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Abstract 

Numerous chemical species are important to the health of biological systems.  Some 

species can be beneficial at low doses and harmful at high doses.  Other species are highly 

reactive and trigger serious cell damage.  Improved methods to detect the presence and activity 

of such species are needed.  In this work, several biologically important species were studied 

using appropriate analytical techniques. 

Fluoride is an important species in human physiology. It strengthens teeth and gives 

protection against dental caries. However, elevated concentrations of fluoride in the body can 

lead to health problems such as dental and skeletal fluorosis. Reported fluoride sensors used 

fluorescence quenching methods in determining fluoride concentration. Our study explored 

synthesis and characterization of 1,8-bis(phenylthioureido) naphthalene (compound 1) as a 

fluoride sensing molecule. Compound 1 showed a remarkable 40 fold enhancement in 

fluorescence with 5 eq of fluoride addition. Compound 1 also showed possibility of visual 

colorimetric sensing with fluoride.  

Free radical mediated oxidations of biomolecules are responsible for different 

pathological conditions in the human body. Superoxide is generated in cells and tissues during 

oxidative burst. Moderately reactive superoxide is converted to peroxyl, alkoxyl and hydroxyl 

radicals by various enzymatic, chemical, and biochemical processes. Hydroxyl radical imparts 

rapid, non specific oxidative damage to biomolecules such as proteins and lipids. Superoxide 

also reacts with nitric oxide in cells to yield peroxynitrite, which is highly reactive and damages 

biomolecules. Both hydroxyl radical and peroxynitrite readily react with amino acids containing 

aromatic side chains. 



 xxii

Low density lipoprotein (LDL) carries cholesterol in the human body. Elevated 

concentration of LDL is a potential risk factor for atherosclerosis. Previous research drew a 

strong correlation between oxidized low density lipoprotein (ox-LDL) and plaque formation in 

the arterial wall. More importantly, oxidative damage causes structural changes to the LDL 

protein (apo B-100) which might facilitate the uptake of LDL by macrophages. In this study 

LDL was exposed to various concentrations of hydroxyl radical peroxynitrite and hypochlorite. 

Thereafter oxidized amino acid residues in apo B-100 were mapped by LC-MS/MS methods. We 

found widely distributed oxidative modifications in the apo B-100 amino acid sequence.  

 

Keywords: fluoride, fluorescence enhancement, thiourea, chromogenic sensing, low 

density lipoproteins (LDL), Fenton Chemistry, free radicals, hydroxyl radical, peroxynitrite, 

hypochlorus acid, surface mapping, proteomics, LC-MS/MS, natural variants 
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Chapter 1.  

Introduction to fluorescence enhancement based fluoride sensing 

1.1. Fluoride - friend or foe?  

Fluoride is one of the most important elements of the periodic table. It belongs to the 

halogen family (Group 17) of elements and showed high electronegativity. American Dental 

Association (ADA) and World Health Organization (WHO) identified fluoride as one of the 

most important elements in maintaining dental health.1 It helps in preventing dental caries. It also 

gives protection against several other teeth and gum related diseases. Extensive research was 

done on the ability of fluoride to prevent and combat against dental caries.2 This protection can 

be achieved by multiple ways. Three chief mechanisms were previously reported in the 

literature.2-6 

• Inhibiting bacterial metabolism: Bacterial infection in the plaque region reduces the pH 

of the plaque significantly. Fluoride from the plaque fluid readily combines with H+ and 

yields HF. HF diffuses through the bacterial cell wall, acidifies the cell and releases 

fluoride ion which inhibits enzymatic activities (enolase) inside the cell. The process 

becomes cumulative due to the trapped fluoride.5, 7 

• Inhibiting demineralization of the surface: Dentin or enamel crystals markedly adsorb 

fluoride in their crystal surfaces thereby prevent dissolution of the teeth by acid. 

Supplemental fluoride plays a critical role in this process. Incorporated fluoride is not 

sufficient to prevent dental caries and fluoride supplement all through out the life span is 

necessary2, 4 for maintaining dental health. 
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• Remineralization of the surface: In the cary lesion, fluoride from topical sources helps 

in nucleating and remineralizing the partially demineralized surface by forming 

fluorapatite [FAP: Ca10(PO4)6F2] which is less soluble than carbonated hydroxyapatite.6 

However, elevated concentrations of fluoride can lead to several physiological symptoms. 

Long term exposure to fluoride may cause dental, skeletal and crippling skeletal fluorosis. In 

severe cases it leads to mottled and disfigured teeth. Also it increases bone density in case of 

skeletal fluorosis. Therefore it makes the bone fragile and susceptible to fracture particularly at 

the joints. One of the major problems with fluoride in the physiological system is the inability of 

the system to remove fluoride by biochemical pathways.  

Also, high concentrations of fluoride can initiate multiple problems in plants, aquatic and 

marine environment. Aluminum fluoride can also play critical role in cellular biochemistry of 

plants and animals.8  

Additional resources provided results that were even more alarming and uncomforting. 

Ayoob & Gupta’s most informative review9 on fluoride contaminated ground water revealed that 

long term exposure to low level of fluoride (0.5, 0.7, 2.8 ppm) can cause wide geochemical 

disease such as fluorosis. An interesting recent review on a book was published in Chemical and 

Engineering News10 regarding fluoridation of water.11 Unfortunately, the book could not remain 

unbiased. It was coined that the book instead of revealing a clear picture took sides in favor of 

fluoridation.  

In recently published notes, the World Health Organization (WHO) recommended the 

fluoride level of drinking water should be 1.5 mg/L (ppm).1 Interestingly, United States 

Environmental Protection Agency (EPA) does not regulate the addition of fluoride to water. 

EPA’s Safe Drinking Water Information System (SDWIS) actively tracks fluoride concentration 
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only in water systems with naturally occurring fluoride level above the established regulatory 

limits (≥2.0 ppm).12 

The objective of this research, in this regard, is not to raise a new debate on fluoride, but 

rather to emphasize the fact that the concentration of fluoride is extremely important in 

physiological and environmental systems. Improved analytical methodology is necessary to 

address some of the related problems in fluoride detection. 

1.2. Fluoride Detection 

  Anions are important in physiological and environmental systems13-17. Various methods 

exist for determination of fluoride and other anions in solutions.13, 18, 19 Most commonly used 

methods are ion selective electrodes (ISE)20, 21 and photoluminescence. Photoluminescence 

methods are based on absorbance and fluorescence. In this chapter we will mostly discuss 

fluorescence based methodologies over other methods. 

1.2.1. Ion selective electrode based detection of fluoride 

Lanthanum fluoride, LaF3 is widely used as a crystalline membrane electrode for 

determining the fluoride ion.22 Europium fluoride (EuF2) can enhance its semiconductor 

property. The mechanism of the development of fluoride sensitive response (potential) are very 

similar to glass or pH sensitive membranes. In short, in the membrane interface ionization 

creates a charge on the membrane surface as shown by the following scheme (Scheme 1.1). The 

magnitude of the charge depends on the activity (commonly termed as concentration) of the 

fluoride ion in solution.  
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Scheme 1.1. Dissociation of LaF3 in membrane electrode. 

Commercially available LaF3 electrodes are rugged and can be operated in the range of 0 

– 80 °C. The response is linear down to micromolar (106 M ~ 0.02 ppm) concentration.22 The 

anionic interferences come from hydroxide ion. Other polyvalent cations can interfere in the 

measurements too by disrupting the chemical equilibria for the fluoride in solution. Basicity of 

F¯  can cause problems at lower pH. Thus the measurements for ISE’s are best within the pH 

range of 5 – 9. Also, ISE theoretically measures activity of the ions in solutions not the actual 

concentration. 

Fluorescence based anion detection were a popular alternative to ISE in determining 

anions in solutions. Both fluorescence and absorbance methods are extensively employed to 

determine fluoride and other anion affinity towards various organic chromophores. 

1.2.2. Fluorescence basics 

Matter can absorb and re-emit light by the phenomenon called luminescence. 

Fluorescence and phosphorescence are the two different types of luminescence. Fluorescence 

involves emission from a singlet excited state to a singlet ground state.  In phosphorescence, the 

emission involves a transition from a triplet excited state to a singlet ground state.  Beacause the 

spin flip results in a forbidden transition, the lifetime of phosphorescence is considerably longer 

than that for fluorescence. Fluorescence lifetimes are around 10-8 sec, while those for 

phosphorescence are 10-3 to 1 sec or sometimes even longer. Most interestingly, in fluorescence, 

the energy of the emitted photons is at longer wavelength than that of the absorbed photons. 

LaF3 LaF2 F

solid solid soln.
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Some of the absorbed energy of the photons was channeled into other processes (vibrational 

level, phonons, thermal energy). The resulting emission wavelength is therefore longer (lower 

energy). The process is detailed in the energy diagram below called Jablonski diagram (Figure 

1.1).22, 23 

A photon with frequency ν and energy hνa was absorbed by the ground state (S0) 

fluorophore (fluoresceing moiety) (typically 10-15 sec) and reached its singlet excited state S1 or 

S2. At higher energy levels internal conversion (10-12 sec) occurs when the photons passes from 

higher vibronic level to lower vibronic levels (blue dotted arrows). Also non radiative (red dotted 

arrows) processes are associated with transfer of photons from high energy singlet state S2 to 

lower energy singlet state S1. In short, the molecule will partially relax and reach the excited 

state singlet state S1. It can further relax back to the ground state by emitting a photon of energy 

hνf (which is of longer wavelength and lower energy than hνa) and show fluorescence 

(represented by solid green arrow). Stokes shift is described as a shift to longer wavelength due 

to vibrational relaxation and internal conversion. Fluorescence lifetime typically is 10-5 seconds 

or shorter. 
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Figure 1.1 Jablonski diagram. 
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In phosphorescence, through an inter system crossing (ISC), a spin conversion of the 

molecule from excited state singlet S1 to its triplet state (T1). This transfer represents a spin 

forbidden transition. Due to spin-forbidden transition, phosphorescence (represented by a navy 

blue arrow) lifetime is much longer than that of fluorescence life time. Chemiluminiscence is a 

related emission process in which the excited state is achieved through a chemical reaction 

instead of a photon absorbance. Once formed, the electronic excited state in chemiluminiscence 

behaves the same as those observed in fluorescence.  

Fluorescence has several different advantages over other analytical techniques.20-23 It is a 

non-invasive technique in the first place. The detection limit can easily reach nanomolar to sub-

nanomolar levels. Fluorescence gives at least one to three orders of magnitude better detection 

limits than that of absorbance.23 Also fluorescence has longer linear dynamic range compare to 

absorbance spectroscopy. Fluorescence is also more selective because not all compounds 

fluoresce. The compounds which show fluorescence have characteristic emission wavelength. 

1.2.3. Example of typical fluorescence spectra 

A fluorescence emission spectrum is obtained by scanning emission wavelength with a constant 

excitation wavelength (often at the absorbance maximum). An excitation spectrum can be 

obtained by scanning the excitation wavelength while keeping the emission wavelength constant.  

An idealized depiction of the excitation and emission spectrum is shown above. The peak-to-

peak distance between excitation and emission maximum was considered as Stokes Shift (Figure 

1.1). 
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Figure 1.2 An idealized fluorescence spectrum was shown. Both excitation and emission scans were depicted. 
Stokes shift was also pointed out. 
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1.2.4. Benefits of fluorescence measurements 

Fluorescence measurement exhibits some outstanding benefits over absorbance 

techniques, primarily because it is based on a dark background. In a typical fluorescence 

spectrophotometer the detector is placed at a 90° angle relative to the light source (Figure 1.3), 

while in absorbance the setup is 180°. A 90° configuration minimizes the transmission and 

reflection of non-fluorescent light reaching the detector. In other words scattered light does not 

interfere with the experiment.22 The signal to noise (S/N) ratio is substantially enhanced, and an 

approximately 10,000 times better detection limit can be achieved with a 90° setup.22, 23 The 

excitation and emission monochromators are wavelength selectors which allow specific 

wavelength to pass before and after the fluorescence events. Most interestingly, fluorescence 

detection is highly sensitive due to a cyclic process which gives the instrument a better detection. 

The same fluorophore when excited in a cyclic way can release thousands of photons during 

detection. For absorbance the cyclic method does not yield any improvements since the detector 

is in the same line with the light source. 

Several different factors contribute to the fluorescence of a particular moiety. In general, 

a rigid structure, extended conjugation and planarity in the fluorescing moiety play a crucial role 

for a fluorophore to fluoresce.24 In addition; excitation and emission spectra also depend upon 

the micro-environment and type of solvent used.19 
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Figure 1.3 Schematic of a fluorescence spectrophotometer. A 90° angle between incident light and the emitted 
light was depicted in the picture. Monochromators are wavelength selectors for excitation and emission 
beams.22 
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1.2.5. Fluorescence quenching and enhancement 

The Term fluorescence quenching is related to the decrease in fluorescence of a 

fluorescing moiety by any process. Several different processes including excited state reaction, 

molecular rearrangements, energy-transfer, ground state complex formation and collisional 

quenching can cause quenching of fluorescence signal.23 

Collisional quenching is often termed as dynamic quenching as it involves the direct 

encounter of the excited state fluorophore to the quencher in a dynamic way. When the 

fluorophore interacts very strongly with the quencher and forms a non-fluorescent complex, it is 

known as a static quencher.23 However, increase in fluorescence after complexation between the 

fluorophore and the interacting ligand can also occur and has advantages. Such interactions 

improve the signal to noise ratio. A lower limit of detection can also be achieved in the case of 

fluorescence enhancement compared to quenching. Fluorescence reveals pertinent information 

about the change in the electronic and molecular configuration during the fluorophore-ligand 

interaction.  

1.3. Urea and thiourea in anion sensing 

Hydrogen bonding was depicted as one of the most crucial events in anion sensing with 

urea and thiourea.18, 19, 25-31 Highly electronegative atoms such as oxygen, nitrogen and fluorine 

interact strongly with hydrogen forming a stronger interaction than dipole-dipole interactions. 

The interaction is however weaker than the regular ionic or covalent bond. Previous researches 

revealed the potential hydrogen-bond (H-bond) donor capability of urea and thiourea.19, 26, 27, 30-32 

Both Urea and thiourea make strong H-bonds with dicarboxylates and hydrogen phosphates. 

Urea based receptors were exploited for various other applications including anion sensing. 



 12 

Stephan and co workers33 incorporated urea bond in lipophilic dendrimers. These unique 

dendrimers showed classical host-guest chemistry in separating anions from aqueous solutions33. 

Xie and co-workers34 reported a tripodal naphthylurea based moiety which fluoresces selectively 

in the presence of dihydrogen phosphate (H2PO4¯ ). Nam et. al.35 explored a calix[4]diquinone 

compound where urea is appended in the structure of the compound. Interestingly, this 

compound showed selective affinity towards HSO4¯  over H2PO4¯ , Cl¯  and CH3CO2¯ . In a 

related but slightly different subject, a complex calix[4]arene based thiourea compound was 

synthesized which showed better efficiency in transporting CsCl and KCl than other cation or 

anion receptors.36 

1.4. Fluoride Sensing 

 Over the past few decades, several different fluoride sensing molecules were reported in 

the literature.13, 17-19, 25, 37, 38 Boron, aluminum and calixarene based compounds showed 

promising results. Yamaguchi and coworkers reported a boron based anthracene compound 

where the boron π-orbital accepts electrons from fluoride39 (Figure 1.4). The extensively 

conjugated boron anthracene compounds were highly colored. With these compounds, 

fluorescence quenching was observed with fluoride. Also a dramatic color change indicated the 

possibility of colorimetric anion sensing. Chiu et. al. reported another cationic borane which 

showed interaction between boron and fluoride via H-bonding.41. 
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Figure 1.4 Boron based analogue by Yamaguchi et. al.39 and aluminum based analogue reported by Badr et. 
al.40 

Aluminum binds strongly to fluoride. Aluminum porphyrin based compounds can be 

useful in sensing fluoride in solution. A thin polymer based sensor using aluminum (III) 

octaethylporphyrin was reported (Figure 1.4) that can detect fluoride in the micromolar to 

submicromolar range. This methodology, however, was based on absorbance detection.40 
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Figure 1.5 Calixarene based fluoride sensing molecule reported by Kim et. al.42 

B
R1 R2

R1= R2 = 9-anthryl
R1= 9-anthryl, R2= mesityl
R1= R2 = mesityl

N

N

N

N Al

Cl



 14 

Several different calixarene based molecules functionalized by urea and thiourea moieties 

were reported in the last two decades. Kim et. al. reported more than one calix[4]arene molecule 

which can behave as cation as well as anion sensors.43 In 2006, a urea functionalized 

calix[4]arene based molecule was synthesized (Figure 1.5) which showed excimer emission as 

well as an increase in fluorescence in the presence of fluoride.44 However, it was apparent that 

the amount of fluoride added was significantly high. Esteban-Gomez et. al. reported urea based 

supramolecular compounds which showed color development in the presence of various 

anions.26 

 

Figure 1.6 Various thioureido analogues reported by Gunnlaugsson et. al.19, 27, 45. Both anthracene based 
receptors and thalimide based receptors were reported. 

Ureido protons are somewhat acidic in nature. Highly basic anions such as fluoride or 

acetate can easily abstract two hydrogen atoms from the urea bond. Although absorbance 

represented poor detection limit compare to fluorescence, the possibility of chromogenic sensing 

had revealed some interesting new sights in urea based sensing. Gunnlaugsson’s pioneering work 

in the area of anion sensing19, 27, 45 incorporating urea and thiourea in supramolecular structures 

(Figure 1.6) revealed several interesting facts. Most of these urea and thiourea based compounds 
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interact strongly with fluoride by strong hydrogen bond formation involving the ureido or 

thioureido hydrogens. In the same context these groups also reported several different 

naphthalimide based receptors which can be used for fluoride sensing based on absorbance as 

well as fluorescence.19 These receptors work following the photoinduced electron transfer (PET) 

mechanism.45 Several anthracene and naphthalimide based urea and thiourea moieties (Figure 

1.6) were studied for fluoride, acetate, hydrogen phosphate and other halides. Both absorbance 

and fluorescence results were presented for ureido and thioureido compounds. The majority of 

these compounds showed PET based quenching which was originated from fluoride binding 

leading to conformational changes in the respective compounds.19 

N

H3C

H3C HN NH

O

S

NH

NO2  

Figure 1.7 Thiourea compound reported by Nie and co-workers31. The compound showed fluorescence 
enhancement with acetate and fluoride. 

 Nie and coworkers31 over the years reported several phenyl thiourea based compounds 

(Figure 1.7) which showed fluorescence enhancement or quenching in the presence of acetate 

even over fluoride.28, 30, 31 In most cases a clearly defined isosbestic point23 was observed after 

addition of the host. This indicated the change in conformational structure after binding to the 

host. Some of these studies showed fluorescence enhancement in presence of the analyte. 

Detection limit for various hosts lie in the range of micromolar to submicromolar range. 
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Scheme 1.2 Synthesis of 1,8 bis-(phenylureido) naphthalene analogue as presented by Xu et. al.46 and Cho et. 
al.47 

 

Scheme 1.3 Synthesis of 2,3 bis-(phenylureido) naphthalene analogue reported by Xu et. al.46 

Naphthalene is a substantially rigid molecule with extended conjugation. Cho et. al.47 

studied phenylurea immobilization on diaminonaphthalene based systems. Their work was 

focused on chromogenic sensing of anions. Therefore the research was mostly emphasized on 

absorbance measurement while the whole new vista of fluorescence remained unexplored. Xu et. 

al.46 synthesized phenylurea analogues of 1,8-diaminonapththalene (Scheme 1.2) and . 2,3-

diaminonaphthalene (Scheme 1.3). 1,8-bis(phenylureido)naphthalene showed fluorescence 

enhancement with fluoride while the 2,3-analogue did not reveal any promising results. It was 

indicated that the presence of fluoride could induce planarity to the 1,8-analogue to yield 

extended conjugation and fluorescence enhancement. Jose and coworkers48 reported urea and 

thiourea based anthraquinone compounds (Figure 1.8) which can act as a fluoride sensing 

molecule. A pronounced variation in the absorbance spectra was observed after addition of 
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fluoride to the respective ureido and thioureido analogues. However fluorescence behavior of the 

mentioned ureido and thioureido analogues were not explored extensively in Jose’s study. 
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Figure 1.8 Anthraquinone ureido and thioureido analogue reported by Jose et. al.48 

Considering the above mentioned approaches we have synthesized 1,8-

(bisphenylthioureido)naphthalene49 (Compound 1) as a potent fluoride sensing molecule (Figure 

1.9). The compound was characterized by 1H, 13C NMR and MALDI-Mass spectrometry. 

Fluorescence experiments were performed on the compound in the presence of fluoride and other 

halides. Acetate and hydrogen phosphate were also added. A remarkable 40 fold enhancement in 

fluorescence signal was observed in the presence of 5 equivalence of fluoride in acetonitrile.49 It 

was selective to fluoride over other halides. Hydrogenphosphate and acetate did show 

enhancement in fluorescence, but the increase in fluorescence signal was small compared to 

fluoride. From the structure it is evident that four thioureido protons can interact strongly with 

fluoride, which is small and has a high charge density.  

In addition, Compound 1 (Figure 1.9) showed promising results (Chapter 2) in the area 

of visual colorimetric chromogenic sensing.49 The solution of compound 1 changed color (a 

bathochromic shift was observed in the absorbance spectra) upon addition of 10 equivalent of 
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fluoride in acetonitrile. The change in color was visually perceptible at high concentration of 

fluoride.  

NHHN SS

NH HN

 

Figure 1.9 1,8-bis(phenylthioureido)naphthalene (Compound 1). 

Binding affinity of fluoride to the thioureido protons were discussed in previously 

published articles.19, 44 Plausibly, the twisted structure of naphthalene, particularly after 

isothiocyanate immobilization, could achieve higher degree of planarity in the presence of 

fluoride ion. Fluoride being small could gain a high degree of accessibility to the thioureido 

protons thereby enhancing the ability to form strong H-bond with the molecule. Remarkable 

fluorescence enhancement after addition of fluoride to compound 1 suggests that interaction 

with fluoride was forcing the twisted structure to become planar. In ureido compounds energy 

minimization calculation (AM 1) supports the conformational changes around the naphthalene 

ring for better planarity.46 In anthraquinone based thioureido analogues Jose et. al.48 calculated 

relevant energy minimization data (AM 1). Jose’s calculation revealed the insight that fluoride, 

being the smallest among the halides, will reach closer to the thioureido protons. The other 

halides being bigger could not fit themselves properly in the space near thioureido protons. 

Compound 1 gives several advantages over the other reported fluoride sensing 

molecules. While a large number of fluoride sensing molecule were based upon fluorescence 

quenching19, 50 or absorbance,47, 51 compound 1 showed fluorescence enhancement in the 

presence of fluoride. No other halides interfere in this detection. Very high concentrations of 
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acetate or hydrogen phosphate can interfere slightly, although it can not completely undermine 

the detection limit of compound 1. 
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Chapter 2.  

Fluoride detection based on fluorescence enhancement of 

naphthalene thioureido derivative 

2.1.  Abstract 

A novel thioureido naphthalene derivative was synthesized and characterized. The 

compound proved itself as an effective fluoride sensor with respect to selectivity and sensitivity. 

In acetonitrile, the fluorescence intensity increased 40 fold with addition of 5 equivalents of 

fluoride. Fluorescence intensity did not substantially change with other halides, suggesting that 

the thioureido protons interact strongly with fluoride but not with other halides.  The enhanced 

fluorescence is due to increased quantum efficiency of the fluoride complex. 

Keywords: Fluoride sensing; thioureido compound, fluorescence 

2.2.  Introduction  

Anions play various important roles in biological and environmental processes in 

nature.1-6 Though considerable attention has focused on the selective detection of anions using 

visible colorimetric sensors,7-19 less progress has been made with the more powerful technique of 

fluorescence.  Fluoride sensing is important since fluoride plays crucial roles in dental caries20 

and other medical issues such as osteoporosis.21 Excess fluoride however causes fluorosis,22-25 a 

type of fluoride toxicity that is typically related to an increase in bone density. The important 

consequences of elevated and depleted fluoride concentration make effective fluoride sensing an 

important tool. Though a series of fluoride sensor compounds have already been reported7, 9, 12, 13, 
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15-17, 26-41 by various researchers, there remains a strong practical impetus to improve the 

detection at micromolar to submicromolar30 levels.  In addition past research mainly focused on 

urea based sensors27-29, 31 while the whole new vista of novel thiourea based sensors12, 15, 16, 36, 40, 

41 was largely unexplored (Chapter 1). We therefore synthesized (Scheme 2.1) and characterized 

1,8-bis(phenylthioureido)naphthalene as a fluorescent probe for fluoride detection as well as a 

chromogenic fluoride sensor. The structure of compound 1 was confirmed by 1H (Figure 2.1) and 

13C NMR (Figure 2.2) and mass spectral analysis (Figure 2.3). In the presence of fluoride, this 

compound shows a new fluorescence peak (with λmax = 447.5 nm), as shown in Figure 2.4. 

Chloride (Figure 2.5), bromide (Figure 2.6) or iodide (Figure 2.7) addition did not cause any 

change in the fluorescence intensity or shape.  

 

 

 

 

 

 

Scheme 2.1 Synthesis of 1,8-bis(phenylthioureido)naphthalene (Compound 1). 
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Figure 2.1 1H NMR spectra for compound 1. Frequency calculation data can be viewed at the end of the chapter in selective data for compound 1 
section. DMSO was used as a NMR solvent. Two thioureido protons were missing from the spectra due to rapid exchange with the solvent. 
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Figure 2.2 13C NMR data for compound 1. Frequency calculation data can be viewed at the end of the chapter in selective data for compound 1 section. 
DMSO was used as NMR solvent. 
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Figure 2.3 MALDI-Mass spectrum of compound 1 in presence of 0.1 (M) AgNO3 solution. Mass of compound 1 is 428 amu. 535 amu and 537 amu 
masses were observed indicating the silver adduct formation. 
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Figure 2.4 Fluorescence spectra on fluoride addition to compound 1 in acetonitrile. Initial concentration of compound is 50 µM. Fluoride was added in 
12.5 µM increments. Excitation wavelength = 345 nm; emission maximum = 447.5 nm. 
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Figure 2.5 Effect of chloride on compound 1 (50××××10-6 M). 1 eq chloride per addition. A total of 9 eq of 
chloride was added. No perceptible change in the signal was observed. 

Figure 2.6 Effect of bromide on compound 1 (50××××10-6 M). 1 eq bromide per addition. A total of three eq of 
chloride was added. 
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Figure 2.7 Effect of iodide on compound 1 (50××××10-6 M). 1 eq iodide per addition. A total of three eq of chloride 
was added. 

However, a fluorescence response to dihydrogenphosphate (Figure 2.8) and acetate 

(Figure 2.9) has been observed, although the response to fluoride is substantially higher than that 

for these other anions. The fluorescence response to nine equivalents of dihydrogenphosphate is 

approximately equal to that observed for one equivalent of fluoride. Similarly, nine equivalents 

of acetate yielded a fluorescence signal that was approximately equal to addition of two 

equivalents of fluoride1.  Separate experiments showed that even in the presence of 1 mM 

dihydrogenphosphate (Figure 2.10) or 1 mM, acetate (Figure 2.11) compound 1 still showed 

enhancement in fluorescence with addition of 0.25 equivalent of fluoride.  While some 

interfering signal may result from the presence of these anions, the response to fluoride is not 

inhibited by their presence.  
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Figure 2.8 Effect of dihydrogenphophate (H2PO4¯ ) on compound 1 (50××××10-6 M). 1 eq H2PO4¯  per addition. A 
total of ten eq of H2PO4¯  was added. Slight increase in the signal was observed. 

Figure 2.9 Effect of acetate on compound 1 (50××××10-6 M). 1 eq acetate per addition. A total of ten eq of acetate 
was added. 
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Figure 2.10 Fluorescence enhancement with fluoride in presence of 1mM dihydrogenphophate (H2PO4¯ ) on 
compound 1 (50××××10-6 M). 0.25 eq of fluoride per addition. A total of 2.5 eq of fluoride was added. Significant 
fluorescence enhancement after fluoride addition was observed. 

Figure 2.11 Fluorescence enhancement with fluoride in presence of 1mM acetate (CH3COO¯ ) on compound 1 
(50××××10-6 M). 0.25 eq of fluoride per addition. A total of 2.5 eq of fluoride was added. Significant fluorescence 
enhancement after fluoride addition was observed. 
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A titration experiment (1H NMR) showed substantial changes upon addition of fluoride.  

The thioureido proton signal decreased rapidly and broadened with addition of fluoride (Figure 

2.12). No significant changes in the aromatic proton signals were apparent. The observed 

changes in the thioureido proton NMR signal suggest strong H–bonding between thioureido 

protons and fluoride ions with exchange on the NMR time scale.  Due to its small size and high 

charge density, the fluoride ion had a much stronger interaction with the thioureido protons than 

the other halides, resulting in the selective enhancement of fluorescence by fluoride.  

