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Abstract 
 

While genetic improvement of susceptible crop species may enhance resistance to 

microbial pathogens and facilitate reduced pesticide load, the possibility for transmission 

of novel genes to wild relatives has hampered acceptance of GM crops in some markets.  

Chloroplast transformation presents an attractive alternative to nuclear transformation 

and offers the potential to ameliorate these environmental concerns.  Most agronomically 

important species exhibit maternal inheritance of organellar genomes which eliminates 

the threat of transgene escape through pollen.  Gene silencing is absent due to site 

directed, single copy insertion by homologous recombination.  Foreign proteins can 

accumulate to high levels (up to 50% of total soluble protein) and are retained within the 

chloroplast envelope protecting them from degradation by host cytoplasmic proteases.  A 

bacterial chloroperoxidase gene (cpo-p) was transformed into the tobacco chloroplast 

genome to test its efficacy against plant pathogens and the mycotoxin producing 

saprophyte Aspergillus flavus. 
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Introduction 

The current global human population of 6.4 billion is expected to reach 10 billion 

by the year 2050.  The rate of agricultural yield at present is not sufficient to meet this 

demand and already malnutrition and starvation are taking a toll world wide.  In the past 

increased productivity of primary producers, namely higher plants, has been 

accomplished through selective breeding programs but the successes in this area have 

reached a plateau.  Bringing new acreage under cultivation is not a viable option as many 

lands in developing nations are marginal and serious environmental consequences 

prohibit agricultural development on remaining fertile preserves. 

The architects of the ‘Green Revolution’ envisioned that increased global carrying 

capacity would result from the development of new crop cultivars, the use of irrigation 

systems, and the application of chemical fertilizers and pesticides.  Food production 

increased over 1000% from 1960 to 1990 but not without consequences in terms of 

production cost, dependence on chemical inputs, top soil erosion and salinization due to 

irrigation practices and the development of pesticide-resistant species. 

Nobel Peace Prize winner Norman Borlaug, considered the Father of the Green 

Revolution, suggests that in biotechnology lies the potential to ameliorate environmental 

concerns while meeting the rising demand for agricultural production (Borlaug, 2005).  

Indeed, through biotechnology many improvements have been made.  Crop species have 

been genetically engineered to resist pests (Cary et al., 2000; Rajasekaran et al., 2000 

Rajasekaran et al., 2002), tolerate drought (Shou et al., 2004) and herbicide treatment 

(Chin et al., 2003), and to enhance nutritional value (Goto et al., 1999; Ye et al., 2000) 

through the incorporation of novel DNA in the nuclear genome.  Specific technical 
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challenges related to the random integration of foreign DNA sequences such as transgene 

silencing (Fagard et al., 2000) are further compounded by negative public sentiment 

partially fueled by the fear of transgene escape via pollen or unintended effects on pollen 

feeding, non-target insects such as the monarch butterfly (Shelton, 2003).  Without the 

acceptance of regulatory agencies and the general public, the advances made through 

biotechnology are of limited use, isolated in the laboratory and unable to facilitate much 

needed improvements in the field.  The responsibility of finding new platforms for 

increased agricultural productivity without concomitant threat to the environment falls to 

science. 

Higher plants possess two genomes in addition to that of the nucleus; the 

organellar genomes of mitochondria and chloroplasts.  Genetic engineering of higher 

plant chloroplasts may offer the potential to mitigate certain distress in terms of 

agricultural productivity.  Technological advances, most notably the invention of the 

particle accelerator (Boynton et al., 1988), have provided the opportunity to explore the 

chloroplast genome as a platform for the expression of genes which may help address 

current and future demands for improved food production. 

The genetic potential of the chloroplast lies in its negatively supercoiled, double 

stranded, circular DNA molecule referred to as the plastome.  Within the angiosperms the 

plastome carries approximately 120 to 130 genes and ranges in size from 120 to 180 

kilobases (kb) (Sugiura, 1992).  Plastome molecules are clustered in nucleiods which are 

associated with plastid membranes and readily observed by fluorescent microscopy 

following DAPI staining (Mache et al., 2001).  Of the estimated 3000 or so proteins 

found in the higher plant chloroplast (Colas des Francs-Small et al., 2004; Richly et al., 
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2004), only a small fraction are encoded by the plastome (Shimada et al., 1991).  The 

bulk of the chloroplast proteome is nuclear encoded, translated on cytosolic ribosomes 

and subsequently translocated across the chloroplast envelopes (Zerges, 2000). 

The plastome exists in a highly polyploid state with up to 100 identical copies 

present in each plastid of a mature leaf cell (Maier et al., 2004).  In a mature leaf, 

mesophyll cells carry up to 100 chloroplasts with the result that this genome alone can 

comprise up to 20 % of the total cellular DNA content (Bendich, 1987).  The plastome 

persists in all plastid differentiation types:  the proplastids of meristematic tissues, green 

chloroplasts, red or yellow chromoplasts, the colorless plastids amyloplasts and 

leucoplasts (starch containing), and elaioplasts (oil containing) (Maliga, 2004). 

The plastome is strictly maternally inherited in most species of agricultural 

interest (Hagemann, 2004).  In maternal inheritance systems, paternal transmission of 

plastids is impeded during either the first pollen mitosis via unequal plastid distribution, 

or during generative or sperm cell development via plastid degeneration (Birky Jr., 2001; 

Mogensen et al., 2000; Zhu et al., 1992).  Therefore, the generative and sperm cells in 

mature pollen tend to be free of plastids. 

Plastid gene organization and structural features are conserved among eukaryotic 

photosynthetic organisms (Mache and Lerbs-Mache, 2001; Sugiura, 1992).  The circular 

molecule can be divided into three distinct domains: large single copy (LSC), small 

single copy (SSC) and the inverted repeat (IR) which is present in exact duplicate 

separated by the two single copy regions (Figure 1-1).  Restriction fragment length 

polymorphism (RFLP) analysis indicates that the molecule exists in two orientations 

present in equimolar proportions within a single plant (Palmer, 1983).  The circular 
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molecule undergoes interconversion to a dumbbell-shaped conformation that is believed 

to be facilitated by the presence of the IR.  Concerted evolution within the IR (Kolodner 

et al., 1975;Kolodner et al., 1976) suggests intramolecular recombination between the 

repeats is a possible mechanism. 

 

Figure 1-1:  Map of a typical angiosperm chloroplast genome, Nicotiana tabacum  
(from Wakasugi, 2001).   
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As sessile organisms plants are unable to escape potential DNA damage induced 

by ultraviolet (UV) radiation.  A wide spectrum of DNA modifications such as base 

damage, strand breaks and DNA and protein crosslinking can arise from exposure to 

UVA and UVB light (Cadet et al., 1992; Ravanat et al., 2001).  Additionally plastid DNA 

is subject to photooxidative damage due to the presence of reactive oxygen species 

generated through photosynthetic metabolism (Adam et al., 2001).  The need for a plastid 

localized DNA repair system is evident.  In Escherichia coli the RecA protein is essential 

for homologous recombination and for a variety of SOS responses to DNA damage 

(Smith et al., 1989; Witkin et al., 1987).  A related protein exists in stromal extracts of 

Pisum sativum (pea) and Arabidopsis thaliana as revealed by immunoblotting with E. 

coli RecA antisera (Cerutti et al., 1992). 

The nuclear localization of the higher plant recA gene has been supported.  The 

cyanobacteria Synechococus recA gene hybridized to pea and Arabidopsis genomic 

DNA, whereas homology was not detected in purified chloroplast or mitochondria DNA.  

The isolation of a cDNA for the recA gene from Arabidopsis thaliana that included a 

predicted chloroplast transit peptide further indicated the nuclear residence of this gene 

whose product is subsequently targeted to the chloroplast (Cerutti et al., 1992).  DNA 

strand transfer activity has been detected in pea (Cerutti et al., 1993), and 

Chlamydomonas reinhardtii transformants expressing a dominant negative mutant of the 

E. coli RecA protein showed reduced survival rates when exposed to mutagenic agents 

(Cerutti et al., 1995).  An active recombination system appears to be the mechanism of 

DNA repair in plastids.  
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At least two distinct RNA polymerases are responsible for transcription of 

chloroplast genes: the plastid encoded, multisubunit RNA polymerase (PEP) and the 

nuclear encoded, single polypeptide RNA polymerase (NEP) (Allison et al., 1996).  

