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Abstract

An SVM-based clustering algorithm is introduced that clusters data with no a priori

knowledge of input classes. The algorithm initializes by first running a binary SVM

classifier against a data set with each vector in the set randomly labeled. Once this

initialization step is complete, the SVM confidence parameters for classification on

each of the training instances can be accessed. The lowest confidence data (e.g., the

worst of the mislabeled data) then has its labels switched to the other class label. The

SVM is then re-run on the data set (with partly re-labeled data). The repetition of the

above process improves the separability until there is no misclassification. Variations

on this type of clustering approach are shown.

Keywords: clustering, machine learning, pattern recognition, support vector ma-

chines, supervised learning, unsupervised learning
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Chapter 1

Introduction

1.1 Motivation

The goal of clustering analysis is to partition objects into groups, such that the

members of each group are more “similar” to each other than the members of other

groups. The similarity is determined subjectively as it does not have a universally

agreeable upon definition. In [1] the author suggests a formal perspective on the

difficulty in finding such a unification, in the form of an impossibility theorem: for

a set of three simple properties, there is no clustering function satisfying all three.

Furthermore, the author demonstrates that relaxations of these properties expose

some of the interesting (and unavoidable) trade-offs at work in well-studied clustering

techniques such as single-linkage, sum-of-pairs, k-means, and k-median.

Ideally, one would like to solve the clustering problem given all the known and un-

known objective functions. This is provably an NP-Hard problem (see [2]). This work

is dedicated to provide a new perspective on clustering by introducing an algorithm

that does not require an objective function. Hence, it does not inherit the limitations

of an embedded objective function. The algorithm in its bare form is capable of sug-

gesting solutions that can be later evaluated using known criterion functions (cluster

validators).

1



CHAPTER 1. INTRODUCTION

1.2 Overview

This work is organized into 5 chapters. In Chapter 2 we will introduce kernel-based

classification along with Support Vector Machines. Notations and conventions are also

presented in this chapter. In Chapter 3 we introduce kernel polarization method and

derive Absdiff and Sentropic regularized kernels. Two cluster validators, supervised

and unsupervised, are then defined followed by an introduction to the SVM-Relabeler

algorithm. This chapter is ended with methods of improving the SVM-Relabeler

algorithm, and one particular improvement using stochastic methods is discussed in

details. Results of the proposed algorithms are presented in Chapter 4 using two-

dimensional, Iris, and DNA hairpin data sets. Finally, in Chapter 5 some important

aspects of this work are discussed and direction for future work is given.
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Chapter 2

Introduction to Classification

2.1 Theory of Classification

The problem of classification is to find a general rule, that based on a set of given

observations a machine is trained to match a set of objects to their appropriate classes.

In its simplest form the machine’s task is to estimate a function f : RN → {±1},
using a set of independent and identically distributed training data set according to

an unknown probability distribution P (x, y), such that if future example pairs (x, y)

are drawn from the same probability distribution P (x, y), f would be able to perfectly

classify them as +1 if f(x) ≥ 0 or -1 if otherwise. To clarity, each example is a pair

that includes a vector of features (or observations), x, and a corresponding label (or

response), y. In the case of the above binary classification the examples are in fact:

(x1, y1), . . . , (xn, yn) ∈ RN × Y, Y = {±1}

The best function, f , is theoretically obtained by minimizing the expected risk func-

tion (expected error) (cf. [3]):

R[f ] =

∫

l(f(x), y)dP (x, y) (2.1)

3



CHAPTER 2. INTRODUCTION TO CLASSIFICATION

where l is a suitable loss function. For instance, in the case of’ “0/1 loss”

l(f(x), y) = Θ(−yf(x))

where Θ is the Heaviside function (Θ(z) = 0 for z < 0 and Θ(z) = 1 otherwise.) In

most realistic cases P (x, y) is unknown and therefore the risk function above cannot

be used to find the optimum function f . To overcome this fundamental limitation one

has to use the information hidden in the limited training examples and the properties

of the function class F to approximate this function. Hence instead of minimizing

the expected risk in (2.1), one may minimize the empirical risk

Remp[f ] = 1/n

n
∑

i=1

l(f(xi), y). (2.2)

As a by product, the learning machine can ensure that for n → ∞ the emper-

ical risk will asymptotically converge to expected risk, but for a small training set

the resulting deviations are often large. This leads to a phenomenon called “over-

fitting.” Then a small generalization error cannot be obtained by simply minimizing

the training error (2.2). One way to avoid the over-fitting dilemma is to restrict the

complexity of the function class that one chooses the function from [4]. The intuition,

which will be formalized in the following is that a “simple” (e.g., linear) function that

explains most of the data is preferable to a complex one (Occams razor). Typically

one introduces a regularization term to limit the complexity of the function class from

which the learning machine can choose. This way the model selection – finding an

optimal complexity of the function – is necessary (cf. [5]).

A specific way of controlling the complexity of a function class is given by the

Vapnik-Chervonenkis (VC) theory and the structural risk minimization (SRM) prin-

ciple [4], [6]. Here the concept of complexity is captured by the VC dimension h of the

function class F that the estimate f is chosen from. The following set of definition

clarify the rest of this discussion.

Definition 1 (Shattering) A Learning Machine f can shater a set of points x1, x2, . . . , xn

4



2.1. THEORY OF CLASSIFICATION

E
rr

or

VC dimension (h)

Confidence term

Training error

Bound on test error

overfitbest fitunderfit

Figure 2.1: This figure illustrates relation (2.3). In practice the goal is to find the
best trade-off between empirical error and the complexity. This figure is based on the
illusteration in [4]

if and only if for every possible training set of the form (x1, y1), . . . , (xn, yn) there ex-

ists some parameter set α that gets zero training error (empirical risk).

Definition 2 (VC Dimension) Given a learning machine f , the VC-dimension h

is the maximum number of points that can be arranged so that f shatter them.

Roughly speaking, the VC dimension measures how many (training) points can

be shattered (i.e., separated) for all possible labelings using functions of the class.

Constructing a nested family of function classes F1 ⊂ . . . ⊂ Fk with nondecreasing

VC dimension the SRM principle proceeds as follows:

Definition 3 (SRM Principle) Let f1, . . . , fk be the solutions of the empirical risk

minimization (2.2) in the function classes Fi. SRM chooses the function class Fi (and

the function fi ) such that an upper bound on the generalization error is minimized

which can be computed making use of theorems such as the following one (see Figure

(2.1)).

Theorem 4 (Expected Risk Upperbound) Let h denote the VC dimension of

the function class F and let Remp be defined by (2.2) using the “0/1 loss.” For all

5



CHAPTER 2. INTRODUCTION TO CLASSIFICATION

delta > 0 and f ∈ F the inequality bounding the risk

R[f ] ≤ Remp[f ] +

√

h(ln2n
h

+ 1)− ln δ
4

n
(2.3)

holds with probability of at least 1− δ for n > h .([4], [6])

Note, this bound is only an example and similar formulations are available for

other loss functions (cf. [6]) and other complexity measures, e.g., entropy numbers

[7]. In the equation (2.3): the goal is to minimize the generalization error R[f ], which

can be achieved by obtaining a small training error Remp[f ] while keeping the function

class as small as possible. Two extremes can arise for equation (2.3): i) a very small

function class (like F1 ) yields a vanishing square root term, but a large training error

might remain, while ii) a huge function class (like Fk) may give a vanishing empirical

error but a large square root term. The best class is usually in between (see Figure

(2.1)), as one would like to obtain a function that explains the data quite well and

to have a small risk in obtaining that function. This is very much in analogy to the

bias-variance dilemma scenario described for neural networks (see, e.g., [8]).

2.2 Kernel Feature Spaces

The so-called curse of dimensionality from statistics says essentially that the difficulty

of an estimation problem increases drastically with the dimension N of the space,

since in principle as N increases, the number of required patterns to sample grows

exponentially. This statement casts doubts in using high dimensional feature vectors

as input to learning machines. Fortunately, results from statistical learning theory

[4] also show that the likelihood of data separability by linear learning machines is

proportional to its dimensionality.

Therefore, instead of working in the RN , one can design algorithms to work in

feature space, F , where the data has much higher dimension. This can be done via

the following mapping

Φ : R
N → F , x 7→ Φ(x). (2.4)

6



2.2. KERNEL FEATURE SPACES

In (2.4) the data x1, . . . ,xn ∈ RN is mapped into a potentially much higher dimen-

sional feature space F . For a given learning algorithm one now considers the same

algorithm in F instead of RN . Hence, the learning machine works with the following

sample:

(Φ(x1), y1), . . . , (Φ(xn), yn) ∈ F × Y, Y = {±1}

It is important to note that this mapping is also implicitly done for (one hidden

layer) neural networks, radial basis networks (cf. [9]) and boosting algorithms (cf.

[10]) where the input data is mapped to some representation given by the hidden

layer, the radial basis function (RBF) bumps or the hypotheses space, respectively.

As a consequence of the above discussion, the dimensionality of the data does

not detract us from finding a good solution, but it is rather the complexity of the

function class F that contributes the most to the complexity of the problem at hand.

Similarly, in practice one would never need to know the mapping function Φ, and

therefore the complexity and intractability of computing the actual mapping is also

irrelevant to the complexity of the problem of classification. To this end, algorithms

are transformed to take advantage of a method called the Kernel Trick.

Definition 5 (Kernel Trick) Achieve the following two objectives when using a

learning machine:

1) Rewrite our learning algorithm so that instead of using Φ(x1) and Φ(x2) directly,

it only uses the dot-product K(x1,x2) = Φ(x1) · Φ(x2), and

2) Compute the dot-products K(x1,x2) in a manner, that avoids computing Φ(x1)

and Φ(x2) explicitly.

Kernel trick in definition (5) requires the knowledge of the appropriateness of a

given function, K, to be used as a kernel. Mercer’s Condition is a way to test for

admission, and is stated in the following theorem.

Theorem 6 [Mercer’s Condition][3] For a given function, K, there exists a mapping

Φ and an expansion:

K(x,y) =
∑

i

Φ(x)iΦ(y)i

7



CHAPTER 2. INTRODUCTION TO CLASSIFICATION

if and only if, for any function, g(x) such that

∫

g(x)2dx

is finite, then
∫ ∫

K(x,y)g(x)g(y)dxdy ≥ 0

Note, that it is usually difficult to apply Theorem (6) directly, since the final integra-

tion is hard to perform for complex candidate kernel functions.

To summarize, any linear classifier that can be formulated to avoid explicit cal-

culation of the mapping function Φ, could be used to classify nonlinear data. The

argument advanced in the next section expands upon the theory of admissible kernels.

2.3 Reproducing Kernel Hilbert Spaces – RKHS

In section (2.2) the notions of Kernel and higher dimension maps were introduced.

Basically, kernels can be used to convert some linear learning algorithms to non-linear

algorithms, without concerning us with the actual mapping. Admission of functions

to be kernels depends on the disscussion that follows in this section. Formally put,

Definition 7 Kernel is any symmetric function K : χ × χ → R. Kernel is said to

be:

(i) Positive Definite if
∑

K(xi, xj)cicj ≥ 0

(ii) Negative Definite if
∑

K(xi, xj)cicj ≤ 0, such that
∑

ci = 0

for all n ∈ N, x1, x2, ..., xn ∈ χ and c1, c2, ..., cn ∈ R.