 

Figure 2.12 : Partial 1H NMR (400 MHz) of compound 1 (5 mM) in DMSO-d6 upon the addition of 
tetrabutylammonium fluoride: (a) 0 µM, (b) 10 µM, (c) 20 µM, (d) 30 µM, and (e) 40 µM. 
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Fluorescence intensity increased significantly with addition of fluoride, while other 

halides showed little or no change.  An approximate 40 fold enhancement in fluorescence 

intensity at 447.5 nm was observed in the presence of 5 equivalents of fluoride (50 µM 

compound 1, 250 µM F-).  Furthermore, addition of only 0.25 equivalent of fluoride (12.5 µM F-) 

resulted in an approximate 1.5 fold increase in fluorescence intensity at 447.5 nm, indicating that 

detection limits in the low to sub micromolar range are possible. UV-Vis absorbance spectra 

(Figure 2.13) were acquired to determine if compound 1 can also behave as a chromogenic 

sensor. After addition of 10 equivalents of tetrabutylammonium fluoride, a bathochromic shift in 

the absorbance spectrum was clearly observable. With fluoride present, the absorbance extended 

into the visible region, indicating that detection of fluoride could be carried out colorimetrically, 

perhaps even with the naked eye.  However, superior detection limits exist using fluorescence 

methods. 

The data in Figure 2.13 indicate an approximate doubling in the absorbance at 345 nm 

upon the addition of excess fluoride. Fluorescence data (Figure 2.4) illustrate an approximate 40 

fold enhancement near saturation (the point where all compound 1 molecules are bound to 

fluoride). Since fluorescence at low concentration is proportional to absorbance, these data 

indicate that only a small portion of the fluorescence enhancement can be accounted for by 

increased absorbance. Consequently, we can conclude that the fluoride complex has a larger 

quantum yield than unbound 1. Based on the absorbance and fluorescence data, the enhancement 

in quantum yield is estimated to be 20 fold.  This observation is in agreement with previous 

reports which suggested improved planarity29 and lack of relaxation via twisted conformations42, 

43 as possible mechanisms for enhanced fluorescence in ureido derivatives. 
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Figure 2.13 Absorbance of compound 1 (50 µM) before (green trace) and after 500 µM fluoride addition (red 
trace). 

A novel thiourea based sensor molecule, 1,8-bis(phenylthioureido)naphthalene, was 

synthesized and characterized. The compound showed fluorescent enhancement in the presence 

of fluoride. This response was selective for fluoride, with chloride, bromide, and iodide 

producing little or no response.  The large enhancements in fluorescence (40 fold observed in 

this study) suggest that this molecule may provide improved analytical characteristics over 

previously described molecules, especially since many other studies have reported molecules that 

exhibit either fluorescence quenching in the presence of fluoride14 or show only changes in 

absorbance.15, 27, 31, 32 Compound 1 may also be advantageous since its fluoride complex can be 

excited in the visible region.   

The potential practical applications of compound 1 appear to be versatile and include 

fiber optic and nanometric sensors for fluoride. Current work focuses on immobilizing 
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compound 1 on a solid support (such as a fiber optic or nanoparticles) for detection of fluoride 

in aqueous media. 

2.3.  Experimental section 

All starting materials were purchased and used without further purification.  1H and 13C 

NMR were recorded on a 400 MHz spectrometer operating at 9.4 T. NMR experiments was 

carried out in DMSO-d6 with 0.05% v/v TMS. Mass spectra were acquired with a MALDI-TOF 

mass spectrometer. Fluorescence experiments were carried out in acetonitrile solution with 

excitation wavelength of 345 nm and emission range of 375-550 nm with 7.5 nm slit widths. 

UV-Vis absorbance experiments were carried out with quartz cuvettes (path length 1 cm). 

2.39 mmol of 1,8-diaminonaphthalene  was dissolved in 20 ml dry tetrahydrofuran. Two 

drops of triethylamine was added. This mixture was then added drop wise over one hour to 32.5 

mmol of phenylisothiocyanate which was dissolved in 20 mL tetrahydrofuran. The system was 

kept in a nitrogen atmosphere. The mixture was stirred at room temperature for 24 hours. The 

progress of the reaction was monitored by TLC (eluent: 4% acetonitrile in chloroform). The 

mixture of the compound was purified by column chromatography (eluent: 4% ACN in 

chloroform).  The yield was approximately 20-22%. 

2.3.1. Selected data for compound 1 

MP: 135-137 ΕC decomposed; 1H NMR (DMSO-d6) �
  11.43 (s, 2H), 7.53 (d, J = 7.8 

Hz, 2H), 7.46 (t, J = 7.8 Hz, 2H), 7.28 (t, J = 7.8 Hz, 4H), 7.21 (d, J = 7.9 Hz, 4H), 7.13 (t, J = 

7.9 Hz, 2H), 6.67 (d, J = 7.8 Hz, 2H), two additional thioureido protons were not observed due to 

exchange; 13C NMR (100 MHz, DMSO-d6) δ 173.7 (q), 140.6 (q), 136.1 (q), 134.8 (q), 129.6 (2 

X CH), 129.1 (CH), 122.6 (CH), 119.9 (CH), 119.0 (2 X CH), 116.9 (q), 105.4 (CH); matrix 
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assisted laser desorption ionization mass spectrometer (MALDI-MS) showed the silver adducts 

(107Ag, 109Ag) at m/z = 535, 537 amu, corresponding to the expected molar mass of 428 amu. 
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Chapter 3.  

Mapping amino acid oxidations of apolipoprotein B-100 in LDL by 

LC-MS/MS and analysis of natural variants: An introduction 

3.1. Cardiovascular diseases (CVD) – epidemiology and risk factors 

 Cardiovascular diseases (CVD) are among the leading causes of death in western 

countries. Millions of people die from these diseases every year in the United States (Figure 3.1). 

Each year the American Heart Association, in conjunction with several other agencies, publishes 

a variety of literature, notes and safe practices for healthy living. Some interesting statistical 

updates on CVD are furnished below. 

• The 2006 overall death rate from CVD (was 262.5 per 100,000. The rates were 306.6 per 

100,000 for white males, 422.8 per 100,000 for black males, 215.5 per 100,000 for white 

females, and 298.2 per 100 000 for black females. From 1996 to 2006, death rates from 

CVD declined 29.2%. Mortality data for 2006 show that CVD accounted for 34.3% (831 

272) of all 2 426 264 deaths in 2006, or 1 of every 2.9 deaths in the United States.1 

• On the basis of 2006 mortality rate data, nearly 2300 Americans die of CVD each day, an 

average of 1 death every 38 seconds. The 2007 overall preliminary death rate from CVD 

was 250.4. More than 151,000 Americans who succumbed to death by CVD in 2006 

were <65 years of age. In 2006, nearly 33% of deaths due to CVD occurred before the 

age of 75 years, which is well before the average life expectancy of 77.7 years.1 
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Figure 3.1 Deaths from Cardiovascular diseases chart. A decreasing trend after 1970 could be noted. 

Undoubtedly a general mass awareness of cardiovascular diseases is playing a critical 

role in decreasing the number of deaths from this disease. The data, however, seems to indicate 

that it is still a severe threat to public health in developing and developed countries. According to 

the World Health Organizations fact sheet2 on cardiovascular diseases, the annual death toll from 

this disease is highest compared to any other disease. 

An estimated 17.1 million people died from CVD in 2004, representing 29% of all global 

deaths. Of these deaths, an estimated 7.2 million were due to coronary heart disease and 5.7 

million were due to stroke.2 Most alarmingly, by 2030, almost 23.6 million people will die from 

CVD per year, mainly from heart disease and stroke. These are projected to remain the single 

leading causes of death. The largest percentage increase will occur in the Eastern Mediterranean 

Region. The largest increase in number of deaths will occur in the Southeast Asia Region.2 

In general, CVD are considered as a group of disorders including coronary heart diseases, 

cerebrovascular diseases, peripheral arterial diseases, rheumatic heart disease, congenital heart 

disease, deep vein thrombosis and pulmonary embolism. Several different behavioral factors 
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contribute to the cardiovascular disease risk factors. Unhealthy diet, physical inactivity and 

tobacco use are the chief risk factors.1, 3 

It has been understood for many years that diet is an essential component to avoid CVD. 

Elevated blood cholesterol was implicated as one of the major risk factors for cardiovascular 

diseases.1, 3 Although a recent survey indicated a downward trend in serum cholesterol levels 

(Figure 3.2) in people of age 20 and older, elevated cholesterol still poses a considerable threat to 

the community health.   

 

 

 

 

 

 

 

 

Figure 3.2 Trends in mean total serum cholesterol among adults of age 20 and older, by race/ethnicity survey. 
(NHANES: 1988-94, 1999-02. 2003-04, 2005-06) 
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3.2. Low density lipoproteins (LDL) 

3.2.1. Lipoproteins  

A lipoprotein is an assembly of lipid and protein held together (Figure 3.3) by non-

covalent forces.4, 5 Low density lipoprotein (LDL) is one major lipoprotein which is synthesized 

in the liver. LDL plays a critical role in cholesterol transport in physiological systems (Figure 

3.4). The other lipoproteins are chylomicrons, very low density lipoprotein, intermediate density 

lipoprotein and high density lipoproteins (HDL).6, 7 Higher level of HDL helps preventing 

cardiovascular diseases.3, 8, 9 LDL serves as a representative of serum blood cholesterol in 

medical conditions and is often termed as “bad” cholesterol.3 

3.2.2. LDL function  

Low density lipoproteins consist of three components. The core is made up of cholesteryl 

ester and triacylglycerol, the outer layer free cholesterol and phospholipids. One single 

monomeric protein apolipoprotein B-100 (apo B-100) encircles the LDL particle6, 7 (Figure 3.3). 

The average molecular weight of LDL particle is approximately 3 million Dalton10. Brown and 

Goldstein’s legendary work11, 12 on LDL and LDL receptors earned them a Nobel Prize in the 

1980’s. LDL transports cholesterol through circulation. In general, when a cell needs cholesterol, 

LDL is transported to the cell (Figure 3.4). There, LDL binds to the LDL receptors (LDL-R) 

which are positioned in the cell surface. After binding, the assembly is taken inside the cell by 

endocytosis, forming a coated pit followed by a coated vesicle. In the endosome, the assembly 

becomes protonated, and LDL receptors break free from LDL. The LDL enters lysozome and is 

degraded to release the cholesterol. The protein breaks down to amino acids. The LDL receptors 

go through the recycling vesicles and return back to the surface.11  
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Figure 3.3 Schematic representation of an LDL particle. 
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Figure 3.4 Mechanism of LDL uptake by cells in the physiological systems. LDL was included in the cells after binding to LDL receptors. After going 
through Lysosomal degradation, cholesterol is released and used in cellular functions. 
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3.2.3. Structure of apolipoprotein B-100 in LDL 

Apolipoprotein B-100 (apo B-100) stays in the outermost side of LDL (Figure 3.3). This 

protein is secreted from the liver and is one of the largest monomeric proteins in existence 

(molecular weight = 550 kDa).13-15 It consists of 4563 amino acids (accession # P04114).16 The 

structure of apo B-100 is still poorly understood. Due to the enormous size of this protein, it is 

rather difficult to determine the crystal structure of this protein. Also, the protein is lipid bound 

hence there could be a possibility of structural change if the protein is delipidated during the 

structural studies and not represent a true account of the structure. It should be noted that Apo B-

48 which is an isoform of apo B-100 was found in chylomicrons (stop codon at amino acid 

AA2180) and are synthesized in the small intestine.5 

Several attempts were made to elucidate the structure of apo B-100 in LDL.5, 14, 17 Despite 

some useful information published in the literature over the last two decades, the structure of the 

protein is still not lucid. Molecular modeling method, although showing promise, were limited 

and speculative in this case particularly due to the size of the protein.10, 18, 19 In homology based 

molecular modeling researchers used a putative ancestor of apo B-100 known as lipovitellin 

found in egg yolk.10, 20 This protein showed N-terminal matching up to 20.5% and basic local 

alignment search tool (BLAST) matching up to 20.8%.21 

Apo B-100 is amphipathic (contains both hydrophobic and hydrophilic regions) in nature. 

It consists of 3 α-helices and two β-strands in between the α-helices. Generally, the structure is 

represented by NH2 – βα1 – β1 – α2 – β2 – α3 – COOH.10, 19, 20 Most interestingly, β-domains 

are associated with the neutral lipid core imparting stability to the LDL structure while the α- 

helices are flexible and are associated with flexibility of the molecule and their intravascular 
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mechanism.22 The amphipathic nature of apo B-100 helps it maintain strong lipid binding during 

transport through the blood.  

LDL lipid oxidations and their implication in atherosclerosis were studied by various 

research groups around the world.23-30 However, limited data exists on protein oxidation and the 

resulting changes in LDL.31-37 It was thus apparent that oxidation of protein are associated with 

the structural changes in apo B-100. These structural changes can be crucial for deposition of 

LDL in atherosclerotic plaque formations. 

3.3. Free radicals and other oxidants in physiological systems 

3.3.1. Reactive oxygen species (ROS): Fenton Chemistry and hydroxyl radical 

Free radicals are defined as any atom or molecule bearing unpaired electrons.38 The 

presence of unpaired electrons makes free radicals chemically reactive. They can be cationic, 

anionic or neutral. In biological systems, oxygen radicals are well known for their broad 

spectrum reactivity. Ground state molecular oxygen has two unpaired electrons. Although it 

behaves as an oxidant it is relatively unreactive. However, reduction of molecular oxygen 

(addition of electrons) yields a broad spectrum of intermediates which showed high reactivity 

towards biomolecules.39 

Although several parts of the human body could be a source of free radical formation, 

mitochondria are the major source of free radical production in cells. Leakage from electron 

transport chain or oxidative burst can produce superoxide anion radical.39 Also, partially reduced 

mitochondrial components and oxygen tension play important roles in generating superoxide and 

other reactive oxygen species.40 Superoxide stays in equilibrium with hydroperoxyl radical. It 

can be converted to peroxyl, alkoxyl and hydroxyl radical by various pathophysiological 
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processes.40 Cytochrome C oxidase converts oxygen to water thereby eliminating the possibility 

of ROS formation in cells. NADPH oxidase, however, promotes the formation of superoxide 

from oxygen (Scheme 3.1). Superoxide dismustase disproportionates superoxide to hydrogen 

peroxide and oxygen. Also, one electron reduction of superoxide followed by protonation can 

lead to hydrogen peroxide formation. Imbalance of hydrogen peroxide can be counter balanced 

by catalase and peroxidases. However metal ions can play a critical role in decomposing 

hydrogen peroxide to yield hydroxyl radical.41 For example Haber-Weiss reaction is a catalytic 

cycle for iron through which hydroxyl radical can appear from superoxide and hydrogen 

peroxide.42, 43 All of these radicals, particularly hydroxyl radical, are extremely reactive and can 

cause non specific damage to biomacromolecules. The half life of hydroxyl radical is fairly low 

(nanosecond range).41, 43-45  
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Scheme 3.1 Mechanism of formation and detoxification of reactive oxygen species (ROS) in cells. 
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In a 1894 article, Henry J. Fenton first described a unique reaction between iron [Fe(II)] 

and hydrogen peroxide.46 Haber-Weiss elaborated his method and described formation of 

hydroxyl radical from hydrogen peroxide and superoxide anion radical42, 47 (Equation 3.1). In 

short it is a catalytic cycle for iron by which iron generates hydroxyl radical. Fenton processes 

are described as a set of reactions noted below42, 48, 49 (Equation 3.1−Equation 3.6). 

Fe H2O2 Fe OH H2O
32

 
Equation 3.1 

Fe H2O2 Fe HO2 H
23

 
Equation 3.2 

 
Equation 3.3 

 
Equation 3.4 

 
Equation 3.5 

 Equation 3.6 

Equation 3.2 and Equation 3.3 emphasize the catalytic cycle for Fe. The last two 

reactions (Equation 3.5 and Equation 3.6) reveal scavenging ability of Fe (II) and hydrogen 

peroxide. In physiological systems, sources of “free” iron are fairly limited. Iron storage proteins 

such as transferrin, ferritin and hemoglobin have bound iron. However, non-transferrin bound 

iron can be considered as “free” iron. These iron species (conc. 1∼10 µM) can bind to citrate or 

albumin in blood. Also iron-sulfur clusters can release iron in pathophysiological conditions.43 

This released iron can play important roles in generating hydroxyl radical in cells.  

A negative free energy change of a system results in the spontaneity of a reaction. Free 

energy is directly proportional to the redox potential of the reactant(s). Hence mathematically we 

can write Equation 3.7. For spontaneity ∆G must be negative, therefore E should be positive.50 If 
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we delve into the redox chemistry of cells we will see that after superoxide is formed all top 

down processes were favorable from free energy point of view (Scheme 3.2). Particularly, water 

formation from hydroxyl radical is thermodynamically favorable.51 

nFE- G =∆  Equation 3.7 

 

 

O2 O2 H2O2 HO H2O
-0.18 V +0.94 V

+e, 2H

+0.38 V +2.33 V

+e, HMe
 

Scheme 3.2 Electrode potentials depicting the reactivity of different ROS. “Me” represents metal cation. 
More positive E depicts enhanced spontaneity in the reaction.  

3.3.2. Reactive Nitrogen Species (RNS) 

Since the discovery of nitric oxide radical as a cellular messenger, vasodilator and 

antiatherogenic molecule52-54, its reaction with superoxide anion radical yielding peroxynitrite 

became important to explain the cellular toxicity (Scheme 3.3). Together nitric oxide and 

peroxynitrite are known as reactive nitrogen species (RNS).40 Reactive nitrogen species in 

conjunction with ROS induce cell damage, proliferation and apoptosis.55 Indeed, peroxynitrite is 

much more reactive than its predecessor nitric oxide and superoxide in physiological systems.56-

59 It has been implicated that peroxynitrite plays a pronounced role in atherosclerosis60-63, chronic 

inflammation64 and neurodegenerative diseases.65, 66 Due to its powerful oxidizing properties it 

reacts readily with biomacromolecules in cells. In particular the damage alters structure and 

functions of proteins. 

Where ∆G: Free energy change 
 n: # of moles electrons 
 F: Faraday 
 E: reduction potential of the cell 
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3.3.3. Peroxynitrite formation and reactions with proteins 

Although peroxynitrite can appear in different organs of the body, it is particularly 

important in vascular biology for endothelial dysfunction. In endothelial cells, nitric oxide is 

synthesized by enzymatic activity of the enzyme endothelial nitric oxide synthase (eNOS). 

Endothelial NOS converts L-arginine to L-citrulline and release nitric oxide in the process 

(Scheme 3.3). Nitric oxide reacts with endothelial superoxide almost at a diffusion controlled 

rate56, 59 (1010 M-1s-1) (Scheme 3.3). Under physiological conditions, peroxynitrite stays in 

equilibrium with its conjugate acid form peroxynitrous acid56 (ONOOH, pKa: 6.8). ONOOH is 

relatively unstable and yields nitrite radical and hydroxyl radical by a homolytic fission pathway.  
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Scheme 3.3 Synthesis of nitric oxide from L-arginine in vascular endothelial cells and its reaction with 
superoxide to yield reactive peroxynitrite. 

One of the most interesting and biologically relevant reactions of peroxynitrite in 

physiological system is its combination with carbon dioxide or bicarbonate to yield 

nitrosoperoxycarboxylate (Scheme 3.4). Carbon dioxide reacts with peroxynitrite with a second 

order rate constant 4.6×10-4 M-1 s-1 at pH 7.4 and 37 °C57 leading to the formation of the adduct 

ONOOCO2
¯. This adduct, nitrosoperoxycarboxylate, dissociates into nitrite radical and carbonate 
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radical.67 Carbonate radical reacts readily with the side chain of tyrosine residues in proteins to 

yield a tyrosyl radical. Reaction between tyrosyl radical and nitrite radical is fast and yields 3-

nitrotyrosine.63, 68 It is therefore conceivable that sulfur containing amino acids (cysteine) and 

aromatic amino acid side chains will react with peroxynitrite by various mechanisms.58, 59, 69, 70 

Peroxynitrite decomposition yields radicals such as hydroxyl, nitrite and carbonate. The latter 

has high reactivity towards the amino acid side chains as well as the protein back bone.56, 59 

Homolytic fission probability of peroxynitrite to yield nitrite and hydroxyl radical is <1% 

(Scheme 3.4). Therefore peroxynitrite can react directly with biomolecules before homolytic 

fission. Although several reactions are feasible, specific markers for peroxynitrite mediated 

oxidations are scarce. In fact, 3-NT and nitrotryptohans are the only definitive markers for 

oxidations of proteins by peroxynitrite. 
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Scheme 3.4 Various reactions of peroxynitrite were depicted in the above scheme. Reaction of dissociation products of nitrosoperoxycarboxylate (a 
reaction product of peroxynitrite and carbon-di-oxide) to tyrosine was shown in the inset. Carbonate radical plays important role in the formation of 3-
nitrotyrosine (3-NT). 
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3.3.4. Hypochlorus acid (HOCl) 

Similar to peroxynitrtite, hypochlorus acid is not a free radical. However it is a powerful 

oxidant that can act on macromolecules. Activated phagocytes release hydrogen peroxide (H2O2) 

and superoxide via a respiratory burst along with the heme enzyme myeloperoxidase (MPO).71 

MPO catalyzes the reaction between H2O2 and physiologically available chloride to yields 

hypochlorus acid.62 Physiologically hypochlorus acid is used as a bacterioside.71, 72 However, 

excessive and/or off site generation of hypochlorus acid causes serious tissue damage73 and is 

believed to be one of the key factors in progression of diseases such as atherosclerosis and 

chronic inflammation.32, 33, 68, 74 

3.3.5. Biomacromolecule oxidation with HOCl 

DNA bases are a major target for HOCl mediated oxidation.75 Unstable chloramines are 

formed during this reaction which can initiate further damage. Cholesterol and unsaturated fatty 

acids generate cholorohydrin upon treatment with hypochlorus acid which could easily be 

detected by GC/MS methods.73 These products, however, were minor since the rate of formation 

is relatively slow.76 

Proteins are one of the major targets of hypochlorus acid.34, 77, 78 Although oxidation of 

side chains of amino acids prevail, peptide backbone fragmentation and aggregation in proteins 

were also observed78. Hypochlorite anion is by far more reactive than its protonated form. 

Hypochlorus acid targets the protonated amine groups79 in amino acid side chains. Second order 

rate constants were reported79 for Cys and Met on the order of 107 M-1 s-1. Cystein forms sulfonic 

acid (cysteic acid) and methionine forms methionine sulfoxide during reaction with hypochlorus 

acid.78 Oxidation of Trp (indolic residue) and chlorination of Tyr (phenolic residue) are also 
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common products.80 Histidine has a slightly higher rate constant (1.0×10-5 M-1s-1)79 than its other 

hydrophobic amino acids counterparts. By using a kinetic modeling technique, Pattison et. al., 

reported that the major targets with a slight excess of hypochlorus acid are the side chain 

residues of the proteins and not the peptide backbone.78, 79 The ε-NH2 group of lysine is also one 

of the major targets for hypochlorus acid. Monochloramines and dichloramines (with high excess 

of HOCl) are formed during the reaction of hypochlorus acid and lysine residues. Chloramines 

which are mildly oxidizing can transfer chlorine to the other amino acid side chains (such as 

tyrosine) and regenerate the parent amine. In Alzheimer’s disease, a particular tyrosine residue 

was found to be chlorinated more than the other six Tyr residues in apo A-I. This phenomenon 

was attributed to a chlorine transfer mechanism from a nearby lysine residue through a 

chloramine intermediate.81 Recently, Pattison et. al. researched on proteins such as insulin and 

lysozyme to study chloramine transfer reactions more extensively. These proteins have low 

levels of Cys, Met and Trp residues thereby the major kinetic targets for HOCl were eliminated 

and chloramine pathway for His and Lys was promoted.82 

3.4. Apo B-100 oxidation in LDL 

3.4.1. Hydroxyl radical mediated direct oxidation of apo B-100 

Free radical mediated protein oxidations were established although not quite well 

understood. Since the early 1980’s, Stadtman and coworkers have published pioneering work in 

the area of free radical mediated metal catalyzed oxidations (MCO) of amino acids, peptides and 

proteins.83-86 These reactions included side chain modifications in amino acids, sometimes 

polypeptide backbone fragmentations and cross linking.87-89 Depending upon the degree of 

oxidation, the protein can unfold, lose its reactivity and show altered behavior towards 
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proteolytic enzymes. Radical mediated damage was always associated with pathophysiological 

events such as aging, cancer, diabetes, cataract and atherosclerosis. 

Oxidized LDL was implicated as a crucial factor for atherosclerotic plaque formation in 

the arterial wall28, 36, 89-97. LDL can be oxidized by two different ways (Figure 3.5). If the radical 

site is generated near the protein the radical once formed could easily access the side chain of the 

amino acids. It will therefore modify any amino acids that are in the vicinity. On the other hand, 

apo B-100 constitutes 20% of LDL particles and the remaining 80% of LDL is comprised of 

lipids.6 If the free radical is generated near the lipids, it will oxidize the lipids first (Figure 3.5). 

During lipid oxidation, several different lipid peroxides could form which can be converted to 

reactive aldehydes such as acrolein or 4-hydroxynonenal (4-HNE).26, 98 These aldehydes are 

unsaturated and are nucleophilic in nature. Moreover, the radical such as hydroxyl radical might 

be short lived, but secondary reaction products such as aldehydes have fairly long life time and 

can damage several different amino acids in proteins.22, 26, 99, 100 Our main interests, however, lie 

in the direct damage caused by the radicals.  

Recent studies on oxidation of apo B-100 showed that aberrant apo B-100 can interact 

with the arterial proteoglycans and initiate plaque formation in the arterial wall.94, 101-105 

Moreover, we strongly believe that the site of the oxidation of apo B-100 is one of the key 

factors in atherosclerotic plaque formation due to the structure-function relationship for the 

protein.  
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Figure 3.5 Free radical mediated oxidations of apo B-100 in LDL is shown in the above figure. Protein damage by both direct radical attack and lipid 
mediated intermediates were depicted. 
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Aromatic amino acids such as phenylalanine (Phe) and tyrosine (Tyr) were considered as 

a sink for hydroxyl radical due to their high reactivity towards the radical.106 One simple 

characteristic reaction of hydroxyl radical is hydroxylation of the phenyl ring. Products of Phe 

oxidation are therefore o-, m-, p- tyrosine and DOPA (Scheme 3.5). 
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Scheme 3.5 Oxidation of side chain of phenylalanine residue by hydroxyl radical yielding o-, m-, p- tyrosine 
(+16 Da) and dihydroxyphenylalanine (DOPA) (+32 Da). 
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Scheme 3.6 Oxidation of the side chain tyrosine residue by hydroxyl radical yielding dihydroxyphenylalanine 
(DOPA) (+16 Da). 
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Scheme 3.7 Histidine side chain oxidation product after reacting with hydroxyl radical (+16 Da). 
Corresponding ketone is more stable and shown in the scheme. 

Similarly, Tyrosine predominantly generates 3, 4 dihydroxyphenylalanine (DOPA) 

(Scheme 3.6) both in aerobic and in non-aerobic conditions. Direct oxidation product of histidine 

(His) yields a complex mixture of products including hydroxylated (Scheme 3.7), carbonyl and 
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ring opening products. Tryptophan (Trp) oxidizes to form hydroxytryptophan (not shown) and 

the ring opening products kynurenine and N-formylkynurenine (Scheme 3.8). 

Reactions of lysine (Lys), arginine (Arg) and proline (Pro) with hydroxyl radical is 

considerably fast. In all cases a semialdehyde is the initial product. Oxidation of proline and 

arginine leads to glutamic semialdehyde formation107, 108 (Scheme 3.9). 

 

Scheme 3.8 Oxidation of tryptophan to Kynurenine (+4 Da) and N-formylkynurenine (NFK) (+32 Da). These 
products appear both in hydroxyl radical mediated oxidation as well as in presence of hypochlorus acid. 

 

Scheme 3.9 Reaction of proline residue (in a generic peptide) with hydroxyl radical and formation of glutamic 
semialdehyde (+16 Da). 

Lysine oxidation yields aminoadipic semialdehyde85, 109(not shown). Oxidation of these 

residues was detected by a sodium borohydride reduction followed by a hydrolysis with 

hydrochloric acid. This treatment yielded 5-hydroxy-2-aminovaleric acid (HAVA) (for Arg and 

Pro) and 6-hydroxy-2-aminocaproic acid (HACA) (for Lys) which could be detected by GC/MS 

methodology.109-111 Also as depicted by Stadtman and coworkers, carbonyl assay could be a 

sensitive technique for detecting glutamic and aminoadipic semialdehydes.85 In carbonyl assays, 
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classic spectrophotometric methods were used to quantitate the 2,4-dinitrophenylhydrazine 

derivatives of carbonyl compounds. Pietzsch detected high levels of HAVA during MCO of LDL 

oxidation in vitro.110 Also, sensitive and improved GC/MS based methodologies can identify the 

increased level of these carbonyls in cells and tissues in case of pathological conditions such as 

aging.109, 111, 112 Unfortunately, neither GC/MS nor other assay based methods can detect the 

position of the amino acids in a protein that was oxidized by a free radical.  

Most importantly all of these chemical changes are associated with characteristic mass 

changes. These mass changes leave specific footprint on the proteins. By using suitable mass 

spectrometric based methodologies (LC-MS/MS) the specific oxidation sites could be 

determined on the proteins. 