Many chloroplast genes of higher plants are co-transcribed from operons producing 

polycistronic primary transcripts.  Several monocistrons are also transcribed including 

psbA, encoding the D1 core polypeptide of photosystem II, and most of the 30 tRNA 

genes (Bonen, 2004).  Plastid genes and operons can be classified according to the 

promoter sequences upstream of the transcription initiation site: those that have 

sequences recognized by PEP only, by NEP only, or those that contain recognition 

sequences for both PEP and NEP (Hajdukiewicz et al., 1997). 

Study of these promoter regions indicate that NEP is active in the early stages of 

development, establishing the chloroplast genetic system, whereas PEP is the 

predominant activity in mature chloroplasts and responsible for the transcription of the 

photosynthesis genes (Mullet, 1993; Sugita et al., 1996).  The core subunits of 

eubacterial-like PEP are encoded by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes 

(transcribed by NEP) (Baumgartner et al., 1993).  Disruption of these genes leads to a 

pigment deficient phenotype, eventual loss of stacked thylakoid membranes and the 

disappearance of normally abundant transcripts for photosynthesis related proteins 

(Allison et al., 1996). 

While the plastid ribosomal RNA operon (rrn) is constitutively transcribed, the 

process is regulated in response to environmental and developmental cues (Baumgartner 

et al., 1993).  Transcription of the operon is accomplished by at least two different RNA 

polymerases from one of four promoter elements (Iratni et al., 1997; Suzuki et al., 2004; 
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Vera et al., 1995).  In  tobacco, transcription by the PEP from a sigma 70 (σ 70) type 

promoter (P1) with conserved -10 and -35 elements is thought to predominate.  σ70 like 

factors encoded in the nucleus and imported from the cytoplasm are thought to be 

required by PEP for transcription initiation, allowing for highly concerted regulation of 

chloroplast gene expression (Kanamaru et al., 1999; Kanamaru et al., 2004).  Deletion 

series analysis of PrrnP1 has identified a hexamer, GTGGGA, directly upstream of the -

35 box as essential to PrrnP1 promoter activity.  This element is referred to as RUA 

(rRNA upstream activator) (Suzuki et al., 2003).  Mutation of the -10 element had only a 

moderate effect on transcription of the operon, whereas other chloroplast genes 

transcribed by PEP, such as psbA and rbcL, require this sequence element for promoter 

strength (Eibl et al., 1999; Kim et al., 1999).  This suggests that RUA may have replaced 

a sigma-type interaction with the -10 element and itself interacts with PEP directly or via 

some other protein factor which binds to the RUA.  Abolition of PEP activity by mutation 

of the rpoB operon, did not lead to a dramatic reduction in transcript levels for rrn 

indicating effective transcription of the ribosomal operon can also be accomplished by 

the NEP (Allison et al., 1996) from a novel promoter element (P2) located at -64 relative 

to the transcription start site and downstream of P1 (Vera and Sugar, 1995).  Ultimately, 

transcription of all chloroplast genes is under control of the nucleus at several levels.   

Transcript availability is not the rate limiting factor for protein accumulation in 

mature leaf chloroplasts.  Photosynthetic proteins, the most abundant proteins in 

chloroplasts, are closely regulated post-transcriptionally and changes in steady-state 

levels are attributed to the stability of messenger RNA (mRNA) rather than the 

transcription of these molecules from their respective genes (Barnes et al., 2004; Zerges, 
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2000).  Transcript stability, maturation and subsequent translation into protein products is 

influenced by several features of the mRNA.  Chloroplast mRNAs include 5’ and 3’ 

untranslated regions (UTRs), both of which confer on the molecule distinctive elements 

necessary for the eventual production of chloroplast proteins from mono- or polycistronic 

transcription units (Monde et al., 2000b). 

Mature chloroplast mRNAs do not have 3’ poly A tails per se although similar 

structures can be detected in low abundance and appear to be involved in marking 

transcripts for degradation (Monde et al., 2000a; Sugita and Sugar, 1996).  Most 

transcription units studied in chloroplast systems, including monocistronic psbA, carry a 

short inverted repeat (IR) region within the 3’ end that is predicted to form a stem loop.  

The 3’ IR present in psbA is not an effective terminator of transcription (Deng et al., 

1987) and polycistronic transcripts have been shown to have embedded IRs (Marchfelder 

et al., 2004; Westhoff et al., 1988).  Rather these IRs appear to act as RNA processing 

signals for endonucleolytic cleavage of pre-mRNAs and further serve to stabilize the 

transcript by blocking the activity of 3’ 5’ exonucleases resulting in homogeneity of 3’ 

ends (Adams et al., 1990; Chen et al., 1991).  As demonstrated in Chlamydomonas, atpB 

mRNAs with discrete 3’end were associated with polysomes, while those with 

heterogeneous ends remained in non-polysomal fraction (Rott et al., 1998) indicating a 

3’end effect on translation.  In higher plant chloroplasts though, a substantial portion of 

some mRNAs, such as psbA, are not found to be associated with polysomes (Hirose et 

al., 1996) but are immunoprecipitated with plastid RNA binding proteins.  It has been 

suggested that these proteins stabilize non-polysomal pre-RNAs prior to assembly into 
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ribosomal complexes (rRNA), or until subsequent replacement by ribosomes is 

accomplished (Sugita and Sugiura, 1996). 

Experiments employing gene fusion constructs for reporters such as β-

glucuronidase (GUS) and green fluorescent protein (GFP) have demonstrated that 

polycistronic mRNAs can be efficiently translated in plastid systems.  The plasmids 

utilized in these transformation experiments included a single promoter for transcription 

of an antibiotic marker fused to the promoterless GFP or GUS sequence with a Shine 

Delgarno (SD)-like ribosome binding site introduced between the two sequences.  

Accumulation of dicistronic mRNAs as well as their efficient translation leading to high 

levels of foreign protein has been established (Jeong et al., 2004; Staub et al., 1995).   

Maturation of plastid pre-mRNA, rRNA and tRNA into functional molecules 

requires the coordination of cis and trans acting factors and may occur co- or post-

transcriptionally.  C to U as well as U to C editing is found in plastid mRNA and U to C 

conversion is observed in plastid tRNAs (Mulligan, 2004).  Additionally, the higher plant 

chloroplast genome contains ~40 introns which must be spliced according to 

environmental and developmental cues before the respective RNAs are functional in the 

organelle (Barkan, 2004).  Stepwise assembly of the translation competent ribosomal 

complex is fully accomplished at the first codon (AUG) of the coding region (Zerges, 

2000; Zerges, 2004) and, in terms of translational efficiency, initiation may be the most 

strictly regulated step.  Recruitment of a host of factors, both nuclear and plastid encoded, 

is required for protein synthesis on 70S plastid ribosomes (Bruick et al., 1999; Manuell et 

al., 2004).  SD-like sequences (most commonly GGAGG or GGAG),  ribosome binding 

sites (RBS), stem loop structures and various “box” sequence elements are found to exist 
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within plastid mRNA  5’ UTRs and are considered the cis-acting factors involved in 

translation initiation.  

In tobacco chloroplasts, 30 of 79 protein coding genes examined lack a SD-like 

sequence within 20 nucleotides of the start codon and the remaining 49 posses these 

motifs but not at a conserved position (Sugiura et al., 1998).  Bacterial SD sequences 

interact with the anti-SD region at the free 3’ end of 16S rRNA to facilitate translation of 

the protein products and elements both up and downstream of the translation start site are 

believed to play a role in the efficiency of this process.  Increasing the complementarity 

of the 15 nucleotide downstream box (DB) to the anti-DB region of the 16S penultimate 

stem lead to enhanced protein accumulation in E. coli (Etchegaray et al., 1999).  A 

similar experiment in a tobacco plastid system did not demonstrate improved protein 

expression.  Transformation with a chimeric construct including the strong PrrnP1 

promoter, phage T7 gene10 5’UTR and E. coli DB resulted in neomycin 

phosphotransferase II (NTPII) accumulation to 16% of total soluble protein (TSP), while 

eliminating the DB boosted NTPII in mature leaves to ~23% of TSP.  Increasing 

complementarity between sequence downstream of the start codon and 3’ 16S rRNA 

through the inclusion of plastid native down stream sequences rather than E. coli DB in 

the transformation cassette dramatically reduced NTPII accumulation in part due to 

increased turnover in mRNA (Kuroda et al., 2001).  This result suggests that the 5’ region 

involved in transcript stability and complementary interactions with the ribosome lies 

within the UTR for plastid genes.   

