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Abstract 

In this thesis, the author presents and analyzes two 4-dimensional Constant Envelope 

Quadrature-Quadrature Phase Shift Keying constellations. Optimal demodulators for the two 

constellations are presented, and one of them was designed and implemented by the author.   

In addition, a novel expanded 16-dimensional CEQ2PSK constellation that doubles the 

number of points without decreasing the distance between points or increasing the peak energy is 

generated by concatenating the aforementioned constellations with a particular method and 

restrictions. This original 16-dimensional set of symbols is set-partitioned and used in a 

multidimensional Trellis-Coded Modulation scheme along with a convolutional encoder of rate 

2/3.   

Effective gain of 2.67 dB over uncoded CEQ2PSK constellation with low complexity is 

achieved theoretically. A coding gain of 2.4 dB with 8 dB SNR is obtained by using Monte Carlo 

simulations. The TCM systems and demodulators were tested under an Additive White Gaussian 

Noise channel by using Matlab’s Simulink block diagrams. 

 

 

 

 

 

 

Keywords—Multidimensional constellation, constant envelope, constellation expansion, trellis coded modulation, 

quadrature-quadrature phase shift keying. 
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1. Introduction 

Digital communications is a field that studies effective transmission of information in binary 

sequences through a particular channel [1]. By transmitting data in discrete packages, many 

advantages, which have been based on an extensive mathematical theory and random process 

analysis, can be accomplished; these include more noise immunity than analog communication 

systems, more information transmitted per unit bandwidth, and low costs in the implementation 

of digital devices.  

One of the most important challenges for communications engineers is to design optimal 

systems that can protect transmitted messages from channel errors. Shannon’s capacity theorem 

[2] proves that it is theoretically possible to achieve reliability in the transmission of an 

information sequence throughout a linear Gaussian channel by using coding. 

The author of this thesis presents a system that tries to overcome the detrimental effects 

of a Gaussian channel by using a trellis-coded modulation (TCM) system along with a novel 

expanded 16-D Constant Envelope Quadrature-Quadrature Phase Shift Keying (CEQ2PSK) 

constellation. Therefore, the probability of an error event of the coded 16-D CEQ2PSK TCM 

scheme will decrease in comparison to the uncoded 16-D CEQ2PSK schemes (Saha’s or 

Cartwright’s constellations).  Because the proposed TCM system has constant envelope, this 

scheme can be used effectively in non-linear channels such as the magnetic recording channel.   

In this introductory chapter, an exposition of the fundamental theory involved in the 

TCM schemes is surveyed. Convolutional coding and decoding, modulators, demodulators, 

trellis coded modulation, and multidimensional signaling are the topics that the author presents in 
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this chapter. To continue, a brief description of the two first chapters which are publications1 of 

the TCM system proposed, and which the author worked along on with Dr. Edit J. Kaminsky 

Bourgeois, Dr. Kenneth Cartwright, and Ricardo Gallegos, is given. After that, Chapter four 

gives the simulation design in order to present the strategy that the author used to implement the 

system. Finally, conclusions and future work are given at the end of this thesis.    

1.1 Classical Digital Communication Background 

The basic idea of transmitting discrete chunk of data is summarized in the following process: 

First, the information produced by a source is converted into a sequence of binary digits; this 

process is called source encoding or data compression [1]. After the information has been 

converted, the sequence of bits is passed to the channel encoder which helps the receiver to 

overcome the effects of noise interference encountered in the channel. At the output of the 

channel encoder, the binary sequence is passed to the digital modulator which maps the binary 

information sequence into signal waveforms. Then the signal is sent to the transmission channel. 

Finally, the signal reaches the destination and, a receiver catches the signal. A digital 

demodulator, channel decoder, and source decoder complete the steps for the transmission 

process of the digital data. In TCM, the modulation and encoding are performed jointly.  

1.2 Convolutional Coding  

Convolutional coding and decoding are the fundamental building blocks of the author’s trellis 

modulation scheme. According to [3] the convolutional encoder generates redundant symbols as 

a function of a span of preceding information symbols. A convolutional encoder consists of an L-

stage shift register with the outputs of the selected stages being added modulo-2 to form the 

encoded symbols. Figure 1.1 shows a block diagram for a convolutional coder. 
                                                 

1 See references [11] and [12] . 
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Fig. 1.1: Block diagram of a convolutional coder. 

 The convolutional encoder takes a block of information of k bits and generates n bits, 

where n > k.  The additional n-k bits are derived from the information bits, and can be used to 

detect and correct the errors that occurred in the original bits. The parameter called rate of the 

code is equal to k/n. 

Convolutional Coders are commonly specified by three parameters: n, k, and m, where: 

n = number of output bits 

k = number of input bits 

m = number of memory registers 

 Another important parameter is the constraint length L. This parameter represents the 

number of bits in the encoder memory that affects the generation of the n output bits, and it is 

equal to k(m-1).  

In addition, a convolutional encoder can be seen as finite state machine that has 2k(m-1) 

states [4] with the state information stored in the memory registers. Each new input information 

bit produces a transition from one state to another.  

 The convolutional encoder can be represented by a trellis diagram which shows the state 

transitions and the corresponding input and outputs bits.  In Fig. 1.2 a general trellis diagram 

representation is shown, where the paths between states is denoted as (xi/ci), where xi represents 

the  i-th input bits, and the ci represent the c-th output encoded bits.  

Convolutional Encoder 
Code rate = k/n 

 m Memory registers 
 k input bits n output bits 
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1.3 Convolutional Decoding by using the Viterbi Algorithm  

The Viterbi algorithm (VA) is a computationally efficient technique for determining the most 

probable path through a trellis [5]. The algorithm makes a number of assumptions. First, the 

observed events and hidden events must each be in a sequence. Second, these two sequences 

must be aligned, and an observed event needs to correspond exactly to one hidden event. Third, 

computing the most likely hidden sequence up to certain point “t” must depend only on the 

observed event up to “t”.  

 The Viterbi decoder examines an entire received sequence of a given length (namely, 

decoding depth) and computes a path metric for each path in order to make a decision based on 

this metric.  In [6], VA is claimed to be an asymptotically optimum decoding technique for 

convolutional codes that can determine a code signal that follows a trellis diagram.    

 In [7], Forney mentions that the probability of error can be made to decrease 

exponentially with the increasing of the constraint length or higher rates; therefore the statement 

suggest an improvement in the performance of the decoder, but at the cost of complexity in the 

design.  The author of this thesis design a decoder for the convolutional encoder TCM system 

uses a moderated complexity which is based on a rate of 2/3 and a constraint length of 3.   

… 

 

Fig. 1.2: A trellis diagram representation for a convolutional encoder with k(m-1) states. 

k(m-1) 

  

 k(m-1) 

… 

0 0 
(xi/ci) … 
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1.3 Modulators and Demodulators  

A digital modulator is a device that turns a digital signal into a waveform that is ready to be sent 

over a particular channel. In conventional multilevel (amplitude and/or phase) systems, during 

each modulation interval the modulator transmits b coded information bits at a time by using      

M = 2b distinct waveforms, one waveform for each of the M-ary possible b-bit sequence [1]. For 

instance, if we have a set of 8 signals, then we are transmitting at most 3 bits, and if we are 

broadcasting a set of 16 signals, it means that we are conveying at most 4 bits of information 

during that transmission. The demodulator recovers the b-bits by making an independent M-ary 

nearest neighbor decision on each received signal [6].  

 If the mapping of information is performed under constraints, then the modulator is said 

to have memory [1]. If there are no constraints the modulator is recognized as memory-less [1]. 

The modulator used in this thesis is a memory-less.  

In addition to the mapping constraints, there are other important digital modulator’s 

characteristics that the author considered in his design such as the linearity, and the dimension of 

these sets of modulating signals.  

 Some important schemes used to modulate data are Pulse Amplitude Modulation (PAM), 

Phase Modulation (PM), Quadrature Amplitude Modulation (QAM), Quadrature Phase Shift 

Keying (QPSK), Quadrature-Quadrature Phase Shift Keying(Q2PSK) [8]. All these methods 

have their own way to perform the modulation from bits to analog signals. The Q2PSK 

modulator doesn’t have constant amplitude; however, if coding is performed on the input of this 

modulator constant amplitude can be obtained yielding Constant Envelope Q2PSK (CEQ2PSK).  
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The CEQ2PSK signal set is a fundamental part of the TCM system proposed in this 

thesis. Further details of CEQ2PSK are given in chapters 2 and 3, and the system designed and 

implemented in Matlab’s Simulink 2 is given in chapter 4.  

1.4 Description of Trellis Coded Modulation (TCM)  

TCM is a joint coding and modulation technique for digital transmission that is especially 

appropriated for band-limited channels, and it has become very popular during recent years 

because of the gains achieved without compromising bandwidth efficiency [6]. The key idea of 

TCM schemes is that modulation and coding are combined in order to map the information bits 

to a modulated constellation signal set; therefore, if the signal waveforms in the set that represent 

an information sequence are clearly separated in their Euclidian distances, then a lower error rate 

can be accomplished.  A functional diagram of a standard TCM system is depicted in Fig. 1.3. 

The TCM diagram shows that m bits are encoded to produce m+p coded bits (zm,…,zm+p) 

that select a subset from the partitioned signal constellation.  In addition, uncoded bits (b0,…,bk-

m+1) select a point within the selected subset, s(t), which is the final signal transmitted.   

                                                 
2 Matlabtm is a registerd trademark  of the Math Works, Inc. 

…
 

zm Convolutional 

Encoder  R=m/m+p 

bk-m+1 

b0 

 

 zm+p 

bk-m 

bk 
Select Subset 

 

Select point 

 

s(t) 

 

…
 

…
 

Fig. 1.3: General structure of encoder/modulator for TCM 
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TCM systems require proper set partitioning of the constellation signal set; this task can 

be accomplished very easily if we have few points and the dimensionality of the signal is small. 

Ungerboeck [6] proposed certain rules for set partitioning 2-D signals, and Wei expanded this for 

multidimensional signal set [9].  

Trellis coding uses dense signal sets but restrict the sequences that can be used. This 

provides a gain in free distance and the code imposes a time dependency on the allowed signal 

sequences that allows the receiver to ride through “noise burst” as it is estimating the transmitted 

sequence [6].   

1.4.1 TCM expansion penalty 

TCM schemes require more signal points compared to uncoded constellations. For instances,   

Ungerboeck [6] went from a 4-PSK uncoded system that transmits 2 b/s to a expanded  four state 

Trellis Code 8-PSK modulation and conveys the same bit rate. Indeed, these additional points 

may be obtained at the cost of either increasing the energy in the system, or reducing the MSED 

of the constellation.  

Kaminsky presented in [10] an X8 constellation that can be expanded without increasing 

the energy of the system and without reducing the MSED of the uncoded constellations.  The 

author of this thesis follows the same procedure to expand an uncoded 16-D CEQ2PSK 

constellation.   

1.4.2 TCM decoding 

Because TCM used a convolutional encoder, a VA is used to search the most likely coded 

information sequence embedded in a path of the trellis. In [1], TCM decoding is suggested to be 
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performed in two steps. The first step corresponds to the subset decoding which is find the most 

likely point in each transition (the closest point in Euclidian distance), and to store the point and 

the shortest Euclidian distance. The second step of the decoding procedure is to use the previous 

Euclidian distances to find the most likely path through the trellis by using the VA.   

1.5 Multidimensional Signal Sets 

A set of signal waveforms can be represented geometrically as a point in N-dimensional space.   

For instance, binary orthogonal signals are represented geometrically as points in the two-

dimensional space, and Q2PSK signal set form a four dimensional signal space by using two data 

shaping pulses and two carriers which are pair wise [8]. 

 In addition, multidimensionality can be implemented as sequence of constituent one-, 

two- or four-dimensional signals [6]. For example, Kaminsky [10] achieved eight dimensions by 

transmitting four sequences of a 2-D 4-PSK signal set.   