3.4.2. Oxidation of amino acid via lipid intermediate 

As mentioned earlier in these chapter lipids can be easily oxidized by hydroxyl radical to 

form aldehydes such as malondialdehyde, acrolein or 4-hydroxynonenal (HNE). All of these 

species are highly reactive electrophiles that can target specific amino acids. Uchida’s pioneering 

work on covalent HNE adduct formation with Lys, His and Cys residues provides ample 

evidence in support of modification of amino acids in LDL.26, 98 These modifications are 

associated with structural changes in apo B-100.  

Michael addition type products (1, 4 addition) are typical in covalent attachment of HNE 

to His residues (+156 Da) (Scheme 3.10). Lysine which has a reactive ε-amine group was a 

specific target for acrolein. Acrolein forms heterocyclic adducts such as Nε-(3-formyl-3,4-

dehydropiperidino) lysine (FDP-Lys) (+94 Da) or Nε-(3-metheyl pyridinium) lysine (MP-Lys) 

(+76 Da)26, 98 (Scheme 3.11). Sayre discussed 2-pentylpyrrole adduct formation in Lys residues 

through a hemiaminal intermediate formation during reaction with HNE.113 HNE attaches to 
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lysine via a Schiff base adduct (1, 2 addition) formation. The Schiff base adduct formation is 

associated with characteristic mass increase of +138 Da and +120 Da (Scheme 3.11). HNE-Lys 

adducts were sometimes labile.114 Previous attempts to identify the HNE-Lys adduct in proteins 

were mostly unsuccessful when trypsin was used as the proteolytic enzymes.115 It is however 

apparent that chymotrypsin digestion gives better result in detecting HNE-Lys residues in protein 

oxidation.116 
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Scheme 3.10 4-Hydroxynonenal adduct (4-HNE) adduct on histidine residue (+156 Da). 

Interestingly, Cu (II) mediated oxidations of LDL initially yield lipid hydroperoxides 

which are converted to reactive aldehydes eventually causing damage in the amino acids of the 

protein. Cu (II) can bind to His residues in apo B-100 in LDL117and initiate oxidation of the 

LDL. Other studies also indicated that Trp residue can act as a binding site for Cu (II) ions. Trp 

residues have a tight-binding spot as well as a weak binding spot. However, the position of those 

Trp residues in apo B-100 was not discussed in detail.117, 118 It seems therefore plausible that 

mechanism of Cu (II) mediated oxidations of apo B-100 vary significantly from hydroxyl radical 

mediated oxidation of LDL. Hydroxyl radical can react rapidly with the amino acids that are 

radical accessible and damage the protein directly. On the other hand in Cu (II) mediated 

oxidations predominantly secondary lipid oxidation products such as aldehydes are generated 

and subsequently modify amino acids (Lys and His). 
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Scheme 3.11 Lysine (Lys) reacts with α, β-unsaturated aldehydes (acrolein and 4-HNE) to yield various 
products including MP-Lys (+76 Da), FDP-Lys (+94 Da) and 2-petylpyrrole-Lys (+138 Da and +120 Da).  
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3.4.3. Peroxynitrite mediated oxidation of apo B-100 in LDL 

Peroxynitrite is not a free radical. The unpaired electron of nitric oxide is paired with the 

unpaired electron of superoxide to produce a covalent bond. Nonetheless it is highly reactive. 

Peroxynitrite leaves a specific stable footprint on side chains of amino acids. It directly modifies 

three different amino acids: cysteine, methionine and tryptophan.56, 59 Oxidation was also 

observed for other aromatic amino acids such as tyrosine, phenylalanine and histidine through 

secondary mechanisms (involving carbonate and hydroxyl radical). Peroxynitrite mediated 

cysteine oxidation in albumin was previously reported with a second order rate constant70 on the 

order of 103 M-1s-1. Cysteine has reactive thiol groups which were converted to the 

corresponding sulfonic acids (+48 Da). Methionine contains thiol groups and is fairly susceptible 

to oxidation to yield methionine sulfoxide (+16 Da). Tryptophan residues are oxidized to form 

nitrotryptophan69, 119, 120 (Scheme 3.13) and N-formylkynurenine (+32 Da) (Scheme 3.8). 

Interestingly tryptophan can be nitrated (+45 Da) (Scheme 3.13) as well as hydroxylated (+16 

Da) at the same time.121  
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Scheme 3.12 3-Nitrotyrosine (+45 Da) formation on peptides from peroxynitrite reaction on tyrosine side 
chain. 

Tyrosine nitration (+45 Da)122, 123 (Scheme 3.12) in proteins requires special discussion. 

As nitric oxide cannot directly promote the nitration reactions in physiological systems, 

peroxynitrite appears to be the sole initiator for nitration. It has become apparent that other 

mechanisms of protein nitration exist. For example hemeperoxidase, hydrogen peroxide and 
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nitrite can cause nitration of tyrosine.68, 124, 125 However, it should be noted that protein tyrosine 

nitration could happen following this pathway only if the enzyme is immediately accessible to 

oxygen radical and nitric oxide radical. Direct oxidation by nitrite radical was minor particularly 

since low oxygen tension in tissues made the conversion of nitric oxide radical to nitrite radical a 

slow process and also nitrite radical will preferentially attack the thiols due to their higher 

reactivity. Alvarez et. al. provided interesting evidence on oxidation of Cys using human serum 

albumin and peroxynitrite.126 In the presence of carbon dioxide, cysteine oxidation decreased and 

an increase in tyrosine nitration was observed.  
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Scheme 3.13 Tryptophan nitration by peroxynitrite (+45 Da), 4, 5, 6-nitrotryptophan are all possible. 

Therefore nitration of biomolecules indicates the involvement of nitric oxide radical 

derived oxidant species during oxidative damage. Consequently, peroxynitrite plays a central 

part in protein tyrosine nitration. 

Since hydroxyl radical generation from peroxynitrite is not unlikely though less probable, 

markers for hydroxyl radical mediated oxidation products of Tyr and Phe were observed in 

peroxynitrite mediated oxidation pathways.121  

Peroxynitrite mediated oxidation induces changes in the amino acid residue and primary 

structure of the proteins by changing their chemical environment. It oxidizes LDL and initiates 

unfolding in LDL protein.121 
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3.4.4. Apo B-100 oxidation with hypochlorus acid 

LDL oxidation with hypochlorus acid was observed both in vitro127, 128 and in vivo.31-33, 

129 In the late 1990’s chlorotyrosine (+35 Da) (Scheme 3.14) was proved as one of the specific 

markers for HOCl mediated oxidation in apo B-100. By a stable isotope dilution gas 

chromatographic-mass spectrometric method, high levels of 3-chlorotyrosine deposition in 

atherosclerotic plaque was measured.27, 32 3,5-Dichlorotyrosine formation was also observed in 

apo A-I when treated with high concentrations of HOCl.130 Lysine chloramines were deemed to 

be unstable and difficult to detect in protein samples due to cross-linking and carbonyl 

formation. By studying model peptides related to the apo A-I sequence, Bergt et. al. was able to 

detect monochloramine (+34 Da) and dichloramine (+68 Da)130 in Lys residues. Most 

interestingly, these peptides did not have any other reactive amino acids besides Lys and Tyr, 

indicating secondary pathways originated from chloramine hydrolysis.78, 131 Chloramines on Lys 

residues hydrolyze to form aldehydes (aminoadipic semialdehyde) which were previously 

detected by carbonyl method. Methionine is easily oxidizable and could form methionine 

sulfonic acid (+ 16 Da) (Scheme 3.15). Reactive thiol of cystein goes to corresponding sulfonic 

acids (+48 Da)78 (Scheme 3.16). Upon oxidation with HOCl, tryptophan hydroxylation (+16 Da) 

occurs in the indole ring (Scheme 3.17). Also, through intramolecular radical reaction Trp can 

yield the ring breaking products kynurenine (+4 Da) and N-formylkynurenine (+32 Da) (Scheme 

3.8). Histidine forms an unstable chloramine on the side chain which can readily be donated to 

other neighboring amino acids (such as Lys) to regenerate parent His residue.78, 82 Guanidine 

moiety of Arg is susceptible to chloramine (+34 Da) formation upon incubation with 

hypochlorus acid. The stability of this chloramine on Arg residues are not extensively studied or 

known. Unfortunately, only chlorotyrosine appears to be a definitive marker of hypochlorus acid 
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mediated oxidations. Other products were unable to provide specific indication of HOCl 

oxidation and could be originated from other oxidants.132 
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Scheme 3.14 Reactions of Tyrosine and hypochlorus acid to form of 3-chlorotyrosine (+34 Da) and 3, 5-
dichlorotyrosine (+68 Da) in peptides and proteins. 
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Scheme 3.15 Methionine oxidation to methionine sulfoxide (+16 Da) is most common and can happen even 
with ambient oxygen. 
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Scheme 3.16 Oxidation of cystein (Cys) to cysteine sulfonic acid (+48 Da) in presence of HOCl. This product is 
also observed previously with peroxynitrite treated samples. 

 

Scheme 3.17 Oxidation of Tryptophan (Trp) to 2-Oxindolic form by HOCl. 
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3.5. Atherosclerosis and oxidized LDL (ox-LDL) 

Atherosclerosis is a complex cardiovascular disorder which was correlated with high 

levels ox-LDL formation.  Although controversy exists on whether circulating plasma ox-LDL 

(detected in low concentration in blood) is responsible for atherosclerosis, recent prospective 

reports were more inclined towards a positive correlation.25, 133, 134 Specific oxidized epitopes on 

ox-LDL in blood may trigger atherosclerosis and other manifestations.40 LDL can permeate 

through vascular endothelial cells and smooth muscle cells. During this infiltration to arterial 

intima, LDL can be oxidized by several reactive oxygen species (Figure 3.6). Ox-LDL was 

removed by immunoglobulin M (IgM) antibodies in the form of immune complex.135 However, 

some of the ox-LDL particle can escape this removal pathway. The escaped ox-LDL particles 

will be taken up by macrophages through scavenger receptor CD-36.136-140 Inclusion of ox-LDL 

inside the macrophage could initiate lipid laden foam cell formation. Several signaling pathways 

such as pro-inflammatory cytokines, TNF-α and interleukins141 become activated. Foam cells 

release more ROS and myeloperoxidase (MPO) which could be responsible for generating more 

ox-LDL.91 Foam cells can also bind to T-cells circulating in blood40, 142 (Figure 3.6). Foam cells 

adhere strongly to endothelial cells and initiate fatty streak formation and thereby induce 

inelasticity in the arterial wall. This is major early event of plaque formation.  

Interaction of apo B-100 with arterial proteoglycans increases the retention of the LDL in 

the arterial intima.94, 96, 102, 103, 105, 143 Proteoglycan obtained from atherosclerotic patients showed 

higher uptake of LDL than normal patients. Also ox-LDL particles are cytotoxic and induce cell 

apoptosis.55, 144, 145 

Ox-LDL formation in the sub-endothelial cells can facilitate atherogenic progression. 

Oxidized LDL limits the biological activity of the endothelium derived nitric oxide.40 It was 
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apparent that this phenomenon increases entry of the inflammatory cells into the arterial wall. In 

addition it was discovered that ox-LDL stimulate macrophage expression of peroxisome 

proliferator activated receptor-γ (PPAR-γ). Scavenger receptor (CD36) expression and 

expression of pro-inflammatory genes were shown to be altered by macrophage expression of 

PPAR-γ.146 

Several studies described peroxynitrite mediated oxidation of LDL as an important event 

in atherosclerotic plaque formation. Leeuwenbergh et. al. emphasized enzyme involvement 

(MPO) and formation of tyrosyl radical in oxidation of LDL.68 3-nitrotyrosine (3-NT) was 

detected immunocytochemially in macrophages, foam cells and vascular smooth cells147. 

Interestingly, 3-NT accumulated even in the presence of extracellular superoxide dismutase 

(SOD), indicating that the formation of peroxynitrite can outcompete superoxide dismutation.148 

Controversial data were observed on the level of 3-NT in LDL obtained from human plasma and 

arterial intima.68, 149 Vascular hemodynamics could play a crucial role in accumulating 3-NT 

through peroxynitrite mediated pathways. Immunohistostaining of coronary arterial bifurcations 

reveal the importance of fluid shear stress on peroxynitrite formation and accumulation in the 

arterial intima.150 

3-Chlorotyrosine is a known marker of atherogenic condition.27, 31, 32, 132 An increase in 

scavenger receptor CD36 uptake of HOCl treated ox-LDL was reported indicating high 

probability of lipid laden foam cell formation.151, 152 Chloramine formation on Arg residues 

inhibited endothelial cell nitric oxide synthase activity. Therefore vascular endothelial nitric 

oxide production mechanism was altered which may attribute to endothelial dysfunction.153 

Antioxidants play an obvious role in inhibiting the progression of atherogenesis. 

Ascorbate154, 155, urate and α-Tocopherol reduce LDL oxidation. However, α-tocopherol is 
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associated with LDL and played the most important role in preventing LDL oxidation156 in 

circulation as well as in sub-intima. 

 

Figure 3.6 Oxidized LDL formation in the endothelial cells and arterial intima. Ox-LDL was taken up by 
macrophages through scavenger receptor CD36. Lipid laden foam cell formation was depicted in the figure 
which showed high adhesion properties for binding to the arterial wall. 

3.6. Targeted proteomics with LC-MS/MS based methodologies 

Evolution of the versatile mass spectrometric instrumentation in post-genomic era 

revealed new horizons in protein mass spectrometry. Marc Wilkins coined the term “proteomics” 

in 1994 while working with a 2D-Gel based protein samples following a notion that all proteins 

were expressed from the genome.157 In biological studies, however, the concept of proteomics 

was expanded to a new level in order to answer more critical and demanding questions. 

Proteomics is no longer confined in protein sequencing and profiling but also used to study 
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protein post translational modifications and protein-protein interactions in cells and tissues.158-160 

Discovery and development in the field of protein and peptide ionization techniques in mass 

spectrometry helped the biologists and chemists to perform complex protein/peptide mixture 

analysis. 

Two “soft” ionization techniques were extensively used in protein mass spectrometry. 

Matrix assisted laser desorption ionization (MALDI)161 was extensively used in identifying 

proteins. In this method the samples are mixed with a specific matrix (organic compounds such 

as sinapinic acid or dihydroxybenzoic acid). A laser beam transfers energy to the matrix which in 

turn ionizes the peptides or the proteins. 

Electrospray ionization161, 162 is also a soft ionization technique where a high electrical 

potential is applied to the analyte solution such that the analyte molecule(s) can form charged 

droplets (Figure 3.7). Driven by a potential gradient as well as a pressure gradient along the ion 

passage, the droplets follow a desolvation process leading to downsizing of the droplets. 

Constant evaporation continues until fully desolvated ions are formed.  

In one instrument design, the ions then enter into the linear ion trap (Figure 3.7) (in our 

case, a Thermo Finnigan LTQ-ion trap instrument coupled with HPLC). By a suitable 

combination of constant direct current (DC), radio frequency (RF) and oscillating alternative 

current (AC) in the ion traps, ions can be stabilized (precursor ion isolation), fragmented 

(collision induced dissociation) and detected. Helium is used as a collision gas in the traps for 

damping and cooling of ions (detailed discussion in chapter 4). 

Liquid chromatography adds physical separation capabilities in LC-MS/MS based 

approach. In a complex mixture of proteins and peptides the separation before the mass 
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spectrometric detection increases the sensitivity and specificity of the detection. Overall this 

methodology provides a robust and a powerful detection in protein sequencing. 

3.6.1. Database search 

Database search is by far the most crucial parameter in identification of post translational 

modifications in proteins. Mass spectrometric data for biomacromolecules are complex. Various 

algorithms exist to identify the peptides from complex biological mixtures. A full length cDNA 

sequence of apo B-100 (accession # P04114) was employed in our database search using 

SEQUEST algorithm. 

When a sequence is added to a database, the software theoretically cleaves the sequence 

to peptides (precursor ions). The precursor ions are fragmented to its corresponding B-ions 

(charge stays with amine terminal) and Y-ions (charge stays with carboxylic acid terminal). In 

mass spectrometric data both precursor ion and corresponding B- & Y-ions are observed. The 

observed tandem mass spectra were matched with the theoretical B- and Y- ions. 

XcorrPrimary 

XcorrSecondary  -Xcorr Primary =∆ nC  
Equation 3.8 

Where, Primary Xcorr is the best match and secondary Xcorr is the second best match. 

The match between the theoretical and experimental spectra generates a score known as 

X-correlation score which defines goodness of fit. ∆Cn score on the other hand indicates the 

specificity of the match and mathematically defined as Equation 3.8. Although there is a certain 

degree of uncertainty involved in the database search method, improvements are on their way.163 

Based on the Xcorr, ∆Cn value, identification of peptide was initially filtered. The identified 

peptides that passed the filter were further verified manually by matching the spectra and 

theoretically calculating the masses. 
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Figure 3.7 Schematic representation of liquid chromatography (LC) – mass spectrometry (MS) setup for analysis of peptide mixture in positive ion 
mode. 
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3.6.2. Protein surface mapping by LC-MS/MS 

Protein footprinting164-168 has become popular in the last decade. By using laser flash 

photolysis method hydroxyl radical can be generated. Generated hydroxyl radical can react with 

amino acid residues in protein and leave a stable footprint on them. Kinetics of amino acid side 

chain reactions were well documented.106 These stable footprints could be determined by LC-MS 

based methodologies. Aye et. al. tuned the laser flash photolysis method and identified several 

surface accessible oxidation sites in model protein ubiquitin and apomyoglobin.164 Hambly and 

co-workers worked on laser flash photochemical oxidation of proteins (FPOP) and identified 

important structural characteristics of apo and holo myoglobin.165, 166 Sharp et. al. reported 

solvent accessible surface mapping on apomyoglobin, lysozyme and β-lactoglobulin A.169, 170 

Hydroxyl radical reactivity towards the side chain of the amino acids depends on the 

accessibility of the side chain and reactivity of the side chain residue.171 Bridgewater and co-

workers studied amino acid-metal binding interactions through metal catalyzed oxidation and 

mass spectrometry.154, 172, 173 Shcherbakova et. al. proved the usefulness of using inexpensive 

Fenton method for generating hydroxyl radical during the footprinting of protein, DNA and 

RNA.167 

3.6.3. LC-MS/MS studies on LDL 

Considerable attention was focused on HDL cholesterol and apo A-I oxidation8, 9, 81, 130, 

while studies on apo B-100 in LDL was fairly limited.115, 121 Ample evidence indicated strong 

positive correlation between oxidation of apo B-100 and atherosclerosis.31, 33, 36, 68, 150, 174, 175 Free 

radical mediated oxidations in apo B-100 brings about non-specific heterogeneous changes in the 

protein. Heinecke and co-workers have studied both HDL and LDL proteins for specific 
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footprints by employing various analytical techniques.31-33, 35, 77, 130, 176 Leeuwenburgh et. al. used 

advanced GC/MS methodologies to identify oxidation products of apo B-100.68  

A great deal of emphasis was exhausted to understand Cu (II) mediated oxidations of 

LDL. Moreover, as discussed earlier Cu (II) can bind to amino acid residues such as His and Trp. 

Therefore, it will initiate oxidation in the protein by lipid mediated pathways. Previously, Yang 

et. al. identified Cu (II) mediated oxidation of Trp in apo B-100 with HPLC followed by a MS 

methodology which was robust but required a tedious complicated follow-up work.177 Obama et. 

al. identified Cu (II) mediated oxidation sites in apo B-100. In in vitro experiments with apo B-

100, HNE and acrolein, several different binding sites were identified by LC-MS/MS based 

methodologies.115Oxidation product of Trp (NFK) was quantitatively measured by HPLC 

method after apo B-100 was oxidized in LDL.178 

Butt et. al. detected nitrated proteins by 2D-gel and mass spectrometric approach.179 

Recently, Hamilton and co-workers reported some oxidized residues in apo B-100 during LDL 

incubation with peroxynitrite. Extensive circular dichorism and LC-MS/MS methodology were 

used to identify the oxidized residues121on apo B-100. 

Effect of hypochlorus acid on LDL was studied extensively by Mike Davies’s group.75, 79, 

82, 131, 180, 181 Several interesting mechanistic and kinetic work on hypochlorus acid and amino 

acids, peptides and proteins were published over last fifteen years.75, 78, 82, 180 However, free 

radical based footprinting combined with proteomics would render new insights in apo B-100 

oxidation. 

3.7. Total hydroxyl radical quantitation 

The flux of hydroxyl radical and hydrogen peroxide formed in a cellular system varies 

significantly depending on the stress condition. Also the flux of H2O2 can be generated 



 79 

periodically in the cells. Chance and co-workers quantitated concentration of hydrogen peroxide 

in vivo which is on the order of 10-7 to 10-8 M.182 In H2O2 induced cell apoptosis studies, Antunes 

et. al. used 10-3 to 10-5 M H2O2 which is two to five orders of magnitude higher than the cellular 

concentration.183 Complex mechanisms drive hydroxyl radical mediated oxidation of proteins in 

cells. Kinetic studies involving hydroxyl radical in cells and tissues yield complicated and 

interfering results. However, total hydroxyl radical formed by Fe (II) and H2O2 (Fenton method) 

can be quantitated by a probe based approach. Benzoic acid can efficiently trap hydroxyl radical 

formed to yield hydroxybenzoic acids (o-, m-, p-hydroxybenzoic acid).  

High performance liquid chromatography (HPLC) (Figure 3.8) was extensively used to 

identify and quantitate hydroxybenzoic acids.184, 185 If benzoic acid concentration is considerably 

high compared to the hydroxyl radical formed, it would be possible to trap all of the hydroxyl 

formed by the Fenton system. This hypothesis however is good only if other scavengers were 

present in low quantities and/or show lower radical trapping efficiency. Zhou et. al. showed an 

effective trapping efficiency of benzoic acid to hydroxyl radical in aqueous samples.185 Lindsey 

et. al. provided an improved analytical methodology to detect low concentration of p-HBA in 

hydroxyl radical trapping experiment with benzoic acid.184 Therefore effective hydroxyl radical 

concentrations for LDL exposure were calculated in this study by benzoic acid experiments. 

Hydroxyl radical formed from low micromolar to low milimolar H2O2 was quantitated by 

benzoic acid method (for details please see chapter 4). 
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Figure 3.8 A typical High performance liquid chromatography set up for analyte detection. 
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3.8. Analysis of natural variants 

3.8.1. What are natural variants? 

Natural variants are defined as variations in the amino acids in a reported sequence 

(canonical sequence) in the sequence database. Canonical sequence contains most common 

polymorphs or the most conserved orthologus genes. Various types of natural variants exist in 

proteins. Single amino acid polymorphisms appear due to a single nucleotide change at the 

codon level. Disease associated mutations in amino acids are also possible in the sequence. 

During RNA editing events the protein primary structure changes (changes in the amino acid 

sequence). 

3.8.2. Mass spectrometry database search on natural variants 

Mass spectrometry was not fully exploited in determining natural variants in low density 

lipoproteins. However, various efforts were made to identify natural variants in hemoglobin by 

using mass spectrometric method.186-189  

Fifty one natural variants are reported for apo B-100 on Swissprot over last twenty four 

years.16 A novel database search method was employed in this studt to identify some of the 

reported natural variants in apo B-100. By slightly tweaking the database search, rapid 

identification of reported natural variants was possible. By simply analyzing tandem mass 

spectra it is not possible to differentiate the natural variants leucine (Leu) and isoleucine (Ile) 

(m/z: 113). However, these amino acids are translated from different cDNA codons. In database 

search, our endeavor was to include those natural variants which were reported by other methods 

to develop a rapid screening technique for clinical samples. This unique methodology could 
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expand the horizon of mass spectrometry to determine amino acid variants in protein clinical 

samples.



 83 

3.9. References 

(1) Lloyd-Jones, D.; Adams, R. J.; Brown, T. M.; Carnethon, M.; Dai, S.; De Simone, G.; 
Ferguson, T. B.; Ford, E.; Furie, K.; Gillespie, C.; Go, A.; Greenlund, K.; Haase, N.; 
Hailpern, S.; Ho, P. M.; Howard, V.; Kissela, B.; Kittner, S.; Lackland, D.; Lisabeth, L.; 
Marelli, A.; McDermott, M. M.; Meigs, J.; Mozaffarian, D.; Mussolino, M.; Nichol, G.; 
Roger, V.; Rosamond, W.; Sacco, R.; Sorlie, P.; Stafford, R.; Thom, T.; Wasserthiel-
Smoller, S.; Wong, N. D.; Wylie-Rosett, J.; on behalf of the American Heart Association 
Statistics, C.; Stroke Statistics, S., Heart Disease and Stroke Statistics--2010 Update. A 
Report From the American Heart Association. Circulation 2009, 
CIRCULATIONAHA.109.192667-CIRCULATIONAHA.192109.192667. 

(2) http://www.who.int/mediacentre/factsheets/fs317/en/index.html. 

(3) http://www.nhlbi.nih.gov/health/public/heart/chol/wyntk.htm#cause. 

(4) Chapman, M., Animal lipoproteins: chemistry, structure, and comparative aspects. J. 
Lipid Res. 1980, 21 (7), 789-853. 

(5) Mahley, R.; Innerarity, T.; Rall, S., Jr; Weisgraber, K., Plasma lipoproteins: 
apolipoprotein structure and function. J. Lipid Res. 1984, 25 (12), 1277-1294. 

(6) Berg, J. M.; Tymoczko, J. L.; Stryer, L., Biochemistry. 5th ed.; W.H. Freeman: New 
York, 2002; p 1 v. (various pagings). 

(7) Lehninger, A. L.; Nelson, D. L.; Cox, M. M., Principles of biochemistry. 2nd ed.; Worth 
Publishers: New York, NY, 1993; p xli, 1013, [1077] p. 

(8) Assmann, G.; Nofer, J.-R., Atheroprotective effects of high-density lipoproteins. Annu. 
Rev. Med. 2003, 54, 321-341. 

(9) Stein, O.; Stein, Y., Atheroprotective mechanisms of HDL. Atherosclerosis 1999, 144 
(2), 285-301. 

(10) Segrest, J. P.; Jones, M. K.; De Loof, H.; Dashti, N., Structure of apolipoprotein B-100 in 
low density lipoproteins. J. Lipid Res. 2001, 42 (9), 1346-1367. 

(11) Goldstein, J. L.; Brown, M. S.; Anderson, R. G. W.; Russell, D. W.; Schneider, W. J., 
Receptor-Mediated Endocytosis: Concepts Emerging from the LDL Receptor System. 
Annu. Rev. Cell Biol. 1985, 1 (1), 1-39. 

(12) Goldstein, J. L.; Hobbs, H. H.; Brown, M. S., Familial Hypercholesterolemia in 
Lipoprotein and Lipid Metabolism Disorders. McGraw-Hill: New York, 1995; Vol. 2, p 
1981-2030. 



 84 

(13) Knott, T. J.; Pease, R. J.; Powell, L. M.; Wallis, S. C.; Rall, S. C.; Innerarity, T. L.; 
Blackhart, B.; Taylor, W. H.; Marcel, Y.; et al., Complete protein sequence and 
identification of structural domains of human apolipoprotein B. Nature (London, United 
Kingdom) 1986, 323 (6090), 734-738. 

(14) Yang, C. Y.; Chen, S. H.; Gianturco, S. H.; Bradley, W. A.; Sparrow, J. T.; Tanimura, 
M.; Li, W. H.; Sparrow, D. A.; DeLoof, H.; et al., Sequence, structure, receptor-binding 
domains and internal repeats of human apolipoprotein B-100. Nature (London, United 
Kingdom) 1986, 323 (6090), 738-742. 

(15) Yang, C. Y.; Lee, F. S.; Chan, L.; Sparrow, D. A.; Sparrow, J. T.; Gotto, A. M., Jr., 
Determination of the molecular mass of apolipoprotein B-100. A chemical approach. 
Biochem. J. 1986, 239 (3), 777-780. 

(16) http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[UNIPROT:APOB_HUMAN]+-newId. 

(17) Yang, C. Y.; Gu, Z. W.; Weng, S. A.; Kim, T. W.; Chen, S. H.; Pownall, H. J.; Sharp, P. 
M.; Liu, S. W.; Li, W. H.; et al., Structure of apolipoprotein B-100 of human low density 
lipoproteins. Arterioscler. Thromb. Vasc. Biol. 1989, 9 (1), 96-108. 

(18) Segrest, J. P.; Garber, D. W.; Brouillette, C. G.; Harvey, S. C.; Anantharamaiah, G. M., 
The amphipathic alpha helix: a multifunctional structural motif in plasma 
apolipoproteins. Adv. Protein Chem. 1994, 45, 303-369. 

(19) Kriško, A.; Etchebest, C., Theoretical Model of Human Apolipoprotein B100 Tertiary 
Structure. PROTEINS: Structure, Function, and Bioinformatics 2007, 66, 342-358. 

(20) Jiang, Z. G.; Carraway, M.; McKnight, C. J., Limited Proteolysis and Biophysical 
Characterization of the Lipovitellin Homology Region in Apolipoprotein B. Biochemistry 
(Mosc). 2005, 44 (4), 1163-1173. 