In depth analyses have detailed the structure of the 85 nucleotide psbA 5’ UTR 

which contains representatives of the translational motifs discussed above occurring 
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Figure 1-2:  Schematic representation of the psbA 5’ UTR.  Boxed area indicates 17 
nucleotide deletion (from Eibl, 1999). 
 

in this order:  5’stem loop, RBS3, RBS2, AU box, RBS1 3’ (Figure 1-2).  RBS2 and 

RBS1 appear to act cooperatively, as deletion of both sites has a more severe effect than 

single deletions for either (Hirose and Sugiura, 1996).  A stem loop structure is predicted 

between the two which allows the intervening AU box to loop out resulting in a model  

 

 

 

 

 

 

 

Figure 1-3:  Model of possible 
orientation of the psbA 5’UTR 
within the 30s ribosomal subunit.  
Predicted base pairing between RBS1 
and RBS2 may facilitate binding of a 
protein factor to the AU Box (from 
Hirose, 1996) 
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for interaction with a protein factor within the translation complex (Figure 1-3) (Hirose 

and Sugiura, 1996; Zerges, 2000)  Detection of initiation complexes corresponding to 

ribosomes with initiator tRNA on RBS3 lead to the proposition that the small subunit first 

binds transiently here then scans in the 5’ 3’ direction to the legitimate AUG 

downstream.  This scanning does not appear to be an absolutely required step as mutation 

or deletion of RBS3 reduced translation by less than 15% of wild-type levels.  (Hirose 

and Sugiura, 1996; Kim et al., 1994).  The stem loop structure found at -48 through -72 

upstream of AUG possesses a predicted endonuclease cleavage site at the 3’ end 

(Alexander et al., 1998).  Mutant lines for the stem loop structure demonstrated a twofold 

lower transcript abundance following a 17 nucleotide deletion at the 5’ end of the UTR 

(Figure 1-2).  An eight-fold depression in protein accumulation was observed resulting in 

an overall 4-fold depression of translation efficiency.  A predicted cleavage site at the 3’ 

end of the stem loop accounts for the differently sized transcripts found among native 

psbA mRNAs.  The smaller sized transcript is present at much higher steady state levels.  

The longer species is not found to be associated with polysomes suggesting that it is not 

translatable (Bruick et al., 1998). 

As many endogenous chloroplast proteins function in the photosynthetic unit it is 

only logical to predict their expression will by regulated by light.  Translation of psbA is 

stimulated by light to a greater extent than other mRNAs (Eibl et al., 1999; Staub et al., 

1993; Staub et al., 1994) reflecting the requirement for replacement of the PSII core 

subunit following photooxidative damage.  Upregulation of D1 expression in response to 

light has been mainly investigated in etiolated seedling versus those grown in 16 h light/8 

h dark growth chambers.  Transplastomic lines for chimeric psbA 5’ region (including 
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promoter) and uidA (GUS) demonstrated 135- to 200-fold higher expression in light 

grown plants over those deprived of light based on fluorogenic assay and illumination of 

dark grown seedlings enhanced expression by 32-43 fold within 36 hours.  In these 

constructs the 3’ UTR was varied, with rcbL 3’ UTR resulting in the greatest 

enhancement.  When constructs were employed with constant psbA 3’ regions and 

variable 5’ UTRs results were less dramatic, with light enhancement of GUS expression 

in the 2 to 4 fold range.  Analysis of transcript abundance demonstrated only modest 

increases among transgenic lines exposed to light versus dark grown (Staub and Maliga, 

1994).  This indicates that enhancement of translation resides in the 5’ leader for psbA.  

 
Figure 1-4: Translation of psbA mRNA is mediated by light through photosynthesis.  
ADP concentration, the redox state of electron carriers plastoquinone (PQ) and 
thioredoxin (TD) and the electrochemical proton gradient (large arrow) regulate D1 
synthesis.  Abbreviations: nascent D1, nD1; ferredoxin, FD; photosystem II, PSII; 
cytochrome b6/f complex, cyt b6/f; photosystem I, PSI; plastocyanin, PC.  Asterisks 
indicate reduced state (from Zerges, 2004). 
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Interestingly, while transcription of nuclear and chloroplast genes is regulated by 

light via photoreceptors and signal transduction pathways, translation of chloroplast 

mRNAs appears to be regulated by light through the effects of photosynthesis.  Binding 

proteins involved in translation activation have been identified by RNA affinity 

purification from cells grown in the presence or absence of light.  In Chlamydomonas 

light regulation of psbA translation is mediated by a set of four proteins that bind as a 

complex to the 5’ UTR.  One member of this complex, RB47, is a homolog of 

polyadenylate-binding protein (PABP).  This nucleus-encoded factor binds exclusively to  

 

Figure 1-5:  A model of light-regulated translation of psbA mRNA in C .reinhardtii. 
Thin arrows and thick arrows indicate the light pathway and the dark pathway, 
respectively.  Abbreviations:  photosystem I and I , PSI and PSII; ferredoxin, FD; 
ferredoxin-thioredoxin reductase, FDTR; chloroplast protein disulfide isomerase (RB60), 
cPDI; chloroplast polyadenylate-binding protein (RB47), cPABP; oxidized, ox; reduced, 
red; inorganic phosphate group, Pi (from Kim, 1997) 
 
the 5’ UTR of psbA mRNA in competition experiments (Danon et al., 1991; Yohn et al., 

1998a; Yohn et al., 1998b) lending support to the concept that many chloroplast mRNAs 

have their own specific activation factors.  Another member of this complex, RB60 (60 
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kDa), is phosphorylated by a serine/threonine protein kinase found to be associated with 

the complex.  Transfer of the β-phosphate of ADP to RB60 abrogates the binding activity 

of the complex (Kim et al., 2002).  Sensitivity to the redox state of electron carriers 

involved in the light reactions is thought to activate RB60, a homolog of protein disulfide 

isomerase (PDI).  The activity of RB60 within this RNA binding complex provides a 

direct link between exposure to higher light intensities and the rate of D1 synthesis in 

response to photodamage (Barnes et al., 2003; Kim et al., 1997; Trebitsh et al., 2000).   

Elucidation of transcription and translation mechanisms in chloroplasts has been 

largely facilitated by the ability to manipulate the plastid genome employing a reverse 

genetics approach.  A greater understanding is developed with each experiment through 

the confirmation of expected results and the thrill of unexpected discovery.  The 

application of this knowledge permits the opportunity to explore the plastome as a 

platform for the expression of recombinant proteins. 

By far the most common tool for introducing foreign DNA into chloroplasts is the 

particle accelerator, or “gene gun” (Boynton et al., 1988).  Chloroplast transformation 

was first accomplished in Chlamydomonas (Blowers et al. 1989; Boynton et al., 1988) 

 

 
Figure 1-6:  Diagram of foreign DNA insertion into the chloroplast genome.  Site 
specific integration by homologous recombination is directed by left (LTR) and right 
(RTR) targeting regions encoded on transformation vector (from Maliga, 2003). 
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and soon after requirements were established for application in higher plants (Svab et al., 

1990a).  First, plasmid vectors designed for chloroplast systems are precipitated onto 

microprojectile particles.  Tungsten particles on the order of 1µm in size were used in the 

early experiments and are still common in the transformation of C. reinhardtii 

chloroplasts (Cheng et al., 2005; Sommer et al,. 2002), whereas gold particles are now 

more prevalent for higher plants.  The smooth surface, homogeneity of size and size 

choice possible with milled gold particles may be in part responsible for higher 

transformation efficiency now routine in higher plant model systems.  Particles are driven 

by pressurized helium (1100-1300 psi) into an evacuated chamber containing tissue or 

cells for transformation penetrating cells and the double membrane of chloroplast (Ye et 

al., 1990).  Once a plasmid coated particle is, by chance, introduced into a chloroplast 

integration is possible via homologous recombination. 

One of the great advantages of plastid transformation systems is the ability to 

direct single copy insertion of transgenes.  The location of insertion is controlled by 

flanking the transgene with plastid endogenous sequence 1 to 2 kb in length (Maliga, 

2003) on the transformation vector (Figure 1-6).  Intergenic regions are attractive for 

expression of recombinant proteins (Kumar et al., 2004a; Zoubenko et al., 1994) while 

specific mutant lines can be established by replacement of wild-type genes with 

nonfunctional versions carrying reporters or resistance markers (Allison et al., 1996; 

Takahashi et al., 1991). 

