* IRC: Uses nickname CurrentUser[HBN][05]. 
* IRC: Uses username BoLOGNA. 

* IRC: Joins channel #BaSe_re0T. 

 
In the example above, interactions occur with the file system, the Windows registry (the internal 
Windows database) and the establishment of a TCP network connection to an IRC chat server. 
Connecting to a chat server is anomalous enough behavior that it should raise a concern that 
something is not correct.  Taken together, this set of activities is consistent with the suspicious 
program being a bot, connecting to a botnet through the IRC server. [4] 
 
 AV signature databases quickly go out-of-date.  After failing to update signatures for one week, 
the best AV tested missed between 26 and 31 per cent of the new malicious software, the worst 
missed upwards of 80 percent. [2] 
 
It is possible to derive a ‗behavioral signature‘ as opposed to the byte-value approach discussed 
earlier.  Some AVs are already employing this technique by attempting to stop a running 
program that has tried to execute some particular behavior, with ―running‖ being the operative 

term as to why this technique has not made significant miracles.  The AV would not be aware of 
the suspicious dynamic behavior until the moment of occurrence.  While some AVs attempt to 
‗undo‘, the program may have gotten far enough along in its processes to do irreparable damage.   
 
AVs will look for obviously suspicious behaviors such as a registry change or file replacement.  
These ―obviously suspicious‖ behaviors are most likely, at least in part, the malevolence of the 

malware which is what makes it so obvious.  But what about the shy, nondescript behaviors that 
are not very noticeable, yet still play some part, even if diminutive?  They are not easily 
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recognizable as suspicious nor are they obviously harmful.  Sometimes they are part of Windows 
libraries and are even more hidden by the fact that they also occur as menial tasks in non-
malicious software. 
 
From the logging and cataloging approach we will take in this thesis, we propose that we will 
find various avenues for which statistical measures and metrics can be collected for use in the 
detection and classification of malware.  We anticipate finding not only those behaviors that are 
obviously suspicious, but also those prevalent in certain classes that are not typically considered 
suspicious.  We may also find interesting and usable trends based on the details of a behavior 
such as the library it belongs to or the parameters associated with it.  From this preliminary 
assessment, if positive results are discovered, we hope to be able to conclude that new behavior-
based mechanisms, possibly involving the integration of a sandbox to work in conjunction with 
AVs, can be used to stop the execution of malicious software before it begins any of its processes 
and to aid in the classification of malware. 
 
The rest of this thesis is organized as follows: Chapter 2 gives an overview of related work. 
Chapter 3 delves into the design and implementation of the Norman data generated database. 
Chapter 4 shows how we extracted behavioral patterns. Chapter 5 does Bayesian inference on 
these results and Chapter 7 shows some malware on the horizon that may be immune to the 
approach taken in this thesis. 
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CHAPTER 2 – RELATED WORK 

 
 
Dynamic malware investigations were undertaken by Rozinov (2005), Ries (2005), and Bilar 
(2007): Bayer and Ries‘ behavioral analysis ran the malware dynamically in a sandbox, recorded 
security-relevant Win32 API calls, and constructed a syscall-based behavioral fingerprint for 
malware identification and classification purposes.  Rozinov, on the other hand, located calls to 
the Win32 API in the binary itself.  While Ries and Bayer recorded the system calls of the 
malware dynamically during execution, Rozinov statically disassembled and simplified the 
malware binary via slicing, scanned for Win32 API calls and constructed an elaborate Finite 
State Automaton signature for later detection purposes. [10, 11, 12] 
 
Graph-based structural approaches gained some traction when in 2005, Dullien proposed a 
simple but effective signature set to characterize statically disassembled binaries: every function 
in the binary was characterized by a three-tuple (number of basic blocks in the function, number 
of branches and number of calls).  These sets were used to compare malware variants and 
localize changes.  Bilar examined the static callgraphs of 120 malicious and 280 non-malicious 
executables.  He fitted Pareto models to the in-degree, out-degree, and basic block count 
distributions, and found a statistically significant difference for the derived power law exponent 
of the basic block count fit.  He concluded that malware tended to have a lower basic block count 
than non-malicious software, implying a simpler structure: Less interaction, fewer branches and 
more limited functionality. [13, 14] 
 
More recently (2008), Holz presented a system that classifies unknown malware samples based 
on their behavior.  A particular limitation is that the system requires supervised learning, using a 
virus scanner for labeling the training set. [15] Lee developed a system for classifying malicious 
software samples that relies on system calls for comparing executables. The scalability of the 
technique is limited as the system required several hours to cluster a set of several hundred 
samples.  Also, the tight focus on system calls implies that the collected profiles do not abstract 
the observed behavior. [16]  
 
Leita suggest classifying malware based on the epsilon-gamma-pi-mu model.  In this model, 
additional information on how the malware is originally installed on the target system is 
considered for classification.  This can include information on the exploit and exploit payload 
used to install the malware dropper and on the way the dropper in turn downloads and installs the 
malware. [17] 
 
As the use of a sandbox for dynamic behavior analysis becomes more and more prominent, so 
does the examination of their abilities and usefulness.  One item for which inquiries are regularly 
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expressed is that a sandbox will typically only utilize one execution path.  That is, if a set of 
instructions (or code) includes conditional sections based on mutable program variables, in most 
cases there are situations in which multiple paths could be taken.  The following is a graphical 
representation: 

 
Figure 3 – Graphical representation of multiple execution paths 

 

Because of the possible variance in execution paths, many feel that a sandbox does not give a 
true representation of what is happening between the program and system.  While it can be 
argued that the ultimate goal of malicious software will usually be carried out regardless of how 
it gets from A to Z, there is current research to incorporate these multiple execution paths into 
the sandbox technology so that a deeper dynamic analysis may be performed.  The prototype for 
this research uses a state capturing mechanism so that the states, at different points during 
execution, can be recorded and compared after various execution paths have been forced [18] 
 
Similarly, symbolic execution of programs as described by Brumley was proposed with the goal 
of observing more than a single execution path and in particular to detect trigger-based behavior 
in malware. [19] 
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CHAPTER 3 – DESIGN AND IMPLEMENTATION 
 

Overview of Approach 

 

System interaction logs were collected from malware using a Norman sandbox.  Data from the 
logs was parsed into a database in a manner such that all information is query-able and 
essentially, a log could be rebuilt from its parts.  From this data, counts of occurrence of 
behaviors were taken per classification and per software (See the example below).  From a list of 
behaviors found, all possible behavior sequences (with length 3) were generated, stored, and 
occurrences also counted per classification and per software.*  Statistical analysis was performed 
from the data counts and also on several other factors such as how often exceptions and page 
faults occur within malware versus non-malicious software. 
 
For the purposes of this paper, a ―behavior‖ is a single entity that describes an action that may 

occur on a system.  Behaviors can represent function calls, exceptions, page faults, port 
connections, socket bindings, send to port calls, and open network calls.   
 
Example of a function call behavior: 
 
KERNEL32.CreateProcessA() 

 

A system interaction is the actual event of a behavior interacting with a system; some catalyst 
has caused a particular behavior to be executed on a system.  The parts that comprise an 
interaction make it unique: software that called or caused the behavior, the order of its 
occurrence, and its parameters if there are any. 
 
Example of a system interaction: 
 
Agent.bz:KERNEL32.CreateProcessA 

("C:\WINDOWS\MsgNet32.exe",NULL,0x00000000,0x00000000,0x00000000

,0x00000000,0x00000000,NULL,0x00000000,0x00000000) 

 
 
*Per the combination formula: n! / r! (n - r)!, there are a total of 1,435,853,825 possible behavior 
patterns when evaluating patterns using a set of 2,051 behaviors and with a length of three 
behaviors.  Due to resource constraints, the combination generator was stopped when it reached 
304,999,878 patterns.  This is further addressed in the Future Work section of this paper. 
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Setup 

 

Initial processing (parsing interaction logs into the database) was done with a Dell Studio laptop 
running Microsoft Windows Vista Home Premium Edition with Service Pack 2.  The laptop has 
an Intel® Core™2 Duo CPU P8600 @ 2.40GHz.  VMware Player Version 2.5.3 build-185404 
running Windows XP SP3 was used in conjunction with this machine for the handling of 
malware so that the machine would not be infected. 
 
Secondary processing (analysis of stored database data) was done with a Dell Precision 
WorkStation T3400 running Microsoft Windows 7 Enterprise Edition.  It has an Intel® Core™2 

Quad CPU Q9550 @ 2.83GHz. 
 

Samples 

 

Malicious software samples were found in binary form in an online database titled VX Heavens 
at http://vs.netlux.org.  Initially, 67,000+ files were obtained with filename format: 
OS.Classification.MalwareName.version; example: Win32.Worm.Agent.az.  Files were first 
filtered by operating system to only include those for Windows 32.  The remaining 11,581 
binaries were sorted into directories by the following twenty-seven malware classifications: 
Backdoor, DoS, Email-Flooder, Email-Worm, Exploit, Flooder, IM-Flooder, IM-Worm, IRC-
Worm, Net-Worm, Nuker, P2P-Worm, Rootkit, SMS-Flooder, Sniffer, Spam-Tool, Spoofer, 
Trojan, Trojan-DDoS, Trojan-Clicker, Trojan-Downloader, Trojan-Dropper, Trojan-Notifier, 
Trojan-Proxy, Trojan-Spy, Virus, and Worm.  Definitions for each class can be found in the 
Appendix.   
 
Similar classes were purposefully not lumped together so that specific analysis could be done 
when warranted.  For general analysis, classes can easily be grouped together however they are 
needed.    In many cases, there were several (sometimes as many as 100) versions of software 
with the same name.  The API logs of all versions were included when cataloging into the 
database, but to limit duplication and to have a more reasonable sample size for analysis, each 
class was further filtered by only using one version of each.  The versions used were selected by 
finding those that utilized the most behaviors.  For example, if version A required the use of 50 
behaviors but version B used 75 behaviors; then version B was selected for analysis.  After all 
filtering, there were a total of 2459 samples that are represented in the following table.  For 
analysis, the classes were combined into Application, Worm, Trojan, Virus, DoS, and Advanced 
Persistent Threats. 
 
 
 

http://vs.netlux.org/
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Backdoor DoS Email Flooder Email Worm Exploit Flooder IM Flooder 

27 143 1 9 2 2 57 

IM Worm IRC Worm Net Worm Nuker P2P Worm Rootkit SMS Flooder 

37 75 57 118 181 9 27 

Sniffer Spam Tool Spoofer Trojan Trojan DDoS Trojan Clicker Trojan Downloader 

13 9 3 183 63 33 5 

Trojan Dropper Trojan Notifier Trojan Proxy Trojan Spy Virus Worm   

203 31 69 267 358 147   

Table 1: Number of Malicious Software samples in their respective classes. 
 
Non-malicious software was obtained by scanning several Windows 32 systems for executable 
files.  A total of 1557 samples were found, logged, and catalogued into the database but only 340 
were utilized after using the same filtering techniques that were done for malware.  
 