8



2.3. REPRODUCING KERNEL HILBERT SPACES – RKHS

Consider the Hilbert space1 L2 : 〈u, w〉 =
∫

u(t)v(t)dt. L2 contains too many

non-smooth functions and Reproducing Hilbert Kernel Spaces provides us with the

restriction necessary to obtain a smaller well behaved Hilbert space. Given a kernel

K(x, x′), the goal is to construct a Hilbert space in which K is a dot product. That

is,

Definition 8 A kernel, K, on set χ is pd iff ∃ a Hilbert space, H, and a map Φ :

χ→ H such that ∀x, y ∈ χ,

K(x, y) = 〈Φ(x), Φ(y)〉

Further define the following reproducing kernel map:

φ : x 7→ K(·, x)

that is, to each vector x in the input space χ we assign a function K(·, x). We can

now construct RKHS, a vector space from the linear combinations of the range of the

above map,

f(·) =
∑

i

αiK(·, xi).

The inner product of f(·) and g(·) for g(·) =
∑

j βjK(·, x′
j) is then defined as:

〈f, g〉 =
∑

i

∑

j

αiβjK(xi, x
′
j). (2.5)

1A Hilbert space is a vector space H over a topological field (either R or C) with an inner product
〈·, ·〉. That is given vectors u, v, and w ∈ H and scalars λ and µ,

〈λu + µv, w〉 = λ〈u, w〉+ µ〈v, w〉
〈u, v〉 = 〈v, u〉
〈u, u〉 ≥ 0

〈u, u〉 = 0 → x = 0

From 〈·, ·〉 we get a norm || · || via ||u|| =
√

〈u, u〉. This norm allows us to define notions of
convergence. Adding all limit points of Cauchy sequences to our space yields a Hilbert space – a
complete inner product space.

9



CHAPTER 2. INTRODUCTION TO CLASSIFICATION

Note that for any given f(·) as defined above,

〈K(·, x), f〉 =
∑

i

αiK(xi, x) = f(x)

shows that the kernel, k, is the representer of evaluation. Finally,

〈K(·, x), K(·, x′)f〉 = K(x, x′)

is the reproducing property of the kernel.

10



2.4. COMPONENT ANALYSIS

2.4 Component Analysis

2.4.1 Principal Component Analysis – PCA

The goal of PCA is to find a new set of dimensions that better capture the variabil-

ity of the data. In fact, the amount of variability captured by the new dimensions

decreases with higher dimensions. That is the first dimension captures most of the

variability; the second dimension is orthogonal to the first and captures as much vari-

ability as allowed by providing that constraint and so on. In a more mathematical

way, PCA’s tenet is to compute the most meaningful basis to re-express a noisy data

set. The hope is that this new basis will filter out the noise an reveal the hidden

structure. If the data is represented using a matrix with columns being the like at-

tributes, PCA results in the following set of properties:

1- The covariance of each new two columns is zero.

2- Columns are ordered with respect to the amount of variability they captured.

3- First column contains as much and most of the variability of the data,

4- Subject to the constraint of orthogonality, each subsequent column contains as

much variability as possible.

Futhermore, PCA contains the following assumptions:

1- Linearity,

2- Mean and variance are sufficient statistics2,

3- Large variance is of structural importance, and

4- The principal components are orthogonal.

Supposing that the data matrix, X, is centered – meaning that the mean of each

column is 0. Our objective is to find transformation matrix P such that the new

2A statistic S(X) is sufficient for underlying parameter α if the conditional probability distribu-
tion of the input data X , given the statistic S(X), is independant of the parameter, α. Formally,

Pr(X = x|S(X) = s, α) = Pr(X = x|S(X) = s). (2.6)

Sufficient statisitics are described in more detail in [11].

11



CHAPTER 2. INTRODUCTION TO CLASSIFICATION

matrix Y can be written as:

Y = PX

where the rows of P are the principal components of X. Since it is desired that

the columns are Y have zero covariance, the covariance matrix of Y should have all

zeros on its off diagonals. Therefore, the covariance matrix C = 1
n−1

Y Y T needs to be

diagonalized. With a substitution A = XXT we can rewrite C as:

C =
1

n− 1
P (XXT )TP T =

1

n− 1
PAP T (2.7)

Note A is symmetric it must be orthogonally diagonalizable. since:

AT = (EDET )T = ETT DT ET = EDET = A (2.8)

In PCA the trick is that P is chosen so that each row of P is an eigenvector of A and

therefore, XXT . Combining with (2.7), (2.8),

C =
1

n− 1
PAP T =

1

n− 1
D (2.9)

It is shown that P diagonalizes C and therefore the rows of P , principal components

of X are eigenvectors of XXT . Algorithm (1) demonstrates PCA procedure.

Algorithm 1 PCA Procedure

Require: data set X
1: Subtract the mean for each column of X
2: Calculate the covariance matrix S
3: Find the eigenvectors, P , and the eigenvalues, v of XXT

4: Sort P rows based on v’s values
5: Project the data set: Y = PX

12
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2.4.2 Kernel Principal Component Analysis – KPCA

Derivation

Kernel PCA uses the kernel trick in section (2.2) to relax the linearity assumption

in the regular PCA. There for KPCA is a generalization PCA to the case where we

are not interested in principal components in input space, but rather in principal

components of features which are non-linearly related to the input features. This

amounts to taking higer-order correlations between input features.

Recall that the input space covariance matrix SI = 1/(n−1)XXT can be written

as SI = 1/(n − 1)
∑n

j=1 xjx
T
j , where X is centered input feature matrix. In feature

space this can be modified to:

S ≡ SF = 1/(n− 1)
n
∑

j=1

Φ(xj)Φ(xj)
T .

Also recall that the principal components are calculated via:

λP = SP =
1

n− 1

n
∑

j=1

(Φ(xj) · P )Φ(xj). (2.10)

It can be seen from (2.10) that P ∈ span{Φ(x1), . . .Φ(xn)} and therefore,

P =
n
∑

j=1

αjΦ(xj). (2.11)

by multiplying Φ(xk) by λP in (2.10) we obtain:

λ(Φ(xk) · P ) = Φ(xk) · SP (2.12)

Furthermore, by combining (2.10) and (2.12) we obtain

λ
n
∑

j=1

αj(Φ(xk) · Φ(xj)) =
1

n− 1

n
∑

j=1

αj(Φ(xk)
n
∑

i=1

Φ(xi))(Φ(xj) · Φ(xi)) (2.13)

∀k = 1, . . . , n

13
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As before let Kij be an n× n matrix defined by:

Kij = Φ(xi) · Φ(xj). (2.14)

Equation (2.13) is therefore simplified to:

(n− 1)λα = Kα (2.15)

The matrix K is positive semi-definite and hence the eigenvalues are all positive.

First we sort eigenvalues using λ1 ≤ . . . ≤ λn with corresponding eigenvectors as

α1, . . . , αn. Then we normalize α1, . . . , αn by requiring that the corresponding vec-

tors in F be normalized such that P k · P k = 1 for all k ∈ {index of non-zero eigen-

values}. This condition can be derived from (2.10) and (2.10) by requiring that

1 = λk(α
k ·αk) (2.16)

Finally, to extract features of a new observation x one can project the mapped pattern

Φ(x) onto P k using

P k · Φ(x) =

n
∑

j=1

αk
j (Φ(xj) · Φ(x))

=
n
∑

j=1

αk
j k(xj,x). (2.17)

Implementation

So far we assumed that the mapped data is centered in F . That is:

n
∑

j=1

Φ(xj) = 0 (2.18)

14
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We do not have to assume this since

Φ̃(xi) ≡ Φ(xi)− 1/n
n
∑

j=1

Φ(xj) (2.19)

is centered for any given set of features xj, for all j between 1 to n. Therefore the

previous analysis holds if we replace all Φ with Φ̃. We can also write K̃ in terms of

K which results in:

K̃ij = Φ̃(xi)
T Φ̃(xj)

= (Φ(xi)− 1/n

n
∑

k=1

Φ(xk))
T (Φ(xj)− 1/n

n
∑

k=1

Φ(xk))

= Φ(xi)
T Φ(xj)− 1/n

n
∑

k=1

Φ(xk)
T Φ(xj)− 1/n

n
∑

k=1

Φ(xi)
T Φ(xk)

+1/n2
n
∑

k,k′=1

Φ(xk)
T Φ(xk′)

By letting (1n)ij ≡ 1/n, we can rewrite the above as:

K̃ij = K − 1nK −K1n + 1nK1n. (2.20)

This modification does not affect the formulation as long as K is replaced with equa-

tion (2.20). This process is demonstrated in algorithm (2).

Algorithm 2 KPCA Procedure

Require: data set X
Require: Feature vector x

1: Calculate kernel matrix K
2: Calculate K̃ from (2.20)
3: Diagonalize k̃ using the eigenvalue decomposition in (2.10)
4: Normalize eigenvectors with constraint in (2.16)
5: Project x onto eigenvectors using (2.17)

15
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2.5 Supervised Learning

2.5.1 Margins

As justified in section (2.2) we can assume that the training sample is separable by a

hyperplane, and therefore the following learning machine.

f(x) = (ω · x)− b (2.21)

In [4] it is shown that the for this class of hyperplanes the VC dimension can be

bounded in terms of another quantity, the margin. The margin is defined as the

minimal distance of a sample to the decision surface (see section 2.5.2). It is rather

intuitive that the thicker the margin the better the training would be, and in fact

this quantity could be measured by the length of the weight vector, ω in (2.21).

since we assumed that the training data is separable we can rescale and normalize

ω such that the points closest to the hyperplane is a unit away from the hyperplane

(i.e., the canonical representation of the hyperplane). This can be done by requiring

that |(ω · x) − b)| = 1. Now consider two samples x1 and x2 from different classes

with (ω · x1) − b = 1 and (ω · x2) − b = −1, respectively. The margin is given

by the distance of these two points, measured perpendicular to the hyperplane and

therefore, ω/||ω||2 · (x1 − x2) = 2/||ω||2. The concept of margins links this intuitive

result to another result from VC dimension of linear hyperplanes [4]. In fact, using

the notation from [4] and Theorem (9), we can control its VC dimension if we bound

the function class to be below 2/Λ.

Theorem 9 [4] For the class of separating hyperplane with margin ||ω||2 the inequal-

ity:

h ≤ Λ2R2 + 1 (2.22)

and

||ω||2 ≤ Λ (2.23)

holds where R is the radius of the smallest sphere enclosing the data.

16
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2.5.2 Support Vector Machines

In this section we treat a supervised separating hyperplane learning machine, called

Support Vector Machines (SVMs), which incorporate the results in section (2.5.1).

As a consequence SVMs are less susceptible to over-fit even with a poor choice of

kernel and parameters. The rest of this section focuses on the specifics of derivation

and implementation of such learners.

Derivation

Using the convention of implied sum on repeated Greek indices, throughout the rest

of this derivation, feature vectors are denoted by xik, where index i labels the feature

vectors (1 ≤ i ≤M) and index k labels the N feature vector components (1 ≤ k ≤ N).

Similarly, labeling of training data is done using label variable yi = ±1 (with sign

according to whether the training instance was from the positive or negative class).

For hyperplane separability, elements of the training set must satisfy the following

conditions: ωβxiβ − b = +1 for i such that yi = +1, and ωβxiβ − b = −1 for yi = −1,

for some values of the weight coefficients ω1, . . . , ωN , and b. This can be written more

concisely as: yi(ωβxiβ − b)− 1 = 0. Data points that satisfy the equality in the above

are known as “support vectors” (or ”active constraints”).