The achievement of homoplasmy is paramount to the establishment of stable 

transplastomic lines is the.  Due to the highly polyploid nature of the plastid genome the 

initial transformation event, that of recombination between the vector and a single 
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plastome copy, must be iterated throughout all plastome molecules until no wild-type 

copies remain.  The mixed genotype is unstable and this condition does not persist, 

resolving into one state (wild-type) or the other (transformed) (Maliga et al., 1993).  The 

transformation of all copies is facilitated by culturing on non-lethal selective media.  

Plastids carrying the resistance marker, and in turn the cells that harbor these plastids, are 

preferentially maintained as plastome molecules are divided up between daughter 

chloroplasts and subsequently as plastids are partitioned between daughter cells at mitosis 

(Maliga et al., 1993; Moller, 2005). 

The earliest reports of stable transformation of higher plant plastids replaced the 

native 16S rRNA gene with a copy that had received a base mutation proximal to the 

tRNA binding domain (Svab et al., 1990a).  This mutation confers resistance to the 

antibiotic spectinomycin (Svab et al., 1991) which is known to prevent initiation of 

protein synthesis on plastid ribosomes (De Stasio et al., 1989).  Spectinomycin selection 

remains predominant although newer constructs utilize the bacterial aadA gene encoding 

aminoglycoside-3’-adenyltransferase which also confers resistance to streptomycin.  First 

explored as a dominant selectable marker in nuclear transformation experiments (Svab et 

al., 1990b), then for Chlamydomonas plastid transformation (Goldschmidt-Clermont, 

1991), aadA proved 100 times more effective than the 16S RNA mutation in the recovery 

of tobacco plastid transformants (Svab et al., 1993)  A current focus in the field is the 

development of systems for the removal of antibiotic resistance markers (Corneille et al., 

2001; Corneille et al., 2003; Day et al., 2005; Iamtham et al., 2000) or efficient selection 

programs that do not employ antibiotics (Daniell et al., 2001b). Beyond those for 

antibiotic resistance, several genes have now been expressed via the plastid genome.  
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Improved agronomic performance (De Cosa et al., 2001; DeGray et al., 2001), 

production of human therapeutic proteins (Fernandez-San Millan et al., 2003; Staub et 

al., 2000) , vaccine antigens (Daniell et al., 2001a; Tregoning et al., 2003; Watson et al., 

2004), and polymer compounds of commercial importance (Guda et al., 2000; Lossl et 

al., 2003; Viitanen et al., 2004) are being explored (see Tables 1-1 and 1-2).  
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Trait Transgene Promoter 5’/3’ UTRs Integration 
site 

Refs 

Insect resistance  Cry1A(c) Prrn  rbcL/Trps16  trnV/rps12/7  McBride et al., 1995 

Herbicide resistance  AroA Prrn  ggagg/TpsbA  rbcL/accD  Daniell et al., 1998 

Insect resistance  Cry2Aa2  Prrn  ggagg (native)/TpsbA  rbcL/accD  Kota et al., 1999 

Herbicide resistance  bar Prrn  rbcL/psbA  rbcL/accD  Iamtham and Day, 2000 

Insect resistance  Cry2Aa2 
operon  

Prrn  native 
5’UTRs/TpsbA  

trnI/trnA  De Cosa et al., 2001 

Disease resistance  MSI-99 Prrn  ggagg/TpsbA  trnI/trnA  DeGray et al., 2001 

Drought tolerance  tps  Prrn  ggagg/TpsbA  trnI/trnA  Lee et al., 2003 

Phytoremediation  merA/merB  Prrn  ggagg,/TpsbA  trnI/trnA  Ruiz et al., 2003 

Salt tolerance  badh  Prrn ggagg/rps16 trnI/trnA Kumar et al., 2004b 

Cytoplasmic male 
sterility  

phaA  Prrn  PpsbA/TpsbA  trnI/trnA  Ruiz and Daniell, 2005 (in 
press) 

Table 1-1:  Some examples of chloroplast transformation experiments for genes of agronomic interest.  A “P” indicates the 
inclusion of the promoter sequence in 5’ regulatory element. 
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Proteins Transgene Promoter 5’/3’ UTRs % of TSP Integration 
site 

Ref 

Elastin-derived 
polymer  

EG121 Prrn  T7gene10/ TpsbA ND trnI/trnA  Guda et al., 2000 

Human somatotropin hST  Prrna 
PpsbAb  

T7 gene10a, 
psbAb/Trps16 

7.0%a, 
1.0%b 

trnV/rps12/7 Staub et al., 2000 

Cholera toxin  CtxB  Prrn  Ggagg/TpsbA  4%  trnI/trnA  Daniell et al., 2001a 

Human serum 
albumin  

hsa  Prrna, 
PpsbAb  

ggagga, psbAb/ 
TpsbA 

0.02%a, 
11.1%b 

trnI/trnA  Fernandez-San Millan et 
al., 2003 

Interferon g  IFN-g  PpsbA  PpsbA/TpsbA  6%  rbcL/accD  Leelavathi et al., 2003 
Interferon-α5 INFα5  

 
Prrn;  PpsbA/TpsbA  ND  trnI/trnA;  Torres, 2002 

Monoclonal 
antibodies 

HSBV- atpA/rbcL AtpA/rbcL  ND psbA/5S/23S  Mayfield et al., 2003 

Anthrax protective 
antigen 

Pag  Prrn PpsbA/TpsbA  18.1%  trnI/trnA  Watson et al., 2004 

Plague vaccine  CaF1~LcrV 
 

Prrn  PpsbA/TpsbA  4.6% trnI/trnA  Singleton, 2003 

Tetanus toxin Tet C Prrn T7gene10a 
atpBb/TrbcL 

25%a, 10%b Trnv/rps12/7 Tregoning et al., 2004 

Table 1-2:  Some examples of chloroplast transformation experiments for the production of pharmaceuticals and polymers. 
Where more than one construct is used, the corresponding results are identified with the same subscript within a given row.  A “P” 
indicates the inclusion of the promoter sequence in 5’ regulatory element. 
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The identification and cloning of antimicrobial compounds from cellular 

organisms in combination with transgenic technologies offers the possibility to enhance 

disease resistance in agricultural crops.  When higher plant cells are invaded by microbes 

such as fungi or bacteria they respond with a respiratory burst generating, among other 

things, hydrogen peroxide (Wojtaszek, 1997).  A similar disease response occurring in 

animals goes one step further; the enzyme mediated generation of peracetic acid and 

hypohalites from hydrogen peroxide (Jacks et al., 2000).   

H2O2 + X- ==> H2O + -OX 

AcOH + H2O2 ==> AcOOH + H2O    Equation 1 

Peracetic acid and hypohalites are much stronger antimicrobial agents than 

hydrogen peroxide but plants lack a haloperoxidase enzyme (van Pee, 1996). 

A cDNA clone showing 38% sequence identity to a nonheme bromoperoxidase 

from Streptomyces aureofaciens was isolated from Pseudomonas pyrrocinia.  Called 

chloroperoxidase (CPO-P) (Wiesner et al., 1988), the gene for this enzyme has been 

integrated into the nuclear genome of Nicotiana tabacum by Agrobacterium mediated 

transformation to investigate its potential to enhance disease resistance in higher plants 

(Rajasekaran et al., 2000).  The CPO-P lines demonstrated significantly reduced 

anthracnose severity in planta.  Incubation with crude leaf extracts from the CPO-P 

transformants was up to 100% effective in preventing colony establishment by 

pregerminated conidia of several pathogenic fungi as well as the mycotoxin producing 

saprophyte Aspergillus flavus. 