Generating System Interaction Logs 

 

In order to catalogue the behaviors of software, a method had to be selected that would log each 
and every interaction between each of the executables and the system.  This method would have 
to prevent the system from being infected by malware and could hopefully be incorporated into 
the future use of this research.  There were two options considered: the first was to execute the 
software in a virtual machine with an API call logger running within the virtual machine, while 
the second was to execute the software within a Norman sandbox.  Using a Windows virtual 
machine allows a greater degree of control of the environment since it is more like a true to life 
system versus the simulated Windows environment of a sandbox.  It was decided however, that 
less control and constant variables were more desirable.   
 
The dependent variables, the interactions reported in an API log, should only be affected by the 
independent variables, in this case, the executed software.  While a VM offers more control of 
the environment, allowing the manipulation of settings (i.e. installing or running other software) 
per software creates a less controlled environment, as in a controlled constant for testing.  If one 
could guarantee that all altered settings remained exactly the same for all software that is 
executed, this might be acceptable.  However, there is software that will not run to completion 
when it discovers that some other particular software is present, and will then usually wait for a 
user response as in this example, ―Setup cannot continue because this version is incompatible 

with a previously installed one.‖  The API log to represent this situation would report this 
message to the screen and then stop, instead of reporting the installation or whatever the program 
was trying to do before discovering the other software.  For this example, the older version 
would first need to be removed, which creates a change in our controlled variable and is a cause 
for all software to be retested with this change.  Keeping the system constant will ensure that all 
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trials of the investigation are equally impacted by the controlled variables, therefore allowing one 
to see the impacts of the independent variable on the dependent variable. 
 
The Windows API calls that are used to prepare for and to seek out those external files will be 
logged and that will be sufficient.  With the notion of using constant variables when logging 
behavior, the behavior that occurs while executing in the sandbox can be representative of any 
Windows 32 system regardless of the programs that are installed (as long as its Windows 32 files 
exist as they were originally installed).     
 
Therefore, the Norman sandbox was chosen to generate the system interaction logs; it simulates 
a clean install of Windows and operates exactly the same for all software, regardless of the type 
of system the sandbox is running on.  The Norman sandbox comes with API logging features and 
saves the step of having to design our own.  It shows each interaction in the order of occurrence, 
including its parameters when they exist.  Another highly valued feature of the sandbox was that 
it allowed batch running of directories.  This was considerably attractive feature on account of us 
wishing to log and store all 11,581 malicious and all 1557 non-malicious software samples, 
which resided in only 28 directories, one for each class. 
 
Using the Norman Sandbox Analyzer consisted of the following steps: 

1. Select Browse button and choose a directory for batch processing. 
2. Select the Start button. 
3. Once notified of completion, find the temp directory where logs are stored. 
4. Copy logs into a new location, as they will be overwritten when processing the next batch 

directory. 
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Figure 4 – Screenshot of the Norman Sandbox Analyzer 

 

For an example of an API log generated by the Norman Sandbox Analyzer, please refer to the 
appendix. 
 

 Creating the Behavior Database 

 

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 was chosen for its parallel threading 
feature.  In-memory parallel execution harnesses the aggregated memory in a system to enhance 
query performance by minimizing or even completely eliminating the physical I/O needed for a 
parallel operation. Oracle automatically decides if an object being accessed using parallel 
execution benefits from being cached in the SGA (buffer cache).  The decision to cache an object 
is based on a well defined set of heuristics including size of the object and the frequency that it is 
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accessed. In an Oracle RAC environment, Oracle maps fragments of the object into each of the 
buffer caches on the active instances.  By creating this mapping, Oracle knows which buffer 
cache to access to find a specific part or partition of an object to answer a given SQL query.  In-
memory parallel query harnesses the aggregated memory in a system for parallel operations, 
enabling it to scale out with the available memory for data caching as the number of nodes in a 
cluster increases. This new functionality optimizes large parallel operations by minimizing or 
even completely eliminating the physical I/O needed because the parallel operation can now be 
satisfied in memory. [6] 
 
In creating the database schema, the goal was to have a database that would treat behaviors 
generically.  It was hoped that all behavior types would be captured during sample processing, 
although initially, some types were unknown.  More literally speaking, it was known that there 
would be function calls, while there was no certainty for the others.  If there was a table per 
behavior type (an obvious 3NF schema); upon reaching a new type, processing would have to 
stop and the user would need to be notified that a database change was required before 
processing could resume.  Specifically, a new table would have to be created each time a new 
type was discovered.  It was also necessary to maintain Third Normal Form (3NF) so that each 
piece of data was query-able and also extendible; extendible in this case meaning that the value 
could be used as a foreign key column if it was decided to include more information later.  
Another design factor: No certain number of parameters could be assumed for any type, as this 
too could cause an error during processing as well as it would result in a very large number of 
empty (null) fields.  To avoid the problems explained above, the schema was designed as 
follows: 
 

  
 
Figure 5 – Diagram of ‘Behavior Database’ 
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Each behavior was stored once in the Behaviors table which has a one-to-many relationship to 
the Behavior Details table.  This arrangement was done in order to allow a behavior to have 
multiple details, while at the same time, avoiding numerous empty (null) fields.  Behavior details 
are pieces of information that the sandbox provided with the behavior name to describe that 
behavior, such as a library name.  The empty fields would have been an issue if the Behaviors 
table had been setup to include multiple columns for details, also for which, some random 
number of columns would to be selected that would hopefully be enough for all types of 
behaviors.  It was found that for the data collected, each behavior type required no more than one 
detail; but the described approach does avoid null space and keeps in line with the expandability 
objective.  The Behavior Types descriptive table was also included to maximize saved storage 
space.  For visual understanding, an example: 
 
Behaviors 

   
Behavior Types 

BEHAVIOR_ID TYPE_CODE BEHAVIOR_NAME 
 

TYPE_CODE TYPE_NAME 

248 F CopyFileA 
 

F Function 

 

Behavior Details 
   BEHAVIOR_DETAIL_ID BEHAVIOR_ID BEHAVIOR_DETAIL_TYPE BEHAVIOR_DETAIL_VALUE 

657 248 DLL KERNEL32 

 
The Interactions table is the pivotal part of the schema.  Each record of this table directly 
correlates to a line of an interaction log.  Software_id stores a foreign key that references the 
software currently being processed.  Behavior_id references the particular behavior executed and 
interation_order is the order in which it occurred as reported by the Norman sandbox. 
 
The Interactions Details table was, much like the Behavior Details table, created to avoid having 
empty parameter columns that would have resulted from having to randomly guess a maximum 
number of parameters and making a column for each.  There is no way of knowing how many 
columns to use as there is no set maximum for parameters.  For each Interactions record 
containing one or more parameters, an Interactions Details record was created.  The table is 
called Interaction Details versus Parameters because not all interactions include a behavior type 
that has associated parameters; some include other details such as exception fault codes.  In the 
Interaction Details table, interaction_id is the reference to the Interaction for which it is 
associated.  Int_detail_type and int_detail_value are similar to the detail type and value columns 
of the Behaviors table.  For an Interaction record containing a function call, the associated 
int_detail_type is ―Parameter‖ and the int_detail_value is the value of the parameter.  
Int_detail_order simply numbers the parameters in the order that they occur within the function.   
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Example: 
 
Interactions 

   INTERACTION_ID SOFTWARE_ID BEHAVIOR_ID INTERACTION_ORDER 

9383 102 248 8725 

 
Interaction Details 

  INTERACTION_DETAIL_ID INTERACTION_ID INT_DETAIL_TYPE 

28149 9383 Parameter 

28150 9383 Parameter 

28151 9383 Parameter 

 
Interaction Details Continued 

 INT_DETAIL_VALUE INT_DETAIL_ORDER 

"C:\sample.exe" 1 

"C:\WINDOWS\MsgNet32.exe" 2 

0xFFFFFFFF 3 

 

Parsing Interaction Logs into the Database 

 

The code for this process was written in Java using JDBC and can be found in the Appendix.  
The filename and lines of a log look similar to the following.  There is one line to represent each 
behavior type found.  Line numbers were added for readability and correlate to the line numbers 
of table _.  This table shows how each piece will be parsed into the database by matching value 
to table and column name.  Note that repeated column names on any table represent multiple 
records inserted into that table.  Also empty cells represent the absence of a record and not null 
values. 
 
Backdoor.Win32.Agobot.gz 
1)**PAGE FAULT: process 0x00000000 - cs:eip 0x0008:0xD000CA98 

accessing page 0x00070019 

2)**EXCEPTION: ThreadID 0x15 opcode 0xAA45 SEH=0x7C825AA5 

FaultCode=0xC0000005 EFlags=0x00000204 

3)-connect port 01659, ["TCP"] IP "81.164.97.92" 

4)-binds socket 00001 to port 00030891 

5)Open network resource "Microsoft Windows-nettverk" ("Microsoft 

Windows-nettverk") 

6)-sendto port 00137, IP "176.49.0.0" 

7)0x7C80722C=KERNEL32!lstrcat 

("C:\WINDOWS\system32\","oleaut32.dll") 
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Line 1 2 3 4 5 6 7 

SOFTWARE               

SW_NAME Afcore.bz Agobot.gz Ppdoor.z Dumador.z Delf.ir Seteada Zero.a 

CLASSIFICATIONS               

CLASS_NAME Backdoor Backdoor Backdoor Backdoor IRC-Worm Trojan Virus 

BEHAVIORS               

BEHAVIOR_NAME PageFault Exception ConnectPort BindSocket OpenNetwork SendToPort lstrcat 

BEHAVIOR_DETAILS               

BEHAVIOR_DETAIL_TYPE     
 

  
 

 

DLL 

BEHAVIOR_DETAIL_VALUE     
 

  
 

  KERNEL32 

INTERACTIONS               

SOFTWARE_ID 101 104 126 116 1818 954 10290 

BEHAVIOR_ID 100 101 102 103 104 105 118 

INTERACTION_ORDER 7 4044 1260 357 2279 1562 70 

INTERACTION_DETAILS       
  

    

INT_DETAIL_TYPE 
AccessingPag
e ThreadID Port Socket Resource Port Parameter 

INT_DETAIL_VALUE 0x00072031 0x15 01659 00001 

MSHOME 
("Microsoft 
Windows-
nettverk") 00137 

"C:\WINDO
WS\system
32\" 

INT_DETAIL_ORDER 1 1  1 1 1 1 1 

INT_DETAIL_TYPE   opcode 
ConnectionT
ype Port 

 
IP Parameter 

INT_DETAIL_VALUE   0xAA45 TCP 00030891 
 

176.49.0.0 
"oleaut32.d
ll" 

INT_DETAIL_ORDER   2  2 2   2 2 

INT_DETAIL_TYPE   SEH IP   
 

    

INT_DETAIL_VALUE   0x7C825AA5 81.164.97.92   
 

    

INT_DETAIL_ORDER   3  3         

INT_DETAIL_TYPE   FaultCode 
 

  
 

    

INT_DETAIL_VALUE   0xC0000005 
 

  
 

    

INT_DETAIL_ORDER   4           

INT_DETAIL_TYPE   Eflags 
 

  
 

    

INT_DETAIL_VALUE   0x00000204 
 

  
 

    

INT_DETAIL_ORDER   5           

Table 2: Log extraction to database example. 