1.6 Description of Submitted Papers 

Chapter 2 is an article published in the 2008 IEEE Region 5 BASICS conference Proc. [11]. It 

introduces a new set of symbols that is valid for a 4-D CEQ2PSK modulation system. Equally 

important, this chapter also introduces a novel expanded 16-D CEQ2PSK constellation be used in 

Chapter 3 for a TCM system without constellation expansion penalty.   

Chapter 3 is a companion paper submitted to IEEE Globecom 2009 [12] that introduces 

an optimal decoder for Cartwright’s CEQ2PSK symbols presented in Chapter 2. In addition, a 

proper set partition of the expanded 16-D CEQ2PSK constellation is given. Finally, a 16-D 

CEQ2PSK TCM system is implemented and discussed in Chapter 3.   
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Chapter 4 shows the implementations and simulations that generated the results presented 

in the papers that constituted chapters 2 and 3.  Finally, conclusions of these two papers are 

drawn in Chapter 5, and future work is outlined.  
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2. A Novel Expanded 16-Dimensional Constant Envelope Q
2
PSK 

Constellation  

 

Milton I. Quinteros, Edit J. Kaminsky,  Kenneth V. Cartwright,  Ricardo U. Gallegos 
 

 

Abstract 

We introduce a 16-dimensional constant-amplitude constellation that is generated by 

concatenating either four constant envelope quadrature-quadrature phase shift keying 

(CEQ2PSK) symbols from Saha and Birdsall or four CEQ2PSK symbols recently discovered by 

Cartwright and also introduced here. Our new constellation doubles the number of points 

available for data transmission without decreasing the distance between points or increasing 

energy, and may therefore be used in a trellis coded modulation (TCM) system without 

constellation expansion penalty. Because the new constellation has constant envelope, the 

modulation scheme becomes very attractive for nonlinear channels such as the magnetic 

recording channel or the satellite channel with traveling wave tube amplifiers. 

2.1 Introduction 

Considerable research effort has been devoted to developing modulation schemes that can 

overcome the challenges of bandwidth limited channels. Saha and Birdsall   [1], [2] suggested an 

efficient use of available dimensions to improve the spectral efficiency of a communications 

system.  They presented quadrature-quadrature phase shift keying (Q2PSK) and constant 

envelope Q2PSK (CEQ2PSK).  Q2PSK is a 4-dimensional (4-D) scheme that uses two quadrature 

carriers and two data shaping pulses. 
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Constant envelope is desirable in nonlinear channels; it avoids the variations in phase 

produced by changing amplitude, which in turn has detrimental effects in the performance of 

coherent demodulators.  CEQ2PSK achieves constant envelope at the expense of bandwidth 

efficiency because the information rate is 3/(2T) for CEQ2PSK while it is 2/T for non-constant 

Q2PSK. Fortunately, however, CEQ2PSK also provides a gain of 1.44 dB over non-constant 

Q2PSK as shown in [5], which corrects the more optimistic value of 1.76 dB given in [1]. 

In this paper, we present a new set of eight 4-D points which is also a valid CEQ2PSK 

constellation.  Furthermore, we also introduce a new 16-D constellation of 8192 points with 

constant envelope.  Our 16-D constellation is created by the union of the set produced by 

transmitting four of the original CEQ2PSK or four of our new CEQ2PSK points over four 

consecutive time intervals.   

 The rest of this paper is organized as follows:  we present a brief review of Q2PSK and 

CEQ2PSK in Sections 2.2 and 2.3, respectively. In section 2.4, we introduce the new CEQ2PSK 

constellation discovered by Cartwright and our new expanded 16-D constellation. In section 2.5, 

we briefly discuss a couple of nonlinear channels in which our modulation system could be used. 

Suggestions for further work are given in Section 2.6.   Concluding remarks are given in Section 

2.7 with the main references following.  

2.2 Review of Q
2
PSK 

Quadrature-quadrature phase shift keying (Q2PSK) [1], [2] is a spectrally efficient modulation 

scheme that uses available signal space dimensions in a more efficient way than two dimensional 

schemes such as quadrature phase shift keying (QPSK) and minimum shift keying (MSK). Saha 

and Birdsall’s scheme uses four available dimensions created by two data shaping pulses and two 



13 
 

quadrature carriers. The Q2PSK modulating signal set {si(t)}, i = 1, …, 4, is made up of the 

following four orthogonal waveforms: 

s1(t) = cos(πt/2T)cos(2πfct), |t| ≤ T                                                 (1a) 

s2(t) = sin(πt/2T)cos(2πfct), |t| ≤ T                                           (1b) 

s3(t) = cos(πt/2T)sin(2πfct), |t| ≤ T                                                      (1c) 

s4(t) = sin(πt/2T)sin(2πfct), |t| ≤ T.                                                     (1d) 

 The carrier frequency, fc, should be n/4T where n ≥ 2 and T is the time duration of 2 bits.  

The original binary data stream is demultiplexed into four signals {ai(t)}, i = 1, …, 4, each of 

duration 2T. Each ai(t) is then multiplied by the modulating signal si(t), and the resulting signals 

are added to form the modulated non-constant envelope signal Sq(t) [1]:  

.)()()(
4

1





i

iiq tstatS                                                            (2) 

 The number of possible symbols in this modulation technique is 24 = 16 because there are 

four bits input to the modulator. The bit rate at the input of the modulator is 2/T which is twice 

the bit rate of the QPSK scheme. 

2.3 Review of Constant Envelope Q
2
PSK 

Constant envelope, desired for non-linear channels, can be introduced to produce CEQ2PSK, as 

presented in [1]. The modulated Q2PSK signal of (2) may be rewritten as:  

                         (3)                                                                                                     ,)(2cos)()( ttftAtS cq  
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where θ(t) can be any of the four possible values: ±45°, ±135°. This phase shift produces 

discontinuities in phase, and abrupt ±90° or ±180° phase changes in the Q2PSK signal may occur 

at a symbol transition [2]. 

A(t) in (3) is the carrier amplitude given in [1] as: 

 

                                  (4)                                                                                                   

where {ai}, i = 1, …, 4, are, respectively, the binary values of the input signals {ai(t)}, i = 1, …, 

4, at time t, (n-1)T ≤ t ≤ nT (i.e., ±1). In order to accomplish constant envelope, the amplitude 

A(t) in (4)  must fulfill the following condition [1], [2]: 

.04321  aaaa       (5) 

 For CEQ2PSK modulation we have three information input bits {ai}, i = 1, 2, 3, while the 

fourth bit is produced by a simple block encoder of rate 3/4 where a4 = −a1a2/a3 to satisfy (5).  

The eight possible symbols that Saha and Birdsall found are shown in Table I, and labeled Ci, i = 

1, 2, …, 8. 

 The set of points {Ci}, i = 1, 2, …, 8, has peak energy of 2 per 2-D (or 4 over 4-bit 

interval), and the minimum squared Euclidian distance (MSED) between any pair of  signal 

points is 8.  

 In Table II, we show the distribution of squared distances between points in Saha and 

Birdsall’s CEQ2PSK constellation. Obviously, the eight points at distance zero are between a 

point and itself. 

  ,sin2)(

2/1

4321 









T

t
aaaatA





15 
 

Table I: Saha and Birdsall’s CEQ
2PSK symbols 

 
 
 
 
 
 
 
 
 

 

Table II: Distance distribution of CEQ2PSK 

Squared Euclidian distance Number of points 
0 8 
8 48 

16 8 

 

2.4 The New CEQ
2
PSK Constellations 

The main contributions of this paper are contained in this Section.  We present first a second set 

of valid 4-D CEQ2PSK points in subsection 2.4.1.  In subsection 2.4.2, we show the two 16-D 

constant envelope constellations, and in subsection 2.4.3 we introduce the expanded 16-D 

constellation which contains 8192 points, twice as many as needed to transmit 3 information bits 

per 4-D. 

2.4.1 Cartwright’s CEQ
2
PSK Constellation 

We have found a new set of 8 symbols that is also valid for CEQ2PSK. The new set {Ki}, i = 1, 

2, …, 8, has the same energy as the set {Ci}, i = 1, 2, … ,8, and the same distribution of squared 

distances. Therefore, our constellation also has an MSED of 8.  

 Table III shows the novel eight symbols.  Clearly, the constant envelope condition of (5) 

is satisfied by this new set, and the symbol energy is the same as that of the original set shown in 

Table I. 

a1 a2 a3 a4 

sy
m

bo
ls

 

C1 1 1 1 -1 
C2 1 1 -1 1 
C3 1 -1 1 1 
C4 1 -1 -1 -1 
C5 -1 -1 -1 1 
C6 -1 -1 1 -1 
C7 -1 1 -1 -1 
C8 -1 1 1 1 
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 However, there is another constraint that a CEQ2PSK constellation must satisfy that is not 

mentioned by Saha and Birdsall [1], namely,  

2 2 2 2

1 3 2 4 .a a a a        (6) 

The validity of (5) and (6) is established by substituting (1) into (2) to get 

1 2

3 4

( ) cos sin cos 2
2 2

    cos sin sin 2 .
2 2

q c

c

t t
S t a a f t

T T

t t
a a f t

T T

 


 


    
      

    

    
    

                               (7) 

 

Clearly, the amplitude of (7) is given by  

0.5
2

1 2

2

3 4

cos sin
2 2

( ) .

cos sin
2 2

t t
a a

T T
A t

t t
a a

T T

 

 

     
      

     
  

                                                                              (8) 

Simplifying (8) gives  

 

0.5
2 2 2 2

1 2 3 4

2 2 2 2

1 3 2 4

1 2 3 4

2

( ) cos
2 2

sin

a a a a

a a a a t
A t

T

t
a a a a

T





   
 

 
     

      
   

 
    

    .                                                               (9) 

Clearly, (9) has constant envelope if (5) and (6) are satisfied, as they are for the constellation of 

Saha and Birdsall [1] and the new one introduced here in Table III. ((9) reduces to (4) for both 

constellations). 
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Table III: Cartwright’s CEQ
2PSK symbols 

 

 
 

 

 

2.4.2 The 16-D CEQ
2
PSK Constellations 

In [3], a constellation of 2n-dimensional (2n-D) points was proposed by transmitting n 

consecutive 2D in-phase and quadrature-phase pairs.  A similar approach is followed here, where 

in order to obtain the expanded 16-dimensional constant envelope Q2PSK constellation, we use 4 

consecutive 4-D CEQ2PSK symbols, instead of using 8 consecutive 2D QPSK symbols. 

If four consecutive 4-D symbol time slots are taken at once, a 16-dimensional symbol can 

be generated. We have two subsets with symbols of the form S16a = [Ci Cj Cp Cq], and  S16b = [Ki 

Kj Kq Kp], where i, j, p, q = 1, 2, ···,  8.  For the standard CEQ2PSK over 4 consecutive time 

intervals, there are 84 = 4096 possible points {S16ai}, i = 1, 2, …, 4096.  The set {S16bi}, i = 1, 2, 

…, 4096, contains the 4096 points formed by four consecutive points of Cartwright’s CEQ2PSK 

of Table III. Table IV shows the squared distance distribution for either of these two sets.  

Because each 16-dimensional set has 4096 signals, the distribution has a total of (4096)2 

distances.  

 Within the set {S16ai} or {S16bi}, i = 1, 2, …, 4096, the MSED between any pair of 

different points is still 8, and the peak energy is still equal to 2 per 2-D. 

 

a1 a2 a3 a4 

sy
m

bo
ls

 

K1 0 2 2 0 
K2 0 -2 -2 0 
K3 0 -2 2 0 
K4 0 2 -2 0 
K5 2 0 0 2 
K6 2 0 0 -2 
K7 -2 0 0 2 
K8 -2 0 0 -2 
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2.5 The New Expanded 16-D CEQ
2
PSK Constellation  

Our novel 16-dimensional constellation is the union of the set {S16ai} and {S16bi}, yielding 2∙84 = 

8192 possible points. Notice that this is not equivalent to the 4-fold Cartesian product 

constellation of {Ci}∪{Ki} because the four consecutive 4-D symbols used to produce the 16-D 

symbols must come only from one or the other 4-D constellation.  This affects the partitioning 

that will be needed for trellis coded modulation (TCM) using our expanded constellation. 

