
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-19-2008

Preferences in Musical Rhythms and Implementation of Analytical Preferences in Musical Rhythms and Implementation of Analytical

Results to Generate Rhythms Results to Generate Rhythms

Shashidhar Sorakayala
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Sorakayala, Shashidhar, "Preferences in Musical Rhythms and Implementation of Analytical Results to
Generate Rhythms" (2008). University of New Orleans Theses and Dissertations. 884.
https://scholarworks.uno.edu/td/884

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ The University of New Orleans

https://core.ac.uk/display/303943444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/884?utm_source=scholarworks.uno.edu%2Ftd%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Preferences in Musical Rhythms and Implementation of Analytical Results
to Generate Rhythms

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
In partial fulfillment of the

Requirements for the degree of

Masters of Science
In

The Department of Computer Science

By

Shashidhar Sorakayala

B.Tech, Jawaharlal Nehru Technological University, India, 2003

December, 2008

Copyright 2008, Shashidhar Sorakayala

 ii

Acknowledgements

I would like to express my gratitude to my professors, my parents, and my sister and to

the number of people who became involved with this thesis, one way or another.

I am eminently grateful to my supervisor, Dr. N. Adlai A. DePano whose help,

suggestions and encouragement helped me in all the time of research for and writing of this

thesis. In addition, I would like to thank Dr. Shengru Tu and Dr. Golden G. Richard III for being

on my thesis defense committee. It was a great honor having them both.

I am very much thankful to my family and friends for the continuous support and help

they provided to me.

 iii

Table of Contents

List of figures...v
Abstract .. vi
1. Introduction..1
 1.1 Representation of Rhythms..2
 1.2 Basic concepts..3

1.2.1 Evenness...4
 1.2.2 Regression-evenness measure..6
 1.2.3 Maximum evenness ...6
 1.3 Interval Vector ...7
 1.4 Erdos Deep property ..9
 1.5 Euclidean Algorithm..10
 1.6 Noteworthy Composer ...12
2. Generating Even Rhythms ...13
 2.1 The Evenness method ..13
 2.2 Euclidean method...15
 2.3 Comparison measure..19
3. Generating Frequency-Based Rhythms ...21
 3.1 Interval vector method ...21
 3.2 Erdos-deep method ..34
4. Samples of Generated Rhythms...41
 4.1 Sample Rhythms ..51
5. Conclusion and Future work..52
 References..54
 Appendices...56

Appendix A: The Evenness Method ...56
 Appendix B: Euclidean Method..59
 Appendix C: Comparison measure ...65
 Appendix D: Interval vector method ..67
 Appendix E: Erdos-deep method ..74
 Vita..77

 iv

List of Figures

Fig 1.1: Representation of Rhythms ..3
Fig 1.2.1: Polygonal representation ...5
Fig 1.3: Gahu – Histogram representation...8
Fig 2.1: Evenness method ..13
Fig 2.2: Euclidean method ...15
Fig 3.1: Gahu frequency histogram representation..21
Fig 3.1.1: Interval vector method...21
Fig 3.2: Erdos-deep method...34

 v

ABSTRACT

Rhythm is at the heart of all music. It is the variation of the duration of sound over time.

A rhythm has two components: one is the striking of an instrument – called the “onset” – and the

other is silence. Historically, musical forms and works were preferred and became popular by

their rhythmic properties. Therefore, to study rhythm is to study the underpinnings of all of

music.

In this thesis, we explore basic rhythmic preferences in traditional music and, using this

as a point of reference, methods are implemented to generate similar types of rhythms. Finally, a

software platform to facilitate such an analysis is developed – it is the first of its kind available to

our best knowledge as this research field has only recently emerged.

Keywords: The Evenness Method, Interval vector method, Euclidean method, Comparison
measure, Erdos-deep method.

 vi

CHAPTER 1

INTRODUCTION

Rhythm is an important element of music.5 It is the mixture of notes (onsets) and silences

(rests). Composers of music can vary the timing of notes to make their composition more

interesting and, hopefully, produce good music. With the invention of computers, generation of

rhythms has become easier and more effective. The question arises: What type of rhythms should

one generate? What are the properties that a rhythm should have in order to be effective? By

studying various rhythms from the past and the reasons for their being preferred over others,

many properties can be derived which then become tools in generating new rhythms.

The rhythms played in different parts of the world have their own specific properties. For

example, it may be mandatory to play a note at a particular beat and only such rhythms are

preferred in that particular region. Some popular rhythms in the past have all their notes well-

spaced, i.e, all the notes are evenly distributed among rests. Some others may have a prescribed

set of frequencies with which all the inter-onset durations are present. Our attempt here is to

generate rhythms which exhibit such properties.

 1

1.1Representation of Rhythms1, 5, 9

In this thesis, we use three methods of representing rhythms. The first method is the

binary representation. This consists of a vector of ones and zeros, where the ones represent notes

and the zeros represent silence. For example, ‘1 0 1 0 0 0 1 0 0 1 0 0 1’ represents a rhythm with

five notes and eight silences. The number of time units in a rhythmic cycle is the number of

notes plus the number of silences, which would be thirteen in the above example.

The second method is a geometric representation and makes use of a polygon inscribed in

a circle. The polygon is used to efficiently represent the relative lengths of notes and silences on

a circular lattice consisting of the circle’s boundary divided into equal time units. Notes of the

rhythm are represented by vertices placed at the appropriate lattice point which are then

connected to form a polygon.

The third method is the histogram approach, which effectively visualizes the frequencies

of all the interval lengths.5 The interval length is the number of silences plus one between two

consecutive notes in a rhythm. A histogram then represents the number of times each interval

length is present in the given rhythm. The figure below illustrates each of these three methods of

rhythm representation:

 2

Fig 1.1: Representation of Rhythms

1.2 Basic Concepts

Rhythm is a musical element that will remain for as long as music is made on this earth.

Many rhythms were produced in the past but only certain ones have persisted and become

popular in certain regions. By studying some of these popular rhythms, distinctive properties can

be explored to help recognize and produce similar types of rhythms.

 3

1.2.1 Evenness1,4

A rhythm that is even (or well-spaced) creates a sense of harmony in the minds of people

and is usually generally liked. Many rhythms in the past have exhibited such properties of

evenness to one degree or another. In fact, mathematical measures of evenness have been

proposed that identify, if not explain, cultural preferences of rhythms in traditional music.1

Douthet and Entringer have proposed a measure which simply adds all the interval arc-lengths

(geodesics along the circle) determined by all pairs of intervals in a scale.1 They proposed

another measure which uses interval chord lengths as opposed to geodesics along the circle.

However, it is possible to define a measure of rhythmic evenness that is not only more efficient

to compute than these measures, but which is sensitive enough to discriminate well between

rhythms. This is known as the Regression-evenness measure.10

For example, a rhythm called Bossa-Nova which first appeared in Brazil in the late

1950’s, was a popular rhythm amongst the middle and upper class districts. It embodied free life

style in Brazil and consists of five onsets (k=5) distributed uniformly among sixteen time units

(n=16). Its binary sequence representation is:

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

 4

This rhythm can also be represented by a polygon inscribed in a circle:

 a. Bossa Nova rhythm b.Optimal rhythm

Fig 1.2.1: Polygonal representation

By observing Figure 1.2.1, one can see that the five notes of the Bossa Nova rhythm are

almost distributed evenly – it is achieved by moving the optimal rhythm notes to the nearest

lattice points in the time domain of sixteen units. If we added all the interval lengths of the Bossa

Nova rhythm, the evenness value turns out to be 48.

 5

1.2.1 Regression-evenness measure9

In Figure 1.2.1(b), one can observe that, if we inscribed a regular pentagon inside the

circle, it is not possible to distribute five onsets evenly among the sixteen time units. The second,

third, fourth and fifth notes are not at lattice points on the circle. The sum of these deviations

may be taken to be a measure of the un-evenness in a rhythm. The regression value of the rhythm

is 1.19. It is obtained by first dividing the number of time units with the number of onsets which

is 3.2. This determines where the onsets should be placed to form a regular k-gon inscribed in a

circle. Since the circular lattice is equally divided by the number of time units and since the

onsets are placed only on the available positions, summing all the deviations of the onsets from

their optimal positions gives the above regression evenness value.