(21) Tatusova, T. A.; Madden, T. L., BLAST 2 Sequences, a new tool for comparing protein 
and nucleotide sequences. FEMS Microbiol. Lett. 1999, 174 (2), 247-250. 

(22) Chauhan, V.; Wang, X.; Ramsamy, T.; Milne, R. W.; Sparks, D. L., Evidence for Lipid-
Dependent Structural Changes in Specific Domains of Apolipoprotein B100. 
Biochemistry (Mosc). 1998, 37 (11), 3735-3742. 

(23) Esterbauer, H.; Gebicki, J.; Puhl, H.; Jurgens, G., The role of lipid peroxidation and 
antioxidants in oxidative modification of LDL. Free Radical. Bio. Med. 1992, 13 (4), 
341-390. 

(24) Ichi, I.; Nakahara, K.; Miyashita, Y.; Hidaka, A.; Kutsukake, S.; Inoue, K.; Maruyama, 
T.; Miwa, Y.; Harada-Shiba, M.; Tsushima, M.; Kojo, S., Association of ceramides in 
human plasma with risk factors of atherosclerosis. Lipids 2006, 41 (9), 859-863. 

(25) Naruko, T.; Ueda, M.; Ehara, S.; Itoh, A.; Haze, K.; Shirai, N.; Ikura, Y.; Ohsawa, M.; 
Itabe, H.; Kobayashi, Y.; Yamagishi, H.; Yoshiyama, M.; Yoshikawa, J.; Becker, A. E., 



 85 

Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial 
infarction predict stent restenosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26 (4), 877-
883. 

(26) Uchida, K.; Kanematsu, M.; Morimitsu, Y.; Osawa, T.; Noguchi, N.; Niki, E., Acrolein Is 
a Product of Lipid Peroxidation Reaction. Formation of free acrolein and its conjugate 
with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 1998, 273 (26), 
16058-16066. 

(27) Upston, J. M.; Niu, X.; Brown, A. J.; Mashima, R.; Wang, H.; Senthilmohan, R.; Kettle, 
A. J.; Dean, R. T.; Stocker, R., Disease stage-dependent accumulation of lipid and protein 
oxidation products in human atherosclerosis. Am. J. Pathol. 2002, 160 (2), 701-710. 

(28) Itabe, H., Oxidized low-density lipoproteins: What is understood and what remains to be 
clarified. Biol. Pharm. Bull. 2003, 26 (1), 1-9. 

(29) Pentikainen, M. O.; Hyvonen, M. T.; Oorni, K.; Hevonoja, T.; Korhonen, A.; Lehtonen-
Smeds, E. M. P.; Ala-Korpela, M.; Kovanen, P. T., Altered phospholipid-apoB-100 
interactions and generation of extra membrane material in proteolysis-induced fusion of 
LDL particles. J. Lipid Res. 2001, 42 (6), 916-922. 

(30) Pentikainen, M. O.; Lehtonen, E. M.; Kovanen, P. T., Aggregation and fusion of 
modified low density lipoprotein. J. Lipid Res. 1996, 37 (12), 2638-2649. 

(31) Hazen, S. L.; Crowley, J. R.; Mueller, D. M.; Heinecke, J. W., Mass spectrometric 
quantification of 3-chlorotyrosine in human tissues with attomole sensitivity: a sensitive 
and specific marker for myeloperoxidase-catalyzed chlorination at sites of inflammation. 
Free Radic Biol Med 1997, 23 (6), 909-916. 

(32) Hazen, S. L.; Heinecke, J. W., 3-Chlorotyrosine, a specific marker of myeloperoxidase-
catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human 
atherosclerotic intima. J. Clin. Invest. 1997, 99 (9), 2075-2081. 

(33) Heinecke, J. W., Mechanisms of oxidative damage of low density lipoprotein in human 
atherosclerosis. Curr. Opin. Lipidol. 1997, 8 (5), 268-274. 

(34) Heinecke, J. W., Pathways for oxidation of low density lipoprotein by myeloperoxidase: 
tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. BioFactors 
1997, 6 (2), 145-155. 

(35) Heinecke, J. W., Mass spectrometric quantification of amino acid oxidation products in 
proteins: insights into pathways that promote LDL oxidation in the human artery wall. 
FASEB J. 1999, 13 (10), 1113-1120. 

(36) Heinecke, J. W., Oxidized amino acids: Culprits in human atherosclerosis and indicators 
of oxidative stress. Free Radical. Bio. Med. 2002, 32 (11), 1090-1101. 



 86 

(37) Heinecke, J. W., Oxidative stress: new approaches to diagnosis and prognosis in 
atherosclerosis. Am. J. Cardiol. 2003, 91 (3A), 12A-16A. 

(38) Punchard, N. A.; Kelly, F. J., Free radicals. Oxford University Press: 1996. 

(39) Droge, W., Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 
2002, 82 (1), 47-95. 

(40) Stocker, R.; Keaney, J. F., Role of oxidative modifications in atherosclerosis. Physiol. 
Rev. 2004, 84 (4), 1381-1478. 

(41) Halliwell, B., Reactive oxygen species in living systems: source, biochemistry, and role 
in human disease. Am. J. Med. 1991, 91 (3C), 14S-22S. 

(42) Koppenol, W. H., The Haber-Weiss cycle--70 years later. Redox Rep 2001, 6 (4), 229-
234. 

(43) Kell, D. B., Iron behaving badly: inappropriate iron chelation as a major contributor to 
the aetiology of vascular and other progressive inflammatory and degenerative diseases. 
BMC Med Genomics 2009, 2, 2. 

(44) Gutteridge, J. M.; Halliwell, B., Free radicals and antioxidants in the year 2000. A 
historical look to the future. Ann. N. Y. Acad. Sci. 2000, 899, 136-147. 

(45) Halliwell, B.; Gutteridge, J. M. C., Free radicals in biology and medicine. 4th ed.; 
Oxford University Press: Oxford ; New York, 2007; p xxxvi, 851 p., [858] p. of plates. 

(46) Fenton, H. J., Oxidation of tartaric acid in presence of iron. Journal of the Chemical 
Society, Transactions 1894, 65, 899-910. 

(47) Haber, F.; Weiss, J., On the catalysis of hydroperoxide. Naturwissenschaften 1932, 20, 
948-950. 

(48) Goldstein, S.; Meyerstein, D.; Czapski, G., The Fenton reagents. Free Radical. Bio. Med. 
1993, 15 (4), 435-445. 

(49) Wardman, P.; Candeias, L. P., Fenton chemistry: an introduction. Radiat. Res. 1996, 145 
(5), 523-531. 

(50) Atkins, P., Physical chemistry : volume 1: thermodynamics and kinetics. 9th ed.; W. H. 
Freeman and Co.: New York, NY. 

(51) Petlicki, J.; Ven, T. G. M. v. d., The equilibrium between the oxidation of hydrogen 
peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous 
solutions in contact with oxygen. J. Chem. Soc., Faraday Trans. 1998, 94 (18), 2763-
2767. 



 87 

(52) Cooke, J. P.; Tsao, P. S., Is NO an endogenous antiatherogenic molecule? Arterioscler. 
Thromb. 1994, 14 (5), 653-655. 

(53) Hogg, N.; Kalyanaraman, B., Nitric oxide and low-density lipoprotein oxidation. Free 
Radic. Res. 1998, 28 (6), 593-600. 

(54) Hogg, N.; Kalyanaraman, B.; Joseph, J.; Struck, A.; Parthasarathy, S., Inhibition of low-
density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett. 
1993, 334 (2), 170-174. 

(55) Salvayre, R.; Auge, N.; Benoist, H.; Negre-Salvayre, A., Oxidized low-density 
lipoprotein-induced apoptosis. Biochimica et Biophysica Acta, Molecular and Cell 
Biology of Lipids 2002, 1585 (2-3), 213-221. 

(56) Alvarez, B.; Radi, R., Peroxynitrite reactivity with amino acids and proteins. Amino Acids 
2003, 25 (3-4), 295-311. 

(57) Denicola, A.; Freeman, B. A.; Trujillo, M.; Radi, R., Peroxynitrite Reaction with Carbon 
Dioxide/Bicarbonate: Kinetics and Influence on Peroxynitrite-Mediated Oxidations. 
Arch. Biochem. Biophys. 1996, 333 (1), 49-58. 

(58) Goldstein, S.; Samuni, A.; Merenyi, G., Reactions of Nitric Oxide, Peroxynitrite, and 
Carbonate Radicals with Nitroxides and Their Corresponding Oxoammonium Cations. 
Chem. Res. Toxicol. 2004, 17 (2), 250-257. 

(59) Radi, R.; Peluffo, G.; Alvarez, M. N.; Naviliat, M.; Cayota, A., Unraveling peroxynitrite 
formation in biological systems. Free Radic Biol Med 2001, 30 (5), 463-488. 

(60) Graham, A.; Hogg, N.; Kalyanaraman, B.; O'Leary, V.; Darley-Usmar, V.; Moncada, S., 
Peroxynitrite modification of low-density lipoprotein leads to recognition by the 
macrophage scavenger receptor. FEBS Lett. 1993, 330 (2), 181-185. 

(61) Greenacre, S. A.; Ischiropoulos, H., Tyrosine nitration: localisation, quantification, 
consequences for protein function and signal transduction. Free Radical Res. 2001, 34 
(6), 541-581. 

(62) Kettle, A. J.; van Dalen, C. J.; Winterbourn, C. C., Peroxynitrite and myeloperoxidase 
leave the same footprint in protein nitration. Redox. Rep. 1997, 3 (5-6), 257-258. 

(63) Leeuwenburgh, C.; Hardy, M. M.; Hazen, S. L.; Wagner, P.; Oh-ishi, S.; Steinbrecher, U. 
P.; Heinecke, J. W., Reactive nitrogen intermediates promote low density lipoprotein 
oxidation in human atherosclerotic intima. J. Biol. Chem. 1997, 272 (3), 1433-1436. 

(64) Kaur, H.; Halliwell, B., Evidence for nitric oxide-mediated oxidative damage in chronic 
inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS 
Lett. 1994, 350 (1), 9-12. 



 88 

(65) Good, P. F.; Hsu, A.; Werner, P.; Perl, D. P.; Olanow, C. W., Protein nitration in 
Parkinson's disease. J. Neuropathol. Exp. Neurol. 1998, 57 (4), 338-342. 

(66) Halliwell, B., What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of 
peroxynitrite formation in vivo? FEBS Lett. 1997, 411 (2-3), 157-160. 

(67) Bonini, M. G.; Radi, R.; Ferrer-Sueta, G.; Ferreira, A. M. D. C.; Augusto, O., Direct EPR 
Detection of the Carbonate Radical Anion Produced from Peroxynitrite and Carbon 
Dioxide. J. Biol. Chem. 1999, 274 (16), 10802-10806. 

(68) Leeuwenburgh, C.; Rasmussen, J. E.; Hsu, F. F.; Mueller, D. M.; Pennathur, S.; 
Heinecke, J. W., Mass spectrometric quantification of markers for protein oxidation by 
tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from 
human atherosclerotic plaques. J. Biol. Chem. 1997, 272 (6), 3520-3526. 

(69) Herold, S., Nitrotyrosine, dityrosine, and nitrotryptophan formation from metmyoglobin, 
hydrogen peroxide, and nitrite. Free Radic Biol Med 2004, 36 (5), 565-579. 

(70) Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A., Peroxynitrite Oxidation of 
Sulfhydryls - the Cytotoxic Potential of Superoxide and Nitric-Oxide. J. Biol. Chem. 
1991, 266 (7), 4244-4250. 

(71) Weiss, S. J.; LoBuglio, A. F., Phagocyte-generated oxygen metabolites and cellular 
injury. Lab. Invest. 1982, 47 (1), 5-18. 

(72) Thomas, E. L., Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: 
effect of exogenous amines on antibacterial action against Escherichia coli. Infect. 
Immun. 1979, 25 (1), 110-116. 

(73) Winterbourn, C. C.; Kettle, A. J., Biomarkers of myeloperoxidase-derived hypochlorous 
acid. Free Radic Biol Med 2000, 29 (5), 403-409. 

(74) Heinecke, J. W., Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis 
and other inflammatory disorders. J. Lab. Clin. Med. 1999, 133 (4), 321-325. 

(75) Hawkins, C. L.; Davies, M. J., Hypochlorite-induced damage to nucleosides: formation 
of chloramines and nitrogen-centered radicals. Chem. Res. Toxicol. 2001, 14 (8), 1071-
1081. 

(76) Pattison, D. I.; Hawkins, C. L.; Davies, M. J., Hypochlorous acid-mediated oxidation of 
lipid components and antioxidants present in low-density lipoproteins: absolute rate 
constants, product analysis, and computational modeling. Chem. Res. Toxicol. 2003, 16 
(4), 439-449. 

(77) Shao, B.; Bergt, C.; Fu, X.; Green, P.; Voss, J. C.; Oda, M. N.; Oram, J. F.; Heinecke, J. 
W., Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by 
myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol 
transport. J. Biol. Chem. 2005, 280 (7), 5983-5993. 



 89 

(78) Hawkins, C. L.; Pattison, D. I.; Davies, M. J., Hypochlorite-induced oxidation of amino 
acids, peptides and proteins. Amino Acids 2003, 25 (3-4), 259-274. 

(79) Pattison, D. I.; Davies, M. J., Absolute rate constants for the reaction of hypochlorous 
acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 2001, 14 (10), 1453-
1464. 

(80) Drozdz, R.; Naskalski, J. W.; Sznajd, J., Oxidation of amino acids and peptides in 
reaction with myeloperoxidase, chloride and hydrogen peroxide. Biochimica et 
Biophysica Acta, Protein Structure and Molecular Enzymology 1988, 957 (1), 47-52. 

(81) Bergt, C.; Nakano, T.; Ditterich, J.; DeCarli, C.; Eiserich, J. P., Oxidized plasma high-
density lipoprotein is decreased in Alzheimer's disease. Free Radic Biol Med 2006, 41 
(10), 1542-1547. 

(82) Pattison, D. I.; Hawkins, C. L.; Davies, M. J., Hypochlorous acid-mediated protein 
oxidation: how important are chloramine transfer reactions and protein tertiary structure? 
Biochemistry (Mosc). 2007, 46 (34), 9853-9864. 

(83) Stadtman, E. R.; Berlett, B. S., Fenton chemistry. Amino acid oxidation. J. Biol. Chem. 
1991, 266 (26), 17201-17211. 

(84) Berlett, B. S.; Stadtman, E. R., Protein Oxidation in Aging, Disease, and Oxidative 
Stress. J. Biol. Chem. 1997, 272 (33), 20313-20316. 

(85) Requena, J. R.; Levine, R. L.; Stadtman, E. R., Recent advances in the analysis of 
oxidized proteins. Amino Acids 2003, 25 (3-4), 221-226. 

(86) Stadtman, E. R.; Levine, R. L., Free radical-mediated oxidation of free amino acids and 
amino acid residues in proteins. Amino Acids 2003, 25 (3-4), 207-218. 

(87) Dean, R. T.; Fu, S.; Stocker, R.; Davies, M. J., Biochemistry and pathology of radical-
mediated protein oxidation. Biochem. J. 1997, 324 (1), 1-18. 

(88) Fu, S.; Davies, M. J.; Dean, R. T. In Molecular aspects of free radical damage to 
proteins, 1998; pp 29-56. 

(89) Fu, S.; Dean, R. T.; Davies, M. J.; Heinecke, J. W., Protein oxidation in atherogenesis. In 
Atherosclerosis, Dean, R. T.; Kelly, D. T., Eds. Oxford University Press, Oxford, UK: 
2000; pp 301-325. 

(90) Witztum, J. L.; Steinberg, D., Role of oxidized low density lipoprotein in atherogenesis. 
J. Clin. Invest. 1991, 88 (6), 1785-1792. 

(91) Berliner, J. A.; Heinecke, J. W., The role of oxidized lipoproteins in atherogenesis. Free 
Radical. Bio. Med. 1996, 20 (5), 707-727. 



 90 

(92) Fu, S.; Davies, M. J.; Stocker, R.; Dean, R. T., Evidence for roles of radicals in protein 
oxidation in advanced human atherosclerotic plaque. Biochem. J. 1998, 333 (3), 519-525. 

(93) Holvoet, P.; Collen, D., Oxidation of low density lipoproteins in the pathogenesis of 
atherosclerosis. Atherosclerosis 1998, 137 Suppl, S33-38-S33-38. 

(94) Oorni, K.; Pentikainen, M. O.; Ala-Korpela, M.; Kovanen, P. T., Aggregation, fusion, 
and vesicle formation of modified low density lipoprotein particles: molecular 
mechanisms and effects on matrix interactions. J. Lipid Res. 2000, 41 (11), 1703-1714. 

(95) Pentikainen, M. O.; Oorni, K.; Ala-Korpela, M.; Kovanen, P. T., Modified LDL - trigger 
of atherosclerosis and inflammation in the arterial intima. J. Intern. Med. 2000, 247 (3), 
359-370. 

(96) Chang, M. Y.; Potter-Perigo, S.; Wight, T. N.; Chait, A., Oxidized LDL bind to 
nonproteoglycan components of smooth muscle extracellular matrices. J. Lipid Res. 
2001, 42 (5), 824-833. 

(97) Witztum, J. L.; Steinberg, D., The oxidative modification hypothesis of atherosclerosis: 
Does it hold for humans? Trends Cardiovasc. Med. 2001, 11 (3-4), 93-102. 

(98) Uchida, K.; Toyokuni, S.; Nishikawa, K.; Kawakishi, S.; Oda, H.; Hiai, H.; Stadtman, E. 
R., Michael Addition-Type 4-Hydroxy-2-nonenal Adducts in Modified Low-Density 
Lipoproteins: Markers for Atherosclerosis. Biochemistry (Mosc). 1994, 33 (41), 12487-
12494. 

(99) Lins, L.; Brasseur, R.; Rosseneu, M.; Yang, C. Y.; Sparrow, D. A.; Sparrow, J. T.; Gotto, 
A. M.; Ruysschaert, J. M., Structure and orientation of Apo B-100 peptides into a lipid 
bilayer. J. Protein Chem. 1994, 13 (1), 77-88. 

(100) Bolgar, M. S.; Yang, C.-Y.; Gaskell, S. J., First Direct Evidence for Lipid/Protein 
Conjugation in Oxidized Human Low Density Lipoprotein. J. Biol. Chem. 1996, 271 
(45), 27999-28001. 

(101) Krauss, R., Dense low density lipoproteins and coronary artery disease. Am. J. Cardiol. 
1995, 75 (6), 53B-57B. 

(102) Lundstam, U.; Hurt-Camejo, E.; Olsson, G.; Sartipy, P.; Camejo, G.; Wiklund, O., 
Proteoglycans Contribution to Association of Lp(a) and LDL With Smooth Muscle Cell 
Extracellular Matrix. Arterioscler. Thromb. Vasc. Biol. 1999, 19 (5), 1162-1167. 

(103) Paananen, K.; Saarinen, J.; Annila, A.; Kovanen, P. T., Proteolysis and fusion of low 
density lipoprotein particles strengthen their binding to human aortic proteoglycans. J. 
Biol. Chem. 1995, 270 (20), 12257-12262. 

(104) Yamazaki, M.; Cheng, J.; Hao, N.; Takagi, R.; Jimi, S.; Itabe, H.; Saku, T., Basement 
membrane-type heparan sulfate proteoglycan (perlecan) and low-density lipoprotein 



 91 

(LDL) are co-localized in granulation tissues: a possible pathogenesis of cholesterol 
granulomas in jaw cysts. J. Oral Pathol. Med. 2004, 33 (3), 177-184. 

(105) Skalen, K.; Gustafsson, M.; Rydberg Ellen, K.; Hulten Lillemor, M.; Wiklund, O.; 
Innerarity Thomas, L.; Boren, J., Subendothelial retention of atherogenic lipoproteins in 
early atherosclerosis. Nature 2002, 417 (6890), 750-754. 

(106) Buxton, G. V.; Clive, L.; Greenstock, W.; Helman, P.; Ross, A. B., Critical review of rate 
constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals 
{( •OH/O•)} in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513-886. 

(107) Ayala, A.; Cutler, R. G., Comparison of 5-hydroxy-2-amino valeric acid with carbonyl 
group content as a marker of oxidized protein in human and mouse liver tissues. Free 
Radic Biol Med 1996, 21 (4), 551-558. 

(108) Ayala, A.; Cutler, R. G., The utilization of 5-hydroxyl-2-amino valeric acid as a specific 
marker of oxidized arginine and proline residues in proteins. Free Radic Biol Med 1996, 
21 (1), 65-80. 

(109) Pietzsch, J.; Bergmann, R.; Kopprasch, S., Analysis of non-protein amino acids as 
specific markers of low density lipoprotein apolipoprotein B-100 oxidation in human 
atherosclerotic lesions: the use of N(O)-ethoxycarbonyl trifluoroethyl ester derivatives 
and GC-MS. Spectroscopy (Amsterdam, Netherlands) 2004, 18 (2), 177-183. 

(110) Pietzsch, J., Measurement of 5-Hydroxy-2-aminovaleric Acid as a Specific Marker of 
Iron-Mediated Oxidation of Proline and Arginine Side-Chain Residues of Low-Density 
Lipoprotein Apolipoprotein B-100. Biochem. Biophys. Res. Commun. 2000, 270 (3), 852-
857. 

(111) Pietzsch, J.; Bergmann, R., Analysis of 6-hydroxy-2-aminocaproic acid (HACA) as a 
specific marker of protein oxidation: The use of N(O,S)-ethoxycarbonyl trifluoroethyl 
ester derivatives and gas chromatography/mass spectrometry. Amino Acids 2004, 26 (1), 
45-51. 

(112) Stadtman, E. R., Role of oxidant species in aging. Curr. Med. Chem. 2004, 11 (9), 1105-
1112. 

(113) Sayre, L. M.; Arora, P. K.; Iyer, R. S.; Salomon, R. G., Pyrrole formation from 4-
hydroxynonenal and primary amines. Chem. Res. Toxicol. 1993, 6 (1), 19-22. 

(114) Nadkarni, D. V.; Sayre, L. M., Structural definition of early lysine and histidine 
adduction chemistry of 4-hydroxynonenal. Chem. Res. Toxicol. 1995, 8 (2), 284-291. 

(115) Obama, T.; Kato, R.; Masuda, Y.; Takahashi, K.; Aiuchi, T.; Itabe, H., Analysis of 
modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein 
using LC-MS/MS. Proteomics 2007, 7 (13), 2132-2141. 



 92 

(116) Liu, Z.; Minkler, P. E.; Sayre, L. M., Mass Spectroscopic Characterization of Protein 
Modification by 4-Hydroxy-2-(E)-nonenal and 4-Oxo-2-(E)-nonenal. Chem. Res. 
Toxicol. 2003, 16 (7), 901-911. 

(117) Wagner, P.; Heinecke, J. W., Copper ions promote peroxidation of low density 
lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are 
reduced at other sites on LDL. Arterioscler. Thromb. Vasc. Biol. 1997, 17 (11), 3338-
3346. 

(118) Kuzuya, M.; Yamada, K.; Hayashi, T.; Funaki, C.; Naito, M.; Asai, K.; Kuzuya, F., Role 
of lipoprotein-copper complex in copper catalyzed-peroxidation of low-density 
lipoprotein. Biochim. Biophys. Acta 1992, 1123 (3), 334-341. 

(119) Alvarez, B.; Rubbo, H.; Kirk, M.; Barnes, S.; Freeman, B. A.; Radi, R., Peroxynitrite-
dependent tryptophan nitration. Chem. Res. Toxicol. 1996, 9 (2), 390-396. 

(120) Yamakura, F.; Matsumoto, T.; Taka, H.; Fujimura, T.; Murayama, K., 6-Nitrotryptophan: 
a specific reaction product of tryptophan residue in human Cu, Zn-SOD treated with 
peroxynitrite. Adv. Exp. Med. Biol. 2003, 527, 745-749. 

(121) Hamilton, R. T.; Asatryan, L.; Nilsen, O. T.; Isas, J. M.; Gallaher, T. K.; Sawamura, T.; 
Hsiai, T. K., LDL protein nitration: Implication for LDL protein unfolding. Arch. 
Biochem. Biophys. 2008, 479 (1), 1-14. 

(122) Beckman, J. S.; Ischiropoulos, H.; Zhu, L.; van der Woerd, M.; Smith, C.; Chen, J.; 
Harrison, J.; Martin, J. C.; Tsai, M., Kinetics of superoxide dismutase- and iron-catalyzed 
nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 1992, 298 (2), 438-445. 

(123) Ischiropoulos, H.; Zhu, L.; Chen, J.; Tsai, M.; Martin, J. C.; Smith, C. D.; Beckman, J. S., 
Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. 
Biochem. Biophys. 1992, 298 (2), 431-437. 

(124) Eiserich, J. P.; Hristova, M.; Cross, C. E.; Jones, A. D.; Freeman, B. A.; Halliwell, B.; 
van der Vliet, A., Formation of nitric oxide-derived inflammatory oxidants by 
myeloperoxidase in neutrophils. Nature 1998, 391 (6665), 393-397. 

(125) Brennan, M. L.; Wu, W.; Fu, X.; Shen, Z.; Song, W.; Frost, H.; Vadseth, C.; Narine, L.; 
Lenkiewicz, E.; Borchers, M. T.; Lusis, A. J.; Lee, J. J.; Lee, N. A.; Abu-Soud, H. M.; 
Ischiropoulos, H.; Hazen, S. L., A tale of two controversies: defining both the role of 
peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and 
myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen 
species. J. Biol. Chem. 2002, 277 (20), 17415-17427. 

(126) Alvarez, B.; Ferrer-Sueta, G.; Freeman, B. A.; Radi, R., Kinetics of peroxynitrite reaction 
with amino acids and human serum albumin. J. Biol. Chem. 1999, 274 (2), 842-848. 



 93 

(127) Arnhold, J.; Wiegel, D.; Richter, O.; Hammerschmidt, S.; Arnold, K.; Krumbiegel, M., 
Modification of low density lipoproteins by sodium hypochlorite. Biomed. Biochim. Acta 
1991, 50 (8), 967-973. 

(128) Hazell, L. J.; Stocker, R., Oxidation of low-density lipoprotein with hypochlorite causes 
transformation of the lipoprotein into a high-uptake form for macrophages. Biochem. J. 
1993, 290 ( Pt 1), 165-172. 

(129) Hazen, S. L.; Hsu, F. F.; Duffin, K.; Heinecke, J. W., Molecular chlorine generated by 
the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low 
density lipoprotein cholesterol into a family of chlorinated sterols. J. Biol. Chem. 1996, 
271 (38), 23080-23088. 

(130) Bergt, C.; Fu, X.; Huq, N. P.; Kao, J.; Heinecke, J. W., Lysine residues direct the 
chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid 
oxidizes high density lipoprotein. J. Biol. Chem. 2004, 279 (9), 7856-7866. 

(131) Hawkins, C. L.; Davies, M. J., Generation and propagation of radical reactions on 
proteins. Biochim. Biophys. Acta 2001, 1504 (2-3), 196-219. 

(132) Pitt, A. R.; Spickett, C. M., Mass spectrometric analysis of HOCl- and free-radical-
induced damage to lipids and proteins. Biochem. Soc. Trans. 2008, 36 (Pt 5), 1077-1082. 

(133) Kovanen, P. T.; Pentikainen, M. O., Circulating lipoproteins as proinflammatory and 
anti-inflammatory particles in atherogenesis. Curr. Opin. Lipidol. 2003, 14 (5), 411-419. 

(134) Tsimikas, S.; Witztum, J. L.; Miller, E. R.; Sasiela, W. J.; Szarek, M.; Olsson, A. G.; 
Schwartz, G. G., High-dose atorvastatin reduces total plasma levels of oxidized 
phospholipids and immune complexes present on apolipoprotein B-100 in patients with 
acute coronary syndromes in the MIRACL trial. Circulation 2004, 110 (11), 1406-1412. 

(135) Rose, N.; Afanasyeva, M., Autoimmunity: busting the atherosclerotic plaque. Nat. Med. 
2003, 9 (6), 641-642. 

(136) Collot-Teixeira, S.; Martin, J.; McDermott-Roe, C.; Poston, R.; McGregor, J. L., CD36 
and macrophages in atherosclerosis. Cardiovasc. Res. 2007, 75 (3), 468-477. 

(137) Endemann, G.; Stanton, L. W.; Madden, K. S.; Bryant, C. M.; White, R. T.; Protter, A. 
A., CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 1993, 268 
(16), 11811-11816. 

(138) Greenberg, M. E.; Sun, M.; Zhang, R.; Febbraio, M.; Silverstein, R.; Hazen, S. L., 
Oxidized phosphatidylserine–CD36 interactions play an essential role in macrophage-
dependent phagocytosis of apoptotic cells. The Journal of Experimental Medicine 2006, 
203 (12), 2613–2625-2613–2625. 

(139) Horiuchi, S.; Sakamoto, Y.; Sakai, M., Scavenger receptors for oxidized and glycated 
proteins. Amino Acids 2003, 25 (3-4), 283-292. 