Aspergillus flavus is of particular interest as it poses a significant threat in terms 

of food and feed safety.  A. flavus infestation occurs on seeds of cotton, corn, peanut and 
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tree nuts and market samples of sorghum, groundnut, cassava and soybean from 

developing nations routinely test positive for aflatoxin (Aspergillus flavus toxin) 

contamination (Williams et al., 2004).  Aflatoxin contamination is a perennial concern 

between the latitudes of 40o north and south of the equator, in drought years, crops 

outside of this range are threatened.  Aflatoxins are a closely related group of compounds 

of with small differences in chemical composition.  The most prevalent, and most potent, 

aflatoxin B1 (AFB1) is tolerated at very low levels by humans and livestock, on the ppb 

scale, and contaminated stores are destroyed resulting in dramatic economic losses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-7:  Structure of aflatoxins.  Aflatoxin B1is the most potent natural carcinogen 
known (from Williams 2004) 

 

(Bennett et al., 2003).  If the toxin goes undetected and enters food system as livestock 

fodder, it is incorporated into the hosts’ tissues and can be transmitted though milk.  In 

developing nations where regulatory mechanisms are lacking early exposure results in 

stunting and underweight in children.  Immunologic suppression and nutritional 



 

23 

consequences such as loss of food conversion efficiency is observed in livestock animals 

subjected to chronic aflatoxin exposure.  The International Cancer Research Institute 

identifies AFB1 as a Class 1 carcinogen primarily perceived as an agent promoting liver 

cancers.  There appears to be a synergistic relationship between aflatoxin and hepatitis B 

virus (HBV) and hepatitis C virus (HCV) in the occurrence of hepatomas.  In areas where 

aflatoxin and HBV occur together hepatomas represent 64% of all reported cancers 

(Williams et al., 2004). 

The focus of this project was to exploit the potential of the chloroplast expression 

system in order to achieve high levels of CPO protein accumulation in tobacco for the 

purpose of enhancing plant resistance to phytopathogens and mycotoxin producing 

saprophytes such as A. flavus. 
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Materials and Methods 

Materials 

Plant tissue culture media components (agar #A023, MS packets #MSP009) were 

purchased from Caisson Laboratories (Rexburg, ID).  RNA ladder, restriction enzymes 

and buffers were purchased from New England Biolabs (Beverly, MA).  TOPO cloning 

kits, DNA ladders and protein molecular weight markers were purchased from Invitrogen 

(Carlsbad, CA).  Oligonucleotide primers were purchased from Sigma-Genosys (The 

Woodlands, TX).  Expendable supplies (macrocarriers, microcarriers, stopping screens, 

gold particles) for use with PDS1000/He Biolistic particle delivery system were 

purchased from BioRad (Hercules, CA).  All chemicals and reagents were of analytical 

grade and purchased from Sigma (St. Louis, MO) unless otherwise noted.  Statistical 

analyses to test significance of results were performed using GraphPad Prism software, 

version 4 (San Diego, CA) 

Plasmid Construction 

Chloroplast transformation vector (pLD-CtV) was obtained from  

Dr. Henry Daniell (University of Central Florida, Orlando, FL).  This vector carries a 

multiple cloning site (MCS) and all necessary elements for cloning, selection and tobacco 

chloroplast transformation by homologous recombination (Figure 2-1).  Sequences 

include endogenous trnI and trnA, which encode the plastid transfer RNA isoleucine and 

alanine respectively, to facilitate integration by homologous recombination in the 

intergenic spacer region of the 16S ribosomal operon (rrn) of tobacco chloroplasts.  In 

addition to the Escherichia coli origin of replication, pLD-CtV carries a copy of the 

plastid origin of replication, oriA within the sequence of trnI (Kunnimalaiyaan et al., 
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1997).  Transcription of integrated transgenes by the plastid encoded RNA polymerase 

(PEP) is enhanced by inclusion of an engineered rrn promoter region which includes P1 

but not P2.  The vector carries two selectable markers:  ampr (β-lactamase) for selection 

in E. coli and aadA (aminoglycoside-3’-adenyltransferase) for selection of transplastomic 

tobacco cells.  The tobacco native full length psbA 3’ UTR is included to impart 

transcript stability.   

 

  
Figure 2-1: Schematic representation of (A) chloroplast transformation vector, (B) 
original chloroperoxidase (CPO) construct and (C) construct with tobacco native psbA 5’ 
UTR.  Transformation cassette employed for uidA has same sequence as (B) except that 
this gene is present in place of cpo.  

 

For chloroplast transformation cpo was amplified by polymerase chain reaction 

(PCR, general parameters indicated below) from pUC19-cpo template DNA employing 

primers to introduce restriction sites compatible with those available in the multiple 

cloning site of pLD-CtV (5’ GAATTCGGAGGGATTTATGGCATACGT 

CAC TACGAAGGAT 3’, 5’CGGCCGCTTAAGCTTGTTGCACGAACGCC 

AGCAGGT 3’) as well as a 5’ Shine Delgarno type ribosome binding site (RBS), 

GGAGG, to facilitate translation (Figure1b).  This cpo PCR product was ligated into 

TOPO pCR2.1 (Invitrogen #460801) vector and transformed into TOPOOneShot 
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TOP10 (Invitrogen #44-0301) cells according to the manufacturer’s protocol.  Putative 

transformants were inoculated into 5 mL Luria-Bertani (LB) medium with 50 µg mL-1 

kanamycin and grown overnight.  Plasmids were isolated by QIAprep spin miniprep kit 

(QIAGEN #27106) according to the manufacturer’s protocol.  Sequence was determined 

by capillary electrophoresis prior to excision from TOPO vector and ligation into 

polylinker of pLD-CtV. 

The psbA 5’ UTR was PCR amplified from tobacco genomic DNA incorporating 

5’ EcoRI and 3’ NcoI restriction sites (5’GAATTCGTCATGTTATACTGTTGAATAA 

AAGC 3’, 5’ CCATGGTAAAATCTTGGTTTATTTAATCATCAGG 3’) and subcloned 

into TOPO pCR2.1 for sequencing.  The psbA 5’ UTR was excised from pCR2.1 as a 

BamHI, EcoRV fragment and subcloned in to BamHI-EcoRV digested pBluescript® 

(pBS, Stratagene #212207) vector.  The cpo coding region was PCR amplified from 

pUC-19-cpo template incorporating 5’ NcoI and 3’ NotI sites (5’CCATGGCATACGTC 

ACTACGAAGGATAACG 3’, 5’ GCGGCCGCTTAAGCTTGCACGAACGCCAGCA 

GGT 3’) and ligated into TOPO pCR2.1 for sequencing.  NcoI-NotI digest released 

cpo from pCR2.1 vector for ligation into NcoI-NotI digested pBS-psbA 5’ UTR.  EcoRI-

NotI digest released psbA 5’ UTR:cpo fusion from pBS for ligation with  EcoRI-NotI 

digested pLD-CtV.  pLD-CtV.psbA 5’ UTR:cpo was sequenced from the 5’ end of aadA 

through the 3’ end of cpo. The E. coli uidA (GUS) gene was also transferred to pLD-CtV 

incorporating a GGAGG RBS allowing for fluorometric analysis of transplastomic 

expression. 

TOPOOneShot DH5α (Invitrogen #18263-012) cells were transformed with 

pLD-CtV vector, carrying gene of interest, according to the manufacturer’s protocol.  
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Plate grown colonies were used to inoculate 10 mL cultures (LB with ampicillin 100 µg 

mL-1).  These were grown overnight and used in turn to inoculate 1 L LB with ampicillin 

100 µg mL-1 cultures which were grown overnight.  Plasmids were harvested by Plasmid 

Maxi kit (QIAGEN #12163) and plasmid DNA was resuspended in TE buffer.  

Concentration was determined with spectraphotometrically and adjusted 

 to ~1 µg µL-1. 

Transformation and Regeneration of Transgenic Plants 

Seeds of Nicotiana tabacum var. Petit Havana or SR1 were surface sterilized with 

1 % (w/v) silver nitrate and germinated on MS (Murashige et al., 1962)basal salts (30 g 

L-1 sucrose, 5 g L-1 phytoagar).  Sterile leaves 

approximately 6 cm x 3 cm were placed abaxial side up on 

regeneration media of plants (RMOP) for bombardment 

(Figure 2-2).  Gold particles (0.6 µm) were coated with 

pLD-CtV-cpo, pLD-CtV.psbA 5’ UTR:cpo or pLD-CtV-

GUS plasmid DNA following the established method of 

Daniell et al. (2005).  Rupture disks rated for 1100 psi 

were employed in bombardments with the PDS-1000/He 

Biolistic device.  Bombarded samples were held in the 

dark for 48 hours then cut into ~5 mm2 pieces and placed 

abaxial side down on RMOP augmented with 500 mg L-1 

spectinomycin dihydrochloride for selective regeneration 

of transformed cells under 16 h light/8 h dark in growth 

chambers (Percival, Boone, IA) at 28 oC. 