1.2.1Maximum evenness1, 4

The above evenness measures bring up the question of which configurations of points

(rhythms) achieve maximum evenness. Let us assume that we are given a circular lattice with n

points (evenly spaced), and we would like to create a rhythm consisting of k onsets by choosing k

of these n lattice points.

Therefore in order to achieve maximum evenness, a regular k-gon is constructed with one

vertex coincident with one lattice point, and then move the remaining onset points to their

nearest lattice points. In this way, rhythms with maximum evenness are generated.

 6

1.3 Interval Vector 1, 4

One may also examine the “spectrum” of the frequencies with which all the durations are

present in a rhythm.1 The spectrum of frequencies is called the interval vector. For example, take

the rhythm represented by the binary sequence:

1 0 0 1 0 0 1

The frequency of the interval length one is 1 (occurring between the last onset and the

first onset of the next rhythmic cycle) while the frequency of interval length two is 2 (occurring

between the first and second onsets, and again between the second and last onsets). Therefore,

the interval vector of the above rhythm is

 [1, 2].10 Let us take the rhythm known as Gahu which is popular amongst the people of

southeastern Ghana. It was used for popular entertainment to celebrate life. The binary sequence

of this rhythm is:

1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

By observing the spectrum of frequencies, one can determine the interval vector which

would be:

[0, 1, 2, 2, 1, 2, 1, 1]

 7

The interval vector can also be represented graphically by a histogram bar chart (see Fig. 1.3
below).

0

1

2 2

1

2

1 1

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Distance

Fr
eq

ue
nc

y

Fig 1.3: Gahu – Histogram representation

In the chart, one can observe that the frequencies are almost uniform, that is, each bar is

either of height 1 or 2. Furthermore, the chart consists of a single connected component of

occupied histogram cells, i.e., all the consecutive interval lengths are covered. This observation

suggests that the rhythms with a prescribed histogram shape as in Gahu may be preferable.1 This

geometric property could provide a heuristic for the discovery and automatic generation of other

“good” rhythms. Therefore it would be desirable to be able to efficiently generate rhythms that

either contain completely prescribed histogram shapes, or have geometric constraints on their

shapes, or to find good approximations when such rhythms do not exist.

 8

1.4 Erdos Deep property1, 2, 4

Another property that the preferred rhythms of the past have exhibited is the Erdos

property.2 In 1989, Paul Erdos asked whether one could find n points on the plane (no three on a

line and no four on a circle) so that for every i, i = 1, …, n – 1 there is a distance determined by

these points that occurs exactly i times. The cyclic rhythms with the Erdos property are referred

to as deep rhythms. For example, consider again the rhythm Bossa-Nova

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

which consists of five notes. If we focus just on the interval lengths that appear at least

once between two notes, then we see that the frequencies of occurrence are unique. The interval

vector for the rhythm is

[0, 0, 4, 1, 0, 3, 2]

which satisfies the Erdos-property.1

The analysis of cyclic rhythms suggests yet another variant of the question asked by

Erdos. First, we note that if a rhythm R[k, n] is such that k ≤ n/2, then a solution to Erdos

problem always exists: simply place points at positions 0, 1, 2,…, k. However, from a

musicological point of view, it is not desirable to allow empty semicircles in the circumscribed

polygon representation of the rhythm.

 9

These constraints suggest the following problem: Is it possible to have k points on a

circular lattice of n points such that for every i, i = k(s), k(s+1),…, k(f), where s and f are pre-

specified, there is a geodesic distance that occurs exactly i times, with the further restriction that

there is no empty semicircle? It would seem desirable to be able to efficiently generate rhythms

that satisfy the Erdos deep property with the additional constraints.

1.5 Euclidean Algorithm3

The well-known Euclidean algorithm computes the greatest common divisor of two given

integers. The repeated subtraction until the remainder is one or zero in the Euclidean method

actually generates repeated patterns which is a preferred property in rhythms.3 Bjorklund faced a

similar problem of generating repeated patterns but in a different context where for a given

number of time intervals n, and a given number of signals k < n, the task at hand is to distribute

the pulses as evenly as possible among those intervals.

This problem is similar to rhythm generation: given n time units, k ones (notes) and

distributing these k ones evenly among n – k zeroes.For example, if n = 8, and the number of

ones k = 3, then the number of zeros n – k = 5. We outline the steps involved in the rhythm-

generating algorithm:

 10

Step 1. [1][1][1][0][0][0][0][0]

Step 2. 1 1 1 0 0

 0 0 0

Step 3. 1 1 1

 0 0 0

 0 0

The rhythm thus generated is 1 0 0 1 0 0 1 0. A more detailed description of the

procedure is as follows:

 Step 1:First, place all the k ones and then place the n – k zeros.

 Step 2: Next, repeatedly take each zero and place it below ones equally. This continues

until the arrangement consists of only one odd sequence. In this way we are actually distributing

the ones uniformly among zeros. This is one way of generating rhythms where the onsets are

uniformly distributed. Many rhythms from the past can be generated by using this method.

 11

1.6 NoteWorthy Composer18

NoteWorthy Composer is a simple music composition software tool. It allows one to

create, record, edit, print and play back one’s own musical scores in pure music notation. One

can also save the notation as a MIDI performance for use in other MIDI applications. Its print

feature makes it possible to produce sheet music right from one’s desktop. We find that this tool

is sufficient for us to hear and notate the rhythms that we generate for different combinations of

n and k.

 12

Chapter 2

GENERATING EVEN RHYTHMS

Evenness is an important property in music. Music that is even has a soothing nature and

is always preferred by listeners. A rhythm is said to be perfectly even when the onsets are

distributed uniformly among silent nodes in the given time domain. We present here two

techniques of generating rhythms that exhibit high evenness.

2.1 The Evenness Method

The first technique seeks to generate perfectly even rhythms. The procedure simply

divides the number of time unit’s n with the number of onsets k. The intermediate value y will

be used to determine where the onsets should be placed to form a regular k-gon inscribed in a

circle (which would be the polygon representation of a perfectly even rhythm).

Evenness rhythm

n

k

Fig 2.1: Evenness method

 13

Procedure Evenness(n, k)

Input: n = number of equal time units

k = number of onsets

Output: Pcircle is the final rhythm generated. The onsets in this rhythm are uniformly distributed

in the given time domain n. The rhythm is depicted as a binary number and also in k-gon format.

Auxiliary: a,y,z,temp = temporary variables

Pseudo code:

Step 1: Initializing the variables

 y = n/k

 z = 0.0

temp = 0.0

Step 2:

WHILE z is less than n

z = z + y

The variable ‘a’ is set to the nearest integer less than or equal to z (a = (int)z)

temp = z - a

 IF temp is greater than 0.5 THEN

The variable ‘a’ is set to the nearest integer greater than z (a = (int)z+1)

Set the ‘a’th note in the rhythm Pcircle to 1

 ENDIF; ENDWHILE

 14

In the algorithm, we “construct” a regular k-gon with one vertex coincident with one

lattice point (say at 0) and then move the remaining onset points to their nearest lattice points.

Since the circle is divided into equal time units, the decimal is rounded off to the nearest integer

and then the onset is placed at its nearest lattice point. In this way, the 1’s are uniformly divided

among 0’s in the given time domain.

 2.2 Euclidean method

This procedure is based on computing the greatest common divisor of two integers. This

procedure generates large family of rhythms which were popular in traditional world music.

These rhythms have a property that their onset patterns are distributed as evenly as possible.

Fig 2.2: Euclidean method

Euclidean rhythm

n

k

 15

Procedure Euclidean(n, k)

Input: n = number of time units

 k = number of ones

Output: finalRhythm is the final rhythm generated. In this rhythm the onsets are uniformly

distributed in the given time domain n. The rhythm is depicted as a binary number and also in k-

gon format.