 The MSED between points of this new expanded constellation is still 8, which is the 

intra-set MSED of each of the two 16-D sets. The MSED across sets {S16ai} and {S16bi} is equal 

to 8(1+( 2-1)2) = 9.373. This new constellation, then, has twice as many points within the same 

16-D space, with the same energy per point, without decreasing the MSED.  This will allow a 

TCM system to be developed that uses the expanded constellation without paying the usual 

constellation expansion penalty. 

 Table V shows the squared distances from points in {S16ai} to points in {S16bi}, and the 

multiplicity of these.  The complete squared-distance distribution for our expanded constellation 

is the union of those listed in Tables IV and V, with twice the number of pairs indicated; for 

example, there are 196608 points at MSED 8 and 131072 pairs of points with SED 9.373. 

Table IV: Distance distribution of the 16-D CEQ2PSK constellations  {S16ai} or {S16bi} 

  
Squared Euclidian distance Number of pairs 

0 4096 
8 98304 
16 
24 
32 
40 
48 
56 
64 

901120 
3833856 
7102464 
3833856 
901120 
98304 
4096 
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Table V: Partial distance distribution between sets {S16ai} and {S16bi} 
(only those different from the SEDs listed in Table IV) 

Squared Euclidian distance Number of pairs 
9.373 65536 

15.029 524288 
20.686 
26.343 
32.00 

37.656 
43.313 
48.970 
54.627 

1835008 
3670016 
4587520 
3670016 
1835008 
524288 
65536 

2.6 Nonlinear Channels 

Because nonlinear channels require constant envelope signals, our new constellation is a good 

option in channels such as the recording magnetic channel and the travelling wave tube (TWT) 

channel. For this reason, we discuss very briefly these two channels.  

2.6.1  Recording Channel 

The digital magnetic recording channel is nonlinear due to a process called saturation magnetic 

recording [6].  This particular phenomenon has been modeled by using a Volterra series 

expansion.  

 Sands and Cioffi [7] suggest a system transfer function by using Discrete Volterra Series 

(DVS).  According to Sands and Cioffi, the channel can be modeled with most of the nonlinear 

distortion represented with third-order terms, which allows for a relatively compact channel 

description.  Signals for the recording channels should be DC-free and have constant envelope. 

2.6.2 Traveling Wave Tube (TWT) Channel 

The model of nonlinear TWT amplifiers presented by Saleh in [8] may be used for the satellite 

communications channel if the satellite amplifiers are being driven near the saturation point. 
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Constant amplitude modulation schemes such as the one presented in this paper allows operation 

of the amplifier in that situation, avoiding loss of power.  

2.7 Future Work 

Because our new expanded 16-dimensional has redundant symbols, we can use this constellation 

along with a convolutional encoder to produce a novel multidimensional trellis coded modulation 

(TCM) system similar to those in [3], [4], but using CEQ2PSK instead of QPSK and therefore 

gaining an additional advantage due to the better utilization of the signal dimensions. In order to 

accomplish this task, an adequate set partition has to be implemented.  

 Simulations of the CEQ2PSK TCM system with our expanded 16-D constellation are 

being conducted and shall be presented in a companion paper.  The hardware detector of [5] 

must be modified to optimally decode the new sets.  The performance of the 16-D CEQ2PSK-

TCM system over nonlinear channels such as those mentioned in Section 2.5 must be 

determined.    

2.8 Conclusions 

We have proposed a second set of 4-D constant envelope quadrature-quadrature PSK 

(CEQ2PSK) signals comparable to those of Saha and Birdsall.  Furthermore, we have used  both 

of these CEQ2PSK sets to create a novel 16-D constellation of 8192 points.  The 16-D 

constellation is the union of all points formed by 4 consecutive 4-D points from one or the other 

CEQ2PSK constellation.  Our expanded 16-D constant envelope constellation allows redundancy 

to be introduced through a convolutional encoder in a TCM scheme without suffering any power 

penalty due to constellation expansion, as the MSED and the average energy of the expanded 

constellation are the same as those of the system before expansion: the number of symbols is 
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doubled without decreasing MSED or increasing power. Because this constellation has constant 

envelope, it is attractive for use in nonlinear channels. Optimal yet simple hardware detection is 

possible. 
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3. A Trellis-Coded Modulation Scheme with A Novel Expanded 

16-Dimensional Constant Envelope Q
2
PSK Constellation

3
 

Milton I. Quinteros, Edit J. Kaminsky, Kenneth V. Cartwright 

 
 

 Abstract 

This paper presents a TCM scheme that uses a new expanded 16-Dimensional Constant 

Envelope Q2PSK constellation along with a simple convolutional encoder of rate 2/3. An 

effective gain of 2.67 dB over uncoded CEQ2PSK is achievable with low complexity and 

without suffering from constellation expansion penalty. Larger coding gains are easily achieved 

with encoders of higher rates.  In addition, an optimal hardware implementation of the required 

decoders is described. 

3.1 Introduction  

Trellis-coded modulation schemes with multidimensional signals allow for performance 

improvement over classical two-dimensional constellations. For example, in [1], [2] it was 

claimed that TCM systems with lattices of four-, eight-, or 16- dimensions achieve decent coding 

gains of 2 dB, 3 dB, or 6 dB, respectively, over two-dimensional signals but with a loss due to 

constellation expansion. Indeed, the disadvantage of the constellation expansion required to 

introduce coding redundancy in standard TCM is the reduction of the minimum squared 

                                                 
3 M. I. Quinteros, K. V. Cartwright, E. J. Kaminsky, “A Trellis-Coded Modulation Scheme with a Novel Expanded 16-Dimensional Constant Envelope Q2PSK 

Constellation”  submitted in  IEEE Globecom 2009 Conf. Proc., Honolulu, Hawaii, 2009, pp. 6, Dec 2009. 
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Euclidian distance (MSED) between points for a given energy level, or the increase of 

modulation level and energy for a given MSED [3].  

In [4], Saha and Arbor reported a set of signals that uses two data shaping pulses and two 

carriers which are pair-wise quadrature in phase to create a spectrally efficient four dimensional 

(4-D) signal set called Quadrature-Quadrature Phase Shift-Keying (Q2PSK).    

Acha and Carrasco [5] and Saha [6] utilize Saha’s standard 4-D Q2PSK constellation for 

their TCM systems along with convolutional encoders of different rates.  These schemes, 

however, achieve some gains at the cost of data rate. In addition to the rate cost paid for using 

these schemes, and the care required in order to avoid catastrophic error propagation [5], some of 

the Q2PSK trellis codes proposed by Saha, Acha and Carrasco do not have constant envelope. 

Their constant envelope TCM systems are obtained by further reducing the data rate by half. 

During recent years, some work has been done in design of multidimensional signal sets 

that allow TCM to be implemented without constellation expansion penalty [3], [7], i.e., without 

increasing the modulation level.  Kaminsky, Ayo and Cartwright’s multidimensional TCM 

schemes of [3] are based on QPSK signals of even dimensions of eight and above. This family of 

constant envelope constellations is generated by concatenating n QPSK points or n QPSK points 

rotated by 45 degrees (n ≥ 4) without any constellation expansion loss. In [7], a 16-D signal set 

with constant envelope was generated by concatenating four CEQ2
PSK signals from Saha’s or 

four CEQ2
PSK signals from Cartwright’s 4-D constellation. Therefore, the same idea of [3] is 

followed in [7] to introduce redundancy for coding without increasing the modulation level while 

preserving average and peak energies constant.   
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Here, we use the constellation we proposed in [7] to implement a simple multidimensional 

TCM system that uses a convolutional encoder of rate 2/3 to achieve an asymptotic coding gain 

of 3 dB over uncoded CEQ2PSK. Because nonlinear channels require constant envelope signals, 

this 16-D CEQ2PSK-TCM system is a good option in channels that require non-linear power 

amplifiers.  Larger coding gains are easily achieved with this constellation by using higher-rate 

encoders. 

Additionally, a hardware detector (based on the demodulator described in [8]) for the 4-D 

CEQ2PSK discovered by Cartwright is proposed here.  The complete implementation of the 

TCM system is also given. 

The rest of this paper is organized as follows: In Section 3.2, a review of CEQ2PSK 

constellations and their decoders –including presentation of our new hardware detector for 

Cartwright’s CEQ
2PSK – is presented.  Section 3.3 presents the set-partitioning into eight sets 

required for the novel 16-D expanded CEQ2PSK constellation. Section 3.4 discusses the TCM 

system implementation, and Section 3.5 reports the development of the TCM decoder. Results, 

including Monte Carlo simulations of the system proposed in this paper are presented and 

discussed in Section 3.6. Finally, in Section 3.7, conclusions are drawn and future work is 

mentioned, followed by references.   

3.2 Review of the Constant Envelope Q
2
PSK Constellations  

In this section we discuss separately the two 4-dimensional constant envelope Q2PSK 

constellations, and the expanded 16-dimensional Q2PSK constellation. 
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3.2.1 4-D Constant Envelope Quadrature-Quadrature Phase Shift-Keying (CEQ
2
PSK) 

In what follows, we review Saha’s original 4-D CEQ2PSK [9] and the 4-D CEQ2PSK, 

discovered by Cartwright [7]. An optimal decoder for the former was presented in [8] and a 

similar hardware decoder for the latter is proposed here. 

3.2.1.1 Saha’s 4-D CEQ
2
PSK  

Quadrature-Quadrature Phase Shift-keying (Q2PSK) and Constant Envelope Q2PSK (CEQ2PSK) 

signal sets were introduced by Saha and Birdsall in [9]. 

The four dimensional non-constant envelope Q2PSK may be defined as 





4

1

)()()(
i

iiq tstatS ,                                                                         (1) 

where the four signals {ai(t)},, i = 1, …, 4, each of duration 2T, are the original binary data 

streams, and the modulating signal set {si (t )}, i = 1, …, 4, is defined as follows [9]: 

 s1(t) = cos(πt/2T)cos(2πfct), |t| ≤ T                                      (2a) 

          s2(t) = sin(πt/2T)cos(2πfct), |t| ≤ T                             (2b)                             

s3(t) = cos(πt/2T)sin(2πfct), |t| ≤ T                                           (2c) 

                     s4(t) = sin(πt/2T)sin(2πfct), |t| ≤ T.                                          (2d) 

The carrier frequency, fc, should be n/(4T) where n ≥ 2, and T is the time duration of 2 

bits.  

In order to obtain constant envelope, Saha and Birdsall introduced an encoder of rate 3/4 

that accepts three information serial input streams {a1(t), a2(t), a3(t)}, and generates a code word 
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{a1(t), a2(t), a3(t), a4(t)} such that the first three bits in the codeword are the information bits and 

the fourth is an odd parity check bit [9]. Therefore, the eight possible transmitted signals for the 

original CEQ2PSK are S1 = [a, a, b, -b] and S2 = [a, -a, b, b], where a, b are either +1 or −1 [8]. It 

is also mentioned in [9] that CEQ2PSK is achieved at the expense of the information 

transmission rate which is reduced from 2/T to 3/(2T). 

To obtain the maximum achievable performance of CEQ2PSK an optimal detector is 

needed. In [8], Cartwright and Kaminsky presented a CEQ2PSK hardware detector that reaches 

the performance of CEQ2PSK predicted in [9]. This decoder uses five hard-limiters, four adders, 

four absolute value circuits, two inverters, and a decision function that activates a trigger for a 

four-pole double-throw switch.  

3.2.1.2 Cartwright’s 4-D CEQ
2
PSK  

In [7], a new set of eight 4-D symbols that is also valid for CEQ2PSK was introduced. 