Figure 2-2:  Representation 
of transformation and 
selection process (from 
Bock, 2004). 
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Putative transplastomic regenerants bombarded with psbA 5’UTR:cpo (pCPO) 

construct were screened to confirm presence of transgenes.  Positive transformants were 

subjected to one or two further regeneration cycles on the same selective media, explant 

size ~2 mm2, followed by additional selection by rooting in MS media with 500 mg L-1 

spectinomycin.  Primary regenerants (pCPO) were further screened for resistance to 

streptomycin sulfate by placing explants on RMOP with 500 mg L-1 streptomycin. 

Isolation of Plant DNA 

Unless otherwise indicated, all isolations of genomic DNA were performed on 

young, fully expanded green leaves taken from the third to sixth position below the apex.  

Midribs were removed and samples were ground in liquid N2 with chilled, sterile mortar 

and pestle.  Each sample, 75 mg, was transferred to a 2 mL microfuge tube and extraction 

was carried out using a QIAGEN DNeasy Plant mini kit (#69104) according to the 

manufacturer’s protocol.  Each column was eluted twice with 200 µL EB, except where 

sample was to be used for sequencing in which case elutions were performed with 

nuclease free water.  Eluates were combined in a 1.5 mL microfuge tube.  To precipitate 

DNA, 10% 3M sodium acetate pH 5.2 and 1.5 volumes cold 100% EtOH were added 

before placing samples in either -20 oC overnight or -80 oC for two hours.  Following 

precipitation, samples were centrifuged for 20 minutes at 18, 380g at 4 oC.  Pellets were 

washed with 70% EtOH and centrifuged for 5 additional minutes.  DNA pellets were 

dried under vacuum and resuspended in TE buffer (Amresco #E112) or nuclease free 

water. 
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Polymerase Chain Reaction (PCR) 

PCR reactions were carried out in the BioRad iCycler thermal cycler (#170-8720).  

Unless otherwise noted TaKaRa ExTaq kit (#RR006A) which includes polymerase 

buffer and dNTP mix, was employed according to manufacturer’s protocol.  The standard 

reaction volume of 25 µL included 1 µg of each oligonucleotide primer.  Annealing 

temperatures were generally 5 oC below the oligo TM, and 30 seconds was allowed for 

annealing time.  Duration of extension was determined based on size of predicted 

product, according to a rate of nucleotide addition of approximately 1000 bases per 

minute at 72 oC.  After an initial denaturing step of 2 min cycles included denaturation 

for 30 seconds at 94 oC and were repeated 34 times.  PCR products were separated on  

1% agarose gels in TAE buffer. 

To confirm insertion of aadA:cpo gene fusion in putative transformants, primers 

specific for the 3’ region of aadA and the 5’ region of cpo were employed (5’ CAGCC 

CGTCATACTTGAAGCTAGGCA 3’, 5’ CCATGACATGGATCATTACGCAGCG 3’). 

Generation of Probes for Hybridization Analyses 

Probe for Southern analysis was generated by PCR amplification of trnI- trnA 

junction within the tobacco rrn operon (5’ATAATTGCGTCGTTGTGCCTGGGCTG 

TGAC 3’, 5’ CTTTCAGTGGCACGTTTCGGTCCTCTT 3’).  Gene specific probes 

(cpo, aadA and uidA) were cleaved from chloroplast transformation vector (pLD-CtV) by 

EcoRI-NotI.  PCR product was ligated into TOPO pCR2.1 cloning vector and 

transformed into OneShot Top10 chemically competent cells according to 

manufacturer’s protocol.  Cells were plated on LB agar (25 g L-1) with 50 µg mL-1 

kanamycin monosulfate, 40 mg L-1 X-gal (5-bromo-4-chloro-3-indolyl-β-D-
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galactopyranoside) (Promega #V3941), 0.8 µM IPTG (isopropyl-beta-D-

thiogalactopyranoside) (Gold Biotechnology #I2481C5) and allowed to grow overnight at 

37 oC.  White colonies were selected and used to inoculate 5 mL cultures (LB, 50 mg L-1 

kanamycin) for overnight growth.  Plasmid DNA was isolated by alkaline lysis miniprep, 

digested to release insert and separated on 1% agarose II, low melt gels (Amresco 

#0851).  Following ethidium bromide staining and washing, bands were excised using a 

sterile blade with the aide of a UV lamp.  Gel fragments were stored at -20 oC prior to  

α-32P labeling.  Probes were synthesized by Rediprime II random prime labeling system 

(Amersham Biosciences #RPN1633) and unincorporated radioisotope was removed using 

a QIAquick Nucleotide Removal Kit (QIAGEN #28304). 

Dot Blot Analysis 

To positively identify transplastomic regenerants, ~2 µg genomic DNA from 

putative chloroplast transformants was boiled for 5 min in TE buffer.  Tubes were 

transferred to wet ice for 1 minute before spotting on NYTRANSPC membranes 

(Schleicher and Schuell #10416289).  Wild-type DNA and plasmid vector were included 

on each blot as controls.  Membranes were UV crosslinked and stored at 4 oC.  Positive 

transformants were identified by hybridization with 32P labeled probe for gene of interest.  

Hybridization of probes to nucleic acid blots was carried out in ULTRAHyb buffer 

(Ambion #8670) at 42 oC overnight.  Membranes were washed once for 15 minutes in 2X 

SSPE (Amresco #0806) with 0.1 %SDS at 42 oC.  Three additional washes were carried 

out in 0.1X SSPE with 0.1 % SDS at 42 oC, 50 oC and 60 oC.  Damp membranes were 

placed on Kodak X-OMAT AR autoradiography film (Eastman Kodak, Rochester, NY) 

for exposure with intensification at -80 oC. 
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Southern Blot Analysis 

Approximately 5 µg of total genomic DNA isolated from wild-type and 

transplastomic lines was digested to completion.  GUS lines were digested with BglII.  As 

cpo carries an internal BglII site sequential digest with BamHI and SacI was performed.  

Initial digest with BamHI was carried out in 50 µL total volume with 2.5 µL of enzyme.  

Following completion of first digest, samples were subjected to 

phenol:chloroform:isoamyl alcohol (25:24:1) extraction, back extracted with TE buffer, 

followed by an additional extraction with chloroform:isoamyl alcohol (21:1).  DNA was 

precipitated by addition of 0.1 volume 3M sodium acetate pH 5.2 and two volumes of 

100% cold ethanol for 2 hours at -80 oC.  Samples were centrifuged, washed with 70% 

EtOH and dried in speedvac before proceeding to second digest with 2.5 µL Sac1, 30 µL 

total volume.  Digest reaction mixtures were prepared according to standard protocols 

(New England Biolabs).  Digests were separated by electrophoresis on 1% agarose gels in 

TAE buffer (Amresco #0912), stained 6 minutes in ethidium bromide solution, washed 

twice in deionized water, ten minutes each, then imaged by UV camera.  In preparation 

for transfer gels were placed in 0.25 M HCl for 25 minutes, moved to denaturing solution 

(1 M NaCl, 0.5 M NaOH) for 25 minutes, and subsequently placed in neutralization 

buffer (0.5 M Tris pH 7.4, 1.5 M NaCl) for 25 minutes.  DNA was transferred to 

NYTRANSPC membranes by vacuum apparatus in 10X SSPE (Amresco #0806).  