Auxiliary: rp_rhythm = repeating sequence in the rhythm

 rm_rhythm = remainder column sequence

finalnum_rp = number of times the repeating sequence occurs in the rhythm

finalnum_rm = number of times the remainder column sequence occurs in the rhythm

size_rp = length of the repeating sequence

size_rm = length of the remainder column

dist1, dist2 = two possible distances between 2 onsets

i,j = temporary variables

Pseudo code:

Step 1: Initializing the variables

Initialization ()

finalnum_rp = k

finalnum_rm = n-k (number of silences)

rp_rhythm = 1

rm_rhythm = 0

size_rp = 1

size_rm = 1 EXIT

 16

Step 2: Implementing Euclid algorithm

EUCLID (num_rp, num_rm)

Termination condition:

IF num_rm is 1 or num_rm is 0 THEN

finalnum_rp = num_rp

finalnum_rm = num_rm

ENDIF

ELSE

IF num_rp is less than or equal to num_rm THEN

num_rm = num_rm - num_rp

num_rp remains the same

Add the remainder column sequence to the repeating sequence

Add size_rm to size_rp (size_rp = size_rp + size_rm)

The remainder column sequence remains the same

size_rm remains the same

ENDIF

IF num_rp is greater than num_rm THEN

num_rp = num_rp - num_rm

num_rm remains the same

Add the remainder column sequence to the repeating sequence

Add size_rm to size_rp (size_rp = size_rp + size_rm)

The remainder column is equal to the previous repeating sequence

size_rm is now equal to the previous size_rp

 17

ENDIF

EUCLID (num_rp,num_rm)

EXIT (EUCLID)

Step 3: Printing the final rhythm

PrintRhythm ()

Add the repeating sequence , finalnum_rp times to finalRhythm

Add the remainder column sequence , finalnum_rm (0/1) times to finalRhythm

Output finalRhythm

EXIT

The basic principle of Euclid’s algorithm is to replace the larger of the two integers by

their difference until both are equal. Bjorklund’s algorithm is based on Euclid’s principle except

that the two integers are now replaced by the number of 1’s and 0’s. It uses the same repeated

form of substraction just as Euclid did with his integers. This procedure actually distributes the

onsets fairly uniformly in a given time domain.

 18

2.3 Comparison Measure

The Regression Evenness Metric (REM) for a given rhythm measures how far the rhythm

onsets are displaced from a perfectly even rhythm (with the same time frame and number of

onsets) and is obtained by calculating the sum of all the onsets’ deviations indicates the un-

evenness in a rhythm. The rhythm which yields a minimum regression value is called a

maximally-even rhythm.

Procedure REM(n, k,circle [n])

Input: n = number of time units

 k = number of ones

circle [n] = rhythm in a binary format

Output: sumofdev - A value representing how far the given rhythm is deviating from the

optimal rhythm.

Auxiliary: dist = inter onset distance in the optimal rhythm deviation is the deviation of an onset

from its optimal position

temp, i, j, k = temporary variables

 19

Pseudo code:

dist = n/k (optimal inter onset distance)

k = 0

FOR j = 0 to n DO

IF there is an onset at position j in the rhythm circle THEN

temp = k * dist

IF temp is greater than j THEN

deviation = temp - j

ENDIF

ELSE

deviation = j – temp

ENDIF

Add deviation to sumofdev

Increment k

ENDFOR

OUTPUT sumofdev

First divide the number of time units with the number of onsets. This determines where

the onsets should be placed to form a regular k-gon inscribed in a circle. Finally sumofdev sums

all the deviations of the onsets from their optimal positions on the circular lattice. The total

deviation value indicates the unevenness in a rhythm.

 20

Chapter 3

GENERATING FREQUENCY-BASED RHYTHMS

The rhythms of the past have exhibited a certain pattern in their frequencies of distances.

Recall that the spectrum of frequencies is called the interval vector. A histogram is the best way

to visualize the interval vector. After observing some of the traditional rhythms that have show

enduring popularity, we find that the geometric shape histogram had an impact for their

preference over others.

3.1 Interval vector method

Take for example, the rhythm called Gahu whose binary representation is:

1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

and whose frequency histogram is given by:

0

1

2 2

1

2

1 1

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Distance

Fr
eq

ue
nc

y

Fig 3.1: Gahu frequency histogram representation

 21

rhythm

n INTERVAL
VECTOR

k

SINGLE
COMPONENT

ALL

Fig 3.1.1: Interval vector method

DISTANCES

MINIMUM
FREQUENCY

UNIFORMITY

SILENTNESS

 22

Procedure Interval Vector(nm, km)

Input: nm = number of time units

 km = number of ones

Output: circlefinal is the final rhythm generated and arrayfinal is the interval vector of the

rhythm. A histogram visualizing the interval vector and a k-gon are also depicted.

gapfinal = the number of gaps in the histogram of the final optimal rhythm

zerofreq = the number of zerofrequency distances in the histogram of the final optimal rhythm

maxfinal = the maximum frequency in the histogram of the final optimal rhythm

difffinal = the difference between the maximum and the minimum frequency in the histogram of

the final optimal rhythm

maxgapfinal = the maximum gap of all the gaps between consecutive onsets on the circle for the

final optimal rhythm

Auxiliary = i, j, c1, c2, c3, c4, k2, d1, d2, finalcount, count, tmparr[1000], s,arraytemp[1000],

gapresf, again, val, gap, numconv, maxfreq, sum, circlegap, midpnt, diff1, diff2, zerotemp,

maxgaptemp = temporary variables

numgaps = number of gaps in the histogram obtained when an onset is placed in an optimal

position

conversions = number of zerofrequency distances that get covered when an onset is placed in its

optimal position.

flatsum = the sum of frequencies of those distances which get incremented on placing the onset

in its optimal position.

gaponcircle = the gap on the circle (between onsets) in which the optimal position on the onset

lies

 23

midpoint1 = midpoint of the gap on the circle in which the position of the onset lies

maxcovdist = maximum distance covered on placing an onset in a particular onset

minfreq = minimum frequency in the histogram

freqdiff = difference between maximum and minimum frequency in the histogram

 maxgap = maximum gap on the circle of all the gaps between consecutive onsets

 maxcover = it is the maximum inter onset distance which is covered on placing an onset in a

particular position

 value = optimal position of the onset

mindist = shortest distance between two onsets on the circular lattice

Pseudo code: FOR finalcount = 1 to nm/2 DO

//initialization

Place an onset at 0th position of the rhythm ‘circle’ (circle[0] = 1)

Place an onset at a distance of finaldist to the left of 0th position of the rhythm

 (circle[nm - finalcount]=1)

Increment the frequency of occurrence of the inter onset distance

‘finaldist’(freqarray[finalcount]++)

//loop run for each onset placed

FOR i = 0 to km – 2 DO

Initialize numgaps, maxfreq, flatsum, gaponcircle to a high value

Initialize conversions to 0

 24

//checking for the optimal position by placing the onset at various non covered instants of time

FOR j = 0 to nm DO

IF circle[j]==0 THEN

Intialize count, gap, numconv, sum to 0

Initialize value to j

Initialize gapres to ‘n’

Set arraytemp equal to freqarray

//Find the distances between the position of the onset and the other already placed onsets

 FOR k2=0 to nm DO

 IF circle[k2]==1 THEN

d1 = mod(value – k2)

d2 = nm - d1

mindist = minimum (d1,d2)

Increment count

//store the distances between the newly placed onset and other already placed onsets in a

tmparr array.

tmparr[count] = mindist

 25

//increment numconv if a zero frequency distance is incremented on placing the onset.

IF arraytemp[mindist] == 0 THEN

Increment numconv

ENDIF

Increment arraytemp[mindist]

sum = sum + arraytemp[mindist]

ENDIF;ENDFOR

//Find the maximum inter onset distance which is covered on placing the onset in the jth position

maxcover=0

FOR c1 = 1 to count DO

IF tmparr[c1] > maxcover THEN

maxcover = value

ENDIF

ENDFOR

//Find the number of gaps formed in the histogram on placing the onset in the jth position.

gapres='n'

FOR c1 = 1 to nm/2 DO

IF arraytemp[c1] == 0 and gapres == 'n’ THEN

Increment gap

gapres='y'

ENDIF

 26

ELSE IF arraytemp[c1] == 1 THEN

gapres='n'

ENDIF

ENDFOR

IF arraytemp[nm/2] == 0 THEN

 Decrement gap; ENDIF

//Find the maximum frequency in the histogram on placing the onset in the jth position.

maxm=0

FOR c2=1 to maxcover DO

IF arraytemp[c2] > maxm THEN

maxm=arraytemp[c2]

ENDIF; ENDFOR

//Find the gap on the circle in which the new position of the onset lies.