Once training is complete, discrimination is based solely on position relative to

the discriminating hyperplane: ωβxiβ − b = 0. The boundary hyperplanes on the

two classes of data are separated by a distance 2/||ω||2, known as the ”margin”

(section 2.5.1), where ||ω||22 = ωβωβ. Note that by increasing the margin between the

separated data as much as possible the optimal separating hyperplane is obtained.

Furthermore, the goal to maximize ||ω||−1
2 can be restated as the goal to minimize

||ω||22. The Lagrangian variational formulation then selects an optimum defined at a

saddle point of

L(ω, b; α) =
ωβωβ

2
− αγyγ(ωβxγβ − b)− α0 (2.24)

Subject to: α0 =
∑

γ

αγ , αγ ≥ 0 (1 ≤ γ ≤M).

17
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Therefore, the saddle point is obtained by minimizing with respect to

{ω1, . . . , ωN b} and maximizing with respect to {α1, . . . , αM}.

Now, if yi(wβxiβ − b) − 1 ≥ 0, then maximization on αi is achieved for αi = 0.

On the other hand, if yi(wβxiβ − b) − 1 = 0, then there is no constraint on αi and

if yi(wβxiβ − b) − 1 < 0, there is a constraint violation, and αi → ∞. In the case

of absolute separability, the last case will eventually be eliminated for all αi. But if

separability is not possible it is natural to limit the size of αi by some constant upper

bound, i.e., max(αi) = C, for all i. This is equivalent to another set of inequality

constraints with αi = C. Introducing sets of Lagrange multipliers, ξγ and µγ for

1 ≤ γ ≤M , to achieve this, the Lagrangian becomes:

L(ω, b; α, ξ, µ) =
ωβωβ

2
− αγ [yγ(ωβxγβ − b) + ξγ] + (2.25)

α0 + ξ0C − µγξγ

subject to: ξ0 =
∑

γ

ξγ, α0 =
∑

γ

αγandαγ ≥ 0andξγ ≥ 0 (1 ≤ γ ≤M)

At the variational minimum on the {ω1, . . . , ωN , b} variables, ωβ = αγyγxγβ , and the

Lagrangian (2.25) simplifies to:

L(α) = α0 −
αδyδxδβαγyγxγβ

2
(2.26)

subject to: 0 ≤ αγ ≤ C(1 ≤ γ ≤M) and αγyγ = 0,

where only the variations that maximize in terms of the αγ remain (also known as the

Wolfe Transformation). In this form the computational task can be greatly simplified.

By introducing an expression for the discriminating hyperplane, fi = ωβxβ −
b = αγyγxγβxiβ − b, the variational solution for L(α) reduces to the following set of

relations (known as the Karush-Kuhn-Tucker, or KKT, relations):

(i) αi = 0 ⇔ yifi ≥ 1 (2.27)

(ii) 0 < αi < C ⇔ yifi = 1 (2.28)

(iii) αi = C ⇔ yifi ≤ 1 (2.29)

18
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When the KKT relations are satisfied for all of the αγ (with αγyγ = 0 maintained)

the solution is achieved. Note that the constraint αγyγ = 0 is satisfied for the initial

choice of multipliers by setting the α’s associated with the positive training instances

to 1/N+ and the α’s associated with the negatives to 1/N−, where N+ is the number

of positives and N− is the number of negatives.

Once the Wolfe transformation is performed it is apparent that the training data

(Support Vectors in particular, relation (2.28)) enter into the Lagrangian solely via

the inner product xiβxjβ. Likewise, the discriminator fi, and KKT relations, are also

dependent on the data solely via the xiβxjβ inner product. Generalization of the SVM

formulation to data-dependent inner products other than xiβxjβ are possible using the

discussion advanced in section (2.2) and in particular definition (5). Thoroughout the

rest of this section, this inner product is notated as: xiβxjβ 7→ Φ(xi)βΦ(xj)β = Kij .

Implementation

To implement the SVM problem one has to solve the (convex) quadratic programming

(QP) problem in equation (2.26). There has been a significant effort to solve this QP

problem (cf. [12]) but unfortunately only a few methods and algorithms are free

of unrealistic assumptions about the geometry of the training data [13]. Here, we

describe two of these methods that allow for reasonably fast convergence with small

memory footprint.

Chunking A key observation in solving large scale SVM problems is the sparsity of

the solution. Depending on the problem, many of the α’s will either be zero or C. If

we could easily identify α = 0, the corresponding calculation could be avoided without

changing the value of the quadratic form. Furthermore, recalling that the optimality

is encoded in the KKT relations (starting at 2.27). A method called chunking [14]

is described, making use of the sparsity and the KKT conditions. At every step

chunking solves the problem containing all α 6= 0 plus some of the KKT violating

αs. The size of this problem varies but is finally equal to the number of non-zero

αs. While this technique is suitable for fairly large problems it is still limited by the

maximal number of support vectors that it can handle. This is because for every
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chunk a quadratic optimizer is still necessary. Further details on this implementation

is found at [15].

Sequential Minimal Optimization – SMO Sequential Minimal Optimization

(SMO), first proposed by [13], is an extreme case of chunking, such that in each

iteration it solves a quadratic problem for only two αs. The benefit is apparent when

it is shown that this can be done analytically, and therefore no quadratic optimizer

is necessary.

The method described here follows the description of [13] and begins by selecting

a pair of Lagrange multipliers, {α1, α2}, where at least one of the multipliers has

a violation of its associated KKT relations. For simplicity it is assumed in what

follows that the multipliers selected are those associated with the first and second

feature vectors: {x1, x2}. The SMO procedure then ”freezes” variations in all but

the two selected Lagrange multipliers, permitting much of the computation to be

circumvented by use of analytical reductions:

L(α1, α2; αβ′≥3) = α1 + α2 − (α2
1
K11+α2

2
K22+2α1α2y1y2K12)

2
(2.30)

−α1y1v1 − α2y2v2 + αβ′Uβ′ − αβ′αy′yβ′Kβ′y′

2

where β ′, γ′ = 3, and vi = αβ′yβ′Kiβ′ . Due to the constraint αβyβ = 0, we have the

relation: α1 + sα2 = −γ, where γ = y1αβ′yβ′ with β ′ ≥ 3 and s = y1y2. Substituting

the constraint to eliminate references to α1, and performing the variation on α2:

∂L(α2; αβ′≥3)

∂α2

= (1− s) + ηα2 + sγ(K11−K22) + sy1v1 − y2v2,

where η = (2K12−K11−K22). Since vi can be rewritten as vi = ωβxiβ−α1y1Ki1−
α2y2Ki2, the variational maximum ∂L(α2; αβ′≥3)/∂α2 = 0 leads to the following up-

date rule:

αnew
2 = αold

2 −
y2((ωβx1β − y1)− (ωβx2β − y2))

η
(2.31)

Once αnew
2 is obtained, the constraint αnew

2 = C must be re-verified in conjunction

with the αβyβ = 0 constraint. If the L(α2; αβ′ ≥ 3) maximization leads to a αnew
2
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that grows too large, αnew
2 must be “clipped” to the maximum value satisfying the

constraints. For example, if y1 6= y2, then increases in α2 are matched by increases in

α1. So, depending on whether α2 or α1 is nearer its maximum of C, we have:

max(α2) = argmin{α2 + (C − α2); α2 + (C − α1)}.

Similar arguments provide the following boundary conditions:

(i) s = −1→ max(α2) = argmin{α2; C + α2 − α1}
∧

min(α2) = argmax{0; α2 − α1}, and

(ii) s = +1→ max(α2) = argmin{C; α2 + α1}
∧

min(α2) = argmax{0; α2 + α1 − C}.

In terms of the new αnew,clipped
2 , clipped as indicated above if necessary, the new

α1 becomes:

αnew
1 = αold

1 + s(αold
2 − αnew,clipped

2 ) (2.32)

where s = y1y2 as before. After the new α1 and α2 values are obtained there still

remains the task of obtaining the new b value. If the new α1 is not ”clipped” then the

update must satisfy the non-boundary KKT relation: y1f(x1) = 1, i.e., fnew(x1) −
y1 = 0. By relating fnew to f old the following update on b is obtained:

bnew
1 = b− (fnew(x1)− y1)− y1(α

new
1 − αold

1 )K11 − y2(α
new,clipped
2 − αold

2 )K12 (2.33)

If α1 is clipped but α2 is not, the above argument holds for the α2 multiplier and the

new b is:

bnew
2 = b− (fnew(x2)− y2)− y2(α

new
2 − αold

2 )K22 − y1(α
new,clipped
1 − αold

1 )K12 (2.34)

If both α1 and α2 values are clipped then any of the b values between bnew
1 and bnew

2
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is acceptable, and following the SMO convention, the new b is chosen to be:

bnew =
bnew
1 + bnew

2

2
(2.35)

In [16] the authors described an improved SMO algorithm that instead of updating

a single threshold, b, it updates the bounds on permissible thresholds. They report

substantial improvement in speed, especially for extreme C values.

2.6 Unsupervised Learning (Clustering)

2.6.1 K-means

K-means is a simple yet popular algorithm for clustering a set of un-labled features

vectors X : {x1, . . . , xn} that are drawn independently from the mixture density

p(X|θ) with a parameter set θ.

Derivation

At the heart of K-means algorithm is optimization of the sum-of-squared-error crite-

rion function (SSE), Ji defined in definition (10).

Definition 10 (Sum-of-squared-error) Given a cluster χi, the sum-of-squared, JI

is defined by

Ji =
∑

x∈χi

||x−mi||2

where mi is the mean of the samples belonging to χi.

The geometric interpretation of this criterion function is that for a given cluster

χi the mean vector mi is the centroid of the cluster by minimizing the length of the

vector x −mi. This can be shown by taking the variation of Ji with respect to the
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“centroid” mi and setting it zero,

∂

∂mi

Ji =
∂

∂mi

∑

x∈χi

(x−mi)
T (x−mi)

= 2
∑

x∈χi

(x−mi) = 0

and solving for mi,

mi = 1/ni

∑

x∈χi

x (2.36)

where ni = |χi| is the number of feature vectors belonging to χi. The total SSE for all

of the clusters, Je is the sum of SSE for individual clusters. The value of Je depends

on the cluster membership of the data, (i.e. the shape of the clusters), and the number

of clusters. The optimal clustering is the one that minimizes Je for a given number of

clusters, k, and K-means tries to do just that. Algorithm (3) outlines the high-level

implementation of the K-means algorithm.