 
The following is a list of instructions that describe how the data was recorded. 
 

1. Obtain software name (including version) and classification from filename. 
 

2. Determine classification id of the software. 
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3. Check the database to see if the software and version exist in the database for its class. 
a. It already exists, skip file completely. 
b.  It does not exist; insert a software record (sw_name, classification_id, 

operating_system). 
 

For each line per log: 

 

4. Check for line wrapping (explanation below) 
a. Line appears to be a complete interaction, move to next step. 
b. Line is wrapped; loop until line appears to be complete. 

 
5. Get behavior name. 

a. It already exists, move to next step. 
b. It does not exist; determine behavior type, insert a behavior record (type_code, 

behavior_name). 
 

6. Check if there are associated behavior details. 
a. Behavior details do not exist, move to next step. 
b. Behavior details exist; insert a Behavior Details record (behavior_id, 

behavior_detail_type, behavior_detail_value). 
 

7. Insert an interaction record (software_id, behavior_id, interaction_order). 
 

8. Check if there are associated Interaction details. 
a. Interactions details do not exist; get next line of file 
b. Interaction details do exist; create an Interaction Details record for each 

(interaction_id, int_detail_type, int_detail_value, int_detail_order). 
 
Within the logs, we encountered some unusual line wrapping.  A single interaction might be 
spread across several lines without any obvious explanation for this happening.  It was not a 
matter of running out of line space, as some of the broken lines were rather short.  We could not 
check for this simply by looking for a closing parenthesis, because often, the broken line would 
end in a closing parenthesis that did not represent the end of the interaction (it was common to 
have several sets of parenthesis in a line). 
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CHAPTER 4 – BEHAVIOR EXTRACTION 

 

Single Behavior Analysis 

 

Single behavior analysis is that which is performed on individual behaviors as they have 
occurred.  As a basis for other analysis, counts of the number of times a behavior occurred per 
class were taken.  Only one count was given per software.  So if there were three Worms – A 
opens a file 23 times, B opens a file 12 times, and C opens a file 0 times; the count for opening a 
file is 2, 1 for A and 1 for B.  Essentially, the count represents number of software for which a 
behavior exists.  One may question why a simple count of occurrence per software was not taken 
so that the count would represent exact number of occurrences per entire class. 
 
Amongst many of the software sampled, it could be seen from the sandbox generated logs that 
there were copious amounts of looping happening within the program.  In some cases, there were 
tens of thousands of repeats per a set of processes.  For some, it could be assumed that the 
looping was because the program was waiting for a user action, for others it was clear it was 
looping until completion of a task for which it was unable to complete.  It was never clear if a 
program stopped on its own or if the sandbox stopped running it.  Number of emulation cycles 
can be set with a time allowed to run or by specific number of emulation cycles.  One of the two 
options must be selected via a set of radio buttons; however there is no indication that software 
ran out of cycles, ran out of time, or ended on its own. 
 
With the presence of this looping, there is not a way to decipher if a behavior has been called a 
large number of times independently or due to looping.  There is also not a way to tell if the 
looping plays an important role and if counting the behavior within each loop should be done or 
not.  So it was decided that the mere existence of a behavior occurring in a software item is what 
would be counted. 
 
Here is an example: 
 
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001) 
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001) 
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001) 
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001) 
0x77D3718C=USER32!PeekMessageA (0x0012FF5A,0x000001F4,0x00000001,0x00000001) 
 
This section of a log belongs to the Denial of Service malicious software, titled Crasher.10.  It 
can be noted that all components are identical.  This is five instances of the same behavior and 
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perhaps five occurrences (or counts) would not greatly skew statistics, however, what cannot be 
shown here is that the log belonging to Crasher.10 contains 132,833 lines.  A rather sizeable 
131,964 of those lines appear consecutively as the exact same function call shown in the 
example.  This behavior would be given a count of 131,964 for this software and would 
absolutely sway statistics to show an overwhelming existence of this behavior for the class 
Denial of Service.   
 
Counts were found with the following query and stored in the table Patterns1.  (Table is named 
Patterns1 even though single behaviors are evaluated in order to keep a consistent naming 
convention, i.e. Patterns1, Patterns2, Patterns3, etc, where the number represents the length of 
the pattern.)  This query was compared to several others that would return the same information 
by running each query, observing run time, and by examining the explain plans provided by 
Oracle (please refer to the Appendix for an example and explanation of explain plans).  For the 
full script, please refer to the appendix.  Before using the script, indexes were built for both 
software_id and behavior_id on the Interactions table. 
 

SELECT COUNT(*)  

FROM SOFTWARE S 

WHERE S.CLASSIFICATION_ID = :CLASSIFICATION_ID 

  AND S.FOR_ANALYSIS = 'Y'        

  AND EXISTS (SELECT 1 

              FROM INTERACTIONS I 

              WHERE I.SOFTWARE_ID = S.SOFTWARE_ID 

                AND I.BEHAVIOR_ID = :BEHAVIOR_ID) 

 

Bind variables represent variables that would be passed via cursor loops. 
 
Example of results: 
 
Behavior, with database id 723, has name GetEnvironmentStringsA.  This behavior is a 

function and belongs to the DLL library KERNEL32. 
 
GetEnvironmentStringsA occurs in only one software item in a non-malicious software 
sample set of size 340 (0.29%).  This behavior occurs at least once per software in all of the 
malicious software sampled for each malware classification (100%).   
 

Pattern Behavior Analysis 

 

Pattern behavior analysis is that which is performed on a combination of behaviors.  We decided 
to see if there were any interesting combinations of behaviors that stood out amongst the classes 
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of malware that we tested.  What we hoped to find were those behaviors that by themselves, in 
the single analysis, didn‘t appear suspicious, but when grouped with other behaviors showed a 
noticeable difference.  For example, perhaps behaviors A, B, and C have a fairly even 
distribution in all classes but could only be found grouped together in a particular class.   
 
The combination algorithm was used to find all combinations within a set of 2051 behaviors 
where the combination is three behaviors in length.  In future work, other lengths will be tested; 
however length three was chosen for now as it is what our resources would allow.  We could 
have used a length of two but it was realized that length two would not capture the simple 
process of opening, reading, and writing to a file.   
 
The basis for other analysis was found with the same method that that was used for single 
behaviors.  Counts of the number of times a behavior pattern occurred per software per class 
were taken.  Only one count was given per software.  The same logic that was used to avoid 
erroneous counts of single behaviors due to looping was also applied to patterns.  If there were 
three Backdoors – A opens a file, reads the file, updates the file 23 times, B opens a file, reads 
the file, updates the file 12 times, and C opens a file, reads the file, updates the file 0 times; the 
count for the pattern of opening a file, reading the file, and updating the file is 2, 1 for A and 1 
for B.  Patterns were generated with an application written in Java with JDBC.  Please refer to 
the appendix for this code. 
 
Counting the existence of patterns was found with the following query and stored in the table 
Patterns3.  As with single behaviors, the query was compared to other alternatives with testing 
and explain plans.  Indexes were built for behavior_id1, behavior_id2, and behavior_id3 on the 
Patterns3 table. 
 

SELECT COUNT(DISTINCT S.SOFTWARE_ID)  

FROM SOFTWARE S, PATTERNS3 P 

WHERE P.PATTERN3_ID = :PATTERN3_ID 

  AND S.FOR_ANALYSIS = 'Y' 

  AND S.CLASSIFICATION_ID = :CLASSIFICATION_ID 

  AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID 

                        FROM INTERACTIONS I1, SOFTWARE S1 

                        WHERE I1.SOFTWARE_ID = S1.SOFTWARE_ID 

                          AND I1.BEHAVIOR_ID = P.BEHAVIOR_ID1) 

  AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID 

                        FROM INTERACTIONS I2, SOFTWARE S2 

                        WHERE I2.SOFTWARE_ID = S2.SOFTWARE_ID 

                        AND I2.BEHAVIOR_ID = P.BEHAVIOR_ID2)   

AND S.SOFTWARE_ID IN (SELECT DISTINCT S3.SOFTWARE_ID 

                        FROM INTERACTIONS I3, SOFTWARE S3 



 

22 
 

                        WHERE I3.SOFTWARE_ID = S3.SOFTWARE_ID 

                          AND I3.BEHAVIOR_ID = P.BEHAVIOR_ID3) 
 
Bind variables represent variables that would be passed via cursor loops. 

 
 
Example of result: 
 
130:744:1091  - Application:0, Virus:10; where the first three numbers represents a pattern using 
behavior ids from the database, and following the pattern is a count of that pattern‘s occurrence 
in the classes Application and Virus. 
 
For the purposes of this paper and project, non-malicious software was given the classification 
‗Application‘.   
 

Pattern table information 

 
Results of counts were stored in the database.  3NF was maintained, however the decision to 
favor speed or to favor storage space was a constant battle.  Tables were given class name as 
column names as can be seen in this table description: 
 
Name Null? Type 

----------------- -------- ----------- 

APPLICATION 
 

NUMBER(10) 

BACKDOOR 
 

NUMBER(10) 

DOS 
 

NUMBER(10) 

EMAIL_FLOODER 
 

NUMBER(10) 

EMAIL_WORM 
 

NUMBER(10) 

EXPLOIT 
 

NUMBER(10) 

FLOODER 
 

NUMBER(10) 

IM_FLOODER 
 

NUMBER(10) 

IM_WORM 
 

NUMBER(10) 

IRC_WORM 
 

NUMBER(10) 

NET_WORM 
 

NUMBER(10) 

NUKER 
 

NUMBER(10) 

P2P_WORM 
 

NUMBER(10) 

ROOTKIT 
 

NUMBER(10) 

SMS_FLOODER 
 

NUMBER(10) 

SNIFFER 
 

NUMBER(10) 

SPAMTOOL 
 

NUMBER(10) 

SPOOFER 
 

NUMBER(10) 
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TROJAN 
 

NUMBER(10) 

TROJAN_CLICKER 
 

NUMBER(10) 

TROJAN_DDOS 
 

NUMBER(10) 

TROJAN_DOWNLOADER 
 

NUMBER(10) 

TROJAN_DROPPER 
 

NUMBER(10) 

TROJAN_NOTIFIER 
 

NUMBER(10) 

TROJAN_PROXY 
 

NUMBER(10) 

TROJAN_SPY 
 

NUMBER(10) 

VIRUS 
 

NUMBER(10) 

WORM 
 

NUMBER(10) 

PATTERN1_ID NOT NULL NUMBER(20) 

BEHAVIOR_ID NOT NULL NUMBER(20) 

 

In order to join another table to table Patterns1, by classification, one would have to use 
something such as an EXECUTE IMMEDIATE SQL statement in order to pass a classification 
name as a column name in a varchar2.  The alternative would have been to have two columns: 
classification_id and count.  Since there are 2051 behaviors, this would have meant 2051 records 
per classification (28 classes).  For single behavior analysis this would not have been a bit ugly 
but for pattern analysis it would be nothing short of atrocious.  Each classification would have a 
little fewer than 1.5 billion records. 
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CHAPTER 5 – DATA ANALYSIS 

 

Single Behavior Findings 

 

We observed roughly 2000 different ―single behaviors‖ in our sandbox environment and 
investigated the proportional breakdown, i.e. given this observed behavior, what proportions of 
the particular classes exhibited that behavior? 
 