FOR c2=0 to nm DO

IF circle[c2] = 1 or c2 = n THEN

IF c2 > ‘value’ THEN circlegap = c2-c4;break

ENDIF

c4 = c2

ENDIF; ENDFOR

midpoint1=(c2+c4)/2

ENDIF;ENDFOR

 27

Choose a position for placing the onset in such a way that

gap is minimum

numconv is the maximum.

maxm is the least

sum is the minimum

circlegap is minimum

The position should be nearest to the midpoint of the gap between onsets in which the position

lies

// After placing the onset in the best possible position based on the above criteria , update the

frequency of each possible inter onset distance in this rhythm

 FOR c2=0 to nm DO

IF there is an onset in the c2th position in ‘circle’ rhythm THEN

d1 = mod(value – c2)

d2 = nm – d1

Increment the minimum(d1,d2)

ENDIF

ENDFOR

ENDFOR

 28

// After placing all the onsets in the best possible positions on the circular lattice, find the number

of zero frequency distances in the histogram of the rhythm.

 zerotemp=0;

 FOR c3=1 to (nm/2) DO

 IF freqarray[c3] is equal to 0

 Increment zerotemp

 ENDIF; ENDFOR

// Find the range i.e. difference between the maxium and the minimum frequency in the

histogram.

 Minfreq = minimum(all elements of freqarray)

 Freqdiff = maxfreq - minfreq

 29

// Find the maximum gap of all the gaps between consecutive onsets in the circle for the rhythm

generated

maxgap=0

maxgaptemp=0

gapresf='n'

 FOR c3=0 to n DO

IF circle[c3] == 1 or c3 == n THEN

IF maxgaptemp >= maxgap THEN

maxgap = maxgaptemp

maxgaptemp=0

ENDIF

ENDIF

ELSE IF circle[c3] is equal to 0

Increment maxgaptemp

ENDIF

ENDFOR

 30

At this stage , all the onsets are placed and a rhythm is formed

Of all the rhythms so obtained in this loop with various initial distances, the final optimal

rhythm is obtained based on the following criteria

Numgaps is minimum (set numgaps to gapfinal)

Zerofreq is minimum (set zerotemp to zerofreq)

Maxfreq is minimum (set maxfreq to maxfinal)

Freqdiff is least (set freqdiff to difffinal)

Maxgap is minimum (set maxgap to maxgapfinal)

ENDFOR

 31

Procedure explanation:

1. Place an onset at point 0 and another onset at a distance of one to it.

2. Next place the remaining onsets at one of the not covered points, such that it satisfies the

following criteria.

On placing the onset, the number of gaps in the histogram should be minimum. This will make

ensure that we finally get a single connected component (number of gaps=0) or with minimum

gaps.

On placing the onset maximum number of distances should be covered. Since more zero

frequency distances are covered, the maximum frequency will be minimum.

On placing the onset, the maximum frequency should not increase .If it increases at all points,

minimum is selected.

In order to maintain relatively flat histograms the average of all the distances whose frequencies

are increased on placing the onset should be minimum.

In order to reduce silent ness, choose a position for the onset such that it is placed in the largest

gap on the circle, thus reducing the silent ness.

Another criterion is that the position of the onset is near to the midpoint on the largest gap in

which it is placed. This will make sure that the silent ness is reduced to a maximum.

In this method at every stage an onset is placed, its position is chosen such that it satisfies the

above conditions in the given order. Now the optimal rhythm may not cover distance one.

Therefore this process is repeated by setting up various possible initial distances. The rhythms

obtained are compared based on the following conditions in the given order and the best is

chosen.

 32

The number of gaps in the histogram generated should be minimum. A histogram with a single

connected component is more preferred.

The number of zero frequency distances should be maximum .This will make sure that all

possible distances are covered.

The rhythm whose maximum frequency is less is preferred.

The rhythm with a uniform and relatively flat histogram is more preferred .In order to maintain

a flat histogram, the difference between the maximum and minimum frequency of the inter onset

distances should be minimum.

The rhythm with minimum silent ness is preferred.

 33

3.2 Erdos-deep method

Erdos-deep
n Property

Fig 3.2: Erdos-deep method

Erdos-deep property1: We characterize which sets of k points chosen from n points

spaced evenly around a circle have the property that, for each i = 1, 2,...,k−1, there is a nonzero

distance along the circle that occurs as thedistance between exactly i pairs from the set of k

points. Rhythms with this property are called Erdos-deep.

rhythm

K

No empty
circle

 34

Procedure ErdosDeep_Pattern(nm, km)

Input :nm - number of time intervals

km – number of onsets

Output : patternPossible : Is true if an Erdos deep rhythm with no empty semicircles is possible

with the given values of nm and km , else it is set to false.

Auxillary:

pattern - Rhythm with ‘nm’ time intervals

IsErdos - Boolean variable which is true if the rhythm is Erdos Deep

noEmptySemiCircle - Boolean variable which is true if the rhythm does not have a empty semi-

circle

i,j,temp,pt,a[] – temporary variables

freqOfDistance – Gives the frequencies(number of times) of

inter-onset distances (from 1 to km-1) in the rhythm ‘pattern’

distance – inter onset distance

gapConsecOnsets – Gap between consecutive onsets on the circular lattice

 35

Pseudo code:

For a given combination of nm and km, initialize a ‘pattern’ for the rhythm.

 Initialize frequencies of all inter onset distances to 0.

For i = 0 to nm DO

IF pattern[i] = 1 THEN

distance = 0

FOR j = i + 1 to nm DO

IF pattern[j] = 0 THEN

Increment distance

ENDIF

ELSE IF pattern[j] = 1 THEN

Increment distance

IF distance > (nm – distance) THEN

Increment freqOfDistance[distance]

ENDIF

ELSE IF distance >= (nm – distance) THEN

Increment freqOfDistance[nm - distance]

ENDIF

ENDIF

ENDFOR

ENDIF

ENDFOR

 36

//Check if pattern is Erdos Deep (Is_ErdosDeep)

FOR i = 1 to km -1 DO

// Check if there is a geodesic distance j with frequency i , in the rhythm ‘pattern’ (

ExistsDistance)

FOR j = 1 to nm/2 DO

IF freqOfDistance[j] = i THEN

The rhythm ‘pattern’ is Erdos Deep

ENDIF

ENDFOR

ENDFOR

// Check if the pattern is a empty semi circle (NoEmpty_SemiCircle)

gapCosecOnsets = 0

FOR j = 0 to nm DO

IF pattern[j] = 1 THEN

 // j is the position of the first onset in pattern

break

ENDIF

ENDFOR

 37

FOR i = j + 1 to nm + j DO

IF i is greater than or equal to nm THEN

pt = i - nm

ENDIF

ELSEIF

pt = i

ENDIF

IF pattern[pt] = 0 THEN

Increment gapConsecOnsets

ENDIF

ELSE IF pattern[pt] = 1 THEN

Increment gapConsecOnsets

IF nm % 2 = 0 THEN

temp = nm/2

ENDIF

ELSEIF

temp = (nm + 1) / 2

IF gapConsecOnsets >= temp THEN

There is an empty semi circle in the rhythm

ENDIF;ENDIF

ENDIF;ENDFOR

 38

There is no empty semi circle in the rhythm

If the rhythm ‘pattern’ is Erdos Deep and there is no empty semi circle , then patternPossible is

set to true

Else the above process is repeated for another permutation of the rhythm ‘pattern’.

//Code for permutation of the rhythm to get another rhythm

FOR i = nm – 2 to 0 DO

 IF a[i + 1] > a[i] THEN

FOR j = nm – 1 , a[j] is less than a[i] DO

Swap a[i] and a[j]

FOR j = 1 to (nm-i)/2 DO

Swap a[i+j] and a[nm-j]

ENDFOR

FOR j = 0 to nm DO

pattern[j] = a[j]

ENDFOR

ENDFOR

ENDIF

ENDFOR

 39

Given the number of time units (n) and number of onsets (k), n c k combinations of

rhythms are generated. Then each rhythm is verified whether it satisfies Erdos-deep property and

no empty-circle constraints. If any one rhythm satisfies the above constraints, it proves that for a

given input, their exists a rhythm which satisfies Erdos-deep property with no empty circle. The

rhythm generated is depicted as a histogram.