Algorithm 3 K-means Clustering

Require: Number of clusters: k
Feature vectors: x1, . . .xn

Initial mean vectors: m1, . . .mk

1: repeat
2: classify feature vectors based on the mean vectors
3: re-compute the mean vectors
4: until the mean vectors remain unchanged

2.6.2 Kernel K-means

Kernel K-means [17] is another example of linear algorithms that since they could be

formulated in terms of dot products, they could make use of kernel methods (KPCA

described in (2.4.2) is another example).
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Denote Miν to be the cluster assignment variables such that Miν = 1 if and only

if xi belongs to cluster ν and 0 otherwise. As for K-means, the goal is to minimize

the Jν (definition 10) for all clusters, ν in feature space, by trying to find k means

Φ(mν) such that each observation in the data set when mapped using Φ is close to

at least one of the means. But the means lie in the span of Φ(x1, . . . (xn). Therefore,

we can write them as:

µν ≡ Φ(mν) =
n
∑

j=1

γνjΦ(xj). (2.37)

We can then substitute this in the Ji of definition (10) to obtain,

Jν =
∑

x∈χi

||Φ(x)− µν ||2

=
∑

x∈χi

||Φ(x)−
n
∑

j=1

γνjΦ(xj)||2

= K(x, x)− 2

n
∑

j=1

γνjK(x, xj) +

n
∑

i,j=1

γνiγνjK(xi, xj) (2.38)

We initially assign random feature vectors to means. Then Kernel K-means proceeds

iteratively as follows: each new remaining feature vectors, xt+1, is assigned to the

closes mean µα:

Mt+1,α =







1 if for all ν 6= α, ||Φ(xt+1)− µα||2 < ||Φ(xt+1)− µν ||2

0 otherwise
(2.39)

or, in terms of the kernel function,

Mt+1,α =































1 if for all ν 6= α,
∑n

i,j=1 γαiγαjK(xi, xj)− 2
∑n

j=1 γαjK(xt+1, xj)

<
∑n

i,j=1 γνiγνjK(xi, xj)− 2
∑n

j=1 γνjK(xt+1, xj)

0 otherwise

(2.40)
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The update rule for the mean vector is then given by,

µt+1
α = µt

α + ∆
(

Φ(xt+1 − µt
α

)

, (2.41)

where,

∆ ≡ Mt+1,α
∑t+1

i=1 Miα

(2.42)

Kernel k-means algorithm is identical to algorithm (3). Line 2 of this algorithm

can be obtained using equation (2.38) and line 3 can be calculated using equation

(2.41).

2.6.3 SVM-Internal Clustering

The SVM-Internal approach to clustering was originally defined by [18]. Data points

are mapped by means of a kernel to a high dimensional feature space where we search

for the minimal enclosing sphere. In what follows, Keerthi’s method [16] is used to

solve the dual (see implementation).

The minimal enclosing sphere, when mapped back into the data space, can sepa-

rate into several components; each enclosing a separate cluster of points. The width

of the kernel (say Gaussian) controls the scale at which the data is probed while the

soft margin constant helps to handle outliers and over-lapping clusters. The struc-

ture of a data set is explored by varying these two parameters, maintaining a minimal

number of support vectors to assure smooth cluster boundaries.

This section is dedicated to outline the derivation and the implementation of this

algorithm.

Derivation

Let x be a data set of N points in Rd. As explained in section (2.2) using a non-

linear transformation Φ (equation 2.4), we transform x to some high-dimensional

space called Kernel space and look for the smallest enclosing sphere of radius R.

Hence we have: ||Φ(xj)− a||22 ≤ R2 for all j = 1, . . . , N ; where a is the center of the
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sphere. Soft constraints are incorporated by adding slack variables ζj’:

||Φ(xj)− a||22 ≤ R2 ∀j = 1, . . . , N (2.43)

Subject to: ζj

We introduce the Lagrangian as:

L = R2 −
∑

j

βj(R
2 + ζj − ||Φ(xj)− a||22)−

∑

j

ζjµj + C
∑

j

ζj (2.44)

Subject to: βj ≥ 0, µj ≥ 0

where C is the cost for outliers and hence C
∑

j ζj is a penalty term. Setting to zero

the derivative of L w.r.t. R, a, and ζ we have:
∑

j βj = 1, a =
∑

j βjΦ(xj), and

βj = C − µj . By substituting the above equations into the Lagrangian, we get the

following dual formalism:

W = 1−
∑

i,j

βiβjKij (2.45)

for 0 ≤ βj ≤ C and Kij = e−||xi−xj ||/2σ2

Subject to:
∑

i

βi = 1

By KKT conditions we have: ζjµj = 0 and βj(R2 + ζj − ||Φ(xj)− a||22) = 0. Hence,

in the kernel space of a data point xj :

i) if ζj > 0, then βj = C and hence it lies outside of the sphere i.e. R2 <

||Φ(xj)− a||22. This point becomes a bounded support vector or BSV.

ii) if ζj = 0, and 0 < βj < C, then it lies on the surface of the sphere i.e.

R2 = ||Φ(xj)− a||222. This point becomes a support vector or SV.

iii) If ζj = 0, and βj = 0, then R2 > ||Φ(xj)−a||22 and hence this point is enclosed

with-in the sphere.

Implementation

The following is based on the work of [16] and [19].
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Referring to the dual representation at relation (2.45), for any data point xk, the

distance of its image in kernel space from the center of the sphere is given by

R2(xk) = 1− 2
∑

i

βiKik +
∑

i,j

βiβjKij.

The radius of the sphere, R, is {R(xk) st. xk is a Support Vector}, hence data points

which are Support Vectors lie on cluster boundaries. Outliers are points that lie

outside of the sphere and thus do not belong to any cluster i.e. they are Bounded

Support Vectors. All other points are enclosed by the sphere and therefore they lie

inside their respective cluster. KKT Violators are given as:

(i) If 0 < βi < C and R(xi) 6= R,

(ii) If βi = 0 and R(xi) > R, and

(iii) If βi = C and R(xi) < R.

The Wolfe dual is: f(β) = minβ{
∑

i,j βiβjKij−1}. In the SMO decomposition, in

each iteration we select βi and βj and change them such that f(β) reduces. All other

β’s are kept constant for that iteration. Let us denote β1 and β2 as being modified

in the current iteration. Also β1 + β2 = (1−
∑

i=3 βi) = s, is a constant.

Furthermore, let
∑

i=3 βiKik = Ck to obtain the SMO form:

f(β1, β2) = β2β1 +
∑

i,j=3

βiβjKij + 2β1β2K12 + 2β1C1 + 2β2C2

By eliminating β1 we have:

f(β2) = (s− β2)
2 + β2

2 +
∑

i,j=3

βiβjKij + 2(s− β2)β2K12 + 2(s− β2)C1 + 2β2C2.

To minimize f(β2), we take the first derivative w.r.t. β2 and equate it to zero, thus

f ′(β2) = 0 = 2β2(1−K12)− s(1−K12)− (C1 − C2),
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and we get the update rule:

βnew
2 =

C1 − C2

2(1−K12)
+ s/2.

We also have an expression for C1 − C2 from:

R(x2
1)− R(x2

2) = 2(β2 − β1)(1−K12)− 2(C1 − C2),

thus

C1 − C2 = (R(x2
2)− R(x2

1))/2 + (β2 − β1)(1−K12),

Substituting, we have:

βnew
1 = βold

1 −
R(x2

2)−R(x2
1)

4(1−K12)
(2.46)

This update rule along with the rest of the logic is shown in algorithms (4, 5, and 6)

in a high level fashion.
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Algorithm 4 High Level SVM-Internal Clustering

Require: Percentage of outliers is n, size of data (rows) is N
1: C = 100/(N ∗ n)
2: initialize β
3: Initialize two different randomly chosen indices to values less than C such that
∑

i βi = 1
4: Compute R(xi)

2 for all i based on the current value of β
5: Divide data into three sets:

(I) 0 < βi < C,
(II) βi = 0, and
(III) βi = C.

6: Compute R2
low = max{R(xi)

2|0 ≤ βi < C} and R2
up = min{R(xi)

2|0 < βi ≤ C}.
7: repeat
8: Switch between the two loops alternatively:
9: (1)

10: for all examples do
11: call examineExample()
12: end for
13: (2)
14: for all examples belonging to Set (I) do
15: call examinExample()
16: quit if R2

low − R2
up < 2

17: end for
18: until There are no KKT violaters left.

Algorithm 5 examineExample() Procedure

Require: an example
1: Check if the example is a KKT violator, that is if:

Set II and R2(xi) > R2
up; choose R2

up for joint optimization
Set III and R2(xi) < R2

low; choose R2
low for joint optimization

Set I and R2(xi) > R2
up + 2(tolerance)

∨

R2(xi) < R2
low − 2(tolerance); choose

R2
low or R2

up for joint optimization depending on which gives a worse KKT violator
2: call jointOptimizer()
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Algorithm 6 jointOptimizer() Procedure

Require: examples x1 and x2

1: η = 4(1−K12)
2: D = (R2(x2)− R2(x1))/η
3: L1 = min{(C − β2), β1}
4: L2 = min{(C − β1), β2}
5: if D > 0 then
6: D = min{D, L1}
7: else
8: D = max{D,−L2}
9: end if

10: update: β2 = β2 + D
11: update: β1 = β1 −D
12: Re-compute R2(xi) for all i based on the changes in β1 and β2

13: Re-compute R2
low and R2

up based on elements in Set I, R2(x1) and R2(x2)
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Chapter 3

SVM-Relabeler: An External

Method of SVM Clustering

3.1 Introduction

Although the internal approach to SVM (see svm-internal) clustering is only weakly

biased towards the shape of the clusters in the input space (the bias is for spherical

clusters in the feature space), it still lacks robustness. In the case of most real-world

problems and strongly overlapping clusters, the SVM- Internal Clustering algorithm

above can only delineate the relatively small cluster cores. Additionally, the imple-

mentation of the formulation is tightly coupled with the initial choice of kernel; hence

the static nature of the formulation and implementation does not accommodate nu-

merous kernel tests. To remedy this excessive geometric constraint, an external-SVM

clustering algorithm, called SVM-Relabeler, is introduced that clusters data vectors

with no a priori knowledge of each vector’s class.

SVM-Relabeler algorithm works by first running a Binary SVM against a data set,

with each vector in the set randomly labeled, until the SVM converges. In order to

obtain convergence, an acceptable number of KKT violators must be found. This is

done through running the SVM on the randomly labeled data with different numbers

of allowed violators until the number of violators allowed is near the lower bound of

violators needed for the SVM to converge on the particular data set. Choice of an
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appropriate kernel and its parameters also will affect convergence. After the initial

convergence is achieved, the generalization error will be very high. The algorithm

now improves this result by iteratively re-labeling only the worst misclassified vectors,

which have confidence factor values beyond some threshold, followed by rerunning the

SVM on the newly relabeled data set. This continues until no more progress can be

made. Progress is determined by a decreasing value of generalization error, hopefully

near zero.

This algorithm is not biased towards the shape of the clusters, and unlike the

internal approach the formulation is not fixed to a single kernel class. Nevertheless,

there are robustness and consistency issues that must be addressed in the SVM-

Relabeler clustering approach. To do this, an external approach to SVM clustering is

prescribed in section (3.5) that takes into account the robustness required in realistic

applications.

Before we describe this algorithm we derive two of the used kernels and explain

the methods of supervised and unsupervised cluster validation.
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3.2. KERNEL CONSTRUCTION USING POLARIZATION

3.2 Kernel Construction Using Polarization

A set of kernels are examined that generalize the difference measure of the Gaus-

sian Kernel. All of the ’Occam’s Razor’ kernels in this generalization group perform

strongly on the channel current data analyzed, with some regularly outperforming

the Gaussian Kernel itself. The kernels fall into two classes: regularized distance

(squared) kernels; and regularized information divergence kernels. The first set of

kernels strongly models data with classic, geometric, attributes or interpretation.

The second set of kernels is constrained to operate on R+N
, the feature space of pos-

itive, non-zero, real-valued feature vector components. The space of these kernels is

often also restricted to feature vectors obeying an L1-norm = 1 constraint (i.e., the

feature vector is a probability vector). Without the restriction on domain, the regu-

larized divergence kernels are proven to violate Mercer’s condition (see appendix A),

since not in the form of the regularized distance kernels, which are found to satisfy

Mercer’s condition. If restricted to the R+N
domain, however, computational tests

show no violation of Mercer’s condition on the DNA-hairpin data. There could, thus,

be a dense Mercer-satisfiability property in terms of the training sets actually used

in kernel computations by the computer. It may prove to be the case that the non-

symmetric nature of most practical datasets helps to complete the Mercer-satisfiability

for divergence kernels. The latest results from this analysis will be described in this

section1.