We aggregated data and fixed six classes: CApp for Applications, CWorm for Worms, CVirus for 
Viruses, CTrojan for Trojans, CDOS for Denial of Service, and CAPT for Advanced Persistent Threats. 
Looking first at our reference non-malicious ‗Application‘ class CApp, we see that the top 15 
‗single behaviors‘ are observed during execution  of almost all of them (Table 3). 
 
Library Behavior B P(B|CApp) 

KERNEL32 SetCurrentDirectory 100% 

KERNEL32 _lopen 100% 

KERNEL32 GetFileSize 100% 

KERNEL32 CloseHandle 100% 

KERNEL32 InternalExec 100% 

KERNEL32 GetCurrentProcessId 100% 

KERNEL32 WinExec 99% 

KERNEL32 CreateProcessA 99% 

KERNEL32 RtlZeroMemory 96% 

KERNEL32 HeapAlloc 96% 

KERNEL32 GetModuleHandleA 96% 

KERNEL32 GetProcAddress 96% 

KERNEL32 GetCommandLineW 96% 

KERNEL32 lstrlenW 96% 

KERNEL32 LoadLibraryA 96% 

Table 3:  Top 15 behaviors and probabilities that given class CApp, single behavior B is observed. 

If we compare these behavior occurrences across other classes, i.e. given an observed behavior, 
what class can it be attributed to; we find the following descriptive statistics (interesting behavior 
highlighted in yellow, reference class grayed).  We show most prevalent behaviors seen in the 
class, meaning the behavior appears in at least 90% of the class.  
 
These tables all show probabilities of the form: Given class Ci, what is the probability that we 
see behavior B, this is P(B|Ci)  We want to answer the question: Given behavior B, what is 

the probability of belonging to a certain class P(Ci|B)? 

 
The discrepancies between classes will help us to identify, by inspection, candidates for 
classification based on behavior using Bayes‘ formula later on.  We give six tables below: 
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Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT) 

KERNEL32 SetCurrentDirectory 100% 100% 100% 100% 100% 100% 

KERNEL32 _lopen 100% 100% 100% 100% 100% 100% 

KERNEL32 GetFileSize 100% 100% 100% 100% 100% 100% 

KERNEL32 CloseHandle 100% 100% 100% 100% 100% 100% 

KERNEL32 InternalExec 100% 100% 100% 100% 100% 100% 

KERNEL32 GetCurrentProcessId 100% 23% 33% 6% 68% 47% 

KERNEL32 WinExec 99% 99% 93% 98% 99% 96% 

KERNEL32 CreateProcessA 99% 99% 93% 98% 99% 96% 

KERNEL32 RtlZeroMemory 96% 99% 100% 99% 100% 100% 

KERNEL32 HeapAlloc 96% 99% 100% 99% 100% 100% 

KERNEL32 GetModuleHandleA 96% 99% 100% 99% 100% 100% 

KERNEL32 GetProcAddress 96% 99% 100% 99% 100% 100% 

KERNEL32 GetCommandLineW 96% 98% 100% 99% 100% 100% 

KERNEL32 lstrlenW 96% 98% 100% 99% 100% 100% 

KERNEL32 LoadLibraryA 96% 99% 100% 95% 99% 100% 

Table 4:  Comparison of the top 4% behaviors of CApp with the other 5 classes. 

GetCurrentProcessId occurs in 100% of Application samples, but only between 6-68% of the 
other malware classes exhibit that behavior. 
 

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT) 

KERNEL32 GetProcAddress 96.2% 100% 100% 99% 100% 100% 

KERNEL32 ExitThread 45.9% 100% 43% 47% 42% 48% 

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100% 

KERNEL32 _lopen 100.0% 100% 100% 100% 100% 100% 

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100% 

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100% 

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100% 

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96% 

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100% 

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100% 

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96% 

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100% 

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100% 

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 GetEnvironmentStringsA 0.3% 98% 100% 99% 45% 88% 

ntdll RtlCreateHeap 0.0% 98% 100% 99% 45% 88% 

NTOSKRNL NtAllocateVirtualMemory 0.0% 98% 100% 99% 45% 88% 

Table 5: Comparison of the top 2% behaviors of CWorm with the other 5 classes 

In Table , for the class Worm, we have four API calls which occur in other classes much less 
prevalently.  ExitThread occurs in 100% of Worm samples, but in 42 to 48% of the other classes.  
GetEnvironmentStringsA, RtlCreateHeap, and NtAllocateVirtualMemory all occur in 98% of 
worms sampled and comparatively, these behaviors all occur within 88 to 100% of Advanced 



 

26 
 

Persistent Threads, Viruses, and Trojans.  However, they only occur in 45% of Denial of Service 
attacks and 0 – 0.3% of Applications. 
 
Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT) 

KERNEL32 GetProcAddress 96.2% 100% 100% 99% 100% 100% 

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100% 

KERNEL32 _lopen 100.0% 100% 100% 100% 100% 100% 

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100% 

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100% 

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100% 

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100% 

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100% 

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100% 

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100% 

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 GetEnvironmentStringsA 0.3% 98% 100% 99% 45% 88% 

ntdll RtlCreateHeap 0.0% 98% 100% 99% 45% 88% 

NTOSKRNL NtAllocateVirtualMemory 0.0% 98% 100% 99% 45% 88% 

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96% 

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96% 

Table 6: Comparison of the top 7% behaviors of CTrojan with the other 5 classes 

In Table , for the class Trojan, we have three API calls which occur in other classes less 
prevalently but 100% in Trojans.  They are again, GetEnvironmentStringsA, RtlCreateHeap, and 
NtAllocateVirtualMemory.  Occurrence is similar to that of Trojan in Viruses, Advanced 
Persistent Threats, and Worms from 88 to 99% but again occur in 45% of Denial of Service 
Attacks and only 0 – 0.3% of Applications. 
 

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT) 

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100% 

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100% 

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100% 

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100% 

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100% 

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100% 

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 GetEnvironmentStringsA 0.3% 98% 100% 99% 45% 88% 

ntdll RtlCreateHeap 0.0% 98% 100% 99% 45% 88% 

NTOSKRNL NtAllocateVirtualMemory 0.0% 98% 100% 99% 45% 88% 

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100% 

KERNEL32 GetProcAddress 96.2% 99% 100% 99% 100% 100% 

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96% 

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96% 

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100% 

KERNEL32 CreateFileA 7.6% 86% 83% 92% 37% 88% 

KERNEL32 lstrcpynA 3.8% 87% 88% 91% 40% 87% 

KERNEL32 FindFirstFileA 77.9% 59% 74% 90% 80% 74% 

Table 7: Comparison of the top 10% behaviors of CVirus with the other 5 classes 
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For the class Virus, we have 6 API calls which occur in other classes less prevalently.  Once 
more, the three behaviors GetEnvironmentStringsA, RtlCreateHeap, and 
NtAllocateVirtualMemory occur significantly less in Applications, from 0 – 0.3%, and in Denial 
of Service, 45%.  CreateFileA and lstrcpynA occur in Viruses 91% to 92%, and in Worms, 
Trojans, and Advanced Persistent Threats 83 to 88%; but only 37 - 40% in Denial of Service and 
7.6 and 3.8% in Applications.  FindFirstFileA occurs in 90% of Viruses and much lower with 
59% in Worms, but is somewhat close to Viruses in the other four classes with 74 – 80%.  
 

Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT) 

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100% 

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100% 

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100% 

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100% 

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100% 

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100% 

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100% 

KERNEL32 GetProcAddress 96.2% 99% 100% 99% 100% 100% 

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96% 

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96% 

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100% 

KERNEL32 _lclose 78.5% 84% 91% 49% 91% 90% 

Table 8: Comparison of the top 9% behavior of CDOS with the other 5 classes 

In Table  for class DoS, there are three behaviors that occur less in other classes than in Denial of 
Service.  CreateProcessA and WinExec exist in fewer software than Denial of Service but not 
with a significant difference at 93 to 99.4%. _lclose has a somewhat significant difference with 
91% occurrence in Denial of Service and 49% in Viruses; but a close 78.5 – 91% in the four 
other classes. 
 
Library Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT) 

KERNEL32 SetCurrentDirectory 100.0% 100% 100% 100% 100% 100% 

KERNEL32 _lopen 100.0% 100% 100% 100% 100% 100% 

KERNEL32 GetFileSize 100.0% 100% 100% 100% 100% 100% 

KERNEL32 CloseHandle 100.0% 100% 100% 100% 100% 100% 

KERNEL32 InternalExec 100.0% 100% 100% 100% 100% 100% 

KERNEL32 RtlZeroMemory 96.5% 99% 100% 99% 100% 100% 

KERNEL32 HeapAlloc 96.5% 99% 100% 99% 100% 100% 

KERNEL32 GetCommandLineW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 lstrlenW 96.2% 98% 100% 99% 100% 100% 

KERNEL32 GetModuleHandleA 96.2% 99% 100% 99% 100% 100% 

KERNEL32 GetProcAddress 96.2% 99% 100% 99% 100% 100% 

KERNEL32 LoadLibraryA 95.6% 99% 100% 95% 99% 100% 

KERNEL32 CreateProcessA 99.4% 99% 93% 98% 99% 96% 

KERNEL32 WinExec 99.4% 99% 93% 98% 99% 96% 

Table 9: Comparison of the top 9% behavior of CAPT with the other 5 classes. 
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In Table , we see that no behavior in the top 4% of the class APT is much different in other 
classes.  This is both expected and disheartening: Expected because Advanced Persistent Threats 
are persistent precisely because they blend in with normal behavior, and disheartening because it 
looks like no specific behavior of APTs is less common in other classes. 

 

Bayesian Inference  

 
We have now the most prevalent behaviors, given a class (these are the P(B|CApp), 
P(B|CWorm), P(B|CTrojan), P(B|CVirus), P(B|CDOS) and P(B|CAPT) ). 
 