 94 

(140) Podrez, E. A.; Hoppe, G.; O'Neil, J.; Hoff, H. F., Phospholipids in oxidized LDL not 
adducted to apoB are recognized by the CD36 scavenger receptor. Free Radical. Bio. 
Med. 2003, 34 (3), 356-364. 

(141) Ayala, A.; Ertel, W.; Chaudry, I. H., Trauma-induced suppression of antigen presentation 
and expression of major histocompatibility class II antigen complex in leukocytes. Shock 
1996, 5 (2), 79-90. 

(142) Watson, A. D.; Leitinger, N.; Navab, M.; Faull, K. F.; Horkko, S.; Witztum, J. L.; 
Palinski, W.; Schwenke, D.; Salomon, R. G.; Sha, W.; Subbanagounder, G.; Fogelman, 
A. M.; Berliner, J. A., Structural Identification by Mass Spectrometry of Oxidized 
Phospholipids in Minimally Oxidized Low Density Lipoprotein That Induce 
Monocyte/Endothelial Interactions and Evidence for Their Presence in vivo. J. Biol. 
Chem. 1997, 272 (21), 13597-13607. 

(143) Olsson, U.; Camejo, G.; Hurt-Camejo, E.; Elfsber, K.; Wiklund, O.; Bondjers, G., 
Possible Functional Interactions of Apolipoprotein B-100 Segments That Associate With 
Cell Proteoglycans and the ApoB/E Receptor. Arterioscler. Thromb. Vasc. Biol. 1997, 17 
(1), 149-155. 

(144) Tsimikas, S.; Palinski, W.; Witztum, J. L., Circulating autoantibodies to oxidized LDL 
correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-
deficient mice. Arterioscler. Thromb. Vasc. Biol. 2001, 21 (1), 95-100. 

(145) Tsimikas, S.; Witztum, J. L., Measuring circulating oxidized low-density lipoprotein to 
evaluate coronary risk. Circulation 2001, 103 (15), 1930-1932. 

(146) Feng, J.; Han, J.; Pearce, S. F.; Silverstein, R. L.; Gotto, A. M., Jr.; Hajjar, D. P.; 
Nicholson, A. C., Induction of CD36 expression by oxidized LDL and IL-4 by a common 
signaling pathway dependent on protein kinase C and PPAR-gamma. J. Lipid Res. 2000, 
41 (5), 688-696. 

(147) Beckmann, J. S.; Ye, Y. Z.; Anderson, P. G.; Chen, J.; Accavitti, M. A.; Tarpey, M. M.; 
White, C. R., Extensive nitration of protein tyrosines in human atherosclerosis detected 
by immunohistochemistry. Biol. Chem. Hoppe-Seyler 1994, 375 (2), 81-88. 

(148) Carr, A. C.; McCall, M. R.; Frei, B., Oxidation of LDL by myeloperoxidase and reactive 
nitrogen species: reaction pathways and antioxidant protection. Arterioscler. Thromb. 
Vasc. Biol. 2000, 20 (7), 1716-1723. 

(149) Evans, P.; Kaur, H.; Mitchinson, M. J.; Halliwell, B., Do human atherosclerotic lesions 
contain nitrotyrosine? Biochem. Biophys. Res. Commun. 1996, 226 (2), 346-351. 

(150) Hsiai, T. K.; Hwang, J.; Barr, M. L.; Correa, A.; Hamilton, R.; Alavi, M.; Rouhanizadeh, 
M.; Cadenas, E.; Hazen, S. L., Hemodynamics influences vascular peroxynitrite 
formation: Implication for low-density lipoprotein apo-B-100 nitration. Free Radical. 
Bio. Med. 2007, 42 (4), 519-529. 



 95 

(151) Podrez, E. A.; Febbraio, M.; Sheibani, N.; Schmitt, D.; Silverstein, R. L.; Hajjar, D. P.; 
Cohen, P. A.; Frazier, W. A.; Hoff, H. F.; Hazen, S. L., Macrophage scavenger receptor 
CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen 
species. J. Clin. Invest. 2000, 105 (8), 1095-1108. 

(152) Podrez, E. A.; Schmitt, D.; Hoff, H. F.; Hazen, S. L., Myeloperoxidase-generated reactive 
nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest. 1999, 103 
(11), 1547-1560. 

(153) Zhang, C.; Patel, R.; Eiserich, J. P.; Zhou, F.; Kelpke, S.; Ma, W.; Parks, D. A.; Darley-
Usmar, V.; White, C. R., Endothelial dysfunction is induced by proinflammatory oxidant 
hypochlorous acid. Am J Physiol Heart Circ Physiol 2001, 281 (4), H1469-1475. 

(154) Bridgewater, J. D.; Vachet, R. W., Metal-catalyzed oxidation reactions and mass 
spectrometry: The roles of ascorbate and different oxidizing agents in determining Cu-
protein-binding sites. Anal. Biochem. 2005, 341 (1), 122-130. 

(155) Pfanzagl, B., Ascorbate is particularly effective against LDL oxidation in the presence of 
iron(III) and homocysteine/cystine at acidic pH. Biochimica et Biophysica Acta (BBA) - 
Molecular and Cell Biology of Lipids 2005, 1736 (3), 237-243. 

(156) Jessup, W.; Bedwell, S.; Kwok, K.; Dean, R. T., Oxidative modification of low-density 
lipoprotein: initiation by free radicals and protection by antioxidants. Agents Actions. 
Suppl. 1988, 26, 241-246. 

(157) Wasinger, V. C.; Cordwell, S. J.; Cerpa-Poljak, A.; Yan, J. X.; Gooley, A. A.; Wilkins, 
M. R.; Duncan, M. W.; Harris, R.; Williams, K. L.; Humphery-Smith, I., Progress with 
gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 
16 (7), 1090-1094. 

(158) Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422 
(6928), 198-207. 

(159) Steen, H.; Mann, M., The abc's (and xyz's) of peptide sequencing. Nat. Rev. Mol. Cell 
Biol. 2004, 5 (9), 699-711. 

(160) Balestrieri, M. L.; Giovane, A.; Mancini, F. P.; Napoli, C., Proteomics and cardiovascular 
disease: an update. Curr. Med. Chem. 2008, 15 (6), 555-572. 

(161) Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis. 5th ed.; 
Thomson: Singapore, 2003. 

(162) Cole, R. B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, 
and applications. Wiley: New York, 1997; p xix, 577 p. 

(163) Klammer, A. A.; Park, C. Y.; Noble, W. S., Statistical Calibration of the SEQUEST 
XCorr Function. Journal of Proteome Research 2009, 8 (4), 2106-2113. 



 96 

(164) Aye, T. T.; Low, T. Y.; Sze, S. K., Nanosecond Laser-Induced Photochemical Oxidation 
Method for Protein Surface Mapping with Mass Spectrometry. Anal. Chem. 2005, 77 
(18), 5814-5822. 

(165) Hambly, D.; Gross, M., Laser flash photochemical oxidation to locate heme binding and 
conformational changes in myoglobin. Int. J. Mass spectrom. 2007, 259 (1-3), 124-129. 

(166) Hambly, D. M.; Gross, M. L., Laser Flash Photolysis of Hydrogen Peroxide to Oxidize 
Protein Solvent-Accessible Residues on the Microsecond Timescale. J. Am. Soc. Mass 
Spectrom. 2005, 16 (12), 2057-2063. 

(167) Shcherbakova, I.; Mitra, S.; Beer, R. H.; Brenowitz, M., Fast Fenton footprinting: a 
laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. 
Nucleic Acids Res. 2006, 34 (6), e48/41-e48/49. 

(168) Takamoto, K.; Chance, M. R., Radiolytic protein footprinting with mass spectrometry to 
probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct. 
2006, 35, 251-276. 

(169) Sharp, J. S.; Becker, J. M.; Hettich, R. L., Protein surface mapping by chemical 
oxidation: Structural analysis by mass spectrometry. Anal. Biochem. 2003, 313 (2), 216-
225. 

(170) Sharp, J. S.; Becker, J. M.; Hettich, R. L., Analysis of protein solvent accessible surfaces 
by photochemical oxidation and mass spectrometry. Anal. Chem. 2004, 76 (3), 672-683. 

(171) Sharp, J. S.; Tomer, K. B., Effects of Anion Proximity in Peptide Primary Sequence on 
the Rate and Mechanism of Leucine Oxidation. Anal. Chem. 2006, 78 (14), 4885-4893. 

(172) Bridgewater, J. D.; Lim, J.; Vachet, R. W., Using Metal-Catalyzed Oxidation Reactions 
and Mass Spectrometry to Identify Amino Acid Residues Within 10 .ANG. of the Metal 
in Cu-Binding Proteins. J. Am. Soc. Mass Spectrom. 2006, 17 (11), 1552-1559. 

(173) Bridgewater, J. D.; Lim, J.; Vachet, R. W., Transition Metal-Peptide Binding Studied by 
Metal-Catalyzed Oxidation Reactions and Mass Spectrometry. Anal. Chem. 2006, 78 (7), 
2432-2438. 

(174) Panasenko, O. M.; Aksenov, D. V.; Mel'nichenko, A. A.; Suprun, I. V.; Yanushevskaya, 
E. V.; Vlasik, T. N.; Sobenin, I. A.; Orekhov, A. N., Proteolysis of apoprotein B-100 
impairs its topography on LDL surface and reduces LDL association resistance. Bull. 
Exp. Biol. Med. 2005, 140 (5), 521-525. 

(175) Podrez, E. A.; Abu-Soud, H. M.; Hazen, S. L., Myeloperoxidase-generated oxidants and 
atherosclerosis. Free Radic Biol Med 2000, 28 (12), 1717-1725. 

(176) Hiramatsu, K.; Rosen, H.; Heinecke, J. W.; Wolfbauer, G.; Chait, A., Superoxide initiates 
oxidation of low density lipoprotein by human monocytes. Arteriosclerosis 1987, 7 (1), 
55-60. 



 97 

(177) Yang, C.-y.; Gu, Z.-W.; Yang, M.; Lin, S.-N.; Siuzdak, G.; Smith, C. V., Identification of 
Modified Tryptophan Residues in Apolipoprotein B-100 Derived from Copper Ion-
Oxidized Low-Density Lipoprotein. Biochemistry (Mosc). 1999, 38 (48), 15903-15908. 

(178) Gieβauf, A.; van Wickern, B.; Simat, T.; Steinhart, H.; Esterbauer, H., Formation of N-
formylkynurenine suggests the involvement of apolipoprotein B-100 centered tryptophan 
radicals in the initiation of LDL lipid peroxidation. FEBS Lett. 1996, 389 (2), 136-140. 

(179) Butt, Y. K.-C.; Lo, S. C.-L., Detecting nitrated proteins by proteomic technologies. 
Methods Enzymol. 2008, 440, 17-31. 

(180) Fu, S.; Wang, H.; Davies, M.; Dean, R., Reactions of hypochlorous acid with tyrosine 
and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-
chlorotyrosine. J. Biol. Chem. 2000, 275 (15), 10851-10858. 

(181) Hawkins, C. L.; Morgan, P. E.; Davies, M. J., Quantification of protein modification by 
oxidants. Free Radic Biol Med 2009, 46 (8), 965-988. 

(182) Chance, B.; Sies, H.; Boveris, A., Hydroperoxide metabolism in mammalian organs. 
Physiol. Rev. 1979, 59 (3), 527-605. 

(183) Antunes, F.; Cadenas, E., Cellular titration of apoptosis with steady-state concentrations 
of H2O2: submicromolar levels of H2O2 induce apoptosis through fenton chemistry 
independent of the cellular thiol state. Free Radical. Bio. Med. 2001, 30 (9), 1008-1018. 

(184) Lindsey, M. E.; Tarr, M. A., Inhibition of Hydroxyl Radical Reaction with Aromatics by 
Dissolved Natural Organic Matter. Environ. Sci. Technol. 2000, 34 (3), 444-449. 

(185) Zhou, X.; Mopper, K., Determination of photochemically produced hydroxyl radicals in 
seawater and freshwater. Mar. Chem. 1990, 30, 71-88. 

(186) Kleinert, P.; Schmid, M.; Zurbriggen, K.; Speer, O.; Schmugge, M.; Roschitzki, B.; 
Durka, S. S.; Leopold, U.; Kuster, T.; Heizmann, C. W.; Frischknecht, H.; Troxler, H., 
Mass spectrometry: a tool for enhanced detection of hemoglobin variants. Clin. Chem. 
2008, 54 (1), 69-76. 

(187) Troxler, H.; Neuheiser, F.; Kleinert, P.; Kuster, T.; Heizmann, C. W.; Sack, R.; Hunziker, 
P.; Neuhaus, T. J.; Schmid, M.; Frischknecht, H., Detection of a novel variant human 
hemoglobin by electrospray ionization mass spectrometry. Biochem. Biophys. Res. 
Commun. 2002, 292 (4), 1044-1047. 

(188) Wild, B. J.; Green, B. N.; Cooper, E. K.; Lalloz, M. R.; Erten, S.; Stephens, A. D.; 
Layton, D. M., Rapid identification of hemoglobin variants by electrospray ionization 
mass spectrometry. Blood Cells. Mol. Dis. 2001, 27 (3), 691-704. 

(189) Zanella-Cleon, I.; Joly, P.; Becchi, M.; Francina, A., Phenotype determination of 
hemoglobinopathies by mass spectrometry. Clin. Biochem. 2009, 42 (18), 1807-1817. 



 98 

Chapter 4.  

Mapping oxidations of apo B-100 in human low density lipoprotein 

by LC-MS/MS 

4.1. Abstract 

 Human low density lipoprotein (LDL) is a major cholesterol carrier in blood. Elevated 

concentration of low density lipoprotein, especially when oxidized, is a risk factor for 

atherosclerosis and other cardiac inflammatory diseases. Past research has connected free radical 

initiated oxidations of LDL with the formation of atherosclerotic lesions and plaque in the 

arterial wall. The role of the LDL protein in the associated diseases is still poorly understood, 

partially due to lack of structural information. In this study, LDL was oxidized by hydroxyl 

radical. The oxidized protein was then delipidated and subjected to trypsin digestion. Peptides 

derived from trypsin digestion were analyzed by LC-MS/MS.  Identification of modified peptide 

sequences was achieved by database search against apo B-100 protein sequences using the 

SEQUEST algorithm. At different hydroxyl radical concentrations, oxidation products of 

tyrosine, tryptophan, phenylalanine, proline and lysine were identified.  Oxidized amino acid 

residues are likely located on the exterior of the LDL particle in contact with the aqueous 

environment or directly bound to the free radical permeable lipid layer.  These modifications 

provided insight for understanding the native conformation of apo B-100 in LDL particles. The 

presence of some natural variants at the protein level was also confirmed in our study. 

 
 
Keywords: LDL, hydroxyl radical, LC-MS/MS, oxidative mapping, natural variants.  
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4.2. Introduction 

Low density lipoprotein (LDL) acts as a major cholesterol carrier in the human body. 

LDL consists of a lipid core of triacyl glycerol and cholesteryl ester and an outer layer of 

phospholipids with free cholesterol and apo B-100 (Figure 3.3). Apo B-100 was reported as a 

single monomeric protein consisting of 4563 amino acid residues1 encircling the LDL molecule. 

This protein plays an intricate role in LDL receptor binding.2 Oxidative modification of LDL 

(ox-LDL) is considered as a major risk factor since it plays a critical role in the pathogenesis of 

atherosclerosis.3-7 During oxidative stress various radicals are generated in the human body 

which can induce the oxidation of LDL. Thereafter ox-LDL can be taken up by macrophages 

through scavenger receptors in smooth muscle cells, which lead to foam cell formation.7, 8 Foam 

cells interact with pro-inflammatory cytokines and enhance the adhesion of ox-LDL to the 

arterial wall, a major early event of atherosclerotic plaque formation (Figure 3.4). In addition, it 

was also reported that interaction of aberrant apo B-100 with proteoglycans induces the 

generation of atherosclerotic plaques.9, 10  

The primary source of free radical in the human body is superoxide.11, 12 By various 

physiological mechanisms, less reactive superoxide is converted to reactive peroxyl, alkoxyl and 

hydroxyl radicals. The last of this list is known to be highly reactive and cause non-specific, 

extensive damage to lipids and proteins.13 In vitro studies have shown the generation of hydroxyl 

radical by the well established mechanism of Fenton chemistry.14, 15 The nature of oxidation of 

apo B-100 by hydroxyl radical and its implications in atherosclerosis4, 7 is still poorly 

understood.16 Finding the oxidation sites for apo B-100 is relevant and important for its 

structure-function relationship.  Several attempts were made to elucidate the structure of apo B-

100 by 3-D modeling and a pentapartite domain arrangement was proposed.17, 18 However, these 
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studies have some uncertainties involved, making the protein structure predictions speculative. 

Oxidation of LDL can occur by various pathways. One group of researchers strongly believes 

that lipid peroxides (oxidation products of LDL lipids) are involved in the atherosclerotic plaque 

formation8, 19, while other researchers reported oxidation of apo B-100 (LDL protein) as the 

important step in atherogenesis.7, 20-22 There are two reported pathways (Table 4.2) for hydroxyl 

radical mediated apo B-100 oxidation in LDL. The direct oxidation pathway of apo B-100 

involves the oxidation of amino acid residue by extensive cross-linking, peptide bond cleavage 

and also oxidation of side chains.4, 13, 15, 21, 23, 24 The hydrophobic amino acid residues such as 

Phe, Tyr, and Trp undergo simple hydroxylation reactions. This pathway prevails when the 

radical generation site is in close proximity to the apo B-100. The indirect oxidation pathway of 

apo B-100 involves indirect oxidation through an intermediate lipid reactive species.  Several 

lipid peroxidation products such as 4-hydroxynonenal (HNE) and acrolein can form. These 

molecules contain unsaturated aldehydes and are highly reactive electrophiles which can react 

with histidine, lysine and cysteine residues to form Michael and Schiff base adducts. The ε-

amino group of lysine specifically reacts with acrolein to form Nε-(3-formyl-3,4-

dehydropiperidino)lysine (FDP-Lys) and Nε-(3-methylpyridinium)lysine (MP-Lys).25, 26 The ε-

amino group of lysine also reacts with HNE to yield a HNE-Lys Schiff base adduct which 

readily loses water to yield 2-pentylpyrrole-Lys adduct.27 These two processes result in mass 

increases of 138 Da (Lys+138) and 120 Da (Lys+120) in lysine residues. Histidine also forms 

adducts such as HNE-His.6, 25, 26, 28  All of these modified amino acid residues are listed in (Table 

4.1). As mentioned earlier, hydroxyl radical mediated oxidation of apo B-100 in LDL can be of 

two distinct types, namely direct oxidation (hydroxyl radical must have direct access to the 

amino acid residue of apo B-100) and oxidation via lipid intermediates (hydroxyl radical 
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oxidizes the lipid and the reactive lipid species subsequently reacts with the protein). During 

oxidative modification of LDL, the variety and magnitude of modifications can be substantially 

diverse for each LDL particle. Uchida, et al. explored protein modifications in ox-LDL by apo 

B-100 hydrolysis and used antibodies to verify formation of HNE and acrolein adducts. Those 

studies, however, did not elucidate the oxidation sites of apo B-100.25, 26  

Table 4.1 List of oxidatively modified amino acids (hydroxyl radical mediated) previously reported in 
literature. 

N.D. Not determined 

Mass spectrometry (MS) is one of the most powerful tools to identify post translational 

modifications of proteins. LC-MS/MS based studies on proteins were demonstrated previously as 

Major Amino acid Oxidation Products Reported in Literature 

Amino Acid Direct Oxidation Oxidation via Lipid Pathway 

Tyrosine 
Dihydroxyphenylalanine12-14, 20 (DOPA) 

(Y+16), Dityrosine 
N.D. 

Phenylalanine o-/m-tyrosine12, 13, 20 N.D. 

Tryptophan 
5-/7-Hydroxytryptophan, Kynurenine, N-

formylkynurenine12-14, 20 
N.D. 

Histidine 2-Oxohistidine12-14, 20 
Michael & Schiff Base adduct 

formation14, 24-26 

Lysine Aminoadipic semialdehyde22, 23, 52 
Michael & Schiff Base adduct 

formation14, 24-26 

Arginine Glutamic semialdehyde22, 23, 52 N.D. 

Proline Glutamic semialdehyde22, 23, 52 N.D. 
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powerful techniques in determining the stable oxidative products in proteins.22, 29-32 Research has 

been done on oxidative modifications of apolipoprotein A-I (30 KDa protein) in high density 

lipoprotein (HDL) by Heinecke and coworkers.33, 34 Bolgar, et al. identified HNE adducts of 

histidine by MS/MS for the first time.35 Several different approaches were taken by various 

researchers to follow the oxidation pattern of apo B-100 in LDL. Karlsson, et al. 36 used 2D-CE 

and MS analysis, and Heller, et al. 37 utilized SDS-PAGE followed by MS analysis. However, 

these studies were focused on small apolipoproteins. The determination of oxidation sites is 

complicated since the modifications are non-specific in nature. Recently Obama, et al. identified 

some oxidized amino acid residues using polyvinylidene (PVDF) membranes 22 by incubating 

LDL with Cu2+ ion. Obama’s method showed improved efficiency in removing the lipid from 

apo B-100 for LC-MS/MS analysis. Also, in PVDF membranes, digestion with trypsin showed 

greater peptide recovery. The current study focused on oxidative mapping of amino acid residues 

including those with hydrophobic side chains such as Phe, Pro, and Trp. Several other amino 

acid residues were found to be oxidized with variable concentrations of hydrogen peroxide 

mixed with Fe (II). 

Amino acid residues in the human apo B-100 sequence sometimes differ from the 

reported sequence (P04114).1 These changes in the amino acids are known as natural variants. 

Apo B-100 has been shown to contain several natural variants in its sequence.38-47 Often times 

these variants were attributed to polymorphism and/or disease.41 Fifty-one natural variants were 

reported so far in the cDNA or expressed sequence tag (EST) of apo B-100.1 In addition to 

oxidative mapping, the presence of some reported natural variants in the LDL was revealed in 

this study from direct protein analysis via LC-MS/MS experiments.  
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4.3. Materials and methods 

Human low density lipoprotein (LDL) was purchased from VWR chemicals. Each batch 

of LDL was acquired from a single, healthy human subject. LDL was stored with 150 mM 

ethylenediaminetetraacetic acid (EDTA) and was kept refrigerated (4 °C). Iron sulfate (FeSO4·7 

H2O), disodium ethylenediaminetetraacetic acid (Na2EDTA), and all solvents were purchased 

from VWR. Micro-dialysis tubes and floats were also purchased from VWR. High purity (99%) 

4-hydroxybenzoic acid (4-HBA), ammonium bicarbonate (ABC), dithiothritol (DTT) and 

iodoacetamide were purchased from Sigma-Aldrich (St. Louis, MO, USA). Trypsin was 

purchased from Promega (Madison, WI, USA). In all experiments, purified water was obtained 

by deionization and UV irradiation.  

4.3.1. Quantitation of hydroxyl radical 

High performance liquid chromatography (HPLC) was used to quantify the total amount 

of hydroxyl radical formed.  In this approach, a high loading of benzoic acid (10 mM) was added 

in order to scavenge all radical that was formed (detailed method described elsewhere 48, 49). The 

reaction between benzoic acid and hydroxyl radical has a known second order rate constant and 

forms a characteristic product, 4-HBA. The amount of 4-HBA formed during the reaction 

between hydrogen peroxide and Fe2+ was determined. In short, 400 µL of 50 mM FeSO4 (final 

concentration 1 mM), 400 µL of 50 mM Na2EDTA (final concentration 1 mM), and different 

concentrations of hydrogen peroxide (final concentrations 9 µM, 90 µM, 900 µM, 4500 µM and 

9000 µM) were added to 20 mL of 10 mM benzoic acid (aq). In these experiments hydrogen 

peroxide was added as a bolus addition. The reaction was carried out for 25 minutes and was 

quenched by addition of 200 µL of methanol and acidified with 2 drops of concentrated HCl. The 
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sample was loaded onto a 1.5 mL loop. An Alltech 15 cm C18 (4.6 mm I.D., and ODS 5 µm) 

column was used for separation of 4-HBA from the reaction mixture with detection by UV 

absorbance at 234 nm. The elution gradient was water acidified to pH ~ 2.5 with trifluoroacetic 

acid (A) and acetonitrile (B): 0-3 min 10% B; 3-12 min linearly to 44% B; 12-13 min linear to 

100% B. The analytes were pre-concentrated on column in the first 3 minutes, and then were 

eluted by increasing the solvent strength. A calibration curve was formulated from peak area 

under the HPLC trace daily (R2>0.99) with 4-HBA standards (at least 2 replicates) at 

concentrations of 0.5 µM, 10 µM and 25 µM. Oxidized benzoic acid samples were injected using 

at least 3 replicates for each concentration of hydrogen peroxide exposure. Peak area 

corresponding to 4-HBA in the reaction mixture was compared to that of the standards used in 

calibration (Figure 4.1).  

4.3.2. Oxidative modification of LDL 

Ten microliters of LDL (5.3 mg/ml) was diluted to 100 µL with purified water to yield a 

concentration of 0.53 µg/µL of apo B-100. Eight samples were placed in separate micro-dialysis 

tubes (MW cut off 3500 Da) and were then dialyzed against 500 mL ABC buffer (pH = 7.4, 25 

mM) for 24 hrs at 4 °C. The dialyzed LDL samples were collected and placed in small micro-

centrifuge tubes. Each exposure was carried out in duplicate. Hydroxyl radical was generated by 

adding 2 µL of 50 mM Na2EDTA, 2 µL of 50 mM FeSO4·7H2O (aq) and 6 µL of aqueous 

hydrogen peroxide (0.15 mM, 1.5 mM or 15 mM). Immediately after addition and mixing, the 

concentrations of the added hydrogen peroxide were 9 µM, 90 µM or 900 µM.  The reaction was 

carried out for 25 minutes at room temp in an Eppendorf Thermomixer R in the dark with 

constant shaking at 800 rpm. Control experiments with no peroxide addition were carried out at 

about the same time when hydrogen peroxide exposures were performed.  Immediately after the 



 105 

reaction period the treated samples were placed in micro-dialysis tubes for dialysis against 

acetone (24 hrs at 4 °C) to remove lipids and other hydrophobic molecules. Then the treated 

samples were further dialyzed against methanol:aqueous 50 mM ammonium bicarbonate (3:2) 

for 24 hrs at 4 °C. Samples were collected in plastic tubes and were placed in boiling water for 5-

10 minutes for partial denaturation of the protein. Thirty molar excess dithiothritol (DTT) was 

added and samples were incubated for 30 minutes at 37 °C to cleave the disulfide linkages. Next, 

30 molar excess iodoacetamide was added and let react for 90 minutes at 37 °C for alkylation of 

the cysteinyl residues. Tryptic digestion was carried out overnight following previous methods.50, 

51 The tryptic peptides were quenched with liquid nitrogen, vacuum dried, and reconstituted in 

5% aqueous formic acid with 5% acetonitrile for LC-MS/MS analysis.  Samples were stored at -

80 °C until analysis. 

4.3.3. LC-MS/MS analysis of apo B-100 

The peptide mixture obtained from the procedure noted above (maximum amount 

equivalent to 3 µg protein) was first loaded onto a reversed-phase trap column, and then washed 

with 3% acetonitrile and 0.1% formic acid (aq) to desalt the sample. After the wash/desalt step, 

the trap column was switched into a gradient flow (60 minutes, water with 3% acetonitrile and 

0.1% formic acid at the beginning and 65% acetonitrile with 0.1% formic acid at the end) to 

elute peptides to a C18 analytical column before introduction into a linear trapping quadrupole 

(LTQ) mass spectrometer. 

4.3.4. MS setup 

Mass spectrometry analyses were performed on a LTQ mass spectrometer (Thermo 

Electron, San Jose, CA) equipped with a nano-flow (200-500 nL/min) electrospray source. The 
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peptides were ionized via electrospray and recorded in a full scan mass spectrum in a positive ion 

mode. For each full MS scan, the top 3 most intense peptide precursor ions were selected and 

fragmented via collision induced dissociation (CID). Low pressure helium was employed as 

damping (for ion storage and isolation) and collision (fragmentation of activated ions) gas. The 

instrument was operated in a highly automated data dependent acquisition mode.  

4.3.5. Database search 

The database search was performed on an in-house search engine (Bioworks 3.3, Thermo 

Electron) using the SEQUEST algorithm. Apo-B sequences (P04114) and seven other sequences 

that include reported natural variants were compiled in a small database for searching (Table 

4.2). Peptides with MW of 600-3500 Da were chosen for identification. All modifications were 

defined as differential (unmodified peptides were also searched) and are listed in (Table 4.2). 

Trypsin was selected as the proteolytic enzyme, and the database search included identification 

of one missed cleavage of Lys or Arg. An Xcorr score was generated from the matching of 

experimental spectra to the theoretical spectra of apo B-100 peptides. A charge state-Xcorr score 

filter was applied to all MS/MS spectra. Singly charged peptides with Xcorr score less than 2, 

doubly charged peptides with Xcorr score less than 2.5, and triply charged peptides with Xcorr 

score less than 3.0 were considered as false positives and removed from the final report. 