3.2.1 “Occam’s Razor” Kernels

Recall that Lemma (13) extended the Definition (8) and Theorem (12) by introducing

a relationship between positive-definite and negative-definite kernels. There is yet

another such theorem (see semigroup book) that is useful for the remainder of this

section.

Theorem 11 A Kernel, S on χ is negative-definite if and only if e−λ2d is positve-

definite for all λ ∈ R.

1This material was part of a poster presentation at MCBIOS 2008 in Oklahoma City
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A direct consequence of Theorem (12) is that a metric space (χ, d) embeds iso-

metrically into a Hilbert space if and only if d2 is a negative definite kernel on χ. In

the light of this interpretation Theorem (11) states that given any metric space (χ, d)

one can build a postive-definite kernel of the form e−λ2d.

In this section we introduce Absdiff and Sentropic kernels that are respectively

based on regularized distance and regularized information divergence.

3.2.2 Regularized Distance Kernels

Regularized distance kernels are based on the notion of euclidian distance. An exam-

ple of such a kernel is the well-known Gaussian (Radial Basis Function) kernel most

commonly written as:

KRBF (x, y) = exp(−||x− y)||22
2σ2

) = exp(
−
∑

i(xi − yi)
2

2σ2
)

For all real-valued σ. We define polarization of KRBF by taking the component-wise

variation of lnKRBF ,
∂lnKRBF (x, y)

∂xi

= −
[

xi − yi

σ2

]

and,
∂lnKRBF (x, y)

∂yi
= +

[

xi − yi

σ2

]

Suppose that the discrimination is governed by the sign of (xi−yi), then the reduction

of (xi − yi) by signum(xi − yi) might produce a useful kernel KReduced. Meaning the

reduction,
∂lnKReduced(x, y)

∂xi
= −

[

signum(xi − yi)

σ2

]

and,
∂lnKReduced(x, y)

∂yi
= +

[

signum(xi − yi)

σ2

]

recovers another well-known kernel, the Laplace kernel,

KReduced ≡ KLaplace(x, y) = exp(−|x − y|1
2σ2

) = exp(
−
∑

i |xi − yi|
2σ2

).
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For these kernels it is clear that far away points result in large polarization values and

small kernel values. Similarly, for x ≈ y the polarization terms approaches zero. We

can take the other exterme, namely, forece the polarization terms to approach ±∞.

An example of such polarization is the Indicator Polarization defined as,

∂lnKIndicator(x, y)

∂xi
= − 1

σ2

[

signum(xi − yi)
√
∑

i |xi − yi|

]

= −
√
∑

i |xi − yi|
2σ2

and,

∂lnKIndicator(x, y)

∂yi

= − 1

σ2

[

signum(xi − yi)
√
∑

i |xi − yi|

]

= +

√
∑

i |xi − yi|
2σ2

.

Note that for x ≈ y the polarization term blows up. Integrating these polarization

terms in turn recovers the Absdiff kernel,

KIndicator ≡ KAbsdiff (x, y) = exp(−
√

|x− y|1
2σ2

) (3.1)

3.2.3 Regularized Divergence Kernels

The polarization for the Regularized Distance kernel introduced in the previous sec-

tion are symmetric, such that, reversing the roll of xi and yi only changes the sign of

the polarization term, and not the magnitude. By allowing the polarization to absorb
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a magnitude change (asymmetry) we can recover a class of Kullback–Leibler type di-

vergence kernels. For instance, the Sentropic kernel uses the following polarization,

∂lnKSentropic(x, y)

∂xi

= − 1

σ2

[

1− yi

xi

+ ln

(

xi

yi

)]

= − 1

σ2

∂

∂xi

[

(xi − yi)ln

(

xi

yi

)]

∂lnKSentropic(x, y)

∂yi
= − 1

σ2

[

1− xi

yi
+ ln

(

yi

xi

)]

= − 1

σ2

∂

∂yi

[

(yi − xi)ln

(

yi

xi

)]

,

to recover,

KSentropic(x, y) = exp

(

− 1

σ2
[D(x||y) + D(y||x)]

)

, (3.2)

where D(x||y) + D(y||x) =
∑

i(xi − yi)ln (xi/yi) is the symmetric Kullback–Leibler

divergence.
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3.3 Supervised Cluster Validators

Externally derived class labels require external categorization that assume “correct”

labels for each category. Unfortunately, unlike classification, clustering algorithms do

not have access to the same level of fundamental truth. Thus, the performance of

unsupervised algorithms, such as clustering, could not be measured with the same

certitude as for the classification problems.

In this paper the result of the clustering is measured using the externally derived

class labels for the patterns. Subsequently, we can use some of the classification-

oriented measures to evaulate our results. These measures evaluate the extent to

which a cluster contains patterns of a single class.

Figure 3.1: Confusion matrix for a 2-class problem

In supervised classification, Sensitivity, SN , and Sepecificity, SP , are defined

using the confusion matrix in presented in figure (3.1) and are usually expressed as

([20]),

SN ≡ The fraction of positive patterns predicted correctly by the model

=
TP

TP + FN
(3.3)
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SP ≡ The fraction of negative patterns predicted correctly by the model

=
TN

TN + FP
.

However, in the context of gene finding, since the frequency of coding nucleotides

in genomic DNA sequences is much less than the frequency of coding nucleotides (see

[21]), the value of TN is generally much greater than the value of FP. As a result

the calculated value of SP is noninformative. Therefore, instead, in bioinformatics

litrature SP is computed as

SP ≡ The fraction of predicted patterns that turns out to be positive

=
TP

TP + FP
. (3.4)

Using this terminology, in classification problems where the input matrix is not sparse,

and finding “positive” and “negative” patterns are equally important, the following

two measures are also necessary.

nSN ≡ The fraction of negative patterns predicted correctly by the model

=
TN

TN + FP
. (3.5)

nSP ≡ The fraction of predicted patterns that turns out to be negative

=
TN

TN + FN
. (3.6)

In information retrieval community SN and SP equations in (3.3) and (3.4) are often

referred to as, recall and precision.
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3.3.1 Purity.

Let pij be the probability that an object in cluster i belongs to class j. Then purity

for the cluster i, pi, can be expressed as,

pi = max
j

pij (3.7)

Note that the probability that an object in cluster i belongs to class j can be written

as the number of objects of class j in cluster i, nij, divided by the total number of

objects in cluster i, ni, (i.e., pij=nij/ni.) Using this notation the overall validity of a

cluster i using the measure pi is the weighted sum of that measure over all clusters.

Hence,

purity =
1

N

k
∑

i=1

nipi (3.8)

where, k is number of clusters and n is the total number of patterns. For our 2-class

clustering problem equation (3.7) transforms to,

p1 = max(SP, 1− SP ) and p2 = max(nSP, 1− nSP ) (3.9)

and after applying equations (3.4) and (3.3) to (3.8),

purity = max(
TP + TN

TP + FP + TN + FN
, 1− TP + TN

TP + FP + TN + FN
). (3.10)

Although useful, purity, only considers either the frequency of patterns that are

within a class or the frequency of patterns that are outside of a class but does not

take into account the entire distribution.

39



CHAPTER 3. SVM-RELABELER: AN EXTERNAL METHOD OF SVM CLUSTERING

3.4 Unsupervised Cluster Validator

Unlike purity, unsupervised evaluation techniques like do not depend on external

class information. These measures are often optimization functions in many cluster-

ing algorithms. Sum-of-Squared-Error (SSE), measures the compactness of a single

cluster and other measures evaluate the isolation of a cluster from other clusters. Un-

fortunately, SSE is calculated in the input space which does not necessarilly reflect

the goodness of the clustering in the feature space. In this section we develope an

unsupervised cluster validator that works in feature space instead.

3.4.1 Kernel-Sum-of-Squared-Error (Kernel SSE)

Positive-definite kernels are related to another kind of kernels, called negative-definite

kernels (see definition (7)) that are in turn related to Hilbert spaces through the

following theorem:

Theorem 12 A kernel, S, on set χ is nd iff ∃ a Hilbert Space, H, and a map

f : χ→ H such that ∀x, y ∈ χ,

S(x, y) =‖ f(x)− f(y) ‖2

Furthermore, if {S = 0} for all diagonal values, then
√

S is a metric on χ

The following lemma is the relationship between positive and negative-definite

kernels.

Lemma 13 A kernel S is nd iff there exists a pd kernel, K, such that the following

relation holds:

S(x, y) = K(x, x) + K(y, y)− 2K(x, y)

Proof Suppose the map f : χ → H such that ∀x, y ∈ χ, then by theorem (12) we
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can rewrite S as following:

S(x, y) = ‖ f(x)− f(y) ‖2

= 〈f(x), f(x)〉+ 〈f(y), f(y)〉 − 2〈f(x), f(y)〉
= K(x, x) + K(y, y)− 2K(x, y)

This is a useful since geometrically S is a measure of distance between x and

y. Therefore, using lemma (13) for feature vectors x and x′ ∈ χ the inner cluster

sum-of-squared (see definition (10)), Ji,

Ji =
1

2
nisi, (3.11)

where ni is the size of the ith cluster and for any nd kernel S(x,x′),

si =
1

n2
i

∑

x∈χi

∑

x′∈χi

S(x,x′), (3.12)

can be written as:

Ji =
∑

x∈χi

K(x, x)− 1

ni

∑

x∈χi

∑

x′∈χi

K(x, x′). (3.13)

Now, let, Km be a Gram matrix, where Km
ij = K(xi, xj) such that xi and xj are in

the mth cluster χm, then for any normalized pd kernel, K, (K(x, y) = 1 ⇔ x = y)

and a column vector of m ones, 1,

Ji = ni

[

1− 1T Km1

n2
i

]

(3.14)

Similarly, for a non-normalized pd kernel, K,

J̃i = trace(Km)− 1T Km1

ni
(3.15)
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Figure 3.2: SVM on non-separable features

3.5 SVM-Relabeler Clustering Method

The SVM classification formulation is expanded to cluster a set of feature vectors with

no a priori knowledge of the features’ classification. Non-separable SVM guarantees

convergence at the cost of allowing misclassification. As depicted in the figure (3.2)

the extent of slack is controlled through the regularization constant, C, to penalize

the slack variable, ξ. If the random mapping

((x1, y1), ..., (xm, ym)) ∈ χm × y

is not linearly separable when ran through a binary SVM, the misclassified features

are more likely to belong to the other cluster. Moreover, by relabeling those heavily

misclassified features and by repeating this process we arrive at a separation between

the two clusters. As formulated in the core of SVM formulation this separation has

the largest margin given the regularization constant, C. The basics of this procedure

is presented in Algorithm (7), where ŷ is the new cluster assignment for x and θ is

the resulting SVM model.

It is reasonably assumed that the SVM procedure, doSV M(), converges regardless
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Algorithm 7 SVM-Relabeler

Require: Feature vectors: x
1: ŷ ← Randomly chosen from {−1, +1}
2: repeat
3: θ ← doSV M(x, ŷ)
4: ŷ ← doRelabel(x, θ)
5: until ŷ remains constant

of the geometry of the data2, in order to provide the doRelabel() procedure with the

required model. After this procedure, doRelabel() reassignes some of the misclassified

features to a the other cluster. If D(xi, θ) is the distance between xi feature and

the trained SVM hyperplane (see footnote explaining the projection), then heavily

misclassified features, xj∈J , could be selected by comparing D(xj , θ) to D(xj′, θ) for

all j′ ∈ J . Algorithm (8) clarifies the basic implementation of this procedure by

introducing a confidence parameter, α, that is the bottom percentile of misclassified

features beyond which is relabeled.