From the yellow highlights, we pick 11 candidate behaviors as potential discriminators.  We list 
them below: 
 
ID Library Behavior B Prevalent Behavior in Class 
0 KERNEL32 GetCurrentProcessId Application 
1 KERNEL32 ExitThread Worm 
2 KERNEL32 GetEnvironmentStringsA Worm, Trojan, Virus 
3 ntdll RtlCreateHeap Worm, Trojan, Virus 
4 NTOSKRNL NtAllocateVirtualMemory Worm, Trojan, Virus 
5 KERNEL32 CreateFileA Virus 
6 KERNEL32 lstrcpynA Virus 
7 KERNEL32 FindFirstFileA Virus 
8 KERNEL32 CreateProcessA DOSers 
9 KERNEL32 WinExec DOSers 
10 KERNEL32 _lclose DOSers 

Table 10: Behavior used for testing class membership 

  
The more interesting question remains: Given an observed behavior Bi, 0<=i< 10, what is the 
most likely class Cj, j {App, Worm, Virus, Trojan, DOS, APT} the behavior characterizes?  
This P(Cj|Bi) can be solved using Bayes‘s formula [22] for six classes and those twelve 
behaviors.  We proceed to solve it as an example for one behavior and the six classes, and then 
give the complete numerical results in a table. 

Bayes‘s formula is  

P(C j |Bi)
P(Bi |C j ) P(C j )

P(B |Cy ) P(Cy )
y 0

5  

Bi are the eleven behaviors and Cj are the 6 classes.  The P(Bi|Cj) we get partially from the tables 
above and partially from our aggregated Norman data. The resulting relevant data is given in 
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Table .  When we have zero probability of occurrence, we attribute that to sampling error and use 
a very low probability value of 0.0001, as per best practices to not blow up the formula. 

Behavior B P(B|CApp) P(B|CWorm) P(B|CTrojan) P(B|CVirus) P(B|CDOS) P(B|CAPT) 

GetCurrentProcessId 1 0.23 33 0.06 0.68 0.47 

ExitThread 0.46 1 0.43 0.47 0.42 0.48 

GetEnvironmentStringsA 0.003 0.98 1 0.99 0.45 0.88 

RtlCreateHeap 0.0046 0.98 1 0.99 0.45 0.88 

NtAllocateVirtualMemory 0.0001 0.98 1 0.99 0.45 0.88 

CreateFileA 0.076 0.86 0.83 0.92 0.37 0.88 

lstrcpynA 0.038 0.87 0.88 0.91 0.4 0.87 

FindFirstFileA 0.78 0.59 0.74 0.9 0.8 0.74 

CreateProcessA 0.99 0.99 0.93 0.98 0.99 0.96 

WinExec 0.99 0.99 0.93 0.98 0.99 0.96 

_lclose 0.79 0.84 0.91 0.49 0.91 0.9 

Table 11: Given a class of programs, the probabilities we saw a behavior 

 The probabilities P(Cj) – the probability of the classes - we get from the class frequencies of our 
2000 or so samples from our aggregated Norman data.  These are 0.17, 0.17, 0.24, 0.18, 0.13, 
and 0.11 for App, Worm, Virus, Trojan, DOS, and APT, respectively (see Table 1). 

P(CApp) P(CWorm) P(CTrojan) P(CVirus) P(CDOS) P(CAPT) 

0.17 0.17 0.24 0.18 0.13 0.11 

Table 12: Class probabilities in our 2000 samples 

Let‘s compute this, as an example, for behavior B3 in Table , RtlCreateHeap.  The question we 
proceed to answer as an example: If we execute something unknown and see RTLCreateHeap, 
what is the probability that it belongs to one of the classes? 

We have for B3 and CApp :  

P(CApp |B3)
P(B3 |CApp ) P(CApp)

P(B3 |Cy ) P(Cy )
y 0

5

0.0046 0.17

0.0046 0.17 0.098 0.17 1 0.24 0.99 0.18 0.45 0.13 0.88 0.11

0.1%

 

We can compute this for all six classes in Table  

Behavior B3 P(CApp|B3) P(CWorm|B3) P(CTrojan|B3) P(CVirus|B3) P(CDOS|B3) P(CAPT|B3) 

RtlCreateHeap 0.1% 22.5% 32.4% 24.1% 7.9% 13.1% 

Table 13: For behavior B3, probability of class membership given execution of an unknown program 
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We interpret this as seeing that behavior RtlCreateHeap is most strongly associated with class 
Trojan.  It is also interesting to note that RtlCreateHeap is almost never found in the class 
Application.  This is consistent with this API call being an undocumented function. [23] 

We now give the entire computation and highlight relevant results in yellow in Table  

ID Behavior B P(CApp|BID) P(CWorm|BID) P(CTrojan|BID) P(CVirus|BID) P(CDOS|BID) P(CAPT|BID) 

0 GetCurrentProcessId 2.1% 0.5% 95.7% 0.1% 1.1% 0.6% 

1 ExitThread 14.4% 31.3% 19.0% 15.6% 10.0% 9.7% 

2 GetEnvironmentStringsA 0.1% 22.5% 32.4% 24.1% 7. 9% 13.1% 

3 RtlCreateHeap 0.1% 22.5% 32.4% 24.1% 7.9% 13.1% 

4 NtAllocateVirtualMemory 0.1% 22.5% 32.4% 24.1% 7.9% 13.1% 

5 CreateFileA 1.9% 21.9% 29.8% 24.8% 7.2% 14.5% 

6 lstrcpynA 1.0% 21.8% 31.2% 24.2% 7.7% 14.1% 

7 FindFirstFileA 17.5% 13.2% 23.4% 21.4% 13.7% 10.7% 

8 CreateProcessA 17.3% 17.3% 23.0% 18.2% 13.3% 10.9% 

9 WinExec 17.3% 17.3% 23.0% 18.2% 13.3% 10.9% 

10 _lclose 16.8% 17.8% 27.3% 11.0% 14.8% 12.4% 

Table 14: Probabilities that an unknown program, given a behavior, belongs to a class. Rows some up to 100% 
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Discussion 
 

We find that of the 11 behaviors we chose to test from our 2000 samples of six classes, most 
behaviors are associated strongest with class Trojan with GetProcessID being very strongly 
represented.  Behavior ExitThread is seen most in class worms, also an interesting find, which 
may be related to the propagation module of worms.  We further note that for class Application 
behaviors 2,3,4,5 and 6 are rarely seen.   

These are hopeful results.  There were many other interesting items found by digging and 
prodding around in our database, with a human eye, that we were unfortunately unable to capture 
with an automated or statistical measure.  For instance, there appears to be behaviors that show 
consistency in the average of occurrences per software per class.  This however is diluted by the 
looping we spoke of earlier.  We will continue to attempt to work around this looping.  We have 
seen that the looping seems to be more prevalent in malicious software and we hypothesize that 
this is related to non-malicious software having better conditions and cleaner exit strategies.   

We saw two slightly different types of looping.  Sometimes there are a set of behaviors that 
appear to be aimlessly and infinitely looping.  In other cases, there was one particular behavior, 
FindNextFileA, which could either be a programming issue or could intentionally be 
searching through files.    

Besides infinite looping, another trend consistent with particular classes was the use of foul 
language within function call parameters.  This isn‘t to say it happens often, just that when it 

does happen, it is more often than not, within a malicious class of software.  We believe we can 
find other consistency within parameters and other types of interaction details. 

We conclude that our procedure is a potentially viable method to test class association and for 
malicious software detection with observed behavior, with a few caveats.  We did our inference 
for the behaviors picked for high prevalence in a class.  We should repeat these experiments for 
rare behavior prevalence in classes in future work.  We will create several sets of sample data for 
each class instead of working with large numbers.  Also, we will update our database with newer 
malware.  It was discovered that our non-malicious software samples were biased to Windows 
32, and this most likely affected our counting data for the Application class.  We need to include 
more independent applications.  This is possibly in line with our 
GetEnvironmentStringsA example mentioned much earlier and also in our analysis 
represented in the above tables.  It is an interesting but strange fact that we see this behavior so 
prevalent amongst malicious software and not in non-malicious.  Therefore it is also our 
conclusion that while many of these processes can be automated, before any behavior 
observation can be utilized in detection and classification mechanisms, it should be individually 
analyzed for explanations of the finding. 



 

32 
 

As mentioned in related work, we hope that we begin to see the availability of logging multiple 
execution paths, as this would further enhance our analysis. 
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CHAPTER 6 - FUTURE MALWARE 

 
It is hard to gauge how much mileage signature-matching-based AV detection techniques still 
have in them in light of polymorphic and metamorphic threats.  Some industry researchers are 
optimistic. 
 
We briefly mention k-ary malware, a worrisome development, in this context, k-ary malware, of 
which at this time only laboratory or very trivial examples are known to exist, seem able to elude 
conventional deployed defenses in principle, not just in practice. [21] 
 
This feat is accomplished by partitioning the malware‘s functionality spatio-temporally into k 
distinct parts, with each part containing merely an innocuous subset of the total instructions. In 
serial or parallel combination, they subsequently become active. Current AV models seem 
unable to detect this threat (or disinfect completely upon detection), which may be due to 
fundamental theoretical model assumptions. [21] 
 
To understand the limitation of current approaches, one has to remember a simple explanation: 
You cannot make a good (as in justifiable) decision if you do not have all the information 
needed.  
 
The notion of computability rests largely on the Church-Turing thesis.  Although the Church-
Turing thesis refers explicitly to the computation of functions, this small but important caveat is 
not emphasized to the extent that it should be; instead it is understood to mean that Turing 
machines model all computation. Herein lies the flaw: not only are there some functions that 
cannot be computed by Turing machines, but more fundamentally, not all computable problems 
are function-based to begin with (Bilar08). Function-based or algorithmic (with loops) 
computation requires the input to be specified at the start of the computation; it is a closed 
transformation from input to output. This cannot take later triggers from the outside into account, 
as we saw with the brouhaha about Conficker in 2009. 
 
In light of emerging malware, new models and methods are being developed.  In the theoretical 
realm, this entails moving beyond Turing machine models premised on the strong Church-Turing 
thesis (‗computation-as-functions‘) towards more expressive models premised on ‗Interactive 

Computations‘ through Join Calculus, for instance (Jacob10). 
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Appendix A: Definitions 
 

Advanced Persistent Threat (APT) - require a high degree of stealth over a prolonged duration 
of operation in order to be successful.  The attack objectives typically extend beyond immediate 
financial gain, and compromised systems continue to be of service even after key systems have 
been breached and initial goals reached.  APTs can best be summarized by their named 
requirements: 

Advanced: Criminal operators behind the threat utilize the full spectrum of computer 
intrusion technologies and techniques.  While individual components of the attack may not 
be classed as particularly ―advanced‖ (e.g. malware components generated from commonly 

available DIY construction kits, or the use of easily procured exploit materials), their 
operators can typically access and develop more advanced tools as required. They combine 
multiple attack methodologies and tools in order to reach and compromise their target. 
Persistent: Criminal operators give priority to a specific task, rather than opportunistically 
seeking immediate financial gain.  This distinction implies that the attackers are guided by 
external entities.  The attack is conducted through continuous monitoring and interaction in 
order to achieve the defined objectives.  It does not mean a barrage of constant attacks and 
malware updates.  A ―low-and-slow‖ approach is usually more successful.   
Threat: means that there is a level of coordinated human involvement in the attack, rather 
than a mindless and automated piece of code.  The criminal operators have a specific 
objective and are skilled, motivated, organized and well funded. [20] 

 

Backdoor – A backdoor program is a remote administration utility that, once installed on a 
computer, allows a user access and controls it over a network or the Internet.  A backdoor is 
usually able to gain control of a system because it exploits undocumented processes in the 
system's code.  A typical backdoor consists of 2 components- client and server.  An attacker will 
use the client application to communicate with the server components, which are installed on the 
victim's system. [6] 
 

Behavior – A behavior is a single entity that describes an action that may occur on a system.  
Behaviors can represent function calls, exceptions, page faults, port connections, socket 
bindings, send to port calls, open network calls, and any other behavior type that may be found in 
an API log. 