This new set has the same energy and distribution of squared distances as the original CEQ2PSK 

constellation from [9]. Cartwright’s symbols may be defined by an orthogonal transformation of 

Saha’s constant envelope symbols. Let R
4 be the 4-D rotational operation [10]: 

 𝑅4 =  
𝑅 0
0 𝑅

 ,                                                                  (3) 

where R  is  

𝑅 =   
cos(45°) −sin(45°)
sin(45°) cos(45°)

  .                                                  (4) 
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Because the eight possible transmitted 4-D signals for Cartwright’s constellations are 

generated by rotating the component 2-D signals, the new CEQ2PSK points, S1r and S2r, 

corresponding to Saha’s S1 and S2 are: 

𝑆1𝑟 = 𝑅4𝑆1 ,                                                                                   (5) 

𝑆2𝑟 = 𝑅4𝑆2,                                                                          (6) 

or 𝑆1𝑟 = [0,  2𝑎,  2𝑏, 0] and 𝑆2𝑟 = [ 2𝑎, 0,0,  2𝑏], where a,b are either +1 or −1.  The proof 

that these eight symbols are also valid for CEQ2PSK is given in [7]. 

We now discuss the implementation of the optimal hardware detector for Cartwright’s 

constellation.  Fig. 3.1 depicts the block diagram of our proposed detector which closely 

resembles the receiver in [8], but uses a different decision function F(∙), gains of magnitude  2, 

and requires four multipliers which may be implemented as electronic switches, if so desired.   

The received signal 𝑟 𝑡  is the transmitted signal 𝑠 𝑡  corrupted by additive white 

Gaussian noise (AWGN) 𝑛(𝑡) with power spectral density No: 

                                𝑟 𝑡 = 𝑠 𝑡 + 𝑛(𝑡)                                                            (7) 

The block F(∙) in Fig. 3.1 calculates 𝑑   as in (8):  

𝑑 =
1

2
 sgn 𝑤 − 𝑦 + 1  ,                                                    (8) 

and therefore determines the estimated symbol 𝑆  = [â1, â2, â3, â4].  The values of w and y are 

given by (9) and (10), respectively: 

w = |a1r | + |a4r |,                                                           (9)  
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  y = |a2r | + |a3r |,                                                           (10) 

and {air}, i = 1, …, 4 are the outputs of the correlation detectors.   

 If a member of S1r is transmitted, y = 2 2 and w = 0, but when a member of S2r is 

transmitted, w = 2 2 and y = 0. Therefore, when a member of S1r has been transmitted w <y 

and 𝑑  = 0, but when w > y, a member of the S2r has been transmitted and 𝑑  = 1. The output 

symbol, then, is obtained from (9): 

𝑆 = 𝑑 𝑆 2𝑟 +  1 − 𝑑  𝑆 1𝑟 .                                                         (11) 

Our optimum hardware decoder is a direct implementation of  

                            â1r =   2 sgn(a1r) 𝑑                                                                 (12a) 

                 â2r =   2 sgn(a2r) (1 − 𝑑 )                                           (12b)                             

                                â3r =  2sgn(a3r) (1 − 𝑑 )                                                         (12c) 
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F(∙) 

a1r 

a2r 

 
a3r 

a4r 

|a1r | 

|a4r | |a2r | 
|a3r | 

|•| 

|•| 

w 

|•| 

|•| 

y 
𝑑  
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Fig. 3.1: Block diagram of the proposed optimum 4-D CEQ
2
PSK demodulator for Cartwright's signal constellation. 
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     â4r =  2 sgn(a4r) 𝑑 ,                                                                 (12d) 

which follows from (11).  In order to verify the performance of the demodulator, Monte Carlo 

simulations were performed and compared with the optimum hardware detector published in [8]; 

these results are presented in Section 3.6.  

3.2.2 Novel 16-D Expanded CEQ
2
PSK Constellation 

If four consecutive 4-D points from either Saha’s or Cartwright’s CEQ
2PSK constellation are 

taken together, a 16-D signal is obtained. In this way, two sets of 4096 16-D symbols each, Sa for 

Saha’s or Sb for Cartwright’s, are formed.  

The expanded constellation, V, is defined as the union of these two constellations: 

                                 𝑉 =  𝑆𝑎 ∪ 𝑆𝑏 .                                                                 (13) 

Our expanded 16-D CEQ2PSK signal set is therefore formed in a way similar to 

Kaminsky, Ayo and Cartwright’s expanded constellation of [3], but with different constituent 

signal points. Peak energy, average energy, and minimum squared Euclidian distance (MSED) is 

maintained while doubling the size of the constellation, so this set of 16-D symbols is obtained 

without any constellation expansion penalty. Because the four consecutive 4-D symbols must 

come from one or the other 4-D CEQ2PSK constellation, the set-partition for the TCM system 

cannot be performed exactly as is done when the expanded constellation is formed by the 

Cartesian product of the constituent constellations, as in [1]. In the next Section we present the 

set partition for the 16-D expanded constellation V. 
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3.3 Expanded 16-D CEQ
2
PSK Constellation Partition  

TCM schemes require a proper set-partitioning of the constellation in order to increment the free 

distance of the code. In this section we show how the constellation V is partitioned into the eight 

subsets required by our simple TCM encoder.  We use {Ai}i =1, …, 4 to denote the four subsets 

formed from 𝑆𝑎  and {Bi}i =1, …, 4 for the 16-D CEQ2PSK points from 𝑆𝑏 . The MSED within V is 

8, but the intra-subset MSED within {Ai} or {Bi} is increased to 16. This allows us to achieve an 

asymptotic gain of 3 dB with just 8 subsets and a simple 8-state convolutional encoder of rate 

2/3.  To achieve larger gains, further partitioning is needed, along with a trellis with more states. 

First, each family Sa  and Sb is partitioned independently by using the method of Wei [1], as 

follows: The 4-D constituent points of the set Sa (the eight original CEQ2PSK signals of Saha [9]) 

{S1 ∪ S2} can be partitioned into eight sublattices named 1,2,4,8,14,13,11,7 (to correspond to their 

binary values). The same is true for { S1r ∪ S2r }, the constituent 4-D points of the set Sb, but the 

eight sublattices are named 1r,2r,4r,8r,14r,13r,11r,7r. Now we have 16 4-D  sublattices  with  

MSED  of  8;  these  are  shown  in  Table I. 

Next, we group these 16 4-D sublattices into 8 groups of antipodal signals.  These groups 

are called Qi for Saha’s and Qir for Cartwright’s signals, and i = 1, …, 4. Table II shows these 

groups. At this point, we have reduced the number of sublattices from 16 to 8, and we have 

increased the MSED within Qi and Qir to 16. Each Q group has two 4-D signals. 

We now form the 8-D types by concatenating two 4-D Qi or two 4-D Qir  to obtain 32 8-D 

types with MSED of 8. These 32 types are defined as Qij = [Qi, Qj] and Qijr  = [Qir,Qjr], i, j = 1, …, 

4. We now proceed to group the Qij and Qijr  into eight 8-D sets Wi and Wir of 16 points each, such 

that the intra-set MSED is equal to 16. This grouping is shown in Table III. 
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A3 
A2 A4 B1 B3 B2 B4 

W12 W23 W34 W41 

z0=1 
{A1,A2,A3,A4} U  {B1,B2,B3,B4} 

z0=0 

z1=0 
z2=0 

z2=1 

z1=1 z1=1 z1=0 

z2=0 z2=0 z2=0 z2=1 z2=1 

b8=0 

b9=0 b9=0 

b8=1 
A1    

W11 W44 W22 W33 

b8=0 

b9=0 b9=0 

b8=1 

b9=1 b9=1 b9=1 b9=1 

Fig.3. 2: Partition of the 16-D Constant Envelope Q
2
PSK constellation V. 

16-D    

⋯ 

⋯ 

To proceed further, from the W  types we construct the 16-D sublattices by concatenating 

two 8-D types: Wij = [Wi,Wj], and Wijr = [Wir,Wjr], i, j =1,…,4. These 32 16-D sublattices have 

MSED of 16 and 256 points each.   

Finally, these 16-D Wij and Wijr  sublattices are grouped into the eight subsets {Ak},{Bk}, 

k = 1, …, 4. Table IV shows how the Wij and Wijr are grouped. These subsets still have MSED of 

16, contain 1024 points each, and they are required for the TCM system that uses a convolutional 

encoder of rate 2/3.  Fig. 3.2 shows a tree diagram of the set partitioning.   

3.4 TCM System Implementation  

Our multidimensional TCM system uses one of Ungerboeck’s  feedback  convolutional encoders 

from [11]. It has rate 2/3 and constraint length 3 and is shown in Fig. 3.3.  Remember that our 

TCM system has a CEQ2PSK modulator over four consecutive modulation time intervals, each 

of duration 2T. 

 Fig. 3.3: Convolutional encoder of rate 2/3. 

z0 b10 
z1 b11 

z2 
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Fig. 3.4 depicts the complete 16-D CEQ2PSK-TCM system. Two of the 12 bits of 

information, (b10, b11), arriving every four signaling intervals enter the convolutional encoder to 

produce three coded bits (z0, z1, z2). The output of the convolutional encoder selects one of the 

eight subsets obtained in Section III, Ak or Bk. Two other uncoded bits (b8, b9) select one of the 

Wij or Wijr types from within the selected group.  Fig. 3.2 shows the mapping of these five bits to 

some of the 16-D subsets. 

 

 

Table I:  The 4-D CEQ2PSK points 
 S1 ∪ S2 Saha’s  S1r ∪ S2r Cartwright’s 

1 -1  -1  -1   1 1r 0 - 2 - 2 0 

2 -1  -1   1  -1 2r 0 - 2  2 0 

4 -1   1  -1  -1 4r - 2 0 0 - 2 
8 1  -1  -1  -1 8r  2 0 0 - 2 

14 1   1    1  -1 14r 0  2  2 0 

13 1   1  -1    1 13r 0  2 - 2 0 

11 1  -1   1    1 11r  2 0 0  2 
7 -1   1   1    1 7r - 2 0 0  2 

 

Table II: Grouping of the 4-D constituent points into sets of antipodal signals 
        Saha’s Q       Cartwright’s Qr 

 𝑄1 = {1; 14}   𝑄1𝑟 = {1𝑟 ; 14𝑟} 
  𝑄2 = {2; 13}   𝑄2𝑟 = {2𝑟 ; 13𝑟} 
  𝑄3 = {4; 11}   𝑄3𝑟 = {4𝑟 ; 11𝑟} 
𝑄4 = {8; 7} 𝑄4𝑟 = {8𝑟 ; 7𝑟} 

z0 
Convolutional 

Encoder  R=2/3 

b9 

b0 

 

b1 

b8 

b2 

b3 

b4 

b5 

b6 

b7 

z1 
 z2 b11 

b10 

Wij ∈ Ak  or Wijr ∈ Bk, i,j=1,…,4 

 Ak or Bk ,k = 1,…,4 

 

s(t) ∈ Wij  or s(t) ∈ Wijr 

 

s(t) 

 

Fig. 3.4: Block diagram of the encoder/modulator for the proposed 16-DCEQ
2
PSK-TCM system. 
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Table III: 8-D groups W 
Saha’s W Cartwright’s Wr 

𝑊1 =  𝑄11 ;𝑄22 ;𝑄33 ;𝑄44  𝑊1𝑟 =  𝑄11𝑟 ; 𝑄22𝑟 ;𝑄33𝑟 ;𝑄44𝑟  
𝑊2 =  𝑄12 ;𝑄23 ;𝑄34 ;𝑄41  𝑊2𝑟 =  𝑄12𝑟 ;𝑄23𝑟 ; 𝑄34𝑟 ;𝑄41𝑟  
𝑊3 =  𝑄13 ;𝑄24 ;𝑄31 ;𝑄42  𝑊3𝑟 =  𝑄13𝑟 ;𝑄24𝑟 ; 𝑄31𝑟 ;𝑄42𝑟  
𝑊4 =  𝑄14 ;𝑄21 ;𝑄32 ;𝑄43  𝑊4𝑟 =  𝑄14𝑟 ;𝑄21𝑟 ;𝑄32𝑟 ;𝑄43𝑟  

Table IV: Final grouping of the 16-D CEQ2PSK signals 
 

 

Finally, the rest of the information bits (b0 through b7) select one of the 256 points from 

within the selected 16-D Wij or Wijr types. The selected signal 𝑠 𝑡  is transmitted.  In the next 

Section we discuss the required decoding for the modulation scheme aforementioned.  