4.4. Results 

Reaction of hydroxyl radical in cells follows complicated pathways making it difficult to 

understand the underlying mechanisms and kinetics. The total amount of hydroxyl radical 

reacted can however be calculated. This information was helpful to determine the total hydroxyl 

radical generated during hydrogen peroxide incubation with LDL. We have quantified the total 
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amount of hydroxyl radical 48, 49 that was formed after a bolus addition of hydrogen peroxide to 

aqueous iron in the presence of EDTA. 

4.4.1. Total hydroxyl radical quantitation using benzoic acid with HPLC 

LDL was exposed to hydroxyl radical at three different doses obtained by varying 

hydrogen peroxide concentration in the oxidation step. Quantitation of the total amount of 

hydroxyl radical formed at each of these peroxide/hydroxyl radical doses was carried out by 

reaction with excess benzoic acid. Hydroxyl radical reaction with benzoic acid yields several 

products, including 2-hydroxybenzoic acid, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid. 

4-Hydroxybenzoic acid makes up approximately 1/6 of the total products formed.48, 49 

Consequently, the total amount of benzoic acid that reacted with hydroxyl radical can be 

calculated by measuring only the amount of 4-HBA formed and then multiplying this amount by 

a factor of 6.48 The total amounts of hydroxyl radical formed after 25 minutes of reaction at 

different peroxide concentrations were calculated to be 0.78 ± 0.03 micromoles, 1.7 ± 0.3 

micromoles and 3.1 ± 0.04 micromoles for 9 µM, 90 µM, and 900 µM H2O2 doses, respectively 

(95% confidence limits). These data are presented in Figure 4.1.  The total radical formed was 

also quantitated for 4.5 mM and 9 mM hydrogen peroxide concentrations, but the total amount of 

hydroxyl radical produced did not increase beyond that observed for 900 µM peroxide (Figure 

4.1). 
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Figure 4.1 Total hydroxyl radical produced by adding different hydrogen peroxide concentrations to 10 mM benzoic acid in the presence of 1 mM 
FeSO4.7H2O and 1 mM Na2EDTA in water. 
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4.4.2. Sequence coverage 

As mentioned earlier tryptic peptides were searched against a full length cDNA sequence 

of apo B-100 protein (P04114) listed in the IPI-human database1 using the SEQUEST algorithm. 

For large proteins such as apo B-100 it is difficult to get high sequence coverage via LC-MS/MS 

analyses of the peptides derived from trypsin digestion.19, 23 We achieved (48 ± 1) % (2 samples) 

sequence coverage from untreated LDL samples (Figure 4.2). For the sample with no peroxide 

added and for the LDL treated with 9 µM H2O2 (both with 1 mM Fe2+ and 1 mM Na2EDTA) the 

recovery was (45 ± 2) %. These results are comparable to earlier work.22 With high 

concentrations of H2O2 (90 µM and 900 µM), however, our recovery decreased to (33 ± 2) % and 

(26 ± 3) %, respectively. The decrease in the sequence coverage is plausible since high hydroxyl 

radical concentrations would result in substantial protein degradation including lysine and 

arginine modifications and additional unknown modifications of amino acid residues. Such 

highly degraded peptides would be unlikely to match a database search based on the unmodified 

protein sequence. A figure (Figure 4.2) indicating the sequence coverage for all samples is 

presented to indicate the regions of matching observed peptides to those in the cDNA sequence.  
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Figure 4.2 Sequence coverage was represented by yellow region in apo B-100 sequence (P04114). Amino acid 1 through 4563 was shown in the above figure. “A” 
represents sample without H2O2 treatment (Blank). This sample was run twice and the sequence coverage data for both run was furnished. “B” represents low peroxide 
concentration exposure to LDL (9 µM) (duplicate experiment). “C” represents intermediate peroxide concentration (90 µM) (duplicate experiments). “D” represents 
exposure to high peroxide concentration (900 µM) (duplicate experiments). Sequence coverage decreases with increase in peroxide concentration. 
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4.4.3. Oxidation of amino acid residues 

As mentioned above, tryptic peptides were analyzed by LC-MS/MS. The peptides were 

first eluted according to their hydrophobicity immediately followed by introduction to the mass 

spectrometer. Individual ions were then selected for collision induced dissociation (CID). 

Resulting fragment ions (b and y ions) were used to determine the peptide sequence and possible 

modifications to the original peptide sequence♠. Amino acids with aromatic side chains such as 

Phe, Trp, and Tyr were previously observed to follow +16 Da mass changes.15, 52 All amino acid 

modifications observed in this study are listed in Table 4.3 from duplicate analyses. Oxidations 

that were observed in both unoxidized controls and in oxidized samples were omitted from the 

table, so all entries in this table indicated peptides that were oxidized by the hydroxyl radical 

treatment. In the exposure with the lowest peroxide concentration (9 µM), six different 

phenylalanine residues (Figure 4.3) were oxidized by addition of one oxygen atom.  Under these 

conditions, eight Tyr residues also underwent O addition (Table 4.3 and Figure 4.4).  

Direct oxidation of Trp yields kynurenine and N-formylkynurenine. 3898Trp was found 

to be oxidized to N-formylkynurenine (+32 Da) (Table 4.3). Trp+16 oxidation product was not 

observed. Also, three directly oxidized His residues were observed (Table 4.3 and Figure 4.6). 

Under direct hydroxyl radical attack, arginine and proline both take similar pathways and form a 

characteristic product, glutamic semialdehyde (Figure 4.7). It should be noted that widely 

reported formation of 5-hydroxy-2-aminovaleric acid from arginine and proline was previously 

observed in other studies only if a strong reducing agent (NaBH4) was present in the reaction 

                                                 
 
♠ All positively matched peptides were listed in Appendix A from Table A-1 through Table A-5. Corresponding 
Xcorr value and ∆Cn values were also listed. 
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medium.53 In our studies, ten oxidized Pro, and no Arg residues were observed in the low 

peroxide experiments. 
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Figure 4.3 MS/MS spectra of tryptic peptide 3996-4021 from low peroxide concentration depicting modification of 4019Phe (Phe+16 Da). 
Corresponding B- and Y- ions are shown. Unmodified peptide was not observed. 
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Figure 4.4 MS/MS spectra of tryptic peptide 1001-24 from low peroxide concentration depicting modification of 1020Tyr (Tyr+16 Da). Corresponding 
B- and Y- ions are shown. Unmodified peptide was observed and compared with. 
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Figure 4.5 MS/MS spectra of tryptic peptide 577-590 from low peroxide concentration depicting modification of 583Trp (Trp+32 Da). Corresponding 
B- and Y- ions are shown. Unmodified peptide was observed and compared with. 
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Figure 4.6 MS/MS spectra of tryptic peptide 4520–40 from low peroxide concentration depicting modification of 4529His (His+16 Da). Corresponding 
B- and Y- ions are shown. Unmodified peptide was not observed. 
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Figure 4.7 MS/MS spectra of tryptic peptide 655-69 from low peroxide concentration depicting modification of 663Pro (Pro+16 Da). Corresponding B- 
and Y- ions are shown. Unmodified peptide was observed, compared and accepted as partial modification. 
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Figure 4.8 presents a map of all 4563 amino acids for apo B-100.  The distribution of 

oxidized amino acids is depicted.  The figure represents the presence of directly oxidized amino 

acids (upward line) and amino acids oxidized indirectly via a lipid radical pathway (downward 

line). In addition different colors indicate oxidations observed at low (red), intermediate (blue), 

and high (green) peroxide concentrations, respectively. Other colors (black, turquoise and 

yellow) represent amino acids that were oxidized in two or more different concentrations (for 

example  black represents low and high, turquoise represents intermediate and high and yellow 

represents the amino acid was oxidized with low, intermediate and high peroxide 

concentrations). The red, upward lines indicate amino acids that are most likely solvent 

accessible in the intact LDL particle.  Because additional oxidations only occurred at higher 

concentrations of peroxide, at which there was evidence for loss of protein structural integrity, it 

is unclear whether the blue and green lines represent solvent accessible amino acid residues.  

These amino acid residues could be solvent accessible but resistant to oxidation (e.g. nearby 

residues or lipids might scavenge radicals), or they could be isolated from the aqueous 

environment in the protein’s native state, which may have been disrupted by excessive protein 

damage. 
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Figure 4.8 Plot of observed apo B-100 oxidized amino acids by sequence number [P04114]. Lines indicate 
locations of amino acid modification by direct oxidation (upward line) and indirect oxidation/lipid mediated 
oxidation (downward line).  Red, blue and green lines indicate observed oxidations at low, moderate and high 
peroxide concentrations, respectively. Black lines indicate oxidations observed at (low + high), turquoise 
represents (intermediate + high) and yellow represents (low + intermediate + high) hydrogen peroxide 
concentration.  Numbers indicate amino acid residue in the apo B-100 sequence. 
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At the intermediate peroxide concentration (90 µM), only two Phe, no His and one Tyr 

residue were found to be oxidized by addition of an O atom (Table 4.3).  The number of 

observed oxidized amino acid residues was smaller at intermediate and high peroxide 

concentrations compared to the low peroxide concentration. At intermediate or high 

concentrations of hydroxyl radical, amino acid modification pathways become more complicated 

and result in unknown structural changes. Due to the complexity of protein damage, the method 

suffers from a decreased ability to identify apo B-100 peptide fragments by LC-MS/MS. 

At high peroxide concentrations (900 µM), oxidations were observed at seven Phe 

residues, two Tyr residues, and no Trp residue (Table 4.3). Interestingly, a double modification 

of 2307Phe (dihydroxyphenylalanine) (Figure 4.9) was observed.  Three Pro modifications and 

no Arg modification were observed at high peroxide concentration.  

Oxidized residues were found to be widely distributed in the protein sequence as 

represented in Figure 4.8. In the LDL receptor domains (3130-60 and 3259-67),17 3262Pro 

oxidation (Figure 4.7) was observed at low peroxide exposure. This oxidation may lead to 

alteration of LDL uptake by LDL receptors in the cell. The wide distributions of oxidation sites 

indicate that solvent accessible amino acid residues are spread throughout the protein. 
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Figure 4.9 MS/MS spectra of tryptic peptide 2296-2309 from high peroxide concentration depicting modification of 2307Phe (Phe+32 Da). 
Corresponding B- and Y- ions are shown. Unmodified peptide was observed and compared. 
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4.4.4. Amino acid residues undergoing oxidation via lipid oxidation route 

Oxidation of lipids produces stable α,β-unsaturated aldehydes (acrolein or 4-

hydroxynonenal). These products are hydrophilic in nature and therefore increase the polarity of 

some parts of the apo B-100 protein. HNE is prone to react with histidine residues to produce a 

mass increase of 156 Da.   We did not observe this characteristic mass increase in the oxidized 

LDL. However, HNE also attacks the ε-NH2 group of lysine to yield a Schiff base adduct (+138 

Da) followed by a water loss and 2-pentylpyrrole adduct formation (+120 Da).27 At low and 

intermediate concentrations of peroxide, no HNE-Lys adduct was observed, while at high 

concentrations of peroxide, 2195Lys and 2208Lys formed HNE-Lys (Figure 4.10). Previous 

attempts were made to identify HNE-Lys adducts in apomyoglobin and apo B-100 by tryptic 

digestion method without success.22, 27, 54 
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Figure 4.10 MS/MS spectra of tryptic peptide 2195-2210 from high peroxide concentration depicting modification of 2195Lys (K+138 Da) and 2208Lys 
(K+120 Da). Corresponding B- and Y- ions are shown. Unmodified peptide was not observed. 
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4.4.5. Analysis of natural variants 

Seven modified apo B-100 amino acid sequences were constructed to include fifty-one 

natural variants and compiled in a small amino acid sequence database (Table 4.2) along with the 

apo B-100 sequence (P04114) obtained from the human IPI database. Using tryptic digestion 

followed by LC-MS/MS, unique peptides representing a total of four natural variants38-43, 46, 55 

were observed in this study (Table 4.4). Mass spectral evidence for the presence of the natural 

variant with 2092Leu instead of Val is depicted in Figure 4.11. These natural variants were 

confirmed by manual verification of the high quality tandem mass spectra that matched the 

variant containing sequences. So far, different studies reported the presence of the natural 

variants of LDL based on nucleotide sequence. However, no previous research has directly 

identified the presence of these variant amino acid residues in LDL samples via mass 

spectrometric data analysis.  
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Table 4.2 Reported natural variants were compiled in seven small subsequence databases modified from published sequence (P04114) 
[http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[UNIPROT:APOB_HUMAN]+-newId]. In order to efficiently id entify the reported natural variants by 
MS/MS, these databases were constructed by incorporating a small group (3-10) of amino acid variants into the P04114 sequence. The sequence 
modification table given below demonstrates the subsequences [Seq mod 1, seq mod 2, and so on] created for database search. The natural variants 
observed by MS/MS in our LDL experiments are indicated by an asterisk (*). 

 

 

 

Seq mod 1 Seq mod 2 Seq mod 3 Seq mod 4 Seq mod 5 Seq mod 6 Seq mod 7 

103 Tyr>His 741 Thr>Asn 618 Ala>Val 273 Asn>Lys 145 Pro>Ser 733 Val>Ile 98 Thr>Ile 

490 Arg>Trp 3527 Arg>Gln 1128 Arg>His 730 Val>Ile 554 Pro>Leu 3182 His>Asn 408 Ile->Thr 

1086 Gly>Ser 4181 Lys>Glu 2299 Asp>His 1218 Glu>Gln 1113 Asp>His 3558 Arg>Cys 877 

 
Pro>Leu 

1437 Phe>Leu   2739 Pro>Leu 2092* Val>Leu 1914 Asn>Ser 3964* 
 

Phe>Tyr 1388 Arg>His 

1923 His>Arg   3427 Lys>Thr 2680* Gln>Leu 2365 Thr>Ala   2566 Glu>Lys 

2456 Ala>Asp   3949 Leu>Phe 3294 Ser>Pro 2785 Asn>His   3319 His>Asp 

3121 Ala>Thr   4481 Ala>Thr 3732* Thr>Ile 3279 

 
Ser>Gly   3921 Val>Ile 

3432 Glu>Gln     3945 Thr>Ala 3638 Arg>Gln   4394 Val>Ala 

3801 Ser>Thr     4338  Asn>Ser 4128 Val>Met     

4270 Arg>Thr       4484 Thr>Met     
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Figure 4.11 MS/MS spectra of tryptic peptide 2086–97 from untreated sample depicting presence of 2092Leu as a natural variant. Corresponding B- 
and Y- ions are shown. Ammonia loss from b5, b6, b7, b8, b9 was observed in the MS/MS spectra. 
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4.5. Discussion 

4.5.1. Methionine modification 

Methionine can be easily oxidized to methionine sulfoxide even by simple exposure to 

ambient oxygen (Scheme 3.15). We frequently observed methionine modifications.  These 

oxidations were not reported because they were prevalent in control experiments which made it 

difficult to verify that the oxidation was the result of treatment with hydroxyl radical. 

Some observed oxidized peptides contained both methionine and another oxidizable 

residue (e.g. phenylalanine, tryptophan and tyrosine).  In these cases, the mass spectral data was 

manually checked to determine which of these residues was actually oxidized.  These peptides 

are identified in Table 4.3 with an asterisk.  None of these peptides showed methionine oxidation 

in control experiments (no peroxide added), suggesting that these methionine residues were 

resistant to oxidation. Methionine modification is characterized by a loss of CH3SOH (-64 Da) 

from the precursor ion.56 In Fe2+/peroxide treated LDL, no major peaks in product ion spectra 

confirmed this loss. Hence there is no convincing evidence that treated apo B-100 had 

methionine oxidations. The presence of inaccessible methionine residues indicates that some 

parts of the protein retained their structure during hydroxyl radical exposure. Also, in peptide 

2523-34 (observed in high peroxide dose and blank), 2526Met was oxidized and 2523Met 

remained intact. Hence it was perceived that some methionines such as 2523Met were in the 

hydrophobic pockets of the proteins which are inaccessible to both ambient oxygen and hydroxyl 

radical.  
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4.5.2. LDL oxidation 

It is well recognized that ox-LDL is one of the major factors in promoting atherogenesis. 

In vivo formation of ox-LDL and atheroma was extensively demonstrated by several different 

studies.4, 5, 7, 8, 57 Our focus was to study apo B-100 oxidation in LDL in the presence of hydroxyl 

radical in order to identify the positions of amino acid residues that undergo oxidations under 

these conditions. Upon exposure to hydroxyl radical, the most commonly observed modification 

was addition of an oxygen atom (e.g. hydroxylation), which resulted in a mass change of +16 Da.  

It is expected that the location of these oxidation sites reveals solvent accessible portions of apo 

B-100 in LDL. Sharp et al. and other researchers30, 31, 58, 59 demonstrated the usefulness of 

hydroxyl radical mapping techniques in model proteins such as lysozyme and β-lactoglobulin A. 

In short, the solvent accessible amino acid residues of the protein, particularly those containing 

aromatic side chains, react readily with the hydroxyl radical and form an aromatic alcohol. These 

are stable markers that can be determined by mass spectrometric studies.  

Addition of two oxygens to 2307Phe from low peroxide dose and addition of two 

oxygens to 3923Phe from high peroxide dose (Figure 4.9) depicts extensive reactions in some 

protein regions. Most observed oxidations were the result of direct hydroxyl radical attack on the 

amino acid residues, and only a small portion of the observed oxidations were representative of 

lipid mediated oxidation (i.e. involving a lipid radical).  The overwhelming majority of direct 

oxidation products suggests that at the lowest radical concentration used in this study, little 

indirect oxidation occurred in the time frame of these experiments, which was likely too short to 

exceed the lag period.60, 61 Furthermore, peptide sequence coverage by LC-MS/MS was 

unchanged between LDL not exposed to oxidants and LDL exposed to low concentrations of 

hydroxyl radical.  This result indicates that low concentrations did not cause enough structural 
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damage to interfere with the analysis.  However, for higher radical concentrations, dramatic 

decreases in sequence coverage were observed indicating that the higher radical concentrations 

resulted in extensive protein damage. 
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Table 4.3 Modifications of amino acids observed in LDL exposed to three different hydroxyl radical concentrations. Numbers represent the position of 
the amino acid in the apoB sequence (P04114). All experiments were done in duplicate. The positions of the oxidized amino acids were compared with 
the control. The table includes only oxidations not also appearing in control experiments (no peroxide added).  All modifications from each replicate 
were listed. 

*These peptides contained a methionine residue.  Differentiation between methionine oxidation and oxidation of another amino acid in 
the same peptide is difficult.  However, characteristic loss of 64 Dalton from oxidized methionine was not observed, so methionine 
oxidation was ruled out. 
 
 

Modifications 

Observed 

Low Peroxide concentration Intermediate peroxide 

concentration 

High Peroxide concentration 

F+16 680*, 883*, 2665*, 2845*, 4019*, 

4531 

1193*, 2419* 680*, 883*, 1193*, 2307, 2419*, 

2665* 

F+32 3923 N.D. 2307 

Y+16 56, 144, 276*, 1020, 3295 3926, 

4380*, 4451 

4510 2568, 4380* 

W+32 583 N.D. N.D. 

H+16 596, 2507*, 4529 N.D N.D. 

P+16 65, 145, 663, 1007, 2620, 2659*, 

3262*, 3293, 3310, 3593 

4004* 663, 3281, 4004* 

K+120 N.D. N.D. 2208 

K+138 N.D. N.D. 2195 
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Previously, FDP-Lys (Lys+94)62 and MP-Lys (Lys + 96)63 oxidation products were 

observed in samples exposed to hydroxyl radical. Also acrolein forms as a lipid oxidation 

product from hydroxyl radical mediated oxidation that can react with amino acid residues such as 

Lys and His. FDP-Lys is the result of these oxidations.22, 26 Uchida’s pioneering work in this area 

already revealed that by MS/MS methods, these products were extremely difficult to identify due 

to extensive cross-linking. In previous work, only 4 molecules of FDP-Lys/molecule of apo B-

100 were formed during hydroxyl radical mediated oxidations.25, 26 FDP-Lys was not observed in 

our studies. It is apparent that in our experiments, the lipid mediated pathway is not predominant. 

In previous researches the abundance of MP-Lys, FDP-Lys and HNE-His formation from Cu (II) 

mediated oxidations were substantial,22 indicating that Cu (II) mediated pathways oxidize the 

protein in a substantially different way compared to direct hydroxyl radical attack. 

Exposing LDL to three different hydroxyl radical concentrations showed concentration-

dependent oxidation.  At low hydroxyl radical concentrations (low peroxide doses), amino acid 

oxidations were observed, but no extensive protein structural damage was observed.  At higher 

hydroxyl radical concentrations, apo B-100 was modified extensively and loss of its native 

structure was observed. During in vivo oxidative stress, a lag phase is generally observed in 

which the cell or the tissue can recover from the damage by means of its defense mechanisms60, 

61 such as antioxidants and repair processes. Nevertheless, oxidative stress in the lag phase can 

still induce some damage to apo B-100. In our low hydroxyl radical concentration experiments, 

apo B-100 was partially oxidized, but based on the fact that sequence coverage remained high, it 

is not likely that extensive structural damage occurred. The low hydroxyl radical dose in this 

study is likely representative of the lag phase, and is therefore more relevant to in vivo systems.  

The in vitro studies reported here with different peroxide concentrations are significant since 
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physiological concentrations of hydroxyl radical are low, but during oxidative burst, neutrophils 

generate micromolar amounts of peroxide64 in the cells. The choice of low, intermediate and high 

concentrations of hydrogen peroxide elucidated varying degrees of protein damage as a function 

of hydroxyl radical concentration.  

Ox-LDL uptake by CD-36 into macrophages is a complicated process and not yet 

completely understood65. Recent research has correlated the uptake of oxidized phosphatidyl 

choline by the scavenger receptor CD-3666. However, dose dependent formation of oxidized 

epitopes in apo B-100 can play a crucial role in macrophage uptake and thereby pathogenesis of 

atherosclerosis. 

Natural variants were previously reported for hemoglobin with the help of mass 

spectrometric data.67, 68 Natural variants in apo B-100 were previously observed by other 

researchers based on cDNA and expressed sequence tag data. The peptide sequence for apo B-

100 is extremely complex bearing two alleles in the gene, both of which can be expressed. Gene 

expression from two alleles can lead to more than one form of protein or even a mixture of 

proteins. The presence of a large number of natural variants could be a result of this complex 

gene expression. For our work, all previously reported natural variants were incorporated in 

seven small sequences and added to the main database for apo B-100 for peptide searching in 

mass spectral data. The search results against the small databases revealed unique peptides 

depicting the presence of natural variants in the protein itself. A total of four different amino 

acids were found to be present as natural variants in the LDL sample used in this study. These 

natural variants can possibly be attributed to polymorphism, mutations or disease state of apo B-

100 genes. 
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Table 4.4 List of natural variants observed in native and ox-LDL from LC-MS/MS experiments, for native 
LDL a total of two samples was analyzed. For ox-LDL six samples were analyzed and tabulated. 

 

 

 

4.6. Conclusions 

In LDL protein several amino acid residues were found to be oxidized directly or 

indirectly by hydroxyl radical. The mass changes due to the oxidation of amino acid residues 

such as phenylalanine and tyrosine were analyzed by LC-MS/MS. Oxidized amino acid residues 

were distributed widely throughout the apo B-100 sequence.  At the lowest radical concentration 

used in this study, protein modifications were minor enough to allow successful MS/MS 

mapping, and the results suggest that this concentration is effective for mapping solvent 

accessible amino acid residues.  Higher radical concentrations, however, resulted in lower 

recovery of recognizable peptides, indicating substantial structural damage may have occurred to 

the protein.  Consequently, these higher concentrations are not as reliable for mapping solvent 

accessibility.  The vast majority of peptide modifications observed in this study were from direct 

hydroxyl radical attack, indicating that our methods represent probing of protein damage in the 

lag phase before substantial concentrations of secondary radicals can be formed.  Because natural 

defenses against free radicals are present in vivo, the lag phase is most likely representative of in 

vivo conditions.  Consequently, the method reported here avoids complications arising from 

oxidation under conditions that are too aggressive (e.g. Cu2+ mediated oxidation). Modification 

of 3262Pro was observed in the receptor binding regions17, 69 of apo B-100 (3130-60 and 3259-

Natural variants 
observed native LDL 

Natural variants 
observed in ox-LDL 

2092Leu 
2680Leu 
3964Tyr 

2092Leu 
2680Leu 
3732Ile 
3964Tyr 
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67), indicating that hydroxyl radical can cause direct oxidation in this important region.  The 

identity and location of the solvent accessible peptides, as well as their oxidation products, will 

be helpful in understanding the mechanisms of in vivo LDL oxidation.  Furthermore, the protein 

modifications identified here may allow studies that elucidate the impact of these modifications 

in model systems. 
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Chapter 5.  

Hypochlorous acid and peroxynitrite treated apo B-100 in LDL: A 

study of the oxidized regions of LDL protein 

5.1. Abstract 

Low density lipoproteins (LDL) act as a major cholesterol carrier in the human 

physiological system. Oxidized LDL (ox-LDL) has been found to be pro-atherogenic by several 

previous studies. Free radical mediated oxidations of apo B-100 (LDL protein) plays a critical 

role in early stages of plaque formation in the arterial wall. The structure of apo B-100 is still 

poorly understood, although this structure may be crucial in identifying the role of the protein in 

atheroma formation. In this study we mapped the oxidized regions of apo B-100 in human LDL 

using peroxynitrite and hypochlorous acid as probes. In a separate experiment, tyrosine was 

exposed to peroxynitrite in PBS buffer spiked with bicarbonate. The resultant reaction mixture 

was analyzed by reversed phase HPLC and the concentration of 3-nitrotyrosine was calculated. 

This result was correlated with the effective concentration of peroxynitrite for protein damage. 

LDL was incubated with various concentrations of sodium hypochlorite in bicarbonate buffer. 

Previously, we treated LDL with hydroxyl radical and identified oxidized amino acids of apo B-

100. We employed the same method to identify positions at which peroxynitrite and 

hypochlorous acid oxidizes apo B-100.  After exposure to peroxynitrite and hypochlorous acid, 

LDL was delipidated and dialyzed against methanol:water followed by a treatment with DTT 

and iodoacetamide to break disulfide linkages. The resulting solution from peroxynitrtie was 

digested with trypsin to yield peptides. Trypsin and pronase both enzymes were used separately 
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in hypochlorite treated samples. The peptides are then analyzed by LC-MS-MS to identify 

modifications in the protein. Nitrotyrosine and nitrotryptophan, along with hydroxylated amino 

acids, are specific markers for peroxynitrite mediated oxidations in proteins. Chlorotyrosines 

were specific markers for hypochlorous acid mediated damage in proteins. By employing dose 

dependent oxidations of peroxynitrite and hypochlorous acid we have identified site specific 

oxidations caused by the oxidants in apo B-100 associated with intact LDL particle. Oxidative 

mapping of apo B-100 will reveal solvent accessible regions of apo B-100 and provide valuable 

protein structural information related to oxidative protein damage. 

 

Keywords: LDL, ox-LDL, apo B-100, peroxynitrite, hypochlorous acid, oxidative 

mapping, LC-MS/MS, trypsin, pronase. 
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5.2. Introduction 

Low density lipoproteins (LDL) are cholesterol transporters in physiological systems. 

LDL particles are comprised of three components: the LDL core has cholesteryl esters and 

triacylglycerol, the outermost layer contains phospholipids and free cholesterol, and a single 

monomeric protein apo B-100 (4563 amino acids) encircles the lipid assembly (Figure 3.3) and 

is partially exposed at the surface of LDL.1, 2 A variety of strong oxidants can damage LDL and 

induce formation of oxidized LDL (ox-LDL). Pathological implication of ox-LDL in body is 

severe and could be attributed to atherosclerosis.3-8 Atherosclerosis is a complex disease 

involving plaque formation in arterial intima. Plaque renders inelasticity in arteries and causes 

complicated symptoms in cardiovascular diseases.  

Oxidants can damage LDL in a bidirectional fashion. Oxidative stress renders formation 

of lipid peroxides and highly reactive aldehydes which are known to disrupt the protein 

structure.9-11 Oxidized apo B-100 could also be a key factor in plaque formation. This hypothesis 

was supported by the observation that elevated concentrations of the oxidized protein were 

accumulated in the atherosclerotic lesions.4, 12, 13 Post translational modification of this protein by 

free radical or enzymatic processes may be a key parameter in initiating plaque formation. 

Current methodologies are inadequate to completely understand the tertiary structure of this 

protein. Molecular modeling, although very useful in some cases, becomes speculative for this 

protein14-16 and requires additional information to predict the structure (4563 amino acids and 

550 KDa). Due to lipid association, it would be even harder to crystallize this protein. Previously 

we observed that liquid chromatography coupled with mass spectrometry (LC-MS/MS) could be 

a useful approach in understanding the structure of LDL protein.17 Oxidatively and/or 

enzymatically modified LDL particles are inflammatory and activate cytokines and monocyte 
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adhesion molecules.18-20 Generally, LDL particles are internalized by LDL receptors which are 

expressed ubiquitously in cells. However, oxidative modification in apo B-100 in endothelial 

cells promotes binding and uptake of ox-LDL by scavenger receptor CD-3621-26 in macrophages. 

This phenomenon becomes more relevant in endothelial dysfunction and initiation of 

atherosclerotic plaques.  