DoS – A type of Internet-based attack that aims to deny legitimate users access to a service (for 
example, a website or a network) by overloading a relevant computer resource or network 
device. [6] 
 
Email-Flooder – Email-Flooder programs are designed to flood email channels with 
meaningless messages.  [9] 
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Email-Worm – A standalone program that distributes copies of itself through e-mail networks, 
usually in an infectious e-mail attachment. Often, these infected e-mails are sent to e-mail 
addresses that the worm harvests from files on an infected computer. [6] 
 

Exploit – Exploits are programs that contain data or executable code which take advantage of 
one or more vulnerabilities in software running on a local or remote computer for clearly 
malicious purposes. [6] 
 

Flooder – A flooder is a Trojan that allows an attacker to send massive amount of data to a 
specific target. Usually flooders are used in IRC channels to jam communications as sending a 
massive amount of data to a channel or to a selected user disrupts normal communication. [6] 
 

IM-Flooder – IM-Flooder programs are designed to flood instant messenger channels (such as 
ICQ, MSN Messenger, AOL Instant Messenger, Yahoo Pager, Skype etc.) with meaningless 
messages. [9] 
 

IM-Worm – IM Worms spread via instant messaging systems (such as ICQ, MSN Messenger, 
AOL Instant Messenger, Yahoo Pager, Skype, etc.)  In order to spread, IM-Worms usually send a 
link (URL) to a list of message contacts.  The link leads to a network resource where a file 
containing the body of the worm has been placed.  This tactic is almost exactly the same as that 
used by Email-Worms. [9] 
 

Interaction – A system interaction is the actual event of a behavior interacting with a system; 
some catalyst has caused a particular behavior to be executed on a system.   

IRC-Worm – A type of worm that uses Internet Relay Chat (IRC) networks to spread copies of 
itself to new victim machines. [6] 
 
Malware – Short for "malicious software," malware refers to software programs designed to 
damage or do other unwanted actions on a computer system. [5] 
 
Net-Worm – A type of worm that propagates by copying itself to other computers connected the 
infected computer by a network, most commonly a Local Area Network (LAN). [6] 
 

Nuker – Nuker is a network-related Trojan that allows an attacker to reboot, slowdown or crash 
a selected computer connected to Internet. Typically a Nuker needs only the IP address of a 
target computer. When the IP address is entered, a Nuker sends specific packages to a target 
computer and makes it restart, slowdown or crash. [6] 
 

P2P-Worm – A P2P-worm is a type of worm that takes advantage of the mechanics of a peer-to-
peer (P2P) network to distribute a copy of itself to unsuspecting P2P users.  When a user 
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searches the P2P network for a file and finds the deceptively named worm copy, they would 
download the file onto their own computer and run it, thereby infecting themselves with the 
worm.  Once active on the new machine, the P2P-worm can continue the cycle of finding new 
victims to infect. [6] 

Rootkit – A standalone software component that attempts to hide processes, files, registry data 
and network connections. [6] 

Sandbox – A sandbox is a controlled, instrumented container in which the program is run and 
that records how it interacts with its environment. [4] 
 

Signatures – A signature is a pattern that identifies malicious software and can be created from a 
piece of code or a hash.  The fragment is used as an identifier for the entire malicious program.   
 

SMS-Flooder – An SMS Flooder is a Trojan that sends a massive amount of SMS (text) 
messages to a single or multiple targets.  A big amount of SMS messages can cause a lot of 
inconvenience and annoyance and in some cases crash specific hardware or perform a denial of 
service attack on a service. [6] 
 

Sniffer – Usually a standalone program to intercept and analyze certain data. For example a 
sniffer can intercept and analyze network traffic and catch certain data, for example passwords. 
Trojans sometimes use sniffing capabilities to steal passwords and user information from 
infected computers. [9] 

Spam-Tool – Malicious programs of this type are designed to harvest email addresses from a 
computer and then send them to the malicious user via email, the web, FTP, or other methods.  
Stolen addresses are then used by cyber criminals to conduct mass mailings of malware and 
spam. [9] 

Spoofer – A program used for the act of falsifying characteristics or data, usually in order to 
conduct a malicious activity. For example, if a spam e-mail‘s header is replaced with a false 

sender address in order to hide the actual source of the spam, the e-mail header is said to be 
spoofed‖.  These programs may be used for a range of purposes (for example, to prevent the 
recipient from identifying the sender or to transmit a message sent by another party). [6] 

Third Normal Form (3NF) – 3NF specifies that a data model meets the requirements of 2NF, 
and adds the requirement that there be no transitive dependencies. A transitive dependency exists 
when a non-key attribute of an entity relies on another non-key attribute that relies on the 
primary key in the same entity. In other words, if there is an attribute that relies on another 
attribute that isn‘t part of the primary key, then that attribute has a transitive dependency.  2NF 

specifies requirements of 1NF are met and that all non-key attributes rely on the entire primary 
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key.  For a data model to meet 1NF, all of the entities in the model must have a primary key. [7] 
[8] 

Trojan – Trojans are malicious programs that perform actions which are not authorized by the 
user: they delete, block, modify or copy data, and they disrupt the performance of computers or 
computer networks. Unlike viruses and worms, the threats that fall into this category are unable 
to make copies of themselves or self-replicate.  Trojans are classified according to the type of 
action they perform on an infected computer. [9] 

Trojan-Clicker – A Trojan-Clicker is a type of Trojan that remains resident in system memory 
and continuously or regularly attempts to connect to specific websites. This is done to inflate the 
visit counters for those specific pages. [6] 
 

Trojan-DDoS – (Distributed Denial of Service) A type of Trojan that distributes DoS programs, 
typically via email.  This Trojan essentially turns its victims, the receivers, into the attackers, as 
when the DoS programs are run, they will all send numerous request to the victim machine, 
leading to a denial of service for its intended users.  
 

Trojan-Downloader – A type of Trojan that, once installed on computer, silently downloads 
files from remote web and ftp sites. Once downloaded, the Trojan-downloader installs and runs 
the files on the infected computer. Both the download and execution of files is done without the 
user's knowledge or authorization. [6] 
 

Trojan-Dropper – A Trojan-Dropper is a type of Trojan that drops different type of standalone 
malware (Trojans, worms, backdoors) to a system. It is usually an executable file that contains 
other files compressed inside its body. When a Trojan-Dropper is run, it extracts these 
compressed files and saves them to a folder (usually a temporary one) on the computer. [6] 
 

Trojan-Notifier – A type of Trojan that gives a notification of some event.  In this context, the 
event is usually malicious - for example, the Trojan may inform a backdoor's controller that the 
malicious program has been successfully installed on a computer with specific IP address on a 
specific port.  Notifiers can send e-mails, instant messages or contact certain websites in order to 
post the notification information.  [6] 
 

Trojan-Proxy – A type of Trojan that, once installed, allows an attacker to use the infected 
computer as a proxy to connect to the Internet.  Trojan-proxies are often used by hackers to hide 
the location of the original host from any investigating authorities, as the connection can only be 
traced back to the computer where the Trojan is installed. [6] 
 

Trojan-Spy – A type of Trojan that, once installed, allows a hacker to monitor the user's 
activities on an infected computer.  A Trojan-Spy has a wide range of capabilities, including 
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performing key-logging, monitoring processes on the computer and stealing data from files 
saved on the machine. [6] 
 

Virus – A malicious program which integrates into and affects a program or file on a computer 
system, without the knowledge or consent of the user. A virus almost always arrives on a 
computer system as an executable file, most popularly as an e-mail attachment.  The term ‗virus‘ 

is commonly incorrectly used as a catch-all for all malicious software. [6] 
 

Worm – A program that replicates by sending copies of itself from one infected system to other 
systems or devices accessible over a network.  Unlike a virus, a worm does not integrate itself 
into a host file and does not need the host file to be executed in order to replicate; it exists and 
replicates as an independent unit.  Also, unlike a Trojan, a worm usually does not camouflage 
itself by performing any superficially beneficial functions.  Most commonly, it will simply focus 
on sending out copies of itself over the network. [6]  
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Appendix B: Sample Log produced by Norman Sandbox Analyzer  

Partial log for Agobot.z 

0x7C80D896=KERNEL32!SetCurrentDirectory ("C:\WINDOWS\TEMP\") 

0x7C80D8B6=KERNEL32!WinExec ("C:\sample.exe",0x00000000) 

0x7C804D75=KERNEL32!CreateProcessA 

("C:\sample.exe",NULL,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

NULL,0x00000000,0x00000000) 

0x7C802220=KERNEL32!_lopen ("C:\sample.exe",0x00000000) 

0x7C803FF0=KERNEL32!GetFileSize (0x00000078,0x00000000) 

0x7C8022C4=KERNEL32!CloseHandle (0x00000078) 

0x7C80D60F=KERNEL32!InternalExec ("C:\sample.exe",0x00000000,0x00000000) 

0x7C80513C=KERNEL32!GetCurrentProcessId () 

**PAGE FAULT: process 0x00000000 - cs:eip 0x0008:0xD000499D accessing page 

0x00072030 

**PAGE FAULT: process 0x00000000 - cs:eip 0x0008:0xD000CA98 accessing page 

0x00070019 

PageFault tbl process 0x00000109 - 0x00000001 entries, 0x7FFDF000-0x7FFDFFFF. 

fhandle=0xFFFFFFFF. 

 |offset 0x7FFDF000, seek 0x00000000, size 0x00001000, flags=0x00000008 

PageFault tbl process 0x00000109 - 0x0000000C entries, 0x00400000-0x0040BFFF. 

fhandle=0x7202FEEA. 