3.5 TCM Decoding  

In our TCM system, the received signals, corrupted by noise, are decoded by using a soft-

decision maximum-likelihood sequence decoder [12]. We use the Viterbi decoding algorithm 

[13], [14] to search the trellis and find the most likely paths, given the received sequence of 

subsets.  The trellis is shown in Fig. 3.5 with the subset assignment given in the usual top-down 

fashion. Because our convolutional encoder has a constraint length of 3 and rate 2/3, a decoding 

depth of 24 was used in the decoder implementation [14].  Fig. 3.6 shows a simplified block 

diagram of the decoder used in our 16-D CEQ2PSK-TCM system. The noisy signal, r(t),  goes 

simultaneously to the decoders for Saha’s and Cartwright’s CEQ
2PSK, but without implementing 

the hardlimitting operations. These soft 16-D output symbols are the input to the VA decoder.  

Saha’s A Cartwright’s B 
𝐴1 =  𝑊11 ;𝑊22 ;𝑊33 ;𝑊44  𝐵1 =  𝑊11𝑟 ; 𝑊22𝑟 ;𝑊33𝑟 ;𝑊44𝑟  
𝐴2 =  𝑊12 ;𝑊23 ;𝑊34 ;𝑊41  𝐵2 =  𝑊12𝑟 ;𝑊23𝑟 ;𝑊34𝑟 ; 𝑊41𝑟  
𝐴3 =  𝑊13;𝑊24 ;𝑊31 ;𝑊42  𝐵3 =  𝑊13𝑟 ;𝑊24𝑟 ;𝑊31𝑟 ; 𝑊42𝑟  
𝐴4 =  𝑊14;𝑊21 ;𝑊32 ;𝑊43  𝐵4 =  𝑊14𝑟 ;𝑊21𝑟 ; 𝑊32𝑟 ;𝑊43𝑟  
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The mapping from input symbols to output bits is performed as follows: First, the VA 

estimates the most likely of the state transitions and the corresponding subset for that transition 

after 24 16-D intervals of modulation; therefore, by using the state transitions and the subset, the 

two information bits (b10,b11) can be decoded.  

Finally, the other 10 bits are obtained by using a look-up table of 1024 rows, 

corresponding to the 1024 symbols in the estimated subset.  

3.6 Results 

We divide this Section into three parts. First, we discuss the results of our proposed hardware 

detector for Cartwright’s 4-D CEQ2PSK constellation, presented in Section 3.2.  Then we present 

Output bits 

Decoder for 
Saha’s CEQ2PSK 

constellation 
VA 

16-D signals 
Look up 

table 
Decoder for 

Cartwright’s CEQ
2PSK 

constellation 

Estimated Saha’s 16-D symbols 

Estimated Cartwright’s 16-D symbols 

symbols 

Subset 

 & state  transition 

r(t)   

Fig. 3.6: Functional block of the decoder for CEQ
2
PSK-TCM system. 
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Fig. 3.5: Eight-state trellis and subset to branch assignments used for our CEQ
2
PSK-TCM system. 
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the analysis of the gains for our coded 16-D CEQ2PSK-TCM system over the uncoded reference 

CEQ2PSK system (Sa or Sb), and the required information about the distance distribution of the 

appropriate constellations.  Finally, we present and briefly discuss the simulation results which 

corroborate our analysis. 

3.6.1 Results for the Hardware Detector for Cartwright’s 4-D  Q
2
PSK Constellation 

Fig. 3.7 shows the performance of our hardware detector for Cartwright’s 4-D CEQ2PSK 

constellation in terms of probability of bit error versus bit signal to noise ratio (Eb/No), with Eb 

the energy per information bit and No the spectral density of AWGN.  The markers indicate 

simulation results and the line shows the theoretical results [8].  Monte Carlo simulations for our 

hardware decoder were run until 50 errors were counted and match the results reported in [8] for 

the standard CEQ2PSK signal set detector and also match the theoretical results.  

Fig. 3.7: Probability of bit  and symbol error vs. Eb/No for our hardware detector for Cartwright's 4-D 

CEQ
2
PSK Constellation. 
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3.6.2 Distance Properties and Expected Coding Gains 

Table V lists the smallest twelve squared Euclidian distances (SED) of the expanded CEQ2PSK 

constellation. Table VI shows the SED distribution of the partitioned constellation. The columns 

labeled 𝑑𝑘
2 represent the SED, and the values in the column named N(dk) are the number of 

points at SED 𝑑𝑘
2 . The MSED for the uncoded constellation (CEQ2PSK) is 𝑑𝑢

2 = 8, and has Nu = 

24 points at that distance.  The free distance of our simple TCM system is given by the parallel 

transitions in the trellis and is 𝑑𝑐
2 = 16 with an error coefficient (in 16-D) of Nc = 76.  These 

values determine the asymptotic gain of the coded system  [11], [12]: 

𝐺𝑎 = 10 log10  
𝑑𝑐

2

𝑑𝑢
2 ,     (14) 

which yields to 3.01 dB because the squared free distance is doubled.  However, we also have to 

take into consideration the loss caused by the number of neighbors at MSED [3], [10]; this loss 

normalized to 2-D, λ, is [8]: 

𝜆 =
log 10 

𝑁𝑐

𝑁𝑢
 

log 10 32 
,        (15) 

which gives a loss of 0.33 dB for our code.  The effective gain is therefore 𝛾𝑒𝑓𝑓 =  𝐺𝑎 − 𝜆 =

2.67 dB. Higher gains are possible with encoders of higher rate; the achievable asymptotic gains 

are also listed in Table V. 

Table V: SED of the expanded 16-D CEQ2PSK 

𝑑𝑘
2 𝐺𝑎  (𝑑𝐵) 𝑑𝑘

2 𝐺𝑎  (𝑑𝐵) 

8.000 − 26.343 5.17 
9.373 − 32.000 6.02 

15.029 − 37.657 6.73 
16.000 3.01 40.000 6.99 
20.686 4.13 43.314 7.34 
24.000 4.77 48.000 7.78 
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Table VI: SED distribution after set-partitioning 

Subsets Ai  or Bi 
𝑑𝑘

2 𝑁(𝑑𝑘 ) 
16 76 
24 192 
32 486 
40 192 
48 76 
64 1 

 

3.6.3 TCM System Simulation Results 

The performance of our multidimensional TCM system was corroborated by using Monte Carlo 

Simulations; 20 errors are counted before the simulation stops.  Fig. 3.8 shows the results in 

terms of bit and symbol error probabilities versus signal to noise ratio (SNR) for the reference 

uncoded 16-D CEQ2PSK and the trellis-coded 16-D system that uses the expanded CEQ2PSK 

constellation and decoding depth of 24.   

Fig. 3.8: Bit and symbol error probabilities as a function of Eb/No for coded and uncoded 16-D 

CEQ
2
PSK  systems 
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Comparison of the curves corresponding to the coded and uncoded probabilities of 

symbol error indicates that the effective gain of 2.67 is not yet achieved at a SNR of slightly over 

8 dB; the gain, however, increases with increasing SNR, and also with increasing decoding 

depth.  The gain in bit error rate (BER) is slightly less because it cannot be guaranteed that a 

single bit is in error if a symbol is in error; as SNR increases, the likelihood of a single bit error 

per symbol error increases, so the bit and symbol probability of error curves tend to merge at 

large SNR. 

3.7 Conclusions and Further Work 

The main contribution of this paper was to show the design of a TCM system using an expanded 

16-D CEQ2PSK constellation that allows the introduction of 1 bit of redundancy without 

constellation expansion penalty. We used a simple convolutional encoder of rate 2/3 to achieve 

an effective gain of 2.67 dB while maintaining constant envelope and without reducing the 

bandwidth efficiency over the uncoded CEQ2PSK reference system.  Considerably higher gains 

may be obtained with the same constellation by using more complex encoders.  We also 

presented a hardware detector for Cartwright’s 4-D Q2PSK constellation which was shown to be 

optimum. 

Future work will include an analysis of the actual bandwidth efficiency of the system.  

The effects of non-linearities in the channel will be incorporated into the study, and the 

performance in fading channels will also be evaluated. 
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4. Simulation Design And Implemenation 

In this chapter a survey of the systems that were implemented by using Matlab and Simulink 

software is covered in detail.  

4.1 Geometrical Analysis of the Constellations 

The author of this thesis defines in Matlab a matrix constellation:  

C=  
𝑟0

1 … 𝑟0
𝑁

⋮ ⋱ ⋮
𝑟𝑘

1 … 𝑟𝑘
𝑁
 ,                                                               (1) 

where the subscript  represents the number of points in the signal set and the superscript is the 

dimensionality of the constellation. In other words, the rows represent the number of points in 

the constellation, and number of columns indicates the dimension. For instance, the expanded 

16-D CEQ2PSK signal set matrix has 8192 rows and 16 columns.  

Another important parameter is the dissimilarity matrix which contains all the 

combinations of the pairwise SED.  For instance, for the expanded 16-D CEQ2PSK constellation 

the dissimilarity matrix is a square matrix of 8192 by 8192 elements.   

In order to compute geometrical parameters such as SED and number of neighbors at a 

particular distance two Matlab subroutines were created.   

Function Nd(•) [see Appendix A.1] computes a histogram of all possible squared 

Euclidian distances in a constellation matrix. The input is a matrix constellation such as defined 

in (1). The output of this subroutine returns two matrixes of two columns each, with the number 

of rows is basically determined by the number of SED that exists in a constellation signal set.  



43 
 

Function msd(•) [see Appendix A.2] computes the minimum squared Euclidian distance 

of a constellation matrix.  

Appendix A.3 contains the program that the author coded in order to partition the 

expanded 16-D CEQ2PSK constellation. Only Cartwright is mentioned in Appendix A.3 because 

the same program applies for Saha’s constellation partition.  Appendix A.3 produces several 

outputs, but the most important ones are B1, B2, B3, and B4 which are four of the eight subsets 

described in Chapter 3.  In addition, a second partition is also implemented in Appendix A.3, 

which produces 64 subsets with MSED of 24. These 64 subsets can be coded with a 

convolutional encoder of rate 6/7.   

4.2 Q
2
PSK Signal Modulator Block.  

Fig. 4.1 shows a Simulink block diagram of the modulator that generates Q2PSK signals. The 

input of this block diagram is a sequence of bits, and the output is the modulated signal.  
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Fig. 4.1: Simulink block diagram of a Q
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PSK modulator. 
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The blocks with a sinusoidal symbol are defined as follows: 

p1= cos(πt/2T),                                                              (2) 

p2= sin(πt/2T),                                                               (3) 

c1= cos(2πfct),                                                               (4)   

c2= sin(2πfct),                                                                (5) 

where fc is the frequency of the carrier and 2T is the modulation symbol time interval. These two 

parameters and the sampling time can be adjusted. Fig. 4.1 implements (2) from Chapter 2.   

4.3 Four-Dimensional CEQ
2
PSK Simulations and Decoders 

Fig. 4.2 shows the complete system that the author implemented in order to compute probability 

of error for the Cartwright’s 4-D CEQ2PSK constellation. The Matlab BER tool box was used in 

order to compute the bit error probability. The author also performed simulations for the original 

Saha’s CEQ
2PSK constellation, and these block diagrams are depicted in Appendices A.4 and 

A.5. 
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The input to the system is the random generation of 3 bits. The received symbols are 

output after the hardlimiter. The Error Rate calculation box compares the received bits with the 

transmitted and computes the bit error rate.  

Fig. 4.3 shows the block diagram of the demodulator for Cartwright’s constellation. The 

block function D performs the operation described in (8) of Chapter 3 for this particular 

demodulator.  

 In order to compute the probability of symbol error, the only change needed in the system 

shown in Fig. 4.2 is to introduce a block that converts bits to symbol for both the transmitted bits 

and for the received bits.   