The function Is_ErdosDeep () verifies whether the rhythm satisfies Erdos-deep property.

If it satisfies then the function NoEmpty_SemiCircle() checks whether the rhythm has an no

empty semi-circle. If both the functions return true, then the rhythm is said to satisfy Erdos-deep

property with no empty circle.

 40

Chapter 4

SAMPLES OF GENERATED RHYTHMS

The software that was developed was supplied with an interface using Java applets. The

generated rhythm was then represented in traditional musical notation using an application

program called Noteworthy Composer.

The initial screen of the interface has five buttons which are named ALL, EVENNESS,

INTERVAL VECTOR, ERDOS RHYTHMS and EUCLIDEAN RHYTHMS. We illustrate

this below:

 Initial screen:

 41

EVENNESS − Hitting this button, launches a new screen that displays rhythms generated using

the ‘evenness’ procedure. This new screen has three buttons itself: RUN, CLEAR, and

PREVIOUS. It also has two dropdown menus for selecting the value of n (number of time

units) and k, the number of onsets. We illustrate this below:

Evenness screen:

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a

rhythm using the ‘evenness’ procedure. The output is depicted in binary format and also in a k-

gon format. For comparison purposes, an optimal rhythm is also depicted in a k-gon format for

the same combination of time units and onsets.

CLEAR This button clears the screen.

PREVIOUS This button takes you to the previous screen.

 42

INTERVAL VECTOR – Hitting this button launches a new screen that displays rhythms

generated using the ‘interval vector’ procedure. This new screen has three buttons like the

previous technique: RUN, CLEAR, and PREVIOUS. Likewise, it has the two dropdown

menus for selecting n, the number of time units, and k, the number of onsets. We illustrate this

below

Interval Vector screen:

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a

rhythm using the ‘interval vector’ procedure. The rhythm is depicted in binary format, and also

in k-gon format. Additionally, the output’s histogram is displayed. A sample output is given

below:

CLEARThis button clears the screen.

PREVIOUS This button takes you to the previous screen.

 43

ERDOS RHYTHM – Hitting this button launches a new screen that displays rhythms generated

using the ‘Erdos pattern’ procedure. As with the preceding techniques, this new screen has three

buttons itself: RUN, CLEAR, and PREVIOUS. The two dropdown menus for selecting n, the

number of time units, and k, the number of onsets, are present as well.

Erdos Rhythm screen:

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a

rhythm using the ‘erdos_pattern’ procedure. As in the preceding methods, the rhythm is depicted

in binary format, in k-gon format, and with a histogram.

CLEAR This button clears the screen.

PREVIOUS This button takes you to the previous screen.

 44

EUCLIDEAN RHYTHMS – Hitting this button opens up a new screen which displays rhythms

generated using the ‘Euclidean’ procedure. The screen has the now-familiar three buttons –

RUN, CLEAR, and PREVIOUS. It also has two dropdown menus to select n, the number of

time units and k, number of onsets.

Euclidean Rhythm screen:

RUNAfter selecting n and k from the dropdown menu, hitting the RUN button generates a

rhythm using the ‘euclidean’ procedure. As in the preceding methods, the rhythm is depicted in

binary format, in k-gon format, and with a histogram.

CLEAR This button clears the screen.

PREVIOUS This button takes you to the previous screen.

 45

ALL – Hitting this button, opens up a new screen which displays rhythms using all the four

procedures (Evenness, Interval vector, Erdos_pattern, Euclidean). The rhythms are depicted as a

binary number, k-gon and as a histogram.

RUNBy selecting n and k from the dropdown menus, hitting this button generates rhythms using

all four procedures (Evenness, Interval vector, Erdos_pattern, Euclidean). The rhythms are

depicted in binary format, in k-gon format, and with a histogram.

CLEAR This button clears the screen.

PREVIOUS This button takes you to the previous screen.

 46

The screens below illustrate rhythms generated for different combinations of n (number of time

units) and k (number of onsets). [Note: These rhythms are available in MP3 format and can be

played from the accompanying CD.]

1. n = 12, k =5

These rhythms are illustrated here in regular music notation:

a. Evenness

b. Interval vector

c. Erdos rhythms

d. Euclidean rhythms

 47

2. n = 12 , k =7

a. Evenness

b. Interval vector

c. Erdos rhythms

d. Euclidean rhythms

 48

3. n = 16 , k = 5

a. Evenness

b. Interval vector

c. Erdos rhythms

d. Euclidean rhythms

 49

4. n = 16, k = 7

a. Evenness

b. Interval vector

c. Erdos rhythms

d. Euclidean rhythms

 50

5. n =11, k=5

a. Evenness

b. Interval vector

c. Erdos rhythms

. Euclidean rhythms

4.1Sample Rhythms

d

Some sample rhythms with varying number of units (n) and onsets (k) are generated

using Noteworthy Com .

poser tool. They are posted on http://www.cs.uno.edu/~adlai/rhythms

 51

Chapter 5

CONCLUSION AND FUTURE WORK

ur attempt here was to develop a tool that e of the methods

and pro

t

venness is a property where onsets are distributed uniformly in a given time domain.

The fir k

hich

 method known as Regression Evenness which measures the un-evenness in a rhythm

was als

e

O generates rhythms using som

blems posed by Godfried Toussaint. The tool may be useful for a musical composer who

can take some of the rhythms we have generated, analyze and insert them in music. In studying

various rhythms from the past, evenness and the interval vector were two properties that were

considered to analyze rhythms. Then, various methods were used to generate new rhythms tha

contain these properties to one degree or another.

E

st procedure simply placed the onsets to form a regular k-gon inscribed in a circle where

is the number of onsets. This was achieved by placing one onset coincident with one lattice

point and then moving the remaining onset points to their nearest lattice points in an evenly

distributed way. The second procedure used the Bjorklund sequence generation algorithm w

has the same structure as the well-known Euclidean algorithm. This procedure is based on

computing the greatest common divisor which actually distributes the onsets uniformly.

A

o implemented. The Regression Evenness Metric (REM) for a given rhythm measures

how far the rhythm onsets are displaced from a perfectly even rhythm (with the same time fram

and number of onsets) and is obtained by calculating the sum of all the onsets’ deviations. The

rhythm which yields a minimum REM value is called a maximally-even rhythm.

 52

The interval vector is the spectrum of frequencies in a rhythm and is best represented by a

histogr

hythms were generated with various combinations of values of n and k. These were

then re

f

, of

As for future work, we can improve our system by developing an interface between our

produc

is

am. The first procedure based on the interval vector efficiently generates rhythms that

contain geometric constraints on their shapes in a given priority. The second procedure tried to

achieve the Erdos-deep property by placing k onsets in a given time domain n such that, for each

i = 1, 2,..., k−1, there is a non-zero distance that occurs exactly between i pairs from the set of k

points.

R

ndered in normal musical notation using a notation tool called NoteWorthy. The same

software tool was then used to generate MIDI versions of the generated rhythms for purposes o

actually listening to the generated rhythms. We even inserted some rhythms into existing

musical works to listen and assess the aesthetic value of the generated rhythms. Eventually

course, the listener will have to decide on whether a generated rhythm is “good” or bad. After

all, beauty is in the eye of the beholder. Or in our case, in the ear of the listener.

t and a sound producing tool such as NoteWorthy. The binary output of our system

should be readily convertible into a MIDI format that can then become an input to any other

MIDI-supported musical instrument. We can also envision our work to be incorporated into

systems that are required to produce rhythmic patterns, such as keyboards and sequencers. Th

will, of course, require knowledge of algorithms, some of which might be proprietary, in order to

achieve this.

 53

REFERENCES

1) Godfried Toussaint, "The geometry of musical rhythm," Proceedings of the Japan Conference
n Discrete and Computational Geometry, J. Akiyama et al. (Eds.), LNCS 3742, Springer-

Wood, "The distance geometry of deep rhythms

s,"

f the
y, Massachussetts Institute of

formation Retrieval, Universitat Pompeu

try, Smith

enco: A phylogenetic analysis," Proceedings of BRIDGES:
,

tical Connections in Art, Music and Science,

o
Verlag, Berlin, Heidelberg, 2005, pp. 198-212.