Algorithm 8 doRelabel1() Procedure

Require: Input vector: x
Cluster labeling: ŷ
SVM model: θ
Confidence Factor: α

1: Identify misclassified features:
x̂+ ← k misclassified features with ŷ = +1
x̂− ← l misclassified features with ŷ = −1

2: for all ith component of x̂+ do
3: if D(x̂+

j , θ) > percentile(1− α) then
4: ŷ+

i ← −1
5: end if
6: end for
7: for all ith component of x̂− do
8: if D(x̂−

j , θ) < percentile(α) then
9: ŷ−

i ← +1
10: end if
11: end for

2SVMs were developed for both the separable and nonseparable data sets
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3.6 Refinement Methods Using Simulated Anneal-

ing

The SVM-Relabeler algorithm does not use an objective function and the hope is

that by running the algorithm in its purest form the resulting clusters are reliable

solutions. However, running this algorithm in this basic fashion does not consistently

provide us with a satisfying clustering solution. In fact, the solution space can be

divided into three sets: successful, local-optimum, and unsuccessful (see figure (4.3)).

Trivially unsuccessful and the local optimum solutions are undesirable and should

be ideally eliminated. Since, the solutions in the unsuccessful set are reasonably

expected to be frequent in any experiment that calculates the the SSE of a randomly

labeled data set, they can be simply eliminated by post-processing. For instance, in a

similar experiment we have randomly labeled the dataset 5000 times and calculated

the SSE distribution for the experiment. The resulting distribution has a good fit

to Johnson’s SB distribution (see Appendix C) and is illustrated in the histogram of

figure (3.3). using a fitted distribution one can calculate the p-value of a given SSE.

For example, SSE threshold of 170.5 (accidentally very unlikely) can be employed to

eliminate the unsuccessful set.

To substantially reduce the local optimum solutions, however, thresholding does

not scale well. One solution is a to use a simple hill climbing algorithm which is to

run the algorithm for a sufficiently long number of iterations to find the solution with

the lowest SSE value. To do this the algorithm (7) is ran repeatedly and randomly

initialized every time. A solution is accepted as the best solution so far if it has a

lower SSE than the previously recorded value.

It is observed that random perturbation by flipping each label at some proba-

bility, ppert, is often sufficient to switch to another subspace where a better solution

could be found. (Note that ppert = 0.50 has the effect of random reinitialization and

pertpert = 1 flips the entire labels.) The hope is that perturbation with ppert 6= 0.50

results in a faster convergence for algorithm (7). To account for the cases where hill

climbing (optimizing downward in the case of SSE) using perturbation results in a

local- optimum, it is necessary to allow an occasional uphills.
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Algorithm 9 SVM-Relabeler Using Simulated Annealing

Require: Input vector: x
SVM-Relabeler: doSV M()
Initial system temperature: T
Annealing schedule: anneal()
Perturbation schedule: pert()
SSE function: SSE()
Random generator: rand()→ (0, 1)

1: initialize:
y ← doSV M()
e← SSE(y)
t← T

2: repeat
3: perturb and evaluate:

ynext ← doSV M(pert(y))
enext ← SSE(ynext)

4: if (enext < e)
∨

((e < enext)
∧

(rand() < exp(−enext−e
t

))) then
5: accept the new state:

y ← ynext

e← enext

6: end if
7: anneal()
8: until threshold or maximum number of iteration reached

In summary, reliability can be acheived by searching through the solution space

of algorithm (7). To do this efficiently, Monte Carlo Methods could be used by taking

advantage of perturbation to evaluate the neighboring configuration. The procedure

outlined in Algorithm (9) uses a modified version of Simulated Annealing to achieve

this desired reliability.
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Random SSE Distribution

SSE

D
en

si
ty

170.5 170.6 170.7 170.8 170.9 171.0 171.1 171.2

0
1

2
3

4
5

6
7

(a)

170.5 170.6 170.7 170.8 170.9 171.0 171.1 171.2

17
0.

5
17

0.
6

17
0.

7
17

0.
8

17
0.

9
17

1.
0

17
1.

1
17

1.
2

QQ Plot

Quantile(x)

Q
ua

nt
ile

(M
od

el
)

(b)

Figure 3.3: (a) demonstrates the histogram and the fitted distribution by randomly
labeling the 8GC/9GC data set using the Absdiff kernel (γ = 1.8) and computing SSE.
The fitted Distribution is Johnson’s SB distribution (see Appendix) (γ = −5.5405,
δ = 1.8197, λ = 2.7483, ξ = 168.46) with the corresponding Q-Q plot in (b).
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Chapter 4

SVM-Relabeler Results

SVM-Relabeler clustering algorithm is capable of clustering a wide range of data sets

from simple 2-dimensional toy data (see Figure 4.1) sets to simple multi-dimensional

data sets (e.g. Iris data set) to the complex Nanopore DNA hairpin data. The

preliminary results were first published in [22] by this author and is now part of a

more comprehensive presentation in this chapter.

4.1 Iris Data Set

The Iris flower data set or Fisher’s Iris data set is a multivariate data set introduced

by Sir Ronald Aylmer Fisher in [23] as an example of discriminant analysis. However,

it was first collected by Edgar Anderson to quantify the geographic variation of Iris

flowers in the Gasp Peninsula (see [24]). The data set consists of 50 samples from

each of three species of Iris flowers (Iris setosa, Iris virginica and Iris versicolor). Four

features were measured from each sample, they are the length and the width of sepal

and petal (see figure 4.2 and table 4.1). Based on the combination of the four features,

Fisher developed a linear discriminant model to predict classes to which each sample

belongs.
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Figure 4.1: SVM-Relabeler using a polynomial kernel
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Figure 4.2: Iris data set: black circles represent setosa, red triangles represent versi-
color, and green pluses represent virginica.
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Table 4.1: Iris data set

Sepal Length Sepal Width Petal Length Petal Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

5.0 3.6 1.4 0.2 setosa

5.4 3.9 1.7 0.4 setosa

4.6 3.4 1.4 0.3 setosa

5.0 3.4 1.5 0.2 setosa

4.4 2.9 1.4 0.2 setosa

4.9 3.1 1.5 0.1 setosa

5.4 3.7 1.5 0.2 setosa

4.8 3.4 1.6 0.2 setosa

4.8 3.0 1.4 0.1 setosa

4.3 3.0 1.1 0.1 setosa

5.8 4.0 1.2 0.2 setosa

5.7 4.4 1.5 0.4 setosa

5.4 3.9 1.3 0.4 setosa

5.1 3.5 1.4 0.3 setosa

5.7 3.8 1.7 0.3 setosa

5.1 3.8 1.5 0.3 setosa

5.4 3.4 1.7 0.2 setosa

5.1 3.7 1.5 0.4 setosa

4.6 3.6 1.0 0.2 setosa

5.1 3.3 1.7 0.5 setosa

4.8 3.4 1.9 0.2 setosa

5.0 3.0 1.6 0.2 setosa

5.0 3.4 1.6 0.4 setosa

5.2 3.5 1.5 0.2 setosa
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Table 4.1 – continued from previous page

Sepal Length Sepal Width Petal Length Petal Width Species

5.2 3.4 1.4 0.2 setosa

4.7 3.2 1.6 0.2 setosa

4.8 3.1 1.6 0.2 setosa

5.4 3.4 1.5 0.4 setosa

5.2 4.1 1.5 0.1 setosa

5.5 4.2 1.4 0.2 setosa

4.9 3.1 1.5 0.2 setosa

5.0 3.2 1.2 0.2 setosa

5.5 3.5 1.3 0.2 setosa

4.9 3.6 1.4 0.1 setosa

4.4 3.0 1.3 0.2 setosa

5.1 3.4 1.5 0.2 setosa

5.0 3.5 1.3 0.3 setosa

4.5 2.3 1.3 0.3 setosa

4.4 3.2 1.3 0.2 setosa

5.0 3.5 1.6 0.6 setosa

5.1 3.8 1.9 0.4 setosa

4.8 3.0 1.4 0.3 setosa

5.1 3.8 1.6 0.2 setosa

4.6 3.2 1.4 0.2 setosa

5.3 3.7 1.5 0.2 setosa

5.0 3.3 1.4 0.2 setosa

7.0 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor

5.5 2.3 4.0 1.3 versicolor

6.5 2.8 4.6 1.5 versicolor

5.7 2.8 4.5 1.3 versicolor

6.3 3.3 4.7 1.6 versicolor
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Table 4.1 – continued from previous page

Sepal Length Sepal Width Petal Length Petal Width Species

4.9 2.4 3.3 1.0 versicolor

6.6 2.9 4.6 1.3 versicolor

5.2 2.7 3.9 1.4 versicolor

5.0 2.0 3.5 1.0 versicolor

5.9 3.0 4.2 1.5 versicolor

6.0 2.2 4.0 1.0 versicolor

6.1 2.9 4.7 1.4 versicolor

5.6 2.9 3.6 1.3 versicolor

6.7 3.1 4.4 1.4 versicolor

5.6 3.0 4.5 1.5 versicolor

5.8 2.7 4.1 1.0 versicolor

6.2 2.2 4.5 1.5 versicolor

5.6 2.5 3.9 1.1 versicolor

5.9 3.2 4.8 1.8 versicolor

6.1 2.8 4.0 1.3 versicolor

6.3 2.5 4.9 1.5 versicolor

6.1 2.8 4.7 1.2 versicolor

6.4 2.9 4.3 1.3 versicolor

6.6 3.0 4.4 1.4 versicolor

6.8 2.8 4.8 1.4 versicolor

6.7 3.0 5.0 1.7 versicolor

6.0 2.9 4.5 1.5 versicolor

5.7 2.6 3.5 1.0 versicolor

5.5 2.4 3.8 1.1 versicolor

5.5 2.4 3.7 1.0 versicolor

5.8 2.7 3.9 1.2 versicolor

6.0 2.7 5.1 1.6 versicolor

5.4 3.0 4.5 1.5 versicolor

6.0 3.4 4.5 1.6 versicolor
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Table 4.1 – continued from previous page

Sepal Length Sepal Width Petal Length Petal Width Species

6.7 3.1 4.7 1.5 versicolor

6.3 2.3 4.4 1.3 versicolor

5.6 3.0 4.1 1.3 versicolor

5.5 2.5 4.0 1.3 versicolor

5.5 2.6 4.4 1.2 versicolor

6.1 3.0 4.6 1.4 versicolor

5.8 2.6 4.0 1.2 versicolor

5.0 2.3 3.3 1.0 versicolor

5.6 2.7 4.2 1.3 versicolor

5.7 3.0 4.2 1.2 versicolor

5.7 2.9 4.2 1.3 versicolor

6.2 2.9 4.3 1.3 versicolor

5.1 2.5 3.0 1.1 versicolor

5.7 2.8 4.1 1.3 versicolor

6.3 3.3 6.0 2.5 virginica

5.8 2.7 5.1 1.9 virginica

7.1 3.0 5.9 2.1 virginica

6.3 2.9 5.6 1.8 virginica

6.5 3.0 5.8 2.2 virginica

7.6 3.0 6.6 2.1 virginica

4.9 2.5 4.5 1.7 virginica

7.3 2.9 6.3 1.8 virginica

6.7 2.5 5.8 1.8 virginica

7.2 3.6 6.1 2.5 virginica

6.5 3.2 5.1 2.0 virginica

6.4 2.7 5.3 1.9 virginica

6.8 3.0 5.5 2.1 virginica

5.7 2.5 5.0 2.0 virginica

5.8 2.8 5.1 2.4 virginica
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Table 4.1 – continued from previous page