 The transmitted signal is delayed in this system because of the numerical integration, and 

the buffer blocks. Therefore, a block that correlates the transmitted symbols with the received 
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symbols (“Find Delay”) was used to compute the delays required for the Error Rate Calculation 

block.  

4.4 16-D CEQ
2
PSK-TCM System Simulations 

The following figure depicts the Simulink block diagram that is used to compute the probability 

of bit error for a 16-D CEQ2PSK-TCM system.  The “Transmitter” and the “Viterbi Decoder 

16D signals” blocks are described in the following subsections.  

 

Fig. 4.4 Block diagram that computes the probability of bit error of the coded system described in Chapter 3. 

4.4.1 Transmitter Simulink Block 

Fig. 4.5 shows the Transmitter block diagram implanted in Simulink. This subsystem maps 12 

information bits to a 16-D CEQ2PSK analog signal by using the procedure described in the 

Section 3.4 of Chapter 3.    
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 The inputs of the “CEQ2PSK-TCM ENCODER” block are 12 information bits, and the 

outputs are vectors of the expanded CEQ2PSK constellation. These outputs become the inputs of 

the Q2PSK modulator system block, so an analog signal of 16-D is transmitted.  Fig. 4.6 shows a 

block diagram that has a convolutional encoder of rate 2/3, and the embedded Matlab subroutine 

(TCM Function) [see Appendix A.6].   

 

Fig. 4.6: CEQ
2
PSK-TCM ENCODER subsystem.  

4.4.2 Viterbi Algorithm Decoder in Simulink 

The software implementation of the Viterbi decoder shown in Fig. 4.4 is made of three main 

block components:  a branch metric calculation, a function that searches for the most likely 

symbols in a trellis based on the 24 outputs of the branch metric calculation, and a trace-back 

block for the path. 

All the components are shown in Fig. 4.5. The blocks are embedded functions, and the 

codes can be found in Appendices A.7, A.8 and A.9.  

The input for the function given in Appendix A.7 is the output of the demodulator of 

Cartwright’s signals without hard limiters in 16-D, so it is a soft decision symbol of 16 
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dimensions.  The same program flow for Saha’s branch metric calculation, but using the input of 

the soft decision demodulator for Saha’s signal discussed in Chapter 3.    

 

 

Fig. 4.7 Viterbi Decoder for the 16-D CEQ
2
PSK TCM system.  

The Appendix A.8 is an embedded program coded by the author in Simulink that looks 

for the survivors paths in the trellis based on the received signal. This block receives the branch 

metric calculation for the two signal sets: Saha’s and Cartwright’s.  

The Appendix A.9 is another embedded function that was coded by the author in order to 

restore the maximum-likelihood path from the outputs of the Appendix A.8. 

Finally, in order to compute the probability of symbol, a bit-to -nteger block diagram is 

added at the output of the decoder.   
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5. Conclusions and Future Work 

The 16-D CEQ2PSK TCM system presented in this thesis can achieve an asymptotic gain of 3.01 

dB over uncoded 16-D CEQ2PSK.  However, a penalty due to the number of neighbors produces 

an effective gain of 2.6 dB.  

The simulation results do not reach the effective gain because of two main reasons: 

1) The “integrate and dump” block produces a small computational error. 

2)  The SNR must be higher than 8 dB.  

3) Second order errors affect the performances of the system.  

Nevertheless, we achieved a coding gain of 2.4 dB, and this gain start to increase very 

slowly as the SNR increases above 8 dB.  

Other systems may be implemented in order to obtain higher gains. For example, the 

author of this thesis found a 64 subset partition with a MSED of 24. This system will be 

implemented in future and is expected to yield an asymptotic gain of 4.77 dB and an effective 

gain of 4.57 dB. These gains are obtained because the MSED for this partition is 24 and the error 

coefficient is 48 at this distance.    

The expanded uncoded 16-D CEQ2PSK can be used to transmit an additional bit over a 

non-expanded 16-D CEQ2PSK without increasing the bandwidth or the energy of the system.  

 Finally, the author is encouraged by these results to develop a unified theory of expanded 

constellations that may be used with TCM system without paying the penalty of constellation 

expansion. 
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Appendices 

A.1 Matlab Function Nd (C) 

function [R D]=Nd(C) 
%The input of this function is a constellation matrix C where the size is 
%mxn. The value m represents the number of points in the constellation and 
%the value n the number of dimensions.  
%The output R is the following: first column represents  
%the squared distances of the constellation, and the second column is 
%the number of pairs at particular distance 
%The ouptu D is the number of neighboors at particular squared distance 

  

     
    Cs=round(squareform(pdist(C).^2)*1000)/1000;  %Dissimilarity matrix 

rounded to three decimals 
    K=unique(sort(round(pdist(C).^2*1000))/1000); %intraset distances rounded 

to three decimals 
    K=[0 K];          %Add the zero 7distance 
    n=hist(Cs(:),K); 
    R=[n' K']; 
    D=zeros(length(K),2); 
    Z=[]; 
    for i=2:length(K) 
        [I J]=find(Cs==K(i)); 
        D(i,1:2)=[K(i) nnz(find(J==J(1)))]; 
    end 

 

A.2 Matlab function msd(C) 

function [d]=msd(const) 
%This function calculates the mean squared distance (MSED) of a 
%constellation matrix. The input is constellation matrix of mxn where m is 
%the number of points, and n is the number of dimensions.  
[p r]=size(const); 
if p==1 
    d=0; 
else 
    d=min(pdist(const))^2; 
end 

 

A.3 Constellation partition of 16-D Cartwright’s signal set 

%Genration of points and distances  
clc 
clear 
%-------------------------------------------------------------------------- 
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%Cartwriht's Constant Envelope Q2PSK Constellation 
%These eight symbols are stored  
%inside the variable Sb2 
c=sqrt(2); 
Sb2(:,1)=[0 c c 0 14]; 
Sb2(:,2)=[0 c -c 0 13]; 
Sb2(:,3)=[c 0 0 c 11]; 
Sb2(:,4)=[c 0 0 -c 8]; 
Sb2(:,5)=[0 -c -c 0 1]; 
Sb2(:,6)=[0 -c c 0 2]; 
Sb2(:,7)=[-c 0 0 -c 4]; 
Sb2(:,8)=[-c 0 0 c 7]; 
Sb2=Sb2'; 

  
QR1=[Sb2(1,:); Sb2(5,:)]; 
QR2=[Sb2(2,:); Sb2(6,:)]; 
QR3=[Sb2(7,:); Sb2(3,:)]; 
QR4=[Sb2(4,:); Sb2(8,:)]; 

  
%-------------------------------------------------------------------------- 
QR11=[QR1(1,1:4) QR1(1,1:4);QR1(1,1:4) QR1(2,1:4);... 
     QR1(2,1:4) QR1(1,1:4);QR1(2,1:4) QR1(2,1:4)]; 
FR1=[QR11(1,:);QR11(4,:)]; 
FR2=[QR11(2,:);QR11(3,:)]; 

  

  
QR12=[QR1(1,1:4) QR2(1,1:4);QR1(1,1:4) QR2(2,1:4);... 
     QR1(2,1:4) QR2(1,1:4);QR1(2,1:4) QR2(2,1:4)]; 
FR3=[QR12(1,:);QR12(4,:)]; 
FR4=[QR12(2,:);QR12(3,:)]; 

  

  
QR13=[QR1(1,1:4) QR3(1,1:4);QR1(1,1:4) QR3(2,1:4);... 
     QR1(2,1:4) QR3(1,1:4);QR1(2,1:4) QR3(2,1:4)]; 
FR5=[QR13(1,:);QR13(4,:)]; 
FR6=[QR13(2,:);QR13(3,:)]; 

  

  
QR14=[QR1(1,1:4) QR4(1,1:4);QR1(1,1:4) QR4(2,1:4);... 
     QR1(2,1:4) QR4(1,1:4);QR1(2,1:4) QR4(2,1:4)]; 
FR7=[QR14(1,:);QR14(4,:)]; 
FR8=[QR14(2,:);QR14(3,:)]; 
%-------------------------------------------------------------------------- 

  
QR21=[QR2(1,1:4) QR1(1,1:4);QR2(1,1:4) QR1(2,1:4);... 
     QR2(2,1:4) QR1(1,1:4);QR2(2,1:4) QR1(2,1:4)]; 
FR9=[QR21(1,:);QR21(4,:)]; 
FR10=[QR21(2,:);QR21(3,:)]; 

  

  
QR22=[QR2(1,1:4) QR2(1,1:4);QR2(1,1:4) QR2(2,1:4);... 
     QR2(2,1:4) QR2(1,1:4);QR2(2,1:4) QR2(2,1:4)]; 
FR11=[QR22(1,:);QR22(4,:)]; 
FR12=[QR22(2,:);QR22(3,:)]; 
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QR23=[QR2(1,1:4) QR3(1,1:4);QR2(1,1:4) QR3(2,1:4);... 
     QR2(2,1:4) QR3(1,1:4);QR2(2,1:4) QR3(2,1:4)]; 
FR13=[QR23(1,:);QR23(4,:)]; 
FR14=[QR23(2,:);QR23(3,:)]; 

  

  
QR24=[QR2(1,1:4) QR4(1,1:4);QR2(1,1:4) QR4(2,1:4);... 
     QR2(2,1:4) QR4(1,1:4);QR2(2,1:4) QR4(2,1:4)]; 
FR15=[QR24(1,:);QR24(4,:)]; 
FR16=[QR24(2,:);QR24(3,:)]; 

  
%--------------------------------------------------------------------------  

  
QR31=[QR3(1,1:4) QR1(1,1:4);QR3(1,1:4) QR1(2,1:4);... 
     QR3(2,1:4) QR1(1,1:4);QR3(2,1:4) QR1(2,1:4)]; 
FR17=[QR31(1,:);QR31(4,:)]; 
FR18=[QR31(2,:);QR31(3,:)]; 

  

  
QR32=[QR3(1,1:4) QR2(1,1:4);QR3(1,1:4) QR2(2,1:4);... 
     QR3(2,1:4) QR2(1,1:4);QR3(2,1:4) QR2(2,1:4)]; 
FR19=[QR32(1,:);QR32(4,:)]; 
FR20=[QR32(2,:);QR32(3,:)]; 

  

  
QR33=[QR3(1,1:4) QR3(1,1:4);QR3(1,1:4) QR3(2,1:4);... 
     QR3(2,1:4) QR3(1,1:4);QR3(2,1:4) QR3(2,1:4)]; 
FR21=[QR33(1,:);QR33(4,:)]; 
FR22=[QR33(2,:);QR33(3,:)];  

  

  
QR34=[QR3(1,1:4) QR4(1,1:4);QR3(1,1:4) QR4(2,1:4);... 
     QR3(2,1:4) QR4(1,1:4);QR3(2,1:4) QR4(2,1:4)]; 
FR23=[QR34(1,:);QR34(4,:)]; 
FR24=[QR34(2,:);QR34(3,:)]; 

  
%------------------------------------------------------------------------- 

  
QR41=[QR4(1,1:4) QR1(1,1:4);QR4(1,1:4) QR1(2,1:4);... 
     QR4(2,1:4) QR1(1,1:4);QR4(2,1:4) QR1(2,1:4)]; 
FR25=[QR41(1,:);QR41(4,:)]; 
FR26=[QR41(2,:);QR41(3,:)]; 

  

  
QR42=[QR4(1,1:4) QR2(1,1:4);QR4(1,1:4) QR2(2,1:4);... 
     QR4(2,1:4) QR2(1,1:4);QR4(2,1:4) QR2(2,1:4)]; 
FR27=[QR42(1,:);QR42(4,:)]; 
FR28=[QR42(2,:);QR42(3,:)]; 

  

  
QR43=[QR4(1,1:4) QR3(1,1:4);QR4(1,1:4) QR3(2,1:4);... 
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     QR4(2,1:4) QR3(1,1:4);QR4(2,1:4) QR3(2,1:4)]; 
FR29=[QR43(1,:);QR43(4,:)]; 
FR30=[QR43(2,:);QR43(3,:)]; 

  