2) Erik Demaine, Francisco Gomez-Martin, Henk Meijer, David Rappaport, Perouz Taslakian,

odfried Toussaint, Terry Winograd and David G
and scales," Proceedings of the 17h Canadian Conference on Computational Geometry,
University of Windsor, Windsor, Ontario, Canada, August 10-12, 2005, pp. 160-163.

3)Godfried T. Toussaint, "The Euclidean algorithm generates traditional musical rhythm

roceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, Banff, P
Alberta, Canada, July 31 to August 3, 2005, pp. 47-56.

4) Godfried T. Toussaint, "Computational geometric aspects of musical rhythm," Abstracts o
4th Annual Fall Workshop on Computational Geometr1

Technology, November 19-20, 2004, pp. 47-48.

5) Godfried T. Toussaint, "A comparison of rhythmic similarity measures," Proceedings of

MIR 2004: 5th International Conference on Music InIS
Fabra, Barcelona, Spain, October 10-14, 2004, pp. 242-245.

6) Perouz Taslakian and Godfried T. Toussaint, "Geometric properties of musical rhythm,"

roceedings of the 16th Fall Workshop on Computational and Combinatorial GeomeP
College, Northampton, Massachussetts, November 10-11, 2006.

7) Joao M. Martins, Marcelo Gimenes, Jonatas Manzolli, Adolfo Maia Jr. “Similarity Measures

r Rhythmic Sequences”. fo

8) Miguel Diaz-Banez, Giovanna Farigu, Francisco Gomez, David Rappaport, and Godfried T.

oussaint, "El compas flamT
Mathematical Connections in Art, Music, and Science, Southwestern College, Winfield, Kansas
July 30 to August 1, 2004, pp. 61-70.

9) Godfried T. Toussaint, "Algorithmic, geometric, and combinatorial problems in computational

usic theory," Extended version of paper that appeared in: m
Proceedings of X Encuentros de Geometria Computacional, University of Sevilla, Sevilla, Spain
June 16-17, 2003, pp. 101-107.

10) Godfried T. Toussaint, "A mathematical analysis of African, Brazilian, and Cuban clave

ythms," Proceedings of BRIDGES: Mathemarh
Townson University, Towson, MD, July 27-29, 2002, pp. 157-168.

 54

11) Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai

ust 11-13,

2) Godfried Toussaint, "Mathematical features for recognizing preference in Sub-Saharan

,

3) Godfried T. Toussaint, "Classification and phylogenetic analysis of African ternary rhythm
l

4) Godfried T. Toussaint, "Algorithmic, geometric, and combinatorial problems in
gs of X

003,

5) D.H. Huson, “Splitstree: A Program for Analyzing and Visualizing Evolutionary Data,”

6) D. Bryant and V. Moulton, “NeighborNet: An Agglomerative Method for the Construction

7) B. Holland and V. Moulton, “Consensus Networks: A Method for Visualizing
atics, pp.

8) http://www.noteworthysoftware.com/

9)Dannenberg, ``Listening to `Naima': An Automated Structural Analysis of Music from
n

0) Dannenberg and Hu, ``Discovering Musical Structure in Audio Recordings,'' in Music and

e,

Nunez, David Rappaport and Godfried Toussaint, "Computing a geometric measure of the
similarity between two melodies," Proceedings of the 15th Canadian Conference on
Computational Geometry," Dalhousie University, Halifax, Nova Scotia, Canada, Aug
2003, pp. 81-84.

1
African traditional rhythm timelines," Proceedings of the 3rd International Conference on
Advances in Pattern Recognition, University of Bath, Bath, United Kingdom, August 22-25
2005, pp. 18-27.

1
timelines," Extended version of paper that appeared in: Proceedings of BRIDGES: Mathematica
Connections in Art, Music, and Science, University of Granada, Granada, Spain July 23-27,
2003, pp. 25-36.

1
computational music theory," Extended version of paper that appeared in: Proceedin
Encuentros de Geometria Computacional, University of Sevilla, Sevilla, Spain June 16-17, 2
pp. 101-107.

1
Bioinformatics, vol. 14, no. 10, pp. 68-73, 1998.

1
of Planar Phylogenetic Networks,” Algorithms in Bioinformatics, WABI 2002, R. Guigó and D.
Gusfield, eds., pp. 375-391, 2002.

1
Incompatibilities in Collections of Trees,” Proc. Workshop Algorithms in Bioinform
165-176, 2003.

1

1
Recorded Audio,'' In Proceedings of the 2002 International Computer Music Conference. Sa
Francisco: International Computer Music Association., (2002), pp. 28-34.

2
Artificial Intelligence: Second International Conference, C. Anagnostopoulo, M. Ferrand, A.
Smail, eds., Lecture notes in computer science; Vol 2445: Lecture notes in artificial intelligenc
Berlin: Springer Verlag, (2002), pp. 43-57.

 55

APPENDICES

Appendix A: The Evenness Method

r lattice form a “regular polygon”, then such a rhythm is

an opti

nsets (say k) are placed in the nearest positions to the actual positions (in
ase of a regular k-gon) such that it coincides with the instants of time into which the circular

hich is an approximation of the optimal regular polygon.

public void calcFlow ()
{

m the user and draw the circle
true;

een
nsets when the onsets form a regular polygon

mp;

ions

[i]=0;
 //starting with a high note-1 at time 0

 //arc length between consecutive onsets in

the onsets are placed in the nearest positions to the optimal

 //actual position of onset

In a rhythm, if the onsets on the circula

mal rhythm.

In this method the o

c
lattice is divided into.

This gives a polygon w

The rhythm generated is very close to the optimal rhythm.

//take the first input fro
alg =
float y; //geodesic distance (arc length) betw
consecutive o
float z; //specifies the position of the onset on
the circular lattice in case of a regular polygon

//temporary variables
int i;
int j;
int a;
float te

//initialisat
z=0;
for(i=1;i<nm;i++)
circle
circle[0]=1;
y=nm/km;
a regular polygon - (k-gon)

//code for placing the onsets
//
on the circular lattice.
while(z<nm)
{
z=z + y;

 56

a=(int)z;

) //Since the beats are recorded after every unit
 time the optimal position is rounded

This gives a polygon which is an approximation of the regular

cular lattice.

ode to print the beats(1-high beat ,0-low beat) at different
me

ircle[i]);

ode for printing the frequencies of distances
ut<<endl<<endl;

2)"<<endl<<endl;

nd all the inter-onset distances
;i<nm;i++)

)

 {
ances possible between 2 onsets on the

temp=z-a;
if(temp>0.5
interval of
a=((int)z)+1; // off to its nearest position such that it
coincides with the instants of time when

//the beats are recorded.
//
polygon.
circle[a] = 1;//an onset is placed at that approximated position
on the cir
}

//c
instants of ti
System.out.print("Rhythm generated - ");
for(i=0;i<nm;i++)
{
 System.out.print(c
}

//C
co
cout<<"Frequency of occurrences of
distances(1......n/
for(i=0;i<1000;i++)
freqarray[i]=0;
int dist1;
int dist2;

//code to fi
for(i=0
{
if(circle[i]==1)
{
for(j=i+1;j<nm;j++
{
if(circle[j]==1)

//there are 2 dist
circular lattice
dist1=j-i;
dist2=nm-dist1;

 57

//The shortest distance between 2 onsets is considered as the

ed.