Sepal Length Sepal Width Petal Length Petal Width Species

6.4 3.2 5.3 2.3 virginica

6.5 3.0 5.5 1.8 virginica

7.7 3.8 6.7 2.2 virginica

7.7 2.6 6.9 2.3 virginica

6.0 2.2 5.0 1.5 virginica

6.9 3.2 5.7 2.3 virginica

5.6 2.8 4.9 2.0 virginica

7.7 2.8 6.7 2.0 virginica

6.3 2.7 4.9 1.8 virginica

6.7 3.3 5.7 2.1 virginica

7.2 3.2 6.0 1.8 virginica

6.2 2.8 4.8 1.8 virginica

6.1 3.0 4.9 1.8 virginica

6.4 2.8 5.6 2.1 virginica

7.2 3.0 5.8 1.6 virginica

7.4 2.8 6.1 1.9 virginica

7.9 3.8 6.4 2.0 virginica

6.4 2.8 5.6 2.2 virginica

6.3 2.8 5.1 1.5 virginica

6.1 2.6 5.6 1.4 virginica

7.7 3.0 6.1 2.3 virginica

6.3 3.4 5.6 2.4 virginica

6.4 3.1 5.5 1.8 virginica

6.0 3.0 4.8 1.8 virginica

6.9 3.1 5.4 2.1 virginica

6.7 3.1 5.6 2.4 virginica

6.9 3.1 5.1 2.3 virginica

5.8 2.7 5.1 1.9 virginica

6.8 3.2 5.9 2.3 virginica
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Table 4.1 – continued from previous page

Sepal Length Sepal Width Petal Length Petal Width Species

6.7 3.3 5.7 2.5 virginica

6.7 3.0 5.2 2.3 virginica

6.3 2.5 5.0 1.9 virginica

6.5 3.0 5.2 2.0 virginica

6.2 3.4 5.4 2.3 virginica

5.9 3.0 5.1 1.8 virginica
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SVM-Relabeler was successfully used to separate the class of Setosa from the class

of Versicolor and Verginica, using a Gaussian kernel.

4.2 DNA Hairpin Data Set

In [25, 26, 27, 28] it is shown that a nanometer-scale channel can be used to asso-

ciate ionic current measurements with single-molecule channel blockades. In partic-

ular when α-hemolysin channel was used, the dimensionality allows for DNA/RNA

measurements such that the ssDNA translocates while dsDNA does not. The entry

aperture is 2.6 nm in diameter which is large enough to capture dsDNA. Furthermore,

operation of the α-hemolysin nanopore detector demonstrates that it is possible to

obtain at least Angstrom-level resolution of structural feature.

Using the observed structure (signal) a set of features representing the 8-base pair

and 9-base pair were extracted (using methods of Hidden Markov Models) that in

turn allowed the authors of [27] to accurately classify different DNA hairpins using

Support Vector Machines.

We have selected this data set to cluster a symmetric1 sample of 200 8GC (8-base

pair DNA ending in TAGC) and 9GC (9-base pair DNA ending in TAGC) feature

vectors using the SVM-Relabeler algorithm. Each feature vector is 150 dimensional

normalized to satisfy L1-norm = 1 constraint. For these experiments the following

set of parameters where used: Absdiff kernel (γ = 2.0), C = 1.5, order of numerical

approximation ≈ 10−3, relabeling factor (α) = 0.15.

Although convergence was always achieved, convergence to a global optimum was

not guaranteed. Figure (4.3) illustrates the characteristic behavior of different possible

solutions. At the end of a successful run of this algorithm it is expected that the

generalization error (testing error) be very small. In this case and figure (4.5) a small

value of Kernel-SSE (herein referred to as SSE) provides us with a reliable cluster

validation measure.

1Symmetry implies that there are equal number of feature vectors in each class. However, this
should not be an issue for a robust clustering algorithm. It is shown in the case of the Iris data set
(section 4.1) this algorithm does not require a symmetric setting.
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Figure 4.3: 3 different trials of SVM-Relabeler algorithm demonstrating the range
of the possible solution space as measured by SSE ((a), Absdiff kernel γ = 1.8) and
purity ((b), see appendix))
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(b) Iteration 2

Figure 4.4: This figure shows the progress of the SVM-Relabeler algorithm as it
clusters Setosa away from Versicolor and Verginica. Parameters: Gaussian kernel
with γ = 2.0, C = 1.5, and α = 0.5.
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(d) Iteration 4

Figure 4.4: (continued)
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(f) Iteration 6

Figure 4.4: (continued)
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Figure 4.4: (continued)
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Figure 4.5: (a) is a histogram of the projection of feature vectors on ω, a unit vector
orthogonal to the decision hyperplane. Therefore, features are classified based on the
sign of this projection, and it is clear from this figure that by iteration 17 the data
set has been clearly separated. Figure (b) shows, iteration by iteration for the same
experiment as in (a), a decrease in Kernel SSE value, test and training errors and
simultanous increase in the purity.

As mentioned in section (3.6) annealing function is the property of the entire sys-

tem, while perturbation function is a local property. Naturally, one would expect

that the system to be more acceptable to increase in SSE in the early iterations and

less so as the temperature of the system drops. However, As shown in Figure (4.6,

top-left) it happens so that constant perturbation , with ppert = 0.10 in this case,

could result in a local-optimum solution that could be otherwise avoided using a per-

turbation function depending on the number of iterations of unchanged SSE (Figure

61



CHAPTER 4. SVM-RELABELER RESULTS

167 168 169 170 171

Kernel SSE

0.55 0.60 0.65 0.70 0.75

Purity

0.1 0.2 0.3 0.4 0.5

Test Error

5
10

15

0.0 0.1 0.2 0.3 0.4 0.5

Train Error

(b)

Figure 4.5: (continued)
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(4.6, top-right)). These results were produced using an exponential cooling function,

Tk+1 = βkTK , with β = 0.96 and T0 = 10. The initial temperature, T0 should be large

enough to be comparable with the change of SSE, ∆SSE, and therefore increase the

randomness by making the Boltzman factor e−
∆SSE

T ≈ e0, while β(< 1) should be

large enough to speed up the cooling effect.
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Figure 4.6: This figure compares the behavior of Algorithm 9 using constant and
variable perturbation functions. Top-left demonstrates the case where constant 10%
perturbation is applied at every iteration, while in addition to that, the top-right
figure increases the probability of perturbation based on the number of iterations
during which SSE remained constant (bottom-right). The bottom-left figure shows
the annealing process.

63



Chapter 5

Conclusion

5.1 Discussions and Future Work

5.1.1 Regularized Divergence Kernels

Regularized distance kernels introduced in section (3.2.2) (e.g. Gaussian, Laplace

and Absdiff) are provably positive-definite [see semigroup book] and therefore satisfy

Mercer’s condition. Regularized divergence kernels, and particularly the Sentropic

kernel, on unrestricted domain would violate Mercer’s condition, since the square

root of the polarization term fails to be metric (see proof in appendix A). Extensive

numerical tests, however, show that for various real random vectors C and a Sentropic

kernel matrix, K, built from DNA hairpin data, CT KC is consistently positive.

To ensure positive definitivity, however, one may employ the technique of Iter-

ated Kernels ([29]). We define the iteration using,

K(p)(x, y) =

∫

K(n−1)(x, z)K(z, y)dz

=

∫

. . .

∫

K(x, z1)K(z1, z2) . . .K(zn−1, y)dz1 . . . dzn−1 (5.1)

It is shown in [17] that K(2) satisfies Mercer’s condition and is positive definite even

when K does not. However we generalize and show that K(n=2p), ∀p ∈ N
+, is positive
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definite even when K is not. This follows from Mercer’s theorem [see Mercer],

∫

K(n)(x, y)Φ(x)Φ(y)dxdy

=

∫
(
∫

. . .

∫

K(x, z1)K(z1, z2) . . .K(zn−1, y)dz1 . . . dzn−1

)

Φ(x)Φ(y)dxdy

=

(
∫ ∫

K(x, z)Φ(x)dxdz

)2(∫ ∫

K(zi, zj)dzidzj

)2(p−1)

≥ 0

5.1.2 Cluster Validators

The fitness of the cluster identified by the SVM-Relabeler algorithm is modeled using

a supervised measure, purity (see section 3.3) and an unsupervised measure, Kernel

SSE, which is the cohesion of the clusters. In other words, we assume that the fitness

of a cluster can be tracked using the compactness of that cluster as the algorithm

progresses. It is necessary to note that i) the notion of compactness as a way to

evaluate clusters favours spherical clusters over clusters spread over a linear region,

and ii) the known classes may not properly correspond to the geometric structure of

the clusters. However, this limitation does not normally affect our methodology, since

this limitation is imposed over the feature space, and not the input space. That is,

with a choice of proper kernels and parameters, feature space is more likely to have

higher variation in the lifted dimensions.

If such a problem is known to exist, however, one can use pre-processing (see

[30]) to scale and transform the data set. The simplest method of transformation is

PCA and KPCA analysis (sections 2.4.1 and 2.4.2) to reduce the dimensionality by

constructing new dimensions that carry the most variation. One of the differences

between PCA and KPCA is that KPCA can extract a set of principal components

that may be larger than input dimensionality. For an m dimensional feature set,

PCA can find maximum of m nonzero covariance eigenvalues. However, since KPCA

performs eigenvalue decomposition on an n× n kernel matrix K (for n is the size of

feature set), there could be n non-zero eigenvalues. It is interesting to note that if K

is calculated using dot product kernel, there can only be m non-zero eigenvalues that

are identical to those of the covariance matrix. Hence, KPCA reduces to PCA when
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dot product kernel is used.

Another method for scaling in feature space was proposed in [17], to replace the

kernel function K(x, y) with K(x, Dy), where D is a diagonal matrix with nonnega-

tive diagonal elements d1, . . . , dN . The newly created kernel effectively scales direction

i of input space by
√

di.

Scaling and transformation requires knowledge about the geometry of the problem

at hand. This information is often unavailable to data analysts. SVM-Relabeler can

be improved to take advantage of the discriminant function provided by the SVM

solution. In figure (4.5) we have shown the histogram of the decision space and

demonstrated that the method is effectively separating the clusters. Let m1, m2, s1

and s2 be the means and standard deviation of the decision space projection shown

in figure (4.5). The function,

J(ω) =
|m1 −m2|

s2
1 + s2

2

for ω is the derived weight factor, can be used to validate the clusters. Generally,

larger J(ω) corresponds to better separation, while taking into account the compact-

ness of the clusters. Note that, J(ω) is used as the objective function of Fisher’s

discriminants (see [30]).

5.1.3 Tuning of SVM-Relabeler

There is a plethora of literature surrounding the problem of Kernel selection (see for

example, [31, 32, 33, 34]). The problem remains to be highly data set dependant and

so far accurate methods for choosing kernels are not feasible. This problem is partially

addressed in [34] by an empirical observation for the popular Gaussian kernel, where

the optimal values of the width hyper-parameter σ are shown to lie in between the

0.1 and 0.9 quantile of the ||x− y||2 statistics.