  
QR44=[QR4(1,1:4) QR4(1,1:4);QR4(1,1:4) QR4(2,1:4);... 
     QR4(2,1:4) QR4(1,1:4);QR4(2,1:4) QR4(2,1:4)]; 
FR31=[QR44(1,:);QR44(4,:)]; 
FR32=[QR44(2,:);QR44(3,:)]; 

  
%-------------------------------------------------------------------------- 

  
WB1=[QR11; QR22; QR33; QR44]; 
WB2=[QR12; QR23; QR34; QR41]; 
WB3=[QR13; QR24; QR31; QR42]; 
WB4=[QR14; QR21; QR32; QR43]; 

  
%-------------------------------------------------------------------------- 
%-----------------------16D types------------------------------------------ 
WB11=concate(WB1,WB1); 
WB12=concate(WB1,WB2); 
WB13=concate(WB1,WB3); 
WB14=concate(WB1,WB4); 

  
WB21=concate(WB2,WB1); 
WB22=concate(WB2,WB2); 
WB23=concate(WB2,WB3); 
WB24=concate(WB2,WB4); 

  
WB31=concate(WB3,WB1); 
WB32=concate(WB3,WB2); 
WB33=concate(WB3,WB3); 
WB34=concate(WB3,WB4); 

  
WB41=concate(WB4,WB1); 
WB42=concate(WB4,WB2); 
WB43=concate(WB4,WB3); 
WB44=concate(WB4,WB4); 

  
%-------------------------------------------------------------------------- 
%---------------------------Grouping 16D types----------------------------- 
B1=[WB11; WB22; WB33; WB44]; 
B2=[WB12; WB23; WB34; WB41]; 
B3=[WB13; WB24; WB31; WB42]; 
B4=[WB14; WB21; WB32; WB43]; 

  
%-------------------------------------------------------------------------- 
%--------------------------Second Partition-------------------------------- 
gr1=[FR7;FR8;FR27;FR28;FR10;FR9;FR21;FR22]; 
gr2=[FR19;FR20;FR16;FR15;FR30;FR29;FR2;FR1]; 
gr3=[FR14;FR13;FR18;FR17;FR4;FR3;FR31;FR32]; 
gr4=[FR25;FR26;FR6;FR5;FR23;FR24;FR11;FR12]; 
ARc=[FR1;FR2;FR3;FR4;FR5;FR6;FR7;FR8;FR9;FR10;FR11;FR12;FR13;FR14;FR15;FR16;.

.. 
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FR17;FR18;FR19;FR20;FR21;FR22;FR23;FR24;FR25;FR26;FR27;FR28;FR29;FR30;FR31;FR

32]; 

  
[ZR1 ZR2]=contx(ARc,[gr1;gr2;gr3;gr4]); 
[ZR3 

ZR4]=contx(ARc,[circshift(gr1,4);circshift(gr2,4);circshift(gr3,4);circshift(

gr4,4)]); 
[ZR5 

ZR6]=contx(ARc,[circshift(gr1,8);circshift(gr2,8);circshift(gr3,8);circshift(

gr4,8)]); 
[ZR7 

ZR8]=contx(ARc,[circshift(gr1,12);circshift(gr2,12);circshift(gr3,12);circshi

ft(gr4,12)]); 

  

  
[ZR9 ZR10]=contx(ARc,[gr2;gr3;gr4;gr1]); 
[ZR11 

ZR12]=contx(ARc,[circshift(gr2,4);circshift(gr3,4);circshift(gr4,4);circshift

(gr1,4)]); 
[ZR13 

ZR14]=contx(ARc,[circshift(gr2,8);circshift(gr3,8);circshift(gr4,8);circshift

(gr1,8)]); 
[ZR15 

ZR16]=contx(ARc,[circshift(gr2,12);circshift(gr3,12);circshift(gr4,12);circsh

ift(gr1,12)]); 

  

  
[ZR17 ZR18]=contx(ARc,[gr3;gr4;gr1;gr2]); 
[ZR19 

ZR20]=contx(ARc,[circshift(gr3,4);circshift(gr4,4);circshift(gr1,4);circshift

(gr2,4)]); 
[ZR21 

ZR22]=contx(ARc,[circshift(gr3,8);circshift(gr4,8);circshift(gr1,8);circshift

(gr2,8)]); 
[ZR23 

ZR24]=contx(ARc,[circshift(gr3,12);circshift(gr4,12);circshift(gr1,12);circsh

ift(gr2,12)]); 

  

  
[ZR25 ZR26]=contx(ARc,[gr4;gr1;gr2;gr3]); 
[ZR27 

ZR28]=contx(ARc,[circshift(gr4,4);circshift(gr1,4);circshift(gr2,4);circshift

(gr3,4)]); 
[ZR29 

ZR30]=contx(ARc,[circshift(gr4,8);circshift(gr1,8);circshift(gr2,8);circshift

(gr3,8)]); 
[ZR31 

ZR32]=contx(ARc,[circshift(gr4,12);circshift(gr1,12);circshift(gr2,12);circsh

ift(gr3,12)]); 
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A.4  CEQ
2
PSK system block diagram for Saha’s Constellation. 
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A.5 Optimal demodulator referenced in Chapter 3 for Saha’s 

Constellation. 
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A.6 Mapping by set-partitioning subroutine 

function ys = fcn(indx,sub,setab,A1,A2,A3,A4,B1,B2,B3,B4) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
%-------------------------------- 
%-------------------------------- 
%All the subsets have 4 W groups of 256 points each, so in order to reach 
%one of the 4 groups, the bits 9-10 are used to select the W groups inside 

the  
%the subsets. For instance let's have the subset A1=[W1 W2 W3 W4] that has  
%1024 rows and 16 columns. Now if we want to select the group W2 we are going 
%to need to move the indx of the row 257, and then add the integer that is 

formed 
%by the bits 1-8.  
switch sub 
    case 0 
    pt=indx+1;     
    case 1 
    pt=indx+257;     
    case 2 
    pt=indx+513;    
    case 3 
    pt=indx+769;     
    otherwise 
    pt=1;     
end 
%--------------------------------- 
%--------------------------------- 

  
%Selection of the Subset 
%-------------------------------------------------------------------------- 
switch setab 
    case 0 
        ys=A1(pt,1:16)'; 
    case 4 
        ys=A3(pt,1:16)'; 
    case 2 
        ys=A2(pt,1:16)'; 
    case 6 
        ys=A4(pt,1:16)'; 
    case 1 
        ys=B1(pt,1:16)'; 
    case 5 
        ys=B3(pt,1:16)'; 
    case 3 
        ys=B2(pt,1:16)'; 
    case 7 
        ys=B4(pt,1:16)'; 
    otherwise 
        ys=zeros(1,16)'; 
end 
%------------------------------------------------------------------------ 
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A.7 Branch metric calculation embedded function 

function [r5,r6,r7,r8] =Carsbd(c,B1,B2,B3,B4) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
%-------------------------------- 
%-------------------------------- 
eml.extrinsic('find'); %Declaring extrinsic function for this block. 

  
%The following lines of code perform a lookup table 

  
%-------------------------------------------------------------------------- 
%--------------------------Cartwright Signal------------------------------- 
%---------Calculation of the squared distances----------------------------- 
r5=zeros(1,3); 
r6=r5; r7=r5; r8=r5; 

  

  
%-----------Convert signal received into a matrix of 1024X16--------------- 
d=ones(1024,1); 
f=d*c'; 
%-------------------------------------------------------------------------- 

  
%-------------------------------------------------------------------------- 
m1=sum((B1-f).^2,2); 
r5(1)=min(m1);    
i=find(m1==r5(1)); 
dummy1=0; 
dummy1=max(i); 
l=fix(dummy1/256); 
wc=l*(l>0)-(dummy1==256)-(dummy1==512)-(dummy1==768)-(dummy1==1024); 
k=mod(dummy1,256)-1;          % the other 10 bits 
indxc=k*(k>0)+(255*(k<0)); 
r5(2)=indxc; 
r5(3)=wc; 
%-------------------------------------------------------------------------- 
m2=sum((B2-f).^2,2); 
r6(1)=min(m2); 
i=find(m2==r6(1)); 
dummy1=0; 
dummy1=max(i); 
l=fix(dummy1/256); 
wc=l*(l>0)-(dummy1==256)-(dummy1==512)-(dummy1==768)-(dummy1==1024); 
k=mod(dummy1,256)-1;          % the other 10 bits 
indxc=k*(k>0)+(255*(k<0)); 
r6(2)=indxc; 
r6(3)=wc; 
%-------------------------------------------------------------------------- 
m3=sum((B3-f).^2,2); 
r7(1)=min(m3);  
i=find(m3==r7(1)); 
dummy1=0; 
dummy1=max(i); 
l=fix(dummy1/256); 
wc=l*(l>0)-(dummy1==256)-(dummy1==512)-(dummy1==768)-(dummy1==1024); 
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k=mod(dummy1,256)-1;          % the other 10 bits 
indxc=k*(k>0)+(255*(k<0)); 
r7(2)=indxc; 
r7(3)=wc; 
%-------------------------------------------------------------------------- 
m4=sum((B4-f).^2,2); 
r8(1)=min(m4);  
i=find(m4==r8(1)); 
dummy1=0; 
dummy1=max(i); 
l=fix(dummy1/256); 
wc=l*(l>0)-(dummy1==256)-(dummy1==512)-(dummy1==768)-(dummy1==1024); 
k=mod(dummy1,256)-1;          % the other 10 bits 
indxc=k*(k>0)+(255*(k<0)); 
r8(2)=indxc; 
r8(3)=wc; 
%-------------------------------------------------------------------------- 

  

  

 

A.8 Add compare and select subroutine (‘fcn’). 

function [bs0,bs1,bs2,bs3,bs4,bs5,bs6,bs7,pa,t,signa,wc,subset,bcot,ps2]= 

fcn(s0,s1,s2,s3,s4,s5,s6,s7,r1,r2,r3,r4,r5,r6,r7,r8,cot,ps1) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
eml.extrinsic('find'); %Declaring extrinsic function for this block. 

  
bcot=cot+1;   %memory shift register counter 

  
%-------------------- Possible States at t=k, t=k+1--------------------------

---------- 
a=ps1; 
if ps1(1)==0||ps1(3)==2||ps1(5)==4||ps1(7)==6 
    a(1)=0; 
    a(2)=1; 
    a(3)=2; 
    a(4)=3; 
end 

  
if ps1(2)==1||ps1(4)==3||ps1(6)==5||ps1(8)==7 
    a(5)=4; 
    a(6)=5; 
    a(7)=6; 
    a(8)=7; 
end 
ps2=a; 
%----------------------------------------------------------------------------

--------- 

  
%-----Metric calculation for state k+1 according to the possible input 

states--------- 
%-----Survivors are also determined in this lines of code--------------------

--------- 
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%dummy variable has dummy(1,i)=metric dummy(2,i)=state before dummy(3,i)= 

  
%----------------------------------State0 k+1--------------------------------

---- 
dummy=[inf 0 0 r1(2:3);inf 2 1 r2(2) r2(3);inf 4 2 r3(2) r3(3);inf 6 3 r4(2) 

r4(3)]; 
if ps1(1)==0 
   dummy(1,1)=r1(1)+s0; 
end 
if  ps1(3)==2 
    dummy(2,1)=r2(1)+s2; 
end 
if ps1(5)==4 
   dummy(3,1)=r3(1)+s4; 
end 
if ps1(7)==6 
   dummy(4,1)=r4(1)+s6; 
end 

  
%--------------Compare and select the best path comming to the state0 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs0=min(m); 
%----------------------------------------------------------------------------

------- 

  
%find signal in the survivor path of the state0 at k+1 time 
i=find(m==bs0); 
idx=0; 
idx=max(i); 
t0=dummy(idx,2); 
su0=dummy(idx,3); 
si0=dummy(idx,4); 
w0=dummy(idx,5); 
%----------------------------------------------------------------------------

-------- 

  