Due to the enzymatic activity of endothelial nitric oxide synthase (eNOS), L-arginine is 

converted to citrulline, releasing nitric oxide in the process.27, 28 Nitric oxide works as a signaling 

molecule and helps in vasodilation.27, 28 In vascular endothelial cells, peroxynitrite (ONOO¯ ) is 

formed (Scheme 3.3) due to the reaction of nitric oxide and superoxide.29-32 Peroxynitrite is a 

very strong oxidant and cause nitration in LDL.18, 33, 34 Indeed peroxynitrite can adapt multiple 

pathways (Scheme 3.4) to damage the proteins.35 One of the key reactions of peroxynitrite is 

nitration of tyrosine residues to form 3-nitrotyrosine (3-NT)36 (Table 5.1) in LDL protein.37 

Myeloperoxidase (MPO) can catalyze this reaction by forming intermediate complexes. 

Bicarbonate or dissolved carbon dioxide play an important role in forming tyrosyl radical and 

enhance reaction between tyrosyl radical and nitrite radical to form 3-NT.38 Tryptophan 

oxidation products were also reported in proteins including changes in the phenyl ring and 

nitration in the phenyl ring (Table 5.1). Other amino acids can undergo hydroxylation reaction by 

this pathway since hydroxyl radical is also involved as a dissociation product of peroxynitrite.39 

During respiratory burst, phagocytes release superoxide and hydrogen peroxide. In the 

presence of the heme enzyme myeloperoxidase, hydrogen peroxide reacts with physiological 

concentrations of chloride to form reactive hypochlorous acid (HOCl).40 Also, HOCl can be 

generated in an extracellular matrix which can cause damage to circulatory LDL in blood 

plasma. The damage arising out of hypochlorous acid could be substantially diverse.41, 42 It can 
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cause side chain oxidation, peptide bond fragmentation and aggregation of proteins.42, 43 A range 

of amino acid oxidation products were previously published in literature and some of them are 

listed in Table 5.2. Controversial results existed on the more susceptible oxidizable regions of 

LDL; however, Hazell and co-workers proved that amino acids in apo B-100 are more 

oxidizable44, 45 by HOCl compare to its lipid counterpart. It was shown that initial oxidation in 

protein apo B-100 can oxidize the lipids and lead to the formation of cholesteryl ester 

hydroperoxide. Hazen et. al. depicted tyrosine chlorination in LDL to form chlorotyrosine in 

atherosclerotic lesions.46 An increase in oxidation of LDL particles increased the uptake of ox-

LDL by scavenger receptor CD36, which in turn induced foam cell formation.21, 22 These steps 

are considered to be major early events in plaque formation in the arterial wall.  

Bergt et. al. presented valuable information on chloramine transfer reactions between 

HOCl in apo A-I and high density lipoprotein (HDL).47 This reaction was coined as one of the 

key reactions in hypochlorite mediated damage to proteins. Interestingly, Bergt’s quantitative 

work showed that the MPO/H2O2/Cl¯  system chlorinated Tyr192 to a greater extent than that 

observed for the other six Tyr residues in the protein. These results indicate that the protein 

structure influences the chlorination reactions.47 Cystein, methionine and lysine react directly to 

hypochlorous acid. Cys yields corresponding sulfonic acid (Cysteic acid, +48 Da) while 

methionine forms methionine sulfoxide (+16 Da).48 Chloramine transfer reactions at the ε-NH2 

group of Lys was important since this chloramine can transfer chloride to a nearby Tyr residue 

(+34 Da) and go back to its native state.49 Also, aromatic amino acid such as histidine can 

participate in transferring the chloramine by initial side chain oxidation. Tryptophan can give 

oxidation products of the indole residue (+16 Da).42 The extent of chlorination with 

MPO/H2O2/Cl¯  and reagent hypochlorous acid sometimes appeared to be controversial. 
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Although it was proposed that under physiological conditions MPO binds directly to the amino 

acids in the proteins and induces reactions, reagent hypochlorous acid had produced similar 

extent of chlorination in Tyr residues.47, 50  

Yang et. al. presented pioneering work by modifying apo B-100 in LDL with HOCl. His 

methodology was tedious but nonetheless effective.50 His methods involved purification and 

isolation of tryptic peptides from apo B-100 by liquid chromatography after HOCl or MPO 

treatment followed by analysis with mass spectrometric method (ESI-MS).50 Recent 

developments in LC-MS/MS based methodologies are of paramount importance since it 

attenuated analysis time and prodigious sample handling skills.51, 52  

Free radical53-56 and non-free radical36, 46 mediated oxidations leave permanent footprints 

in the side chains of amino acids of proteins (Table 5.1 and Table 5.2). By identifying these 

footprints, the solvent accessible parts57-59 (rather aqueous accessible regions) could be 

identified. Previously we have shown usefulness of LC-MS/MS based methodologies in 

determining oxidative post translational modifications (with hydroxyl radical) in apo B-100.17 In 

this article we have assessed the site specific oxidations of apo B-100 in LDL with oxidant 

peroxynitrite and hypochlorous acid. We hope this result will help us to understand the solvent 

accessible residues in apo B-100, the structure of the protein in LDL and important oxidation 

products. 

 



 147 

Table 5.1 Reported amino acid oxidations from literature and associated structural changes after oxidation by peroxynitrite. 33, 35, 60-62 

Amino acid Modified amino acid Associated mass 

change 

Tyrosine 

 

 

3-Nitrotyrosine 

C
H2

OH

NO2

 

+45 Da 

Tryptophan 

C
H2 NH  

Nitro-tryptophan 

 

C
H2 NH

NO2

 

+45 Da 

Tryptophan 

C
H2 NH  

Hydroxylated 

tryptophan 

C
H2 NH

OH

 

+16 Da 

Cystein C
H2

SH
 

Cysteic acid 

C
H2

S

O

O

OH

 

+48 Da 
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Table 5.2 List of amino acid oxidations by hypochlorous acid. 36, 46, 48, 50, 63-66 

Amino acid Modified amino acid Associated mass 

change 

Tyrosine  

 

3-Chlorotyrosine 

C
H2

OH

Cl

 

+34 Da 

Tyrosine  

C
H2

OH

 

3,5-Dichlorotyrosine 

C
H2

OH

Cl

Cl  

+68 Da 

Tryptophan 

C
H2 NH  

2-oxindole 
CH2

N
H

OH

H2C

N
H

O

 

+16 Da 

Cystein C
H2

SH
 

 

Cysteic acid 

C
H2

S

O

O

OH

 

+48 Da 
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5.3. Materials and methods 

Human low density lipoprotein (LDL) was purchased from VWR chemicals. Each batch 

of LDL was acquired from a single, healthy human subject. LDL was stored with 150 mM 

ethylenediaminetetraacetic acid (EDTA) (pH 7.4) and was kept refrigerated (4 °C). Pronase was 

purchased from VWR chemicals. Micro-dialysis tubes and floats were also purchased from 

VWR. Sodium nitrite (NaNO2), hydrogen peroxide (30%) and all solvents were purchased from 

Sigma-Aldrich (St. Louis, MO). High purity (98%) DL-tyrosine, sodium hypochlorite (NaOCl) 

(15% chlorine content), ammonium bicarbonate (ABC), formic acid, dithiothritol (DTT) and 

iodoacetamide were purchased from Sigma-Aldrich (St. Louis, MO, USA). Trypsin was 

purchased from Promega (Madison, WI, USA). In all experiments, purified water was obtained 

by distillation, deionization, carbon filtration and UV irradiation.  

5.3.1. Synthesis of peroxynitrite 

Peroxynitrite was synthesized by using two peristaltic pumps. This is a slight 

improvement to the conventional method.67, 68 In short 0.60 (M) NaNO2 solution was mixed with 

0.65 (M) H2O2 (in HCl) at 29ml/min. This mixture was added drop wise to a constantly stirred 3 

(M) NaOH solution for quenching. Since, peroxynitrite is extremely unstable in acidic medium 

(half life <1 ms) it is necessary to quench the reaction without any delay. The yellow colored 

solution indicates the existence of peroxynitrite in solution. This reaction is exothermic in nature 

therefore NaOH solution was placed over ice. Excess H2O2 was degraded by transferring the 

mixture to a beaker containing MnO2. Bubbles issuing from the solution indicated degradation of 

peroxide. Solutions were transferred to 2 mL centrifuge tubes and stored at -80 °C until further 

use.  
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5.3.2. Characterization of peroxynitrite and quantification of 3-nitrotyrosine 

Each day one centrifuge tube of peroxynitrite was taken out from the freezer and thawed 

over ice. A pinch of MnO2 was added to ensure residual H2O2 removal from the solution. 25 µl 

of this solution was diluted to 3 ml in 0.1 M NaOH and absorbance measurement was taken. 

Concentration of the said peroxynitrite solution was calculated from its absorbance at 302 nm (ε 

= 1670 M-1 cm-1).69 

High performance liquid chromatography (HPLC) was used to measure the amount of 3-

nitrotyrosine (3-NT) formed after reacting peroxynitrite with DL-tyrosine (0.5 mM) in phosphate 

buffer saline (PBS at pH 7.4) and 25 mM ammonium bicarbonate. Initially peroxynitrite 

concentration was estimated by previously described absorbance method.69 Three different 

peroxynitrite concentrations (10 µM, 100 µM and 1000 µM) (duplicate experiments) were used 

for exposure. Reactions were stirred for 30 minutes, acidified and injected into the HPLC to 

measure the amount of 3-NT formed. A total of six samples were analyzed.  

An Alltech 150 mm C18 (5 µ particle size, I.D. 4.6 mm) column equipped with a 100 µl 

loop was used in the HPLC. An isocratic solvent system, 95% water (0.1% Trifluoroacetic acid) 

and 5% acetonitrile was used as eluent with a ten minute run time. 3-Nitrotyrosine was injected 

as an external standard and a calibration curve was formulated from peak area under HPLC trace 

everyday (R2 > 0.99) with three 3-nitrotyrosine standards analyzed in duplicate.  

5.3.3. Reagent hypochlorite characterization 

Sodium hypochlorite was stored at 4°C until use. Absorbance of NaOCl was measured in 

0.01 M NaOH. Concentration was calculated from molar extinction coefficient (ε = 350 M-1 cm-
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1) at 292 nm.70 Hypochlorite solution was diluted to desired concentration with 0.01 M NaOH 

and stored over ice until addition to LDL.  

5.3.4. LDL oxidation 

Stock protein concentration was 4.10 mg/mL. For each sample, 12.19 µL LDL was 

diluted to 100 µL with ammonium bicarbonate buffer (pH adjusted to 7.4) and placed in micro 

centrifuge tubes. A total of eight samples were used in each set of experiments. Each exposure 

was carried out in duplicate. Three microliters of peroxynitrite (stock concentration 0.273 mM, 

2.733 mM or 27.33 mM) was added to exposed samples maintaining the final concentration of 

peroxynitrite in LDL sample as 10 µM, 100 µM and 1000 µM respectively. Three microliters of 

0.1 M NaOH was added as blank. 

Sodium hypochlorite exposure to LDL was carried out similarly. 12.19 µl NaOCl stock 

was diluted to 100 µl by ammonium bicarbonate (pH 7.4). Three microliters of NaOCl 

(concentration 0.343 mM, 3.43 mM and 34.3 mM) was added to each LDL sample to start with 

the concentration 10 µM, 100 µM and 1000 µM respectively. 3 µl 0.01 M NaOH served as 

blank. Again each exposure was carried out in duplicate.  

The micro centrifuge tubes are transferred to a temperature controlled shaker (Eppendorf 

Thermomixer R). At 37 °C and 900 rpm the reaction was shaken for 10 minutes. An additional 3 

µl of peroxynitrite/NaOCl solution was added and shaken for another 10 minutes. Finally, 3 µl of 

peroxynitrite/NaOCl was added again and shaken. After 10 minutes these reaction mixtures were 

transferred to previously labeled microdialysis tubes. 

The samples were then dialyzed against 500 mL methanol:toluene:methylene chloride 

(3:1:1) (v/v) for two hours at 4 °C for delipidation. The dialysis float was transferred to another 
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500 mL solution containing 300 mL methanol with 200 mL water for another two hours of 

dialysis. The cloudy protein solutions were collected and transferred to micro-centrifuge tubes. 

BCA assay method was used to estimate the protein concentration at this stage. The protein 

solution was boiled in water for 10 minutes to initiate denaturing. Thirty molar excess 

dithiothritol was added, and samples were incubated for 30 minutes at 37 °C to cleave the 

disulfide linkages. Next, 30 molar excess iodoacetamide was added and let react for 90 minutes 

at 37 °C for alkylation of the cysteinyl residues. Tryptic digestion (one blank and three exposed 

samples) was carried out overnight following previous methods.17, 71, 72 The tryptic peptides were 

quenched with liquid nitrogen, vacuum dried and stored until further use.  

Pronase digestion73, 74 was carried out on one batch of NaOCl (exposed to 10 µM, 100 

µM and 1000 µM) treated samples. The enzyme was dissolved in water immediately before 

addition to protein samples that were exposed to NaOCl (one blank and three exposed samples). 

The protein to pronase ratio was calculated by using the enzymatic digestion of bovine serum 

albumin (BSA) and optimized as 50:1 (protein:enzyme) (data not shown). Based on the 

estimated LDL protein concentration, required pronase was added and samples were incubated at 

37 °C for 24 hours. 5 µl formic acid (99%) was added to the samples to quench the reaction 

followed by boiling for five minutes. The reaction mixture was then evaporated and dried 

peptides were stored at -80 °C. Dried peptides were reconstituted in 5% aqueous formic acid 

with 5% acetonitrile for LC-MS/MS analysis.  Samples were stored at -20 °C until analysis. 

5.3.5. LC-MS/MS of apo B-100 peptides 

The peptide mixture obtained from the procedure noted above (maximum amount 

equivalent to 3 µg protein) was first loaded onto a reversed-phase trap column, and then washed 

with 3% acetonitrile and 0.1% formic acid (aq) to desalt the sample. After the wash/desalt step, 
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the trap column was switched into a gradient flow (60 minutes, water with 3% acetonitrile and 

0.1% formic acid at the beginning and 65% acetonitrile with 0.1% formic acid at the end) to 

elute peptides to a C18 analytical column before introduction into a linear trapping quadrupole 

(LTQ) mass spectrometer. 

5.3.6. MS setup 

Mass spectrometry analyses were performed on an LTQ mass spectrometer (Thermo 

Electron, San Jose, CA) equipped with a nano-flow (200-500 nL/min) electrospray source. The 

peptides were ionized via electrospray and recorded in a full scan mass spectrum. For each full 

MS scan, the top 3 most intense peptide precursor ions were selected and fragmented via 

collision induced dissociation (CID). Low pressure helium was employed as damping (for ion 

storage and isolation) and collision (fragmentation of activated ions) gas. The instrument was 

operated in a highly automated data dependent acquisition mode.  

5.3.7. Database search 

The database search was performed on an in-house search engine (Bioworks 3.3, Thermo 

Electron) using the “SEQUEST” algorithm against human IPI database for apo B-100 (accession 

# P04114).75 Peptides with MW of 600-3500 Da were chosen for identification. All 

modifications were defined as differential (i.e. the amino acid residue may or may not be 

modified) and are listed in Table 5.1. An Xcorr score was generated from the matching of 

experimental spectra to the theoretical spectra of apo B-100 peptides. A charge state-Xcorr score 

filter was applied to all MS/MS spectra. Singly charged peptides with Xcorr score less than 2, 
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doubly charged peptides with Xcorr score less than 2.5, and triply charged peptides with Xcorr 

score less than 3.0 were considered as false positives and removed from the final report♣.  

5.4. Results and discussion 

5.4.1. Quantification of 3-nitrotyrosine with HPLC 

In vitro nitration of tyrosine using reagent peroxynitrite followed a complicated 

mechanism. In physiological systems, the heme enzyme myeloperoxidase and other artifacts may 

facilitate 3-nitrotyrosine formation in proteins. It was important to know the concentration of 

peroxynitrite added to the sample. Therefore conventional absorbance method (for peroxynitrite) 

and HPLC method (quantitation of 3-NT) were used to verify the consistency between the results 

obtained from both of these methods. We have measured amounts of 3-nitrotyrosine (duplicates) 

in three different reactions containing three different concentrations of peroxynitrite. For 

estimated 10 µM, 50 µM and 100 µM peroxynitrite exposures, we calculated the total amounts 

of 3-NT as (1.1 ± 0.1) ×10-10 moles, (5 ± 1) × 10-10 moles and (11 ± 2) ×10-10 moles. This data is 

presented in Figure 5.1. 3-NT formation was a measure of nitrite radical formation through 

nitrosoperoxycarboxylate pathway after reaction of peroxynitrite and carbon dioxide 

(bicarbonate) (detailed discussion in chapter 3). It should be noted that the actual yield of 3-NT 

in this reaction is only ∼10% compare to the total peroxynitrite added to the reaction mixture.  

 

                                                 
 
♣ All positively matched peptides were listed in Appendix B from Table B-1 through Table B-6. Corresponding 
Xcorr and ∆Cnvalues were also included. 
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Figure 5.1 3-Nitrotyrosine formation from three different concentrations of peroxynitrite. An increase in 3-NT formation with increasing peroxynitrite 
concentration is apparent. Errors are represented as one standard deviation. 
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5.4.2. Modification of apo B-100 by peroxynitrite 

Identification of the presence of 3-NT in atherosclerotic lesions indicated involvement of 

peroxynitrite in the oxidation of proteins.62 Previous research connected nitration of amino acid 

residues in LDL to peroxynitrite activity. Eiserich et. al.76 and Kettle et. al.36 suggested 

involvement of MPO in protein tyrosine nitration. We however worked in an enzyme free 

environment and explored nitration through nitrosoperoxycarboxylate31 pathway. Previously 

Alvarez et. al. depicted nitrotryptophan formation by reacting peroxynitrite directly with 

tryptophan.61 Yamakura et. al. emphasized on formation of 6-nitrotryptophan formation in Cu, 

Zn-superoxide dismutase with peroxynitrite77. From our experiments with reagent peroxynitrite, 

we have rarely observed nitration products on Tyr residues. Tryptophan nitration was not 

observed at all in the three different peroxynitrite doses.  

In low peroxynitrite dose (10 µM), we have observed peptide 1830-52 which represented 

both 1840Tyr nitration and 1831Tyr hydroxylation (Figure 5.2) from low peroxynitrite exposure. 

Three hydroxylated tryptophans were observed. Oxidation of Cys1505 to cysteic acid (Figure 

5.3) was also observed (Table 5.3).  

With intermediate peroxynitrite concentration, no nitrotyrosine was observed. 

Hydroxylation of the phenyl ring in tryptophan was obviously easier compared to nitration, 

although it was mediated through the formation of hydroxyl radical39 by homolytic fission of 

peroxynitrite§. It seems plausible that some of the peroxynitrite molecules escape the 

nitrosoperoxycarboxylate pathway and simply follow homolytic fission even though the reaction 

                                                 
 
§ Due to the enormous volume of data tyrosine and phenylalanine hydroxylation was not exclusively considered at 
this stage. Hydroxylation of both the amino acids occurs if hydroxyl radical pathway is prevalent. We have mapped 
hydroxyl radical mediated oxidations in apo B-100 previously. Due to similar reason this database search was 
focused on hydroxylation of the phenyl ring in tryptophan and not on the ring dissociation products kynurenine and 
NFK. 
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is slower. Trp2248 (Figure 5.4) and Trp3970 oxidation were observed, which is consistent with 

the samples treated with the low peroxynitrite dose. Cystein oxidation at intermediate 

peroxynitrite concentration revealed interesting events. Hamilton et. al. reported modification of 

Cys1112 to its corresponding sulfonic acid by peroxynitrite treatment.37 We have observed 

modification of the same amino acid without peroxynitrite treatment. It could be possible that 

Cys1112 is highly susceptible to oxidation by ambient oxidants. Three different peptides 1100-

18, 1101-18 and 1001-15 confirmed this modification revealing both +2 and +3 charge state of 

the peptides. We have not observed the unmodified peptide in the untreated sample. It will 

therefore difficult to be claimed as a modification originating from peroxynitrite in our case. 

Due to paucity of the nitrated peptides in our high peroxynitrite experiments, another set 

of 1000 µM peroxynitrite exposure experiments were carried out keeping all parameters the 

same (Table 5.3). Four tyrosine residues appeared to be nitrated, of which Tyr1602 was not 

reported previously. Two products for modification of Tyr2524 were observed. One modified 

peptide was nitrated at this position (+45 Da) (Figure 5.5) and the other was hydroxylated (+16 

Da) (Figure 5.6). It should be noted here that previous experiments with hydroxyl radical always 

showed oxidation of Tyr2524.17 

Although Protparameter analysis78 of apo B-100 sequence showed the presence of 151 

Tyr residues in the apo B-100, very few of them were nitrated. Hamilton and coworkers37 

reported nitration of tyrosine residues in LDL with both reagent peroxynitrite and SIN-1 (nitric 

oxide and superoxide donor). Their observations included nitration of 10 Tyr residues in the 

presence of 1 mM peroxynitrite. However, it must be noted that physiological peroxynitrite 

concentration even in severe conditions could hardly mount to such a high level. Thus our initial 

intention was to look at dose dependent nitration of apo B-100 which might reveal important 
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aspects of peroxynitrite mediated nitration in LDL. From the results it was apparent that at low 

peroxynitrite local concentrations, tyrosine nitrations are not highly favorable. Also peroxynitrite 

stays in equilibrium with peroxynitrous acid (ONOOH). If the tyrosine residues are not 

completely exposed to the solvent, peroxynitrite/peroxynitrous acid will be unable to access 

them. In addition, site specific generation (closer to certain amino acids) of 

nitrosoperoxycarboxylate could be harder even in in vitro system. If the Tyr residues are close to 

lipid associated domains lipid nitrite formation will be facilitated which will minimize the 

possibility of formation of 3-NT in LDL.  

Furthermore, in all most all of our experiments sequence coverage had decreased 

dramatically (data not shown) which could be attributed to severe aggregation and cross-linking 

in the protein following peroxynitrite mediated oxidations followed by digestion with trypsin. 

5.4.3. Hypochlorous acid mediated oxidations of apo B-100 

In vivo flux of hypochlorous acid was attributed to phagocytic activity in and out of the 

cells. LDL in circulation can be oxidized79 by HOCl. In vascular endothelial cells, HOCl induces 

damages to various reactive amino acid residues by side chain oxidations, fragmentation and 

cross-linking.65, 80 The actual species which induces protein damage by hypochlorite are 

controversial. The physiologically relevant model system is related to the MPO catalyzed 

reaction between peroxide and chloride.36, 66 The amount of hypochlorous acid generation can 

vary significantly depending on different artifacts. 

In this study we have explored dose dependent site specific oxidation of apo B-100 in 

LDL by reagent hypochlorite. Two different enzymes were used to cleave apo B-100 in LDL. 

Trypsin digest only reveal ∼50% of the sequence in the peptide matching. Therefore pronase was 

used as an alternative proteolytic enzyme. Pronase worked well on bovine serum albumin (data 
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not shown). However, it was not substantially effective in the case of apo B-100. Pronase could 

cleave the protein into smaller fragments due to non-specificity making it difficult to be detected 

by MS/MS methods (Table 5.4). 
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Figure 5.2 MS/MS spectra from tryptic peptide 1830-52. Tyr1840 was nitrated while Tyr1831 was hydroxylated. 
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Figure 5.3 MS/MS spectra from tryptic peptide 1499-1513 from low peroxynitrite treated samples. The only one cystein oxidation observed in 
peroxynitrite treated sample. Cys1505 (+48 Da) was oxidized in this peptide by peroxynitrite. 
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Figure 5.4 MS/MS spectra from tryptic peptide 2241-55 from intermediate peroxynitrite exposure. Trp2248 was oxidized to corresponding 
hydroxylated tryptophan. 
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Figure 5.5 MS/MS spectra from tryptic peptide 2523-34 from high peroxynitrite exposure. Tyr2524 was chlorinated. Met2523 and Met2526 were 
oxidized in this peptide. 
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Figure 5.6 MS/MS spectra from tryptic peptide 2523-34 from high peroxynitrite exposure (same run as the previous). Tyr2524 was now oxidized (+16 
Da). Met2526 were oxidized in the same peptide. Since Met2523 is adjacent it will be difficult to coin the actual oxidation site. 
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All observed oxidations in peptides of apo B-100 obtained after pronase digest were 

listed in Table 5.4. At low and intermediate hypochlorite concentrations no chlorotyrosines were 

observed. At the higher concentration of hypochlorite, Tyr1053 and Tyr1200 (Figure 5.7) were 

chlorinated. These chlorinations could be facilitated by chloramine transfers from Lys1251 and 

Lys1202 respectively. Interestingly Trp4022 and Trp4396 (Figure 5.8) residues were oxidized to 

2-oxindolic form at the intermediate hypochlorite dose. Although these modifications were 

observed after digestion with pronase, they were not observed in the tryptic digests. With the 

moderate hypochlorite dose, peptides 4010-22 and 4385-98 showed tryptophan hydroxylation. 

However, due to batch to batch variability with pronase digestion, these peptides were not 

observed in the low or high hypochlorite doses. From pronase digested peptides, cysteic acid 

formation could not be confirmed although literature study stated a considerably high rate 

constant with hypochlorous acid.65  

Pronase is a useful enzyme in protein digestion. However, the non-specific nature of the 

enzyme might be detrimental for its usage in digesting large proteins such as apo B-100 which 

can be cleaved to very small fragments. Nevertheless, we could be able to identify some of the 

regions containing the modified tyrosine and tryptophan residues which did not appear in tryptic 

peptides. Particularly indolic ring oxidation products (Figure 5.8 and Table 5.4) were not 

identified before in apo B-100 peptides.  

Tryptic peptides were compared between treated and untreated samples. Only those 

peptides are listed which did not appear in the untreated sample (Table 5.5). In low hypochlorite 

exposure (10 µM) Tyr3295 was chlorinated (Table 5.5). At high hypochlorite concentration, this 

residue was chlorinated twice, indicating that it is readily susceptible to chlorination in the 

presence of hypochlorous acid. However, dichlorination of the tyrosine residues were not 
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observed at low hypochlorite concentration. Trp3563 was also observed to yield the 

corresponding 2-oxindolic residue in the side chain. No Cys oxidation was observed. 
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Figure 5.7 MS/MS spectra from pronase peptide 1193-1202 from high hypochlorite exposure. Tyr1200 was chlorinated was (+34 Da). Notable factor in 
this peptide is presence of Lys1202 which can facilitate chloramines transfers. 
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Figure 5.8 MS/MS spectra from pronase peptide 4385-98 from high hypochlorite exposure. Trp4396 was oxidized to corresponding 2-oxindole (+16 Da) 
derivative by intermediate hypochlorous acid dose. 
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Figure 5.9 MS/MS spectra from tryptic peptide 3754-62 from intermediate hypochlorite exposure. Cys3761 was converted to cysteic acid (+48 Da). 
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Figure 5.10 MS/MS spectra from tryptic peptide 440-54 depicting chlorination of Tyr443 from high hypochlorite exposure. Tyr452 was not modified 
even though His453 and Lys454 in the vicinity. 
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Figure 5.11 MS/MS spectra obtained from tryptic peptide 4447-61 depicting dichlorination of Tyr4451. This peptide was observed in high hypochlorite 
exposure. 
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Figure 5.12 MS/MS spectra of tryptic peptide 3293-3311 indicating monochlorination of Tyr3295 (+34 Da addition). 
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Figure 5.13 MS/MS spectra of tryptic peptide 3292-3311 depicting dichlorination of Tyr3295 (+68 Da). This peptide has even better match compare to 
the monochlorinated peptide. 
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Figure 5.14 MS/MS spectra from tryptic peptide 2535-59 depicting oxidation of Trp2553 and 2554 from high hypochlorite exposure. Corresponding B-
/Y- ions are observed. 
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* *

Tautomeric form of 2-oxindole 
was depicted (Trp+16) 
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Table 5.3 Observed amino acid oxidations and associated mass changes from three different peroxynitrite exposures on LDL were tabulated. Trypsin 
was used as the proteolytic enzyme. All these modification are unique in nature. Sequence coverage was low in all experiments (data not shown). 

N.D. Not determined. [Data was not searched for W+45, W+16 and C+48]. 

 

 

 

Modified amino acids Low peroxynitrite (10 
µM) 

Intermediate 
peroxynitrite (100 µM) 

High peroxynitrite 
concentration (1000 µM) 

High peroxynitrite 
concentration 
(1000 µM) 

Y+45 1840 − − 413, 1602, 2524, 
3295 

W+45 − − � N.D. 

W+16 583, 3970 1461, 2248, 3970 3970 N.D. 

C+48 1505 − − N.D. 
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Table 5.4 Oxidation of amino acids with three different hypochlorous acid concentrations. Enzymatic digestion of apo B-100 was carried out by 
pronase. Results in the treated samples were compared with an untreated sample (blank containing no hypochlorous acid) were listed here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modified amino acids Low hypochlorous acid (10 
µM) 

Intermediate hypochlorous 
acid (100 µM) 

High hypochlorous acid 
(1000 µM) 

Y+34 − − 1053, 1200 

W+16 − 4022, 4396 − 

C+48 − − − 
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Table 5.5 Oxidations of amino acids in presence of three different concentrations of hypochlorous acid. All modifications from duplicate experiments 
were included. Trypsin was used as a proteolytic enzyme in these experiments. Amino acids that appeared only in treater sample were listed here 
(compared with a blank containing no hypochlorite). 