The SVM-Relabeler results produced in this work assume the value of 1.5 for

the SVM regularization constant, C. Larger values of C tend to reduce the ac-

curacy by sacrificing the generalization error for higher training error – a case of

over-fitting. This is because C penalizes misclassifiction required by SVM-Relabeler

66



5.2. CONCLUDING REMARKS

algorithm. Similarly, smaller values of C destabalize SVM classifiers by allowing very

large margines that are highly under-fitted.

The choices of the SVM regularization constant, C, has a profound distinction

when used in the context of SVM-Relabeler. The choice of C in the supervised SVM

controls the trade off between the training error and the generalisation error, and

therefore, it effectively controls the soft margin. Since this margin is not known to us

when clustering, the value of C has to be chosen emperically. It may prove beneficial

to consider ν-svm ([35] and [36]), a re-formulation of SVMs to replace the soft margin

C, which can take any positive value, with another one, ν, that lies in the range of zero

and one. The significance of the parameter ν is that it provides an upper bound on

the fraction of margin errors and the lower bound on the fraction of support vectors.

The relabeling parameter, α, which controls the amount of label flipping per-

formed by the algorithm is observed to be stable given a good choice of kernel and

parameters. That is, when everything else is tuned properly, small changes in α do

not alter the accuracy significantly. It was observed that, although, in general larger

α provides faster convergence, smaller α does not necessarily provide better accuracy.

The optimal choice of α remains to be subject of future research.

5.2 Concluding Remarks

In this work, a new method of clustering is introduced by providing an algorithm

based on Support Vector Machines that does not explicitly depend on an objective

function. The solution arrived to by the heuristics of this algorithm can be later

analysed using a criterion function, but it remains external to the algorithm. The

hope is that this work provides a fresh and new prespective on unsupervised learning

processes that are often labeled by practitioners, and theoreticians alike, as subjective.
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Appendix A

Proof of Non-Positive-Definitivity

of the Sentropic Kernel

Definition 14 The symmetric Kullback–Leibler divergence, Ssentropic, of two feature

vectors x and y is defined: by:

Ssentropic(x, y) = D(x||y) + D(x||y) =
∑

i

(xi − yi) ln (xi/yi)

Theorem 15 The square root of the symmetric Kullback–Leibler divergence, is not

a metric.

Proof An example can be given to counter the claim that
√

Ssentropic satisfies the

triangle inequality and hence is not a metric. Suppose, three feature vectors defined

below,

x =(1− δ, δ)T

y =(1− 2δ, 2δ)T

z =(1− 3δ, 3δ)T

(A.1)

We rewrite Ssentropic(x, z) in terms of Ssentropic(x, y) and Ssentropic(y, z). Note,
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Ssentropic(x, y) and Ssentropic(y, z) are simplified as following,

Ssentropic(x, y) = (x1 − y1) ln
x1

y1

+ (x2 − y2) ln
x2

y2

= δ ln
1− δ

1− 2δ
− δ ln

1

2

= δ ln
2(1− δ)

1− 2δ
(A.2)

Ssentropic(y, z) = δ ln
1− 2δ

1− 3δ
− δ ln

2

3

= δ ln
3(1− 2δ)

2(1− 3δ)
(A.3)

Similarly, Ssentropic(x, z) can be written as,

Ssentropic(x, z) = 2δ ln
1− δ

1− 3δ
− 2δ ln

1

3

= 2δ ln
3(1− δ)

1− 3δ

= 2δ ln

[

3(1− 2δ)

2(1− 3δ)
· 2(1− δ)

1− 2δ

]

= 2

[

δ ln
3(1− 2δ)

2(1− 3δ)
· δ ln

2(1− δ)

1− 2δ

]

= 2 [Ssentropic(y, z) + Ssentropic(x, y)] (A.4)

But,
√

Ssentropic(·, ·) is strictly concave and for a strictly concave function, f , we have,

f(
x + y

2
) >

f(x) + f(y)

2
. (A.5)

Using this property and equation (A.4) we get,

√

Ssentropic(x, z) = 2

√

Ssentropic(x, y) + Ssentropic(y, z)

2
(A.6)

>

√

Ssentropic(x, y)

2
+

√

Ssentropic(y, z)

2
(A.7)
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APPENDIX A. PROOF OF NON-POSITIVE-DEFINITIVITY OF THE SENTROPIC KERNEL

showing that
√

Ssentropic fails to satisfy the triangle inequality and hence is not a

metric.

Finally we can show that the sentropic kernel (equation 3.2) is not a positive

definite kernel.

Theorem 16 Sentropic kernel is not positive definite.

Proof Using theorems (12) and (15) it is clear that Ssentropic is not a negative definite

kernel. Furthermore, using theorem (11) it is proven that if Ssentropic is not a negative

definite kernel, Ksentropic in equation (3.2), is not a positive definite kernel.
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Appendix B

kernlib Framework

kernlib is a Kernel based machine learning framework developed by the author using

Java with hopes of it being an opensource contribution in the near future. This pack-

age facilitates implementation of kernel-based supervised and unsupervised learning

algorithms. Currently, an SMO based SVM, Kernel k-means, KPCA and various

tools to report, log, compare and varify results are implemented.

B.1 Configuration

Java property files are used by the user to provide input for different algorithms. In

the property file illusterated in figure (B.1) the constants “SMO”, “ABSDIFF”, and

etc., are various java factory classes defined separately in the “mapping” property file

shown in figure (B.1). These factory classes are in charge of parsing the property file

according to respective algorithm parametrization.

B.2 SVM engine

In this illusteration property file in figure (B.1) is passed as a command line argu-

ment to an application wanting to use the SVM engine. The SVM engine can be

initialized as demonstrated in figure (B.2). Note that the training data format and

SVM parameter inputs are parsed using the corresponding factory objects.
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APPENDIX B. KERNLIB FRAMEWORK

# SVM engine con f i gu r a t i on
engine = SMO
cva l = 1 .5
ep s i l o n = 0.001
to l e r an c e = 0.001
maxiter = 1000
random . seed = 1213654164793

# Data con f i gu r a t i on
data . t e s t . type = SINGLE DNA TRAIN
data . t e s t . f i l e = /home/sammerat/workspace /SWSVM/data /9bphp/8GC9CG

. t r a i n
data . t e s t . type = SINGLE DNA TEST
data . t e s t . f i l e = /home/sammerat/workspace /SWSVM/data /9bphp/8GC9CG

. t e s t

# Kernel c on f i gu r a t i on
c l a s s = ABSDIFF
sigma = 2

# SVM−Relabe l e r parameters
r e l a b e l e r . proc = SYM PERC REL PROC
r e l a b e l e r . maxiter = 30
r e l a b e l e r . r e l f a c t o r =0.15
r e l a b e l e r . sa . temp . proc = EXP COOL
r e l a b e l e r . sa . temp . i n i t = 6 .0
r e l a b e l e r . sa . maxiter = 10.0

Figure B.1: Example property file to configure data, train and test using an SMO
SVM engine, and cluster using the SVM-Relabeler engine
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B.2. SVM ENGINE

SMO = edu . uno . cs . b i o i n f o rmat i c s . svm . engine . SMOParameters
ABSDIFF = edu . uno . cs . b i o i n f o rmat i c s . k e rne l . Absd i f fKerne l
GAUSSIAN = edu . uno . cs . b i o i n f o rmat i c s . k e rne l . GaussianKernel
SINGLE DNA TRAIN = edu . uno . cs . b i o i n f o rmat i c s . data .

SingleFileDNATestingDataFactory
SYM PERC REL PROC = edu . uno . cs . b i o i n f o rmat i c s . svm . c l u s t e r .

r e l a b e l e r . Symmetr icPercenti l eProcedureFactory
EXP COOL = edu . uno . cs . b i o i n f o rmat i c s . svm . c l u s t e r . r e l a b e l e r . sa .

ExponentialCool ingFactory

Figure B.2: Example java class mapping file.

Prop e r t i e sCon f i gu ra t i on propConf = null ;

try {
propConf = new Prop e r t i e sCon f i gu ra t i on ( args [ 0 ] ) ;

}catch ( Conf igurat ionExcept ion ce ) {
l o gg e r . e r r o r ( args [ 0 ] + ” proper ty f i l e not found . ” , ce ) ;

}
TrainingData tra in ingData = null ;
SVMParameters svmParams = null ;
try {

tra in ingData = TrainingDataFactory .
getTrainTrain ingDataFactory ( propConf ) .

getTrain ingData ( ) ;
svmParams = SVMParametersBuilder .

getSVMParameters ( propConf ) ;
}catch ( PropertyException pce ) {

l o gg e r . e r r o r ( pce . getMessage ( ) , pce ) ;
return ;

}

Figure B.3: Simple initialization of the SVM engine.
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Learning and prediction using SVM is then demonstrated in figures (B.2) and

(B.2).

SVMLearner svmLearner = svmParams . getSVMLearner ( ) ;
SVMModel svmModel = svmLearner . learnSVM( train ingData , svmParams ) ;

Figure B.4: Learning using the SVM engine.

SVMPredictionData pred = new SVMPredictor ( svmModel , testData ) .
p r ed i c t ( ) ;

Figure B.5: Prediction using the SVM engine.

B.3 SVM-Relabeler

I figure B.3 an SVM-Relabeler is constructed by first instantiating the “RelabelerIter”

class, which encapsulates a run of the SVM-Relabeler algorithm. Further runs, until

the point of termination, is performed and in each step various information regarding

the convergence of the algorithm (such as cross-validation error, SSE and training

error) is obtained.
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Re l ab e l e r I t e r r e l I t e r = new Re l ab e l e r I t e r ( data , r e l p a r ) ;
for ( int i = 0 ; r e l I t e r . hasNext ( ) && i < r e lPar . getMaxIter ( ) ; i

++) {
r e l I t e r . i t e r a t e ( ) ;
/∗ ge t CV error ∗/
/∗ ge t t r a i n i n g e rror ∗/
/∗ . . . ∗/
/∗ ge t pu r i t y ∗/
SupClustVal scv = new SupClustVal ( knownLabel , r e l I t e r .

getClusterData ( ) . ge tLabe l s ( ) ) ;
/∗ ge t Kernel SSE ∗/
DoubleMatrix1D s s e = Train ingDataUti l s . s s e ( r e l I t e r .

getRelParams ( ) . getSVMParams ( ) . ge tKerne l f ( ) , r e l I t e r .
getClusterData ( ) ) ;

s s e L i s t . add ( s s e . zSum( ) ) ;
}

Figure B.6: Example SVM-Relabeler usage.

79



Appendix C

Johnson’s SB Distribution

Johnson’s SB distribution is the bounded form of 4-parameter lognormal distribution

developed by Johnson in (see johnson). In this distribution the random variable, x,

is transformed using:

z =
x− ξ

λ
(C.1)

where ξ and ξ + λ are the minimum and maximum values for x. Furthermore, a unit

normal variable y is defined as:

y = γ + δln

(

z

1− z

)

= γ + δln

(

x− ξ

ξ + λ− x

)

(C.2)

Note that the mean and variance of ln(z/(1− z)) are related by:

µ = −γ

δ
and σ2 =

1

δ2
. (C.3)

Finally, with the above substitutions into a normal distribution, the SB distribution

is written as:

f(x; γ, δ, λ, ξ) =
δ

λ
√

2πz(1− z)
exp

(

−1

2

[

γ + δln

(

z

1− z

)]2
)

(C.4)
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