Membranes were UV crosslinked prior to storage at 4 oC.  Hybridization of 32P labeled 

probe and subsequent washings were carried out as described above. 
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RNA Extraction and Northern Analysis 

All aqueous solutions for RNA analysis were prepared in sterile, 

diethylpyrocarbonate (DEPC) treated water.  RNA isolations were performed by RNeasy 

Plant Mini Kit (Qiagen #74904) according to manufacturer’s protocol.  Two 50 µL 

elutions in RNase-free water were performed for each sample.  RNase-free water was 

allowed to stand on column in ice 10 minutes before spinning.  First elution was 

centrifuged at 2042 x g for 5 minutes, second elution for 4 minutes, then 1 additional 

minute at 8168 x g.  Two elutates were combined, 0.1 volumes 3M sodium acetate pH 5.2 

and two volumes cold 100 % EtOH were added and samples were precipitated at -20 oC 

overnight.  Following precipitation, samples were centrifuged for 20 minutes at 18, 300 x 

g at 4 oC.  Pellets were washed with 70% EtOH, centrifuged for 5 additional minutes, 

dried under vacuum and resuspended in RNase free water.  5 µL of each sample was 

added to RNA sample buffer (10 µL formamide, 3.5 µL 37% formaldehyde, 2 µL 10x 

MOPS, 1 µL EtBr (1 mg mL-1)).  Samples were centrifuged briefly to collect volume in 

bottom of tube and incubated at 65 oC for 10 minutes.  Samples were separated by 

electrophoresis on 1.2 % agarose gels (5 mL10X MOPS and 9mL 37 % formaldehyde, 36 

mL H2O), in 1X MOPS buffer.  Gels were destained 30 minutes in water before vacuum 

transfer onto NYTRANSPC membranes in 10X SSPE.  Upon completion of transfer, 

membranes were UV crosslinked and held at 4 oC.  Presence of cpo mRNA was 

visualized by hybridization with 32P labeled full length cpo.  Hybridization and wash 

conditions were as described above.  Quantitation of northern blots was accomplished by 

STORM phosphorimaging system (Amersham Biosciences) and ImageQuant5.0 
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software (GE Healthcare).  The one sample t-test was employed to analyze significance 

of quantitative results (Sokal and Rohlf, 1981). 

Tobacco Protein Isolation and Western Blotting 

Total soluble protein (TSP) was extracted from leaves harvested from 6 week old 

plants, 4-6 nodes below the apex.  Tissue was ground in liquid nitrogen to a fine powder 

with a chilled mortar and pestle.  Ground sample (200 mg) was transferred to a 2 mL 

microfuge tube and 400 µL extraction buffer (see appendix) was added, then incubated 

on ice for 5 minutes.  Samples were centrifuged at 18, 380 x g for 20 min at  4 oC.  

Supernatant was removed to a new 1.5 mL tube and centrifuged again for an additional 

10 min to remove residual debris.  Supernatant was transferred to a new  

1.5 mL tube.  Concentration of TSP was determined by the BioRad protein assay (#500-

0006).  Samples, including purified CPO enzyme of known concentration, were 

combined with 1X Laemmli sample buffer (see appendix 1) to obtain equal TSP 

concentration of all samples.  These were boiled in a water bath for 5 minutes.  

Bromophenol blue (BPB, 1:100) was added to each sample (0.5 µL).  Samples were 

loaded into wells of precast 12% Tris-HCl polyacrylamide resolving gels (BioRad# 161-

1102) and separated by electrophoresis in 1X SDS running buffer (Ameresco #0147) at 

75 volts for 2 hours.  Gels were electroblotted onto PROTRAN (Schleicher and Schuell 

#1040245) nitrocellulose membranes and stained with SYPRO ruby protein blot stain 

(BioRad # 1703127), according to the manufacturer’s protocol, to visualize and 

quantitate TSP on blot.  Image was captured by Intelligent Dark Box by Fuji (FujiFilm 

Tokyo, Japan) and analyzed for equal loading by Science Lab 2001 ImageGauge V4.1 

(FujiFilm Tokyo, Japan) software.  Blots were blocked overnight in 5% solution of  
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non-fat skim milk in TBS-T (0.15 M NaCl, 0.02 M Tris pH 7.4, 0.5 mL L-1 Tween 20).  

Blocked membranes were rinsed with deionized water prior to incubation for 2 hours at 

24 oC with CPO polyclonal antibody (raised in rabbit) (Antibodies Incorporated, Davis, 

Ca) diluted 1:1000 in TBS-T on a rotary shaker.  Membranes were washed 5 times, 5 min 

each, in cold TBS-T.  Horseradish peroxidase conjugated goat anti-rabbit serum 

(Amersham Biosciences #RPN2124) was diluted 1:20, 000 and added to blots for 1 hour 

of incubation with shaking.  Blots were washed 5 times, 5 minutes each, in cold TBS-T.  

ECL Plus western blot detection system (Amersham Biosciences #RPN2132) was used 

according to manufacturer’s protocol for imaging of blots.  Images were collected with 

the Intelligent Dark Box by Fuji and analyzed for concentration of CPO by Science Lab 

2001 ImageGaugeV4.0 (FujiFilm).  One way ANOVA was employed to analyze 

significance of quantitative results, mean separations were performed using the method of 

Tukey (Sokal and Rohlf, 1981). 

CPO Enzyme Activity Assay 

All leaf tissue samples were ground in liquid nitrogen with mortar and pestle and 

allowed to thaw on ice.  When material began to thaw 1 M sodium acetate buffer pH 5.2 

augmented with 50 mg mL-1 polyvinylpyrolidone (insoluble) and protease inhibitor 

cocktail (Sigma #9599) was added at a ratio of two parts buffer to one part sample.  

Continued grinding of sample with pestle was performed to produce homogenate.  

Samples were transferred to 2.0 mL microfuge tubes and centrifuged at 18, 380 x g for 10 

min at 4 oC.  Supernatant was carefully removed to a clean 1.5 mL tube.  Analysis for 

total soluble protein content was performed by BioRad protein assay (#500-0006).  To 

assess enzyme activity, one volume (2.9 mL) of assay cocktail (see appendix) was placed 
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in a glass cuvette (calibrated to λ=290 nm), 100 µL sample was added and mixed by 

inversion 3 times.  Reaction mixture was assayed for activity by monitoring the change in 

absorbance (A290) over time.  An observed drop in absorbance at this wavelength 

indicated the bromination of the substrate monochlorodimedon (MCD) by active CPO-P 

enzyme present in sample preparation.  Spectrophotometer (Jasco V530 UV/Vis) was 

blanked with a calibrated cuvette containing 1 M sodium acetate buffer alone and pure 

CPO-P was employed as positive control. 

Pollination Experiments 

To confirm maternal inheritance of transplastomic traits controlled crosses were 

performed on mature plants in the greenhouse.  Just prior to anthesis, flowers were 

emasculated and pollen was transferred from wild-type plants to receptive stigma surface 

of transplastomic plants.  The reciprocal crosses were performed in the same manner.  

Once pollinated, flowers were enclosed by envelopes that remained sealed until capsules 

had set.  Mature capsules were collected from crosses and sterile seeds, 250 from each 

cross, were plated on MS media with 500 mg L-1 spectinomycin to assess transmission 

and expression of aminoglycoside-3’-adenyltransferase (aadA) in the progeny. 

Assay for β-glucuronidase (GUS) Expression 

a) Fluorometric assay 

Samples were ground to a fine powder in liquid nitrogen using chilled mortar and 

pestle.  Ground samples (<1 g) were transferred to a tared 2 mL microfuge tube and 

sample weights recorded.  All samples were held on ice.  GUS fluorometric extraction 

buffer, 1 mL, (see appendix 1) was added for each gram of tissue and all samples were 

given a 3 second burst with a Vibra-Cell sonicator (Sonics and Materials Inc., Danbury, 
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CT) to facilitate mixing.  Samples were centrifuged 10 minutes at 11, 700 x g in an 

Eppendorf benchtop microfuge with swinging bucket rotor.  Each sample, 100 µL, was 

added to 900 µL GUS assay buffer (see Appendix) in a 1.5 mL tube.  Samples were then 

placed in 37 oC incubator for 1 to 3 hours.  A 1:2 dilution series of 1 µM 4-MU stock 

solution was prepared in 0.2 M sodium carbonate (Na2CO3) as a concentration standard 

for relative fluorescence.  Each standard, 200 µL, was loaded into wells of microtiter 

plate along with 200 µL of each sample, 3 replicate wells per sample.  GUS assay buffer 

only was used as negative control measure.  Measurement of fluorometric output was 

made using the HTS 7000 bioassay reader (Perkins Elmer, Boston, MA) with 360 nm 

excitation filter and 455 nm emission filter.  One way ANOVA was employed to analyze 

significance of quantitative results, mean separations were performed using the method of 

Tukey (Sokal and Rohlf, 1981). 

b) Histochemical staining 

Leaf disks were prepared with a 7 mm diameter hole punch and submerged in 

GUS histochemical stain (see Appendix).  Samples were placed in an incubator 37 oC for 

12 hours.  Stain was removed and leaf disks were bleached in 95 % EtOH.  Ethanol was 

left on disks for 24 hours before replacement with fresh 95 % EtOH, this was repeated for 

a total of 3 ethanol cycles prior to photographing. 