+;

ray[dist2]++;

distance between the onsets and its
// frequency of occurence is increment
if(dist1<dist2)
freqarray[dist1]+
else
freqar
}
}
}
}

 58

Appendix B:Euclidean Method

his method uses the euclid algorithm(it is an algorithm to find the greatest common divisor)

Find the difference between the two numbers and replace the largest number with the difference

Repeat this process till the difference is 1 or 0.The final number is the greatest common divisor.

public void calcFlow () {

g = true;
 //number of onsets

gh beat, 0-low beat

nt[1000];
mber of time intervals

part of the rhythm

wether there is a single zero in the final

orary variables

ar;

=0;cnt<1000;cnt++)

eat[cnt]=0;

m;
;

es;

zeros;

T

and is also known as the bjorklund algorithm.

al
int ones;
int zeros; //number of zeros
//the repeating part(sequence of beats 1-hi
of the rhythm.
intrepeat[]=newi
int n; //nu
int r; //the number of beats
//The number of times a part of the repeating
occurs
int rem;
//lastzero specifies
remainder column
char lastzero='n';

//temp
int j;
int m1;
int m2;
int temp;
int c3;
int c5;
int tempv
int l1,l2;
int ty,r1;
for(int cnt
{
rep
}
n=n
ones=km
zeros=n-on
if(zeros>=ones)
{
m1=

 59

m2=ones;
}
else

ones;

initially r represents the number of zeros that can be added

rem is the number of remainder columns

the first note in the repeating rhythm is 1

r+1;

e

r;

(j=1;j<=ty;j++)

implementing euclidean algorithm. The difference m1-m2 gives

m1+m2;

2-m1;

tzero='y';

1;

zeros>=ones)

{
m1=
m2=zeros;
}

//
to the repeating rhythm
r=zeros/ones;

//
rem=zeros%ones;

//
repeat[0]=1;
if(rem!=0)
{
ty=
}
els
{
ty=
}
for
{

//
the number of remainder columns
m1=m1-m2;
repeat[j]=0;
}
m1=
if(m1>=m2)
temp=m1-m2;
else
temp=m
if(rem==1)
{
las
j--;
r=rem-
temp=1;}
if(rem!=1)
{
if(

 60

{
temp=m2-m1;
m2=temp;
}
else

p=m1-m2;

rem==0)

temp!=1&&temp!=0){

)

;
eat[cnt2];

m1<=m2)

p=m2-m1;

e

p=m1-m2;

if the number of remainder columns is 1 or 0 then break
ak;}

j;
2<=r;cnt2++)

;
eat[cnt2];

=temp;

{
tem
m1=temp;
}
}
if(
temp=0;
j--;
while(
if(temp/rem!=0)
{
for(int cnt2=0;cnt2<=r;cnt2++
{
j++
l1=rep
repeat[j]=l1;
}
if(
{
tem
m2=temp;
}
els
{
tem
m1=temp;
}

//
if(temp==1||temp==0) bre
else
{
r1=
for(int cnt2=0;cnt
{
j++
l2=rep
repeat[j]=l2;
}
rem
r=r1;
if(m1<=m2)

 61

{
temp=m2-m1;

e

p=m1-m2;

temp==1||temp==0)

Code to assign the rhythm to the circlefinal array

3++)

qarray[c3]=0;

 cnt5;

e number of remainder columns is 0 then the final rhythm

ng part of the rhythm occuring a certain number of

)

(int cnt3=0;cnt3<m1;cnt3++)

nt4<=j;cnt4++)

clefinal[c3]=repeat[cnt4];

if the number of remainder columns is 1 then the finaal rhythm

ing part of the rhythm occuring a certain number of

ed by the sequence of beats in the remainder columns.

m2=temp;
}
els
{
tem
m1=temp;
}
if(
break;
}
}

//
//initialisation
for(c3=0;c3<1000;c
{
fre
circlefinal[c3]=0;
}
int
int cnt6;
c3=0;

//if th
is the
//repeati
times.
if(temp==0
{
for
{
for(int cnt4=0;c
{
cir
c3++;
}
}}

//
is the
//repeat
times
//follow
else if(temp==1)
{

 62

if(m1>m2)

2;
t3=0;cnt3<cnt5;cnt3++)

(int cnt4=0;cnt4<=j;cnt4++)

clefinal[c3]=repeat[cnt4];

code to add the sequence of beats in the remainder column.

nt7=0;cnt7<=cnt6;cnt7++)

lastzero=='n')

clefinal[c3]=repeat[cnt7];

eif(lastzero=='y')
 single zero

clefinal[c3]=0;

0;c5<n;c5++)

pvar=circlefinal[c5];

code for printing the frequencies of distances

n;c5++)

circlefinal[c5]==1)

(int c6=c5+1;c6<n;c6++)

circlefinal[c6]==1)

cnt5=m1;
else
cnt5=m
for(int cn
{
for
{
cir
c3++;
}
}

//
cnt6=r;
for(int c
{
if(
{
cir
c3++;
}
els
//lastzero=y if the remainder column has a
{
cir
c3++;
}
}}
c5=0;
for(c5=
{
tem
}

//
int dist1;
int dist2;
for(c5=0;c5<
{
if(
{
for
{
if(
{

 63

//there are 2 distances possible between 2 onsets on the

The shortest distance between 2 onsets is considered as the

remented.

+;

ray[dist2]++;

circular lattice
dist1=c6-c5;
dist2=n-dist1;

//
distance between the onsets and
//its frequency of occurence is inc
if(dist1<dist2)
freqarray[dist1]+
else
freqar
}
}
}
}
}

 64

Appendix C: Comparison Measure

nclude <iostream>

rray storing the values (1-high note or 0-low note) at

rcle is divided

secutive onsets when

ition on the cirular

iation;

circular lattice number=";

l<<"the number of onsets=";

nter the rhythm"<<endl;

 to find the net deviation of the rhythm from the optimal.

j is the position of the onset in the given rhythm

imal position of the onset on the circular

ion of the onset in the given rhythm

#i
using namespace std;
int main()
{
//a
different instants of time
int circle[1000];
//number of time intervals into which the ci
float n;
//number of onsets
float ones;
//geodesic distance (arc length) between con
the onsets form a regular polygon
float dist;
//deviation of the onset fro its optimal pos
lattice
float dev
//sum of the deviations of all the onsets
float sumofdev=0;
//temporary variables
float k;
float temp;
cout<<endl<<"
cin>>n;
cout<<end
cin>>ones;
dist=n/ones;
cout<<endl<<"e
for(int i=0;i<n;i++)
cin>>circle[i];

//Code
//This net deviation is called the regression evenness of the
rhythm.
k=0;

//
for(int j=0;j<n;j++) {
if(circle[j]==1){
//Corresponding opt
lattice in case of a regular polygon
temp=k*dist;if(temp>j)
//deviation of the posit
from its optimal position
deviation=temp-j;

 65

else
deviation=j-temp;

eviation;

t<<endl<<"total deviation="<<sumofdev;

sumofdev=sumofdev+d
k++;
}
}
cou
return 0;
}

 66

Appendix D: Interval vector method

public void calcFlow () {

j;
ist;

nes;
 int[1000];

'n';

ew int[1000];

='y';

]=new int[1000];

m;
e;

 //copy every constant corr to that onset

int i,
int startd
int gap;
int alrpro
int circle[]=new
int array[]=new int[1000];
int maxcover;
int maxfreq=0;
int zerotemp;
int k1,k2;
int value;
char gapres=
int count=0;
int tmparr[]=n
int filled='n';
int d1,d2;
int mindist;
int c1;
int c2=0;
int c3;
int c4=0;
int val=0;
char allgaps
int numgaps=0;
int numconv;
int arraytemp[
int conversions;
int sum;
int flatsu
int gaponcircl
int circlegap=0;
//int beforeval;
float midpoint1;
//float midpoint2;
float midpnt=0;
float diff1;
float diff2;
int maxcovdist=0;
int finalcount;
gapfinal=1000;
zerofreq=1000;
maxfinal=1000;
difffinal=1000;

 67

maxgapfinal=1000;

nalcount++)

in='n';

ialisation

;i<1000;i++)

ay[i]=0;

cle[0]=1;
lcount]=1;

gaps='y';

;

)

circle[j]==0)

ue=j;
;

n';

0;
1000;k2++)

circle[k2]==1)

value>k2)

for(finalcount=1;
finalcount<=nm/2;fi
{
aga

//init
alrprones=1;
startdist=1;
k1=1;
for(i=0
{
arr
circle[i]=0;
}
cir
circle[nm-fina
array[finalcount]++;
for(i=1;i<=km-2;i++)
{
all
conversions=0;
maxfreq=1000;
flatsum=10000;
gaponcircle=1000
numgaps=1000;
conversions=0;
for(j=0;j<nm;j++
{
if(
{
val
filled='n'
count=0;
gap=0;
gapres='
sum=0;
numconv=
for(k2=0;k2<
arraytemp[k2]=array[k2];
for(k2=0;k2<nm;k2++)
{
if(
{
if(
d1=value-k2;
else