  
%----------------------------------State1 k+1--------------------------------

---- 
dummy=[inf 0 1 r2(2) r2(3);inf 2 0 r1(2) r1(3);inf 4 3 r4(2) r4(3);inf 6 2 

r3(2) r3(3)]; 
if ps1(1)==0 
    dummy(1,1)=r2(1)+s0; 
end 
if  ps1(3)==2 
    dummy(2,1)=r1(1)+s2; 
end 
if ps1(5)==4 
   dummy(3,1)=r4(1)+s4; 
end 
if ps1(7)==6 
   dummy(4,1)=r3(1)+s6; 
end 
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%--------------Compare and select the best path comming to the state1 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs1=min(m); 
%----------------------------------------------------------------------------

------- 
%find signal in the survivor path of the state0 at k+1 time 
i=0; 
i=find(m==bs1); 
idx=0; 
idx=max(i); 
t1=dummy(idx,2); 
su1=dummy(idx,3); 
si1=dummy(idx,4); 
w1=dummy(idx,5); 
%----------------------------------State2 k+1--------------------------------

---- 
dummy=[inf 0 2 r3(2) r3(3);inf 2 3 r4(2) r4(3);inf 4 0 r1(2) r1(3);inf 6 1 

r2(2) r2(3)]; 
if ps1(1)==0 
   dummy(1,1)=r3(1)+s0; 
end 
if  ps1(3)==2 
    dummy(2,1)=r4(1)+s2; 
end 
if ps1(5)==4 
   dummy(3,1)=r1(1)+s4; 
end 
if ps1(7)==6 
    dummy(4,1)=r2(1)+s6; 
end 
%--------------Compare and select the best path comming to the state2 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs2=min(m); 
%----------------------------------------------------------------------------

------- 
%find signal in the survivor path of the state0 at k+1 time 
i=0; 
i=find(m==bs2); 
idx=0; 
idx=max(i); 
t2=dummy(idx,2); 
su2=dummy(idx,3); 
si2=dummy(idx,4); 
w2=dummy(idx,5); 
%----------------------------------State3 k+1--------------------------------

---- 
dummy=[inf 0 3 r4(2:3);inf 2 2 r3(2:3);inf 4 1 r2(2:3);inf 6 0 r1(2:3)]; 
if ps1(1)==0 
   dummy(1,1)=r4(1)+s0; 
end 
if  ps1(3)==2 
    dummy(2,1)=r3(1)+s2; 
end 
if ps1(5)==4 
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   dummy(3,1)=r2(1)+s4; 
end 
if ps1(7)==6 
   dummy(4,1)=r1(1)+s6; 
end 
%--------------Compare and select the best path comming to the state3 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs3=min(m); 
%----------------------------------------------------------------------------

------- 
%find signal in the survivor path of the state3 at k+1 time 
i=0; 
i=find(m==bs3); 
idx=0; 
idx=max(i); 
t3=dummy(idx,2); 
su3=dummy(idx,3); 
si3=dummy(idx,4); 
w3=dummy(idx,5); 
%----------------------------------State4 k+1--------------------------------

---- 
dummy=[inf 1 0 r5(2:3);inf 3 1 r6(2:3);inf 5 2 r7(2:3);inf 7 3 r8(2:3)]; 
if ps1(2)==1 
    dummy(1,1)=r5(1)+s1; 
end 
if  ps1(4)==3 
    dummy(2,1)=r6(1)+s3; 
end 
if ps1(6)==5 
   dummy(3,1)=r7(1)+s5; 
end 
if ps1(8)==7 
   dummy(4,1)=r8(1)+s7; 
end 
%--------------Compare and select the best path comming to the state4 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs4=min(m); 
%----------------------------------------------------------------------------

------- 
%find signal in the survivor path of the state4 at k+1 time 
i=0; 
i=find(m==bs4); 
idx=0; 
idx=max(i); 
t4=dummy(idx,2); 
su4=dummy(idx,3); 
si4=dummy(idx,4); 
w4=dummy(idx,5); 
%----------------------------------State5 k+1--------------------------------

---- 
dummy=[inf 1 1 r6(2:3);inf 3 0 r5(2:3);inf 5 3 r8(2:3);inf 7 2 r7(2:3)]; 
if ps1(2)==1 
   dummy(1,1)=r6(1)+s1; 
end 
if ps1(4)==3 
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   dummy(2,1)=r5(1)+s3; 
end 
if ps1(6)==5 
   dummy(3,1)=r8(1)+s5; 
end 
if ps1(8)==7 
    dummy(4,1)=r7(1)+s7; 
end 
%--------------Compare and select the best path comming to the state5 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs5=min(m); 
%----------------------------------------------------------------------------

------- 
%find signal in the survivor path of the state4 at k+1 time 
i=0; 
i=find(m==bs5); 
idx=0; 
idx=max(i); 
t5=dummy(idx,2); 
su5=dummy(idx,3); 
si5=dummy(idx,4); 
w5=dummy(idx,5); 
%----------------------------------------------------------------------------

------- 

  

  
%----------------------------------State6 k+1--------------------------------

---- 
dummy=[inf 1 2 r7(2:3);inf 3 3 r8(2:3);inf 5 0 r5(2:3);inf 7 1 r6(2:3)]; 
if ps1(2)==1 
    dummy(1,1)=r7(1)+s1; 
end 
if  ps1(4)==3 
    dummy(2,1)=r8(1)+s3; 
end 
if ps1(6)==5 
   dummy(3,1)=r5(1)+s5; 
end 
if ps1(8)==7 
   dummy(4,1)=r6(1)+s7; 
end 
%--------------Compare and select the best path comming to the state6 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs6=min(m); 
%----------------------------------------------------------------------------

------- 
%find signal in the survivor path of the state4 at k+1 time 
i=0; 
i=find(m==bs6); 
idx=0; 
idx=max(i); 
t6=dummy(idx,2); 
su6=dummy(idx,3); 
si6=dummy(idx,4); 
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w6=dummy(idx,5); 
%----------------------------------------------------------------------------

------- 

  

  
%----------------------------------State7 k+1--------------------------------

---- 
dummy=[inf 1 3 r8(2:3);inf 3 2 r7(2:3);inf 5 1 r6(2:3);inf 7 0 r5(2:3)]; 
if ps1(2)==1 
   dummy(1)=r8(1)+s1; 
end 
if  ps1(4)==3 
    dummy(2)=r7(1)+s3; 
end 
if ps1(6)==5 
   dummy(3)=r6(1)+s5; 
end 
if ps1(8)==7 
   dummy(4)=r5(1)+s7; 
end 
%--------------Compare and select the best path comming to the state7 at time 

k+1 
m=[dummy(1,1) dummy(2,1) dummy(3,1) dummy(4,1)]; 
bs7=min(m); 
%----------------------------------------------------------------------------

------- 
%find signal in the survivor path of the state4 at k+1 time 
i=0; 
i=find(m==bs7); 
idx=0; 
idx=max(i); 
t7=dummy(idx,2); 
su7=dummy(idx,3); 
si7=dummy(idx,4); 
w7=dummy(idx,5); 
%----------------------------------------------------------------------------

------- 

  
pa=[bs0;bs1;bs2;bs3;bs4;bs5;bs6;bs7]; 
t=[t0;t1;t2;t3;t4;t5;t6;t7]; 
subset=[su0;su1;su2;su3;su4;su5;su6;su7]; 
signa=[si0;si1;si2;si3;si4;si5;si6;si7]; 
wc=[w0;w1;w2;w3;w4;w5;w6;w7]; 
%-------counter for decision-------------- 
%-------Initialization parameters--------- 
if bcot<=2 
   ps2=[0;0;0;0;0;0;0;0]; 
   bs0=0; 
   bs1=0; 
   bs2=0; 
   bs3=0; 
   bs4=0; 
   bs5=0; 
   bs6=0; 
   bs7=0; 
   t=[0;0;0;0;0;0;0;0]; 
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   subset=t; 
end 

  

 

  

A.9 Trace-back Function  

function [t0,t1,t2,t3,t4,t5,t6,t7,d,I0,I1,I2,I3,I4,I5,I6,I7]= 

traceback(q0,q1,q2,q3,q4,q5,q6,q7,pa,u,signa,w,v,c1) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
%U is a matrix of constraint length by number of states 

  
indx=u+1; %Conversion of state to Index 
y0=zeros(1,c1); 
y1=y0;y2=y0;y3=y0;y4=y0;y5=y0;y6=y0;y7=y0; 
x0=zeros(1,c1); 
x1=x0;x2=x0;x3=x0;x4=x0;x5=x0;x6=x0;x7=x0; 
z0=zeros(1,c1); 
z1=z0;z2=z0;z3=z0;z4=z0;z5=z0;z6=z0;z7=z0; 

  

  

  
j0=1; 
j1=j0+1;j2=j0+2;j3=j0+3;j4=j0+4; 
j5=j0+5;j6=j0+6;j7=j0+7; 
for i=1:1:c1 
    %Trace back eight possible paths 
    y0(c1+1-i)=v(c1+1-i,j0);  
    y1(c1+1-i)=v(c1+1-i,j1);  
    y2(c1+1-i)=v(c1+1-i,j2);  
    y3(c1+1-i)=v(c1+1-i,j3);  
    y4(c1+1-i)=v(c1+1-i,j4);  
    y5(c1+1-i)=v(c1+1-i,j5);  
    y6(c1+1-i)=v(c1+1-i,j6);  
    y7(c1+1-i)=v(c1+1-i,j7);  

     
    x0(c1+1-i)=signa(c1+1-i,j0);  
    x1(c1+1-i)=signa(c1+1-i,j1);  
    x2(c1+1-i)=signa(c1+1-i,j2);  
    x3(c1+1-i)=signa(c1+1-i,j3);  
    x4(c1+1-i)=signa(c1+1-i,j4);  
    x5(c1+1-i)=signa(c1+1-i,j5);  
    x6(c1+1-i)=signa(c1+1-i,j6);  
    x7(c1+1-i)=signa(c1+1-i,j7); 

     

     
    z0(c1+1-i)=w(c1+1-i,j0);  
    z1(c1+1-i)=w(c1+1-i,j1);  
    z2(c1+1-i)=w(c1+1-i,j2);  
    z3(c1+1-i)=w(c1+1-i,j3);  
    z4(c1+1-i)=w(c1+1-i,j4);  
    z5(c1+1-i)=w(c1+1-i,j5);  
    z6(c1+1-i)=w(c1+1-i,j6);  
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    z7(c1+1-i)=w(c1+1-i,j7); 

     

     
    j0=indx(c1+1-i,j0); 
    j1=indx(c1+1-i,j1); 
    j2=indx(c1+1-i,j2); 
    j3=indx(c1+1-i,j3); 
    j4=indx(c1+1-i,j4); 
    j5=indx(c1+1-i,j5); 
    j6=indx(c1+1-i,j6); 
    j7=indx(c1+1-i,j7); 
end 

  
%preparing variable for decision 
%X values stored the 8  first bits, Y values stored 2 last bits 
I0=[x0(1) z0(1) y0(1)]; I1=[x1(1) z1(1) y1(1)]; I2=[x2(1) z2(1) y2(1)]; 

I3=[x3(1) z3(1) y3(1)]; 
I4=[x4(1) z4(1) y4(1)]; I5=[x5(1) z5(1) y5(1)]; I6=[x6(1) z6(1) y6(1)]; 

I7=[x7(1) z7(1) y7(1)]; 

  
%forgetting some paths 
r=zeros(1,8); 
r=pa(c1,:); 
t0=r(1); t1=r(2); t2=r(3); t3=r(4); 
t4=r(5); t5=r(6); t6=r(7); t7=r(8); 
d=r; 
r(1)=r(1)-q0; r(2)=r(2)-q1; r(3)=r(3)-q2; r(4)=r(4)-q3; 
r(5)=r(5)-q4; r(6)=r(6)-q5; r(7)=r(7)-q6; r(8)=r(8)-q7; 

     

     

     

 A.10: Contained in the attached CD 

Simulink Models, Spread Sheets of the partitions, Matalab Variables, Matlab subroutines.   
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