#:  MS/MS is not conclusive enough to pinpoint one single amino acid oxidation in this case. Tyrosine was partially modified to 

monochloro and dichlorotyrosine 

†:  Two modified tryptophan residues appeared in one single peptide. 

 

 

Modified 
amino acids 

Low hypochlorous acid (10 µM) Intermediate hypochlorous acid (100 
µM) 

High hypochlorous acid (1000 µM) 

Y+34 3295 − 144, 276, 443, 666, 1200, 1999, 
3139, 3295, 3771, 4509/10#, 4534 

Y+68 −  − 148, 3295, 4451, 4509/10# 

W+16 3563 721, 1461, 2131, 2495, 2553/54, 
2686, 3594, 4058 

 2553†, 2554†,3153, 4058 

C+48 − 1112, 3761, 4217 3761 
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Figure 5.15 Mapping oxidized amino acids of apo B-100 in LDL with peroxynitrite (downward line) and 
hypochlorite (upward line). Pink represents oxidation from low peroxynitrite where as yellow and turquoise 
represents oxidation from intermediate and high peroxynitrite. Orange represents oxidized amino acids 
appearing both in low and intermediate peroxynitrite. Green, blue and red represents oxidized amino acids 
from low, intermediate and high hypochlorite exposure. Black represents oxidized amino acids appearing in  
both low and high hypochlorite. Plum represents oxidized amino acids appeared both in intermediate and 
high hypochlorite exposure. Special characters * represents oxidized amino acids observed both in 
hypochlorite and hydroxyl radical mediated oxidations. Special character ^ represents oxidized amino acid 
was observed both in peroxynitrite and hydroxyl radical treated samples. Special character † coins oxidized 
amino acid appearing in peroxynitrite and hypochlorite treated samples. Special character § coins oxidized 
amino acid was observed in all three treatments. 
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For experiments at intermediate hypochlorite concentration (100 µM), Tyr-chlorination 

was confirmed. Eight tryptophan and three cystein residues were oxidized. No dichlorination 

products were observed (Table 5.5). 

In high hypochlorite dose experiments, eleven Tyr residues were monochlorinated and 

four Tyr residues were dichlorinated. Tyr443 monochlorination was depicted in Figure 5.10. 

Tyr4451 dichlorination (mass increase of +68 Da) on the other hand was depicted in Figure 5.11. 

Interestingly Tyr3295 appeared in both monochlorinated (Figure 5.12) and dichlorinated (Figure 

5.13) form indicating partial modification of the said residues. Cys3761 oxidation was observed 

(Figure 5.9) by hypochlorous acid in our samples (Table 5.5). 

Positions of the all modified amino acids in apo B-100 was presented in Figure 5.15. The 

said figure (Figure 5.15) depicted modification from both peroxynitrite and hypochlorite 

including three different oxidant doses. It was evident that the number of chlorination sites 

increased with high concentration of hypochlorite. Lys and histidine in the nearby sites can 

facilitate the chloramine transfer42 to Tyr residues. For example peptide 3292-3311 has a 

histidine residue at 3308. This peptide belongs to the amphipathic β2 strand which has a well 

established barrel structure.14 Therefore, His3308 could undergo initial chlorination and take part 

in chloramine transfer to chlorinate Tyr3295 (Figure 5.12 and Figure 5.13). Chlorination of 

Tyr276 occurred during high hypochlorite exposure. The N-terminal amino acid for this peptide 

was 275Lys, which can easily participate in chloramine transfer reactions. Tyr443 (Figure 5.10) 

had been one of the most interesting chlorinated tyrosines, which was part of peptide 440-54 and 

in close proximity to His447. No evidence was observed in support of 452Tyr chlorination which 

was right beside 453His and 454Lys. Probably when hypochlorite was added; it was placed right 

beside the His residue which took part in chloramine transfer to Tyr443. Peptide 440-54 belongs 
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to βα1 domain of apo B-100, which assumes an intermediate structure between helix and barrel.14 

Tyr1999 is in close vicinity of C-term Lys2002 which can help chlorinating the Tyr residue. 

4509/10 is an interesting special case where the match is extremely comparable in MS/MS 

between the Tyr residues placed side by side. However, drawing exclusive conclusion about 

dichlorination of one of Tyr4509 or Tyr4510 residue is difficult just with MS/MS since they are 

adjacent to each other. A possibility of monochlorination on both Tyr4509 and Tyr4510 cannot 

be overruled. Also model peptidic study involving peptide LQDFSDQLSDYYEK could reveal 

mechanistic details about the tyrosine chlorination(s) in the protein.C-term Lys4512 could be 

involved in chloramine transfer reactions. One of these residues was also found to be 

dichlorinated with a very high score, indicating that chlorination reaction is facile in this region. 

Again in peptide140-57 two Tyr144 and Tyr153 (closer to Lys157) were present, although only 

Tyr144 was found to be chlorinated. It was apparent that Lys148 is closer to Tyr144 and 

facilitating the chloramine transfer reactions with hypochlorite. MS/MS spectra obtained from 

peptide 4447-61 contained Tyr4451 which was dichlorinated in the presence of high 

hypochlorite concentration. An excellent match in the product ion spectra was observed (Figure 

5.11).  

Previously, we have identified 5 and 7-hydroxytryptophan residues which were 

associated with hydroxyl radical addition to the phenyl ring. However hypochlorite induced 

oxidation of tryptophan renders favorable attack on the indole ring to yields a 2-hydroxyindole 

residue which stays in its resonance form 2-oxindole.48 Oxidation of tryptophan increased as the 

concentration of hypochlorite increased. Also, peptide 2535-59 in intermediate hypochlorite 

mediated oxidations have some interesting features. From the MS/MS data it was difficult to 

conclude whether Trp2553 or Trp2554 was modified (Figure 5.14). In high hypochlorite 



 181 

exposures, we have again observed peptide 2535-59 bearing both Trp2553 and Trp2554 

oxidations. Intermediate hypochlorite contained Trp1461 oxidation, which was part of peptide 

1451-74. The same peptide contained Met1465. However, CH3SOH loss, which is common for 

methionine oxidations, was not observed in the MS/MS spectra. MS/MS matching for 

Met1465+16 is comparable to Trp1461+16. Hence methionine modification can not be 

completely ruled out in this case.  

Cystein oxidation was observed for intermediate and high hypochlorite concentration. 

Cys3761 was oxidized to the corresponding sulfonic acid in presence of intermediate and high 

concentrations of hypochlorite (Figure 5.9). Observed oxidations at high hypochlorite dose were 

lower than that of the intermediate dose, which could be attributed to several reasons including 

the lack of accessibility of the same region by trypsin. 

It was perceived that high concentration of hypochlorite can bring about various changes 

to a protein including peptide bond fragmentation. At this point it would be difficult to 

exclusively depict whether apo B-100 is fragmented by hypochlorite. Rigorous data mining are 

under current investigation to identify peptides which shows fragmentation by hypochlorous 

acid. Conceivably, hypochlorite could induce peptide bond fragmentation in apo B-100. 1-D 

SDS-Gel electrophoresis data might be useful, although previous attempts by other researchers 

were not quite successful. Several issues were raised indicating difficulties associated with 

loading the protein in the gel.79  

Hydroxyl radical mediated oxidative mapping and oxidative mapping from peroxynitrite 

and hypochlorite showed some similarities (Figure 5.15). Tyr2524, Tyr3295 and Trp583 were 

oxidized in hydroxyl radical mediated oxidations as well as peroxynitrite. Where as Tyr144, 

Tyr276, Tyr3295, Tyr4451 and Tyr4509/10 were observed both in hypochlorite mediated 
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oxidations and hydroxyl radical mediated oxidations. Oxidation of same amino acid residues 

using different oxidants emphasizes the fact that this residues are solvent accessible and would 

get damaged readily during oxidative stress. Also, some of these amino acids such as Tyr413, 

Tyr2524 and Tyr3295 were previously observed to be nitrated with peroxynitrite.37 Dose 

dependent oxidations with peroxynitrite and hypochlorous acid to identify the site specific 

oxidation emerge as a novel technique which could be useful in identifying the solvent accessible 

residues in apo B-100. Although observed oxidations with peroxynitrite were not overwhelming, 

we were able to identify Tyr1602 nitration which was not reported before. Yang et. al. produced 

interesting work in identifying oxidation sites in apo B-100,81 however, extensive concentration 

dependent mapping experiments with hypochlorous acid was not carried out by any research 

group.81 It also revealed several different oxidation sites in apo B-100 which was not previously 

identified. We hope site specific oxidations data will help us comprehend the structure of the 

protein in intact LDL.  
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Chapter 6.  

Conclusions and future directions 

6.1. Accomplishments 

Thiourea based fluoride sensing using luminescence methods were investigated in the 

initial part of my research. In this context, 1,8-bis(phenylthioureido)naphthalene (compound 1) 

was synthesized and characterized (Chapter 2), and its fluoride sensing behavior in acetonitrile 

was investigated. This compound was highly selective towards fluoride compared to other 

halides, acetate and hydrogen phosphate. A remarkable 40-fold enhancement in fluorescence was 

observed in the presence of only five equivalents of tetrabutylammonium fluoride (fluoride 

donor). Mechanistic studies indicated strong hydrogen bonding formation between thioureido 

protons and the fluoride ion. The compound presented itself as a chromogenic sensor in the same 

solvent. Fluoride bound species showed 20 fold higher quantum yield than the unbound species 

at the same emission wavelength indicating a superb sensitivity. Theoretical detection limit was 

in the range of submicromolar level, which provided low ppm detection of fluoride. 

LDL protein oxidations and their implications in atherosclerotic plaque formation is an 

important aspect to understand cardiovascular disease risk factors. In this research we have 

produced ample data to support the hypothesis that free radical mediated oxidations of apo B-100 

in LDL is site specific. Extensive oxidations however might induce irrevocable changes in the 

protein. Metal catalyzed oxidations with variable concentrations of hydrogen peroxide revealed 

substantial oxidations in the proteins. Several different oxidation sites in apo B-100 were 

identified by using LC-MS/MS based methodologies (Chapter 4). These sites were distributed all 
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throughout the apo B-100 sequence. We have also identified some reported natural variants by 

using a novel database search method (Chapter 4).  

Furthermore, we have also used the oxidants peroxynitrite and hypochlorite to identify 

oxidation sites in LDL. Different side chain oxidations in amino acid residues were observed 

(Chapter 5). It appears that peroxynitrite is very selective in nitrating the amino acids while 

hypochlorite could chlorinate several tyrosine residues in apo B-100. The nitration and 

chlorination in amino acid residues in LDL induce structural changes in apo B-100 which might 

be critical to its function. How these structural changes are directly propagating the plaque to 

cause disease advancement are still to be understood. 

6.2. Future directions 

Over the years fluoride remained as a fascinating ion to the scientists and researchers due 

to its critical behavior in health and environmental subjects. Fluorescence enhancement based 

fluoride sensing gives better detection than that of fluorescence quenching based fluoride 

sensing. Urea and thiourea based naphthalene were depicted as an excellent candidate primarily 

due to improve planarity1, 2 after binding to fluoride and also due to lack of relaxation via twisted 

conformations3, 4. Our success in detecting micromolar to submicromolar levels of fluoride by 

compound 1 revealed several new vistas of research. The proposed research is furnished below: 

� Synthesis and characterization of similar thioureido analogues and exploitation of their 

binding behavior towards fluoride. Synthesis of these analogues is complex and requires 

exploration of improved synthetic routes. Changing the substituents in the phenyl ring as 

well as in the naphthalene ring might bring about important changes in the electronic 

configuration of the molecule, consequently changing fluoride detection and the binding 

properties of the molecules. Previous articles, proposed 1:1 binding between fluoride and 
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anthracene thioureido compounds. However, naphthalene thiourea could be a completely 

different case. In our studies, we observed evidence for the presence of 1,8-bis(4-

methoxyphenylthioureido)naphthalene during the reaction of 1,8-diaminonaphthalene 

and 4-methoxyphenylisothiocyanate. However, purification did not yield sufficient 

quantity of product to carry on with fluoride sensing experiments. 

� Immobilization of naphthalene thiourea based analogues to a nanoparticle or a fiber optic 

to enable detection of the fluoride in aqueous solutions.  This approach could resolve the 

water solubility issue of naphthalene thiourea analogues. Kim et. al. were able to 

immobilize anthraquinone based receptors to mesoporous silica and silica particles5. 

Immobilization of these sensing molecules on solid supports will expand the use of 

thiourea based sensing molecules to detect fluoride in aqueous media where interfering 

effects could be minimized. 

Low density lipoprotein is of major interest to researchers due to its implications in 

atherosclerosis. Protein surface mapping is a unique technique for identifying oxidatively 

modified surface amino acids in proteins. Identification of these sites reveals important structural 

information of the proteins. In our research, several oxidized amino acid residues were identified 

in LDL protein resulting from oxidants such as hydroxyl radical, peroxynitrite and hypochlorous 

acid. Some of the new and improved approaches are listed below which could allow us to expand 

the boundary of the current research. Additionally, the following approaches could also help us 

answer critical issues associated with current LDL research and the importance of LDL in 

atherosclerosis. The recommendations are: 

� The oxidation sites from the in vitro LDL experiments provided us the insight that 

hydroxyl radical mediated oxidations occur to those amino acids which are solvent 
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accessible or close to lipid permeable layer. We, therefore, would like to map the surface 

of this protein on LDL samples acquired from patients with different levels of 

atherosclerosis (assuming that they went through in vivo oxidative stress) and match 

those site specific oxidations with our in vitro data. Dr. Jim Oates of MUSC, South 

Carolina kindly has consented to provide us LDL samples for this research. 

� Oxidation of peroxynitrite was done so far with reagent peroxynitrite. A second nitric 

oxide donor 3-morpholinosydnonimine hydrochloride (SIN-1) (releases peroxynitrite in 

situ) should be used along with peroxynitrite in a dose dependent fashion to verify the 

site specific oxidations of apo B-100.  Peroxynitrite is a potent oxidant and can cause 

fragmentation of the peptide backbone. SDS gel electrophoresis data will be useful in 

identifying these fragments from LDL protein. Also, oxidized LDL samples obtained 

from patients could again be very useful in validating the data obtained from in vitro 

experiments. 

� In vitro hypochlorite addition showed site specific chlorination and other oxidations in 

the LDL protein. However, peptide backbone fragmentation was not largely explored in 

our current experiments. Hypochlorite being an extremely strong oxidant showed protein 

fragmentations in other model systems6, 7 Again SDS gel electrophoresis data should 

reveal important aspects of variable hypochlorite mediated oxidation of apo B-100 in 

LDL. 

� In a related but slightly different subject, myeloperoxidase, hydrogen peroxide and 

chloride should be used to initiate more physiologically relevant hypochlorous acid 

oxidant system to oxidize LDL. This system will exclusively provide evidence on 
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whether there are any differences in site specific oxidations between reagent hypochlorite 

and MPO/H2O2/Cl-.8 

�  All through our LDL work we have perceived the fact that enzymatic digestion is a key 

factor in identifying peptides by LC-MS/MS based techniques. Trypsin was an enzyme of 

choice owing to its broad applicability and ease of use. However, other enzyme systems 

could also be useful. Use of pronase was partially explored in hypochlorite mediated 

oxidation of LDL. With slight modifications in the digestion protocol, pronase9, 10 could 

be considerably useful in generating substantial amounts of peptides from apo B-100, 

particularly due to its non-specific nature. Also chymotrypsin should be explored for the 

same reason9. Combination of enzymes might also increase the number of peptides from 

apo B-100, which in turn could be useful for matching them with the database. 

� To address the problems associated with tryptic digestion and recovery of peptides after 

digestion, enzyme immobilization in microfluidic chip11-13 or other devices14-16 could be a 

powerful alternative approach. Microfluidics involving in-line digestion coupled with 

LC-separation and tandem mass spectrometry will bring about revolutionary changes in 

the complete aspect of the proteomics research associated with large proteins such as apo 

B-100. 

� Natural variant identification by novel database search method could be useful as a rapid 

screening method in identifying modifications in proteins. We believe this methodology 

will provide significant support in early screening of samples for disease related 

mutations in proteins.  
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The strong practical impetus for LDL research is associated with human health and our 

future research will definitely provide answers to some long standing questions associated with 

risk factors in cardiovascular diseases. 
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Appendix A 
Table A-1 List of peptides depicting various modifications observed in tryptic peptides (unique positive match) ]obtained from apo B-100 after low 
peroxide exposure (sample 1). 

. 
 

 

 

AA 
modification 

Dta # Peptide AA sequence for the peptide Chg 
State 

Xc ∆Cn 

1722-28 3996-4021 GISTSAASPAVGTVGM*DMDEDDDF4019SK +3 4.60 0.24 

2354-68 877-96 PSVSVEF883VTNMGIIIPDFAR +2 4.42 0.27 

2674 670-95 ESMLKTTLTAF680GFASADLIEIGLEGK +3 3.48 0.23 

2734-36 2645-69 FSTPEFTILNTFHIPSFTIDF2665VEMK +3 3.70 0.27 

F+16 

3033 4520-40 LIDLSIQNYHTF4531LIYITELLK +3 3.83 0.07 

F+32 2624 3906-35 ADYVETVLDSTCSSTVQF3923LEY3926ELNVLGTHK +3 3.54 0.47 

1750-52 52-71 YTYNY54EAESSSGVPGTADSR +2 5.66 0.78 

2624 3906-35 Same precursor ion as 2624 in F+32    

Y+16 

2877-81 4359-85 FNEFIQNELQEASQELQQIHQY4380IMALR +3 6.30 0.57 

2498-2504 591-613 NFVASH596IANILNSEELDIQDLKK +3 3.25 0.39 H+16 

3033 4520-40 LIDLSIQNYH4529TFLIYITELLK +3 3.84 0.26 

1678-80 52-71 YTYNYEAESSSGVP65GTADSR +2 3.54 0.63 

2655 3292-3311 VPSYTLILPSLELP3305VLHVP3310R +2 3.48 0.24 

P+16 

2772-78 3254-76 PVVNVEVSP3262FTIEMSAFGYVFPK +2 3.50 0.34 
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Table A-2 List of peptides depicting various modifications observed in tryptic peptides (unique positive match) obtained from apo B-100 after low 
peroxide exposure (sample 2). 

 

 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

1885-92 3996-4021 GISTSAASPAVGTVGM*DMDEDDDF4019SK +2 3.42 0.67 

2403-11 877-96 PSVSVEF883VTNMGIIIPDFAR +2 4.25 0.25 

F+16 

2827-34 2645-69 FSTPEFTILNTFHIPSFTIDF2665VEMK +3 3.61 0.25 

1940-47 276-87 Y276GMVAQVTQTLK +2 3.09 0.54 

2211-16 1001-24 LELELRPTGEIEQYSVSATY1020ELQR +3 5.22 0.03 

2223 140-57 QVFLY144PEKDEPTYILNIK +3 3.44 0.04 

2392 4447-61 NIQEY4451LSILTDPDGK +2 3.57 0.58 

Y+16 

2623 3292-3311 VPSY3295TLILPSLELPVLHVPR +3 6.08 0.50 

W+32 2159 577-90 IVQILPW583EQNEQVK +2 3.13 0.34 

H+16 2889-94 2489-2509 ITLIINWLQEALSSASLAH2507MK +3 3.39 0.42 

2211-16 1001-24 LELELRP1007TGEIEQYSVSATYELQR +3 5.21 0.56 

2223 140-57 QVFLYP145EKDEPTYILNIK +3 3.47 0.78 

2231 3587-3603 ATLELSP3593WQMSALVQVH +2 3.79 0.67 

2303-06 655-69 IEGNLIFDP663NNYLPK +2 3.73 0.06 

2439 2610-25 ATFQTPDFIVP2620LTDLR +2 3.34 0.03 

P+16 

2623 3292-3311 VP3293SYTLILPSLELPVLHVPR +3 5.56 0.09 
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Table A-3 List of peptides depicting various modifications observed in tryptic peptides (unique positive match) obtained from apo B-100 after 
intermediate peroxide exposure (sample 3). Duplicate run (sample 4) did not reveal any unique peptide. 

 

 

 

 

 

 

 

 

 

 

 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

1510 1188-1202 KMTSNF1193PVDLSDYPK.S +3 3.23 0.09 F+16 

2433-38 2411-25 TFIEDVNKF2419LDMLIK +2 3.33 0.59 

Y+16 1577 4499-4512 LQDFSDQLSDYY4510EK +2 4.94 0.01 

P+16 1331-33 3996-4021 GISTSAASP4004AVGTVGM 4011DMDEDDDFSK +3 3.35 0.34 
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Table A-4 List of peptides depicting various modifications observed in tryptic peptides obtained (unique positive match) from apo B-100 after high 
peroxide exposure (sample 5) 

 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

1621-27 1189-1202 MTSNF1193PVDLSDYPK +2 3.11 0.73 F+16 

2323-27 2645-69 FSTPEFTILNTFHIPSFTIDF2665VEMK +3 3.93 0.22 

Y+16 2417-23 4359-85 FNEFIQNELQEASQELQQIHQY4380IMALR +2 4.94 0.01 

P+16 1367-73 3996-4021 GISTSAASP4004AVGTVGM 4011DMDEDDDFSK +3 3.35 0.34 
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Table A-5 List of peptides depicting various modifications observed in tryptic peptides (unique positive match) obtained from apo B-100 after high 
peroxide exposure (sample 6) 

 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

2113 2296-2309 VLLDQLGTTISF2307ER +2 3.12 0.52 

2301 877-96 PSVSVEF883VTNMGIIIPDFAR +2 3.27 0.20 

2591-99 670-95 ESMLKTTLTAF680GFASADLIEIGLEGK +3 4.30 0.02 

F+16 

2799-2802 2411-25 TFIEDVNKF2419LDMLIK +2 3.42 0.63 

F+32 2107-11 2296-2309 VLLDQLGTTISF2307ER +2 4.94 0.01 

Y+16 2131-37 2560-75 NLTDFAEQY2568SIQDWAK +2 4.40 0.07 

P+16 1965 3277-91 AVSM3279P3280SFSILGSDVR +2 3.87 0.65 

K+120 2732 2195-2210 K2195IAIANIIDEIIEK 2208LK [2208Lys] +3 3.05 0.01 

K+138 2732 2195-2210 K2195IAIANIIDEIIEK 2208LK [2195Lys] +3 3.05 0.01 
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Appendix B 
 

Table B-1 List of peptides depicting various modifications observed in tryptic peptides (unique positive match) obtained from apo B-100 after low, 
intermediate and high peroxynitrite exposure. All matched peptides were listed in the following table. 

  

 
 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

Y+45 4151 1830-52 AY1831QNNEIKHIY 1840AISSAALSASYK [1831 hydroxylation of Y] +3 3.53 0.09 

4569-76 577-90 IVQILPW583EQNEQVK +2 3.32 0.55 

4413-18 3953-73 DFSAEYEEDGKFEGLQEW3970EGK +3 3.45 0.76 

4120 577-90 IVQILPW583EQNEQVK +2 3.36 0.49 

8726-30 3953-73 DFSAEYEEDGKFEGLQEW3970EGK +3 3.28 0.68 

8846-50 3953-73 DFSAEYEEDGKFEGLQEW3970EGK +3 3.28 0.70 

5398-5405 2241-55 SGSSTASW2248IQNVDTK +2 3.62 0.64 

8158-62 1451-74 GLLIFDASSSW1461GPQMSASVHLDSK +3 3.54 0.66 

W+16 

5562 3953-73 DFSAEYEEDGKFEGLQEW3970EGK +2 2.60 0.71 

C+48 8571-76 1499-1513 GTYGLSC1505QRDPNTGR +2 3.08 0.66 
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Table B-2 List of peptides depicting various modifications observed in tryptic peptides (unique positive match) obtained from apo B-100 after another 
high peroxynitrite exposure. Unlike the last time four nitrotyrosines were nitrated. Relevant peptides were listed below. 

 

 
 
 
 
 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

1382 2523-34 M2523Y2524QM2526DIQQELQR +2 4.52 0.69 

2213-19 3292-3311 VPSY3295TLILPSLELPVLHVPR +3 6.34 0.61 

2807-13 401-27 VHANPLLIDVVTY413LVALIPEPSAQQLR +3 4.29 0.31 

Y+45 

1328 1600-10 SEY1602QADYESLR +2 2.68 0.50 
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Table B-3 List of peptides depicting various modifications observed in pronase digest (unique positive match) obtained from apo B-100 after low, 
intermediate and high hypochlorite exposure. All positive matches from duplicate experiments were shown below. 

 
 
 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

2300-06 1051-67 FKY1053NRQSM1058TLSSEVQIP +3 3.57 0.29 

2619-34 1193-1202 FPVDLSDY1200PK +2 3.04 0.47 

Y+34 

2492-95 1193-1204 FPVDLSDY1200PKSL +2 3.26 0.43 

2405 4010-22 GM4011DM4013DEDDDFSKW4022 +2 3.63 0.57 W+16 

2268 4385-98 REEYFDPSIVGW4396TV +2 3.09 0.66 
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Table B-4 List of matched peptides after low hypochlorite treatment followed by a trypsin digestion of apo B-100. All peptides from duplicate analyses 
were shown. 

 
 
 
 
 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

Y+34 2440-43 3292-3311 VPSY3295TLILPSLELPVLHVPR +3 3.26 0.34 

W+16 1702 3559-68 IYSLW3563EHSTK +2 3.06 0.38 
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Table B-5 List of matched peptides after intermediate hypochlorite treatment followed by a trypsin digestion of apo B-100. All peptides from duplicate 
analyses were shown. 

 
 
 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

2026 2118-33 LPQQANDYLNSFNW2131ER +2 4.84 0.61 

2098 3587-3603 ATLELSPW3594QMSALVQVH +2 4.89 0.54 

2188 4056-71 VNW4058EEEAASGLLTSLK +2 4.40 0.62 

2271 2675-94 TIDQMQNSELQW2686PVPDIYLR +2 2.70 0.42 

3031 2489-2509 ITLIINW2495LQEALSSASLAHMK +3 3.04 0.17 

3405-23 2535-59 YLSLVGQVYSTLVTYISDW2553W2554TLAAK [could be either] +2 4.33 0.04 

4768 1451-74 GLLIFDASSSW1461GPQMSASVHLDSK +3 3.43 0.54 

W+16 

1690-95 720-32 YW721VNGQVPDGVSK +2 3.33 0.61 

1537 1102-18 ITEVALM1108GHLSC1112DTKEER +3 5.22 0.68 

1621 1101-18 KITEVALM1108GHLSC1112DTKEER +3 5.05 0.60 

C+48 

1820-27 4214-22 EELC4217TM4219FIR +2 2.51 0.55 
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Table B-6 List of matched peptides after high hypochlorite treatment followed by a trypsin digestion of apo B-100. All peptides from duplicate analyses 
were shown. 

 
 
 

AA modification Dta # Peptide AA sequence for the peptide Chg.  
State 

Xc ∆Cn 

1834-41 276-87 Y276GM278VAQVTQTLK +2 3.85 0.48 

1877-83 440-54 ATLY443ALSHAVNNYHK +3 4.31 0.62 

1925 1985-2002 TQFNNNEYSQDLDAY1999NTK +2 5.44 0.22 

1929-46 3763-72 LDFREIQIY3771K +2 2.71 0.25 

2127 4499-4512 LQDFSDQLSDY4509Y4510EK [could be either one] +2 4.97 0.11 

2145 1189-1202 M1189TSNFPVDLSDY1200PK +2 3.61 0.65 

2249-53 3137-48 LPY3139TIITTPPLK +2 3.77 0.59 

2299-2307 140-57 QVFLY144PEKDEPTYILNIK +3 4.13 0.21 

2441-50 655-69 IEGNLIFDPNNY666LPK +2 3.57 0.48 

2693-97 3292-3311 VPSY3295TLILPSLELPVLHVPR +2 4.51 0.58 

3009-14 4520-40 LIDLSIQNYHTFLIY4534ITELLK +3 5.72 0.49 

Y+34 

2202-08 3137-48 LPY3139TIITTPPLK +2 3.95 0.58 

2195-97 4499-4512 LQDFSDQLSDY4509Y4510EK +2 5.16 0.09 

2345 140-57 QVFLY148PEKDEPTYILNIK +3 3.73 0.19 

2588 4447-61 NIQEY4451LSILTDPDGK +2 4.04 0.69 

Y+68 

2734 3292-3311 VPSY3295TLILPSLELPVLHVPR +3 4.85 0.60 

2459 3137-55 LPYTIITTPPLKDFSLW3153EK +3 3.95 0.51 

3398 2335-59 YLSLVGQVYSTLVTYISDW2553W2554TLAAK [both oxidized] +3 4.28 0.25 

W+16 

1901 4056-66 VNW4058EEEAASGL +2 3.02 0.65 

C+48 1958 3754-66 TDLQVPSC3761KLDFR +2 3.06 0.44 
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