 68

d1=k2-value;

cover=0;
count;c1++)

res='n';
(nm/2);c1++)

res=='n')

e if(arraytemp[c1]==1)

arraytemp[nm/2]==0)

=0;
maxcover;c2++){

(c2=0;c2<=nm;c2++)

d2=nm-d1;
if(d1<d2)
mindist=d1;
else
mindist=d2;
count++;
tmparr[count]=mindist;
if(arraytemp[mindist]==0)
numconv++;
arraytemp[mindist]++;
sum=sum+arraytemp[mindist];
}
}
max
for(c1=1;c1<=
{if(tmparr[c1]>maxcover)
maxcover=tmparr[c1];
}
gap
for(c1=1;c1<=
{if(arraytemp[c1]==0 && gap
{
gap++;
gapres='y';
}
els
{
gapres='n';
}
}
if(
gap--;
int maxm
for(c2=1;c2<=
if(arraytemp[c2]>maxm)
maxm=arraytemp[c2];
}
for
{
if(circle[c2]==1||c2==nm)
{if(c2>value)
{
circlegap=c2-c4;
break;
}c4=c2;
}

 69

}
if(gap<numgaps)

=value;

mconv;

;

e if(gap==numgaps)
)

=value;
numconv;

rclegap;

;

e if(numconv==conversions)

third concept

=value;

e if(maxm==maxfreq)

=value;

e if(sum==flatsum)

{
val
numgaps=gap;
conversions=nu
maxfreq=maxm;
flatsum=sum;
gaponcircle=circlegap;
midpnt=midpoint1;
maxcovdist=maxcover
}
els
{if(numconv>conversions
{
val
conversions=
maxfreq=maxm;
flatsum=sum;
gaponcircle=ci
midpnt=midpoint1;
maxcovdist=maxcover
}
els
{

//
if(maxm<maxfreq)
{
val
maxfreq=maxm;
flatsum=sum;
gaponcircle=circlegap;
midpnt=midpoint1;
maxcovdist=maxcover;
}
els
{if(sum<flatsum)
{
val
flatsum=sum;
gaponcircle=circlegap;
midpnt=midpoint1;
maxcovdist=maxcover;
}
els

 70

{
if(circlegap>gaponcircle)
{
val=value;
gaponcircle=circlegap;
midpnt=midpoint1;
maxcovdist=maxcover;
}else if(circlegap==gaponcircle)
{
if(midpoint1>value)
diff1=midpoint1-value;
else diff1=value-midpoint1;
if(midpnt>val)
diff2=midpnt-val;
else diff2=val-midpnt;
if(diff1<diff2)
{
val=value;
midpnt=midpoint1
maxcovdist=maxcover;
}else if(diff1==diff2)
{//do nothing
}}}}}}
count=0; }}
for(c2=0;c2<nm;c2++)
{
if(circle[c2]==1)
{
if(val>c2)
d1=val-c2;
else
d1=c2-val;
d2=nm-d1;
if(d1<d2)
mindist=d1;
else
mindist=d2;

//Compromise if all poss dist are covered then check for all
uncovered points
array[mindist]++;
}
}
circle[val]=1;
startdist=maxcovdist+1;

 71

//if no: of gaps is same then more no: of zeros convert to ones
}//for each onset placed
zerotemp=0;
for(c3=1;c3<=(nm/2);c3++)
{
if(array[c3]==0)
zerotemp++;
}
minfreq=1000;
for(c3=1;c3<=nm/2;c3++)
{
if(array[c3]<minfreq && array[c3]!=0)
minfreq=array[c3];
}
freqdiff=maxfreq-minfreq;
maxgap=0;
maxgaptemp=0;
gapresf='n';
for(c3=0;c3<=nm;c3++)
{
if(circle[c3]==1||c3==nm)
{
if(maxgaptemp>=maxgap)
maxgap=maxgaptemp;
maxgaptemp=0;
}
else if(circle[c3]==0)
maxgaptemp++;
}
//conditions
if(numgaps<gapfinal)
{
gapfinal=numgaps;
again='y';
}

//initialisation
else if(numgaps==gapfinal)
{
if(zerotemp<zerofreq)
{
again='y';
zerofreq=zerotemp;
}
else if(zerofreq==zerotemp)
{
if(maxfreq<maxfinal)

 72

{
again='y';
maxfinal=maxfreq;
}
else if(maxfreq==maxfinal)
{
if(freqdiff<difffinal)
{
again='y';
difffinal=freqdiff;
}
else if(freqdiff==difffinal)
{
if(maxgap<maxgapfinal) //find maxgap
{
again='y';
maxgapfinal=maxgap;}
else if(maxgap==maxgapfinal)
{//do nothing
}}}}}
if(again=='y')
{
for(c3=0;c3<nm;c3++)
{
if(circle[c3]==0)
circlefinal[c3]=0;
else
circlefinal[c3]=1;
arrayfinal[c3]=0;
}
for(c3=1;c3<=(nm/2);c3++)
arrayfinal[c3]=array[c3];

//other properties
gapfinal=numgaps;
zerofreq=zerotemp;
maxfinal=maxfreq;
difffinal=freqdiff;
maxgapfinal=maxgap;
}
}
alg = true;
System.out.print("rhyyythm ");
for(int i1=0;i1<nm;i1++)
System.out.print(""+circlefinal[i1]);
}

 73

Appendix E: Erdos-deep method

public void calcFlow () {
int circle[]=new int[1000];
int m=1;
int i,j,k1;
int temp;
char nextpart='n';
char gotit='n';
int primeval=(3*nm)/4;
int finalnumofsem=10000;
while(gotit=='n')
{
for(i=0;i<nm;i++)
{
circle[i]=0;
arrayfinal[i]=0;
}
if(nextpart=='n')
{
for(i=primeval;i>=2;i--)
{
if(gcd(i,nm)==1)
{
m=i;
break;
}
}
}
if(i<2)
{
primeval=((3*nm)/4)+1;
nextpart='y';
}
if(nextpart=='y')
{
for(i=primeval;i<nm;i++)
{
if(gcd(i,nm)==1)
{
m=i;
break;}}}
if(i==nm)
{

 74

//all the relative prime numbers are checked
gotit='y';
break;
}
else
{
if(nextpart=='n')
primeval=m-1;
else
primeval=m+1;
for(i=0;i<km;i++)
{
temp=(m*i)%nm;
circle[temp]=1;
}

//checking for semicircles
int numofsemi=0;
int prev=0;
int current;
int curr;
for(curr=1;curr<=nm;curr++)
{
if(curr==nm)
current=0;
else
current=curr;
if(circle[current]==1)
{
if(prev<current)
temp=current-prev;
else
temp=nm-(prev-current);
if(temp>(nm/2)+1)
{
numofsemi=numofsemi+(temp-(nm/2)-1);
 }
prev=current;
}
}
if(numofsemi<finalnumofsem){
finalnumofsem=numofsemi;
for(i=0;i<nm;i++)
{
if (circle[i]==1)
circlefinal[i]=1;
else

 75

circlefinal[i]=0;
}
}
if(finalnumofsem==0)
{
gotit='y';
break;
}
}
}
for(j=0;j<nm;j++)
{
if(circlefinal[j]==1)
{
for(k1=j+1;k1<nm;k1++)
{
if(circlefinal[k1]==1)
{
if((nm-(k1-j))>(k1-j))
temp=k1-j;
else
temp=nm-(k1-j);
arrayfinal[temp]++;
}}}}
alg = true;
}
int gcd(int a,int b)
{
if(a==b)
{
return a;
}
else
{
if(a>b)
return gcd(a-b,b);
 else
return gcd(a,b-a);
}}

 76

Vita

Shashidhar Sorakayala was born in the city of Hyderabad in India, on May 27th, 1982.

He got his Bachelors of Technology in Computer Science from Jawaharlal Nehru Technological

University in May, 2003. He joined the Masters of Sciences in Computer Science at the

University of New Orleans in 2004. During this time, he worked as a student worker in

Chemistry Department.

 77

	Preferences in Musical Rhythms and Implementation of Analytical Results to Generate Rhythms
	Recommended Citation

	Abstract
	Introduction
	Generating Even Rhythms...
	Generating Frequency-Based Rhythms
	Samples of Generated Rhythms
	Conclusion and Future work
	References
	Appendices