Antimicrobial assays 

a) In planta assay for Pseudomonas syringae resistance 

Glycerol stocks of Pseudomonas syringae pv tabaci (ATCC 17914) (Pst), stored 

at -84o, were allowed to thaw on ice.  Pseudomonas was streaked on two Pseudomonas 

Agar F (PAF) (Difco #244820) plates and incubated at 28o C for at least 18 hours.  Cells 



 

37 

were transferred from culture plates to 100 mL liquid Nutrient Broth (NB) (Difco 

#234000) with glucose (2.5 g L-1) in 500 mL Erlenmyer flask for culture overnight on a 

rotary shaker at 28o C, 225 rpm.  Suspensions were transferred to two 50 mL tubes and 

harvested by centrifugation at 1570 x g for 20 minutes in a Beckman TJ-6 centrifuge 

(Beckman Coulter Inc., Fullerton, CA) fitted with a swinging bucket rotor.   Pst pellets 

were combined and resuspended in 100 mL bacterial phosphate (PO4) buffer (0.01 M,  

pH 7.0) in a 1 L flask.  Cell suspension was adjusted to an optical density of 0.32 (λ = 

530 nm) by addition of PO4 buffer to obtain approximately 1 x 108 cells/mL.  Inoculum 

concentration was verified by dilution plating on PAF (1:10 serial dilution).  All leaves 

present at the time of treatment were marked, as plants will produce new leaves during 

sampling time.  Marking ensured sampling of treated leaves.  Plants were sprayed until 

runoff using a spray bottle.  Treated plants were covered with clear plastic bags placed in 

a growth chamber at 28 oC and 64 % relative humidity.  Bags were removed after 48 

hours.  Treated leaves were sampled every 48 hours by taking 3 leaf disks (~7mm 

diameter) with a sterile punch.  Fresh weight of sample was recorded (~14.5 mg for 

tobacco).  Samples were collected over 10 days.  Leaf discs were placed in PO4 buffer 

and stored at 4 oC until all samples had been collected.  For processing, samples were 

ground in 300 µL 10 mM MgCl2 with the aid of a homogenizer (Glas-Col, Terre Haute, 

IN)) and homogenate was then transferred to 5 mL PO4 buffer.  This suspension was 

further diluted by the addition of PO4 buffer (1:100).  Remaining undiluted sample (in 5 

mL PO4 buffer) was filtered through 4 layers of cheesecloth.  Filtered, undiluted samples 

were plated in duplicate along with 3 platings of 1:100 dilution with the aid of a spiral 

plater (Spiral Systems Inc, Bethesda, MD).  Colony forming units were enumerated after 
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incubation at 28o C for 24 to 48 hours according to published procedures (DeGray et al., 

2001).  Significance of results was tested by Spearman’s and Pearson’s correlation 

analysis. 

b) In vitro bioassay for antifungal activity 

Antifungal activity of crude leaf extracts of CPO chloroplast transformants was 

assessed in vitro following the method of De Lucca et al.,(1997), as modified by 

Rajasekaran et al., (2000).  Briefly, conidial suspensions of Aspergillus flavus, 

Verticillium dahliae and Fusarium vericillioides were prepared from cultures grown on 

potato dextrose agar (PDA, Difco #213400) slants for 7 days at 30 °C (A. flavus, 

F. verticillioides) or 24 °C (V. dahliae). 

Conidial suspensions prepared in 1% (w/v) potato dextrose broth (PDB) pH 6.0 

(Difco #254920) were adjusted to 1x105 conidia mL-1 and allowed to germinate prior to 

assays.  Leaves were ground to a fine powder with liquid N2.  Two 2 mL tubes, ~750 mg 

ground tissue per tube, were generally prepared for each chloroplast transformant sample.  

A nuclear CPO transformant and a non-transformed wild-type control were also included 

in the assay.  One tube for each sample received a 40 µL aliquot of protease inhibitor 

cocktail (Sigma #9599).  Homogenates were centrifuged at 11, 700 x g for 10 minutes at 

room temperature, and supernatants were tested for antifungal activity.  Additional 

control samples were prepared with 1% PDB in place of plant extract.  25 µL of conidial 

suspension of was added to 225 µL of sample supernatant, vortexed, and incubated for 1 

hour at 30 °C or 24 °C.  A minimum of three 50 µL aliquots from each sample were then 

spread onto PDA plates and incubated at 30 °C or 24 °C for 24-48 hours and fungal 

colonies enumerated.  Significance of results was determined by one-way ANOVA 
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(GraphPad PrismV4, San Diego, CA), and mean separations were performed using the 

method of Tukey (Sokal and Rohlf, 1981). 
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Results 

Transformation Efficiency and Regeneration 

The Pseudomonas chloroperoxidase (CPO) gene was ligated into the chloroplast 

transformation vector (pLD-CtV).  This vector contains all the necessary elements for 

cloning, selection and tobacco chloroplast transformation by homologous recombination 

(Figure 2-1).  Sequences include endogenous trnI and trnA to facilitate integration by 

homologous recombination in the intergenic spacer region of the 16S ribosomal operon 

(rrn) of tobacco chloroplasts as well as the aadA gene for selection of putative plastid 

transformants. In order to address the efficiency of CPO expression in the chloroplast 

genome, fully expanded leaves from aseptically grown 6 to 8 week old tobacco plants 

were bombarded with 0.6 µm Au particles coated with chloroplast transformation vector 

pLD-CtV carrying genes of interest (Figure 2-1).  Spectinomycin resistant shoots arose 

from bombarded leaf explants via de novo organogenesis after 4 to 6 weeks in culture 

(Figure 3-1A).  Transformed shoots were analyzed by dot blot hybridization, and  

 
A.    B.     C. 
Figure 3-1:  Regeneration and growth of chloroplast transformants. A) Appearance 
of primary regenerant, B) adventitious shoot formation on explants of transplastomic 
leaves, C) mature transplastomic plants display no visible phenotypic difference from 
wild-type. 
 
positives were termed primary transformants.  Leaf explants prepared from primary 

wt CPO GUS 
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transformants produced multiple resistant shoots in 2 to 3 weeks as did explants in 

subsequent regenerations (Figure 3-1B).  Initial regenerants in Petit Havana background 

screened on streptomycin selective media indicated that the incidence of apparently 

spectinomycin resistant yet streptomycin susceptible (escapes) increased after 7 to 8 

weeks on primary regeneration medium.  These escape events may be due to spontaneous 

mutation in the 16S gene which confers resistance to spectinomycin but not streptomycin.  

The number of escapes in psbA 5’UTR:cpo and empty vector experiments (Table 2-1) 

Table 2-1:  Regeneration results for 8 independent bombardment experiments. 
Expression of spectinomycin/streptomycin resistance and positive dot blot analysis 
indicated incorporation of transgenic sequences for aadA and cpo. 
 
was similar to published results from other labs (see Table 1-1 for references).  

Bombardments with pLD-CtV-cpo (CPO) in Petit Havana resulted in much lower 

transformation efficiency than bombardments with empty vector (EV) or cpo with psbA 

5’UTR (pCPO) (Table 2-1).  Primary regenerants from CPO experiments in Petit Havana 

typically appeared after 8 to 12 weeks in culture.  Plants transferred to the greenhouse 

demonstrated no visible phenotypic difference from wild-type plants, flowered and set 

abundant, viable seed (Figure 3-1C). 

Vector Variety # of leaf  
samples 

Spec 
resistant 
regenerants 

Southern 
dot blot 
positive 

Bleached on  
streptomycin 

pLD.CtV.cpo  
 

SR1 6 6 5 NA 

pLD.CtV gUS    
 

SR1 9 4 2 NA 

pLD.CtV.psbA:cpo  
 

Petit 
Havana 

22 35 10 6 (17%) 

pLD.CtV.cpo   
 

Petit 
Havana 

19 15 3 11 (73%) 

pLD.CtV…EV 
 

Petit 
Havana 

21 50 2 9 (18%) 
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Foreign Genes are Present in Transplastomic Lines 

Primary transformants were analyzed by PCR to verify presence of transgenes.  

PCR analysis of primary transformants for pLD-CtV-cpo in SR1 background was 

performed by amplifying with one primer to the 3’ region of aadA and the other to the 5’ 

region of cpo.  The expected product of 370 base pairs (bp) was amplified (Figure 3-2).  

This result confirmed the presence of the aadA:cpo gene fusion in the tobacco genome 

but does not address the site of integration. 

 

 

 

 

 

 

 

 
Localization of Inserts and Assessment of Homoplasmy