 |offset 0x00400000, seek 0x00000000, size 0x00001000, flags=0x00000004 

 |offset 0x00401000, seek 0x00001000, size 0x00001000, flags=0x00000000 

 |offset 0x00402000, seek 0x00002000, size 0x00001000, flags=0x00000000 

 |offset 0x00403000, seek 0x00003000, size 0x00001000, flags=0x00000000 

 |offset 0x00404000, seek 0x00004000, size 0x00001000, flags=0x00000000 

 |offset 0x00405000, seek 0x00005000, size 0x00001000, flags=0x00000000 

 |offset 0x00406000, seek 0x00006000, size 0x00001000, flags=0x00000000 

 |offset 0x00407000, seek 0x00007000, size 0x00001000, flags=0x00000000 

 |offset 0x00408000, seek 0x00008000, size 0x00001000, flags=0x00000000 

 |offset 0x00409000, seek 0x00009000, size 0x00001000, flags=0x00000000 

 |offset 0x0040A000, seek 0x0000A000, size 0x00001000, flags=0x00000000 

 |offset 0x0040B000, seek 0xFFFFFFFF, size 0x00001000, flags=0x00000008 

**PAGE FAULT: process 0x00000109 - cs:eip 0x0008:0xD00053AA accessing page 

0x0007FFDF 

PageFault tbl process 0x00000109 - 0x00000002 entries, 0x20120000-0x20121FFF. 

fhandle=0xFFFFFFFF. 

 |offset 0x20120000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20121000, seek 0x00000000, size 0x00001000, flags=0x00000008 

**PAGE FAULT: process 0x00000109 - cs:eip 0x0008:0xD00053D4 accessing page 

0x00020121 

**PAGE FAULT: process 0x00000109 - cs:eip 0x0008:0xD00053F6 accessing page 

0x00020120 

PageFault tbl process 0x00000109 - 0x0000000A entries, 0x20130000-0x20139FFF. 

fhandle=0xFFFFFFFF. 
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 |offset 0x20130000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20131000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20132000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20133000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20134000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20135000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20136000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20137000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20138000, seek 0x00000000, size 0x00001000, flags=0x00000000 

 |offset 0x20139000, seek 0x00000000, size 0x00001000, flags=0x00000008 

0x7C80527D=KERNEL32!RtlZeroMemory (0x72030B87,0x00000032) 

0x7C805316=KERNEL32!GetCurrentProcessId () 

0x7C804B4E=KERNEL32!HeapAlloc (0x00000000,0x00000008,0x00000330) 

**PAGE FAULT: process 0x00000109 - cs:eip 0x001B:0x7C825C2E accessing page 

0x00043004 

**PAGE FAULT: process 0x00000109 - cs:eip 0x001B:0x7C804B6F accessing page 

0x00000400 

**PAGE FAULT: process 0x00000109 - cs:eip 0x001B:0x7C804E0E accessing page 

0x00000407 

0x7C804E73=KERNEL32!LoadLibraryA ("ADVAPI32.dll") 

0x7C8066F2=KERNEL32!GetModuleHandleA ("ADVAPI32.dll") 

0x7C804EA6=KERNEL32!GetProcAddress (0x77DC0000,"SetServiceStatus") 

0x7C804EA6=KERNEL32!GetProcAddress (0x77DC0000,"RegisterServiceCtrlHandlerA") 

0x7C804EA6=KERNEL32!GetProcAddress (0x77DC0000,"StartServiceCtrlDispatcherA") 

0x7C804E73=KERNEL32!LoadLibraryA ("KERNEL32.dll") 

0x7C8066F2=KERNEL32!GetModuleHandleA ("KERNEL32.dll") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"FlushFileBuffers") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetStringTypeW") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetCommandLineA") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetVersion") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"ExitProcess") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"TerminateProcess") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetCurrentProcess") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetLastError") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetFileAttributesA") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"UnhandledExceptionFilter") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetModuleFileNameA") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"FreeEnvironmentStringsA") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"FreeEnvironmentStringsW") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"WideCharToMultiByte") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetEnvironmentStrings") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetEnvironmentStringsW") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"SetHandleCount") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetStdHandle") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetFileType") 

0x7C804EA6=KERNEL32!GetProcAddress (0x7C800000,"GetStartupInfoA") 
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Appendix C: Example and Explanation of an Oracle Explain Plan 
 

An explain plan is a representation of the access path that is taken when a query is executed 
within Oracle.  

Query processing can be divided into 7 phases:  

[1] Syntactic  Checks the syntax of the query  
[2] Semantic  Checks that all objects exist and are accessible  
[3] View Merging  Rewrites query as join on base tables as opposed to using views  
[4] Statement 
     Transformation  

Rewrites query transforming some complex constructs into simpler ones 
where appropriate (e.g. subquery merging, in/or transformation)  

[5] Optimization  Determines the optimal access path for the query to take. With the Rule 
Based Optimizer (RBO) it uses a set of heuristics to determine access 
path. With the Cost Based Optimizer (CBO) we use statistics to analyze 
the relative costs of accessing objects.  

[6] QEP Generation  QEP = Query Evaluation Plan  
[7] QEP Execution  QEP = Query Evaluation Plan  

Steps [1]-[6] are handled by the parser. Step [7] is the execution of the statement.  

The explain plan is produced by the parser. Once the access path has been decided upon it is 
stored in the library cache together with the statement itself. We store queries in the library cache 
based upon a hashed representation of that query. When looking for a statement in the library 
cache, we first apply a hashing algorithm to the statement and then we look for this hash value in 
the library cache. This access path will be used until the query is reparsed.  

Terminology  

Row Source  
A set of rows used in a query may be a select from a base object or the 
result set returned by joining 2 earlier row sources  

Predicate  where clause of a query  
Tuples  rows  

Driving Table  
This is the row source that we use to seed the query. If this returns a lot 
of rows then this can have a negative effect on all subsequent operations  

Probed Table  
This is the object we lookup data in after we have retrieved relevant key 
data from the driving table.  

 

http://www.akadia.com/services/ora_interpreting_explain_plan.html 
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Appendix D: Parser Code 
 

import java.util.regex.*; 

import java.awt.Toolkit; 

import java.io.*; 

 

public class Parser { 

   

  private Database db; 

  private BufferedReader input; 

  private static Console console; 

  private String filename; 

  private String line; 

  private int swId; 

  private int intOrder;  

  private int linenum; 

   

   

  public Parser (Console console, Database db) throws Exception { 

    this.db = db; 

    this.console = console; 

    this.line = ""; 

  } 

   

public void parseFile (File file, String wareType) throws Exception 

{ 

    input = new BufferedReader(new FileReader(file));     

    filename = file.getName(); 

    String name; 

    int classId; 

    if (wareType.equals("m") || wareType.equals("M")) { 

      name = 

filename.replaceFirst("(\\w+\\.){2}","").replace(".log",""); 

      classId = db.getClassId(filename.replaceFirst("\\..*",""));    

    } 

    else { 

      name = filename.replace(".log",""); 

      classId = 100; 

    } 

    swId = db.getSoftwareId(name,classId); 

    if (swId == 0) {         

      db.insertSoftware(name,classId); 

      swId = db.getMaxSoftwareId(); 

      intOrder = 0;       

      linenum = 0;   //DELETE                                                         

      while ((line = input.readLine()) != null) { 

        linenum++; 

        parseLine();     

      }         

    } 
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  } 

   

  private void parseLine () throws Exception {  

    if (isFunction()) {  

      handleFunction();       

    }      

    else if (isPageFault()) { 

      if (line.contains("PageFault tbl process")) { 

        handlePageFault(); 

      } 

    }         

    else if (isException()) { 

      if (line.contains("**EXCEPTION: ThreadID")) { 

        handleException(); 

      } 

    }     

    else if (isPortConnection()) { 

      handlePortConnection(); 

    }  

    else if (isBindSocket()) { 

      handleSocketBind(); 

    }  

    else if (isOpenNetwork()) { 

      handleOpenNetwork(); 

    } 

    else if (isSendToPort()) { 

      handleSendToPort(); 

    } 

    else {       

      updateElses();       

    }     

  } 

   

  private boolean isFunction() { 

    if (line.matches("(^0x\\w{8}=.*)|(^0x\\w{6}=.*)| 

(^0x\\w{7}=.*)|(^MSVBVM60!.*)"))  

      return true;  

    else 

      return false;     

  } 

   

  private boolean isPageFault() { 

    if (line.matches("(.*\\*\\*PAGE FAULT.*)| 

(.*PageFault.*)|(.*\\|offset.*)"))  

      return true; 

    else 

      return false; 

  } 

   

  private boolean isException() { 

    if (line.matches("(.*\\*\\*EXCEPTION.*)|(.*==>cs:eip.*)| 

(.*<==cs:eip.*)|(^\\s*dr0=.*)")) 
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      return true; 

    else 

      return false; 

  }   

   

  private boolean isPortConnection() { 

    if (line.matches("^-connect port.*"))  

      return true; 

    else 

      return false; 

  } 

   

  private boolean isOpenNetwork() { 

    if (line.matches("^Open network.*"))  

      return true; 

    else 

      return false; 

  } 

   

  private boolean isBindSocket() { 

    if (line.matches("^-binds socket.*"))  

      return true; 

    else 

      return false; 

  } 

   

  private boolean isSendToPort() { 

    if (line.matches("^-sendto port.*"))  

      return true; 

    else 

      return false; 

  } 

     

  private void handlePageFault() throws Exception {       

    intOrder++;  

    db.insertInteraction(swId, 100, intOrder, ""); 

    int intId = db.getMaxInteractionId(); 

    String[] arr = line.split("\\s"); 

db.insertInteractionDetail(intId, "Table Process", 

Integer.toString(Integer.parseInt(arr[3].replace("0x",""),16)),1

); 

db.insertInteractionDetail(intId, "Entries", 

Integer.toString(Integer.parseInt(arr[5].replace("0x",""),16)),2

); 

  } 

   

  private void handleException() throws Exception {   

    intOrder++;  

    db.insertInteraction(swId, 101, intOrder, ""); 

    int intId = db.getMaxInteractionId(); 

    String[] arr = line.split("\\s"); 

    db.insertInteractionDetail(intId, "ThreadID", arr[2], 1); 
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    db.insertInteractionDetail(intId, "Opcodee", arr[4], 2); 

db.insertInteractionDetail(intId, "SEH", 

arr[5].replaceFirst("SEH=",""), 3); 

db.insertInteractionDetail(intId, "FaultCode", 

arr[6].replaceFirst("FaultCode=",""), 4); 

db.insertInteractionDetail(intId, "EFlags", 

arr[7].replaceFirst("EFlags=",""), 5); 

  } 

   

  private void handlePortConnection() throws Exception { 

    intOrder++;      

    db.insertInteraction(swId, 102, intOrder, ""); 

    int intId = db.getMaxInteractionId(); 

    String[] arr = line.split("\\s"); 

db.insertInteractionDetail(intId, "Port", 

arr[2].replaceFirst(",$",""), 1); 

    db.insertInteractionDetail(intId, "Connection Type", arr[3], 2); 

    db.insertInteractionDetail(intId, arr[4], arr[5], 3); 

  } 

   

  private void handleSocketBind() throws Exception { 

    intOrder++;  

    db.insertInteraction(swId, 103, intOrder, ""); 

    int intId = db.getMaxInteractionId(); 

    String[] arr = line.split("\\s");     

    db.insertInteractionDetail(intId, "Socket Number", arr[2], 1);     

    db.insertInteractionDetail(intId, "Port", arr[5], 2); 

  } 

   

  private void handleOpenNetwork() throws Exception { 

    intOrder++;  

    db.insertInteraction(swId, 104, intOrder, ""); 

    int intId = db.getMaxInteractionId(); 

db.insertInteractionDetail(intId, "Resource", 

line.replaceFirst("^Open network resource ",""), 1);  

  }   

   

  private void handleSendToPort() throws Exception { 

    intOrder++;  

    db.insertInteraction(swId, 105, intOrder, ""); 

    int intId = db.getMaxInteractionId(); 

    String[] arr = line.split("\\s");     

db.insertInteractionDetail(intId, "Port", 

arr[2].replaceFirst(",$",""), 1);     

    db.insertInteractionDetail(intId, "To Port", arr[4], 2); 

  } 

   

  private void handleFunction() throws Exception { 

     

    //INSERT BEHAVIOR 

    String function = checkFunctionEnd(); 

    String type = "Function"; 
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    String detail = "DLL"; 

    String name = ""; 

    String detail_value = ""; 

    if (function.charAt(10) == '=') { 

name = 

function.replaceFirst("^0x\\w{8}=\\w*\\!","").replaceAll("(\\s|)

\\(.*","");     

detail_value = 

function.replaceFirst("^0x\\w{8}=","").replaceAll("\\!.*","");  

    } 

    else if (function.charAt(9) == '=') { 

name = 

function.replaceFirst("^0x\\w{7}=\\w*\\!","").replaceAll("(\\s|)

\\(.*","");     

detail_value = 

function.replaceFirst("^0x\\w{7}=","").replaceAll("\\!.*","");  

    } 

    else if (function.matches("^MSVBVM60!.*")) { 

name = 

function.replaceFirst("MSVBVM60!","").replaceAll("(\\s|)\\(.*","

"); 

      detail_value = "MSVBVM60"; 

    } 

    else if (function.charAt(8) == '=') { 

name = 

function.replaceFirst("^0x\\w{6}=\\w*\\!","").replaceAll("(\\s|)

\\(.*","");     

detail_value = 

function.replaceFirst("^0x\\w{6}=","").replaceAll("\\!.*","");  

    } 

    else { 

      System.out.println("\nFUNCTION DID NOT MEET ANY 

CONDITIONS!\n"+function+"\n"); 

    } 

    int bId = db.getBehaviorId(name,detail_value); 

    if (bId == 0) {  

      db.insertBehavior(name,type,detail,detail_value);  

      bId = db.getMaxBehaviorId(); 

    }  

     

    //INSERT INTERACTION 

    intOrder++;     

    Pattern pattern = Pattern.compile("\\(.*\\)"); 

    Matcher matcher = pattern.matcher(function); 

    String parameters; 

    if (matcher.find()) { 

      parameters = matcher.group().replaceAll("'","''"); 

    } 

else if (detail_value.equals("gdi32") && 

name.equals("CreateDIBitmap")) { 

      parameters = "Parameters incomplete"; 

    } 
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    else  { 

      parameters = "No parameters";   

    } 

    db.insertInteraction(swId, bId, intOrder, parameters); 

    int intId = db.getMaxInteractionId(); 

  } 

   

  private String checkFunctionEnd() throws Exception { 

    String current = line; 

    boolean append = true; 

    while (append) {   

      input.mark(1000); 

      if ((line = input.readLine()) != null &&  

          !isFunction() && 

          !isPageFault() && 

          !isException()  && 

          !isPortConnection() && 

          !isBindSocket() &&                     

          !isOpenNetwork() && 

          !isSendToPort()) { 

        if (!autoAppend(current)) { 

System.out.println("\n"+filename+"\n\nPrevious line: 

"+current+"\nNext line: "+line+"\n"); 

          prompt(); 

          String option = console.readLine("Enter option number: "); 

          if (option.equals("1")) { 

            input.reset(); 

            append = false; 

          } 

          else if (option.equals("2")) { 

            current = current+" "+line; 

            append = true;         

          } 

          else if (option.equals("3")) {   

            append = false; 

          } 

        } 

        else { //append without prompts 

          current = current+" "+line; 

          append = true; 

        } 

      } 

      else {//is fucntion, pagefault, exception, port connection, bind 

socket, or open network 

        input.reset(); 

        append = false; 

      } 

    } 

    return current; 

  }   

   

  private boolean autoAppend(String current) { 
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    if (line.matches("\",0x\\w{8}\\.\\.\\.\\.\\)") || 

!current.matches(".*\\)$") || line.equals(""))  

      return true; 

    else  

      return false;   

  } 

   

  private void prompt() { 

System.out.println("1. Previous line is complete, continue parsing 

next line.\n" + 

                       "2. Previous line is not complete, append next 

line.\n" + 

                       "3. Next line is a new behavior type. It will 

be added manually; continue.\n"); 

  }     

} 
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Appendix E: Combination Generator 
 

public class Pattern3 { 

   

  private static Database db; 

   

  public static void main(String[] args) throws Exception { 

    Database db = new Database(); 

    int[] elements = db.getBehaviorIdPerm(); 

    int[] indices; 

    int[] pattern = new int[3]; 

CombinationGenerator cg = new CombinationGenerator 

(elements.length, 3); 

    while (cg.hasMore()) { 

      indices = cg.getNext(); 

      for (int i = 0; i < indices.length; i++) {            

        pattern[i] = elements[indices[i]];         

      }  

      db.insertPattern3(pattern);       

    } 

    db.close(); 

  } 

}  

 
 
This class was created by Michael Gilleland, http://www.merriampark.com/comb.htm#Source 
 
import java.math.BigInteger; 

 

public class CombinationGenerator { 

 

  private int[] a; 

  private int n; 

  private int r; 

  private BigInteger numLeft; 

  private BigInteger total; 

 

  public CombinationGenerator (int n, int r) { 

    this.n = n; 

    this.r = r; 

    a = new int[r]; 

    BigInteger nFact = getFactorial (n); 

    BigInteger rFact = getFactorial (r); 

    BigInteger nminusrFact = getFactorial (n - r); 

    total = nFact.divide (rFact.multiply (nminusrFact)); 

    reset (); 

  } 

   

http://www.merriampark.com/comb.htm#Source
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  public void reset () { 

    for (int i = 0; i < a.length; i++) { 

      a[i] = i; 

    } 

    numLeft = new BigInteger (total.toString ()); 

  } 

   

  public BigInteger getNumLeft () { 

    return numLeft; 

  } 

   

  public boolean hasMore () { 

    return numLeft.compareTo (BigInteger.ZERO) == 1;     

  } 

 

  public BigInteger getTotal () { 

    return total; 

  } 

 

  private static BigInteger getFactorial (int n) { 

    BigInteger fact = BigInteger.ONE; 

    for (int i = n; i > 1; i--) { 

      fact = fact.multiply (new BigInteger (Integer.toString (i))); 

    } 

    return fact; 

  } 

 

  public int[] getNext () { 

    if (numLeft.equals (total)) { 

      numLeft = numLeft.subtract (BigInteger.ONE); 

      return a; 

    } 

    int i = r - 1; 

    while (a[i] == n - r + i) { 

      i--; 

    } 

    a[i] = a[i] + 1; 

    for (int j = i + 1; j < r; j++) { 

      a[j] = a[i] + j - i; 

    } 

    numLeft = numLeft.subtract (BigInteger.ONE); 

    return a; 

  } 

} 
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Appendix F: Behavior Counting Scripts 
 

This script counts occurrences of each behavior in the class Flooder. 
 
CREATE OR REPLACE PROCEDURE PATTERN1_COUNT AS 

 

  V_PATTERN_ID NUMBER; 

  V_COUNT      NUMBER; 

 

  CURSOR GET_PBEHAVIOR_ID IS 

    SELECT BEHAVIOR_ID 

    FROM PATTERNS1 

    WHERE FLOODER IS NULL 

    ORDER BY PATTERN1_ID DESC;  

   

BEGIN   

 

  FOR REC IN GET_PBEHAVIOR_ID LOOP    

    SELECT COUNT(*) INTO V_COUNT 

    FROM SOFTWARE S 

    WHERE S.CLASSIFICATION_ID = 106 

      AND S.FOR_ANALYSIS = 'Y'        

      AND EXISTS (SELECT 1 

                  FROM INTERACTIONS I 

                  WHERE I.SOFTWARE_ID = S.SOFTWARE_ID 

                    AND I.BEHAVIOR_ID = REC.BEHAVIOR_ID);     

                     

    UPDATE PATTERNS1  

    SET FLOODER = NVL(V_COUNT,0) 

    WHERE BEHAVIOR_ID = REC.BEHAVIOR_ID; 

     

  END LOOP; 

   

  COMMIT; 

      

END; 

 
This script counts occurrences of each pattern in the class Virus. 

 
CREATE OR REPLACE PROCEDURE PATTERN3_126 AS 

   

  V_COUNT NUMBER; 

  CURSOR GET_PATTERN IS 

    SELECT PATTERN3_ID 

    FROM PATTERNS3 

    WHERE VIRUS IS NULL; 

 

BEGIN 

 

  FOR REC IN GET_PATTERN LOOP 
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 SELECT COUNT(DISTINCT S.SOFTWARE_ID)  

 FROM SOFTWARE S, PATTERNS3 P 

 WHERE P.PATTERN3_ID = :PATTERN3_ID 

   AND S.FOR_ANALYSIS = 'Y' 

   AND S.CLASSIFICATION_ID = :CLASSIFICATION_ID 

   AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID 

                         FROM INTERACTIONS I1, SOFTWARE S1 

                         WHERE I1.SOFTWARE_ID = S1.SOFTWARE_ID 

                           AND I1.BEHAVIOR_ID = P.BEHAVIOR_ID1) 

   AND S.SOFTWARE_ID IN (SELECT DISTINCT S1.SOFTWARE_ID 

                         FROM INTERACTIONS I2, SOFTWARE S2 

                         WHERE I2.SOFTWARE_ID = S2.SOFTWARE_ID 

                         AND I2.BEHAVIOR_ID = BEHAVIOR_ID2)    

 AND S.SOFTWARE_ID IN (SELECT DISTINCT S3.SOFTWARE_ID 

                         FROM INTERACTIONS I3, SOFTWARE S3 

                         WHERE I3.SOFTWARE_ID = S3.SOFTWARE_ID 

                              AND I3.BEHAVIOR_ID = P.BEHAVIOR_ID3) 

 

    UPDATE PATTERNS3 

    SET VIRUS = V_COUNT 

    WHERE PATTERN3_ID = REC.PATTERN3_ID; 

 

  END LOOP; 

 

  COMMIT; 

 

END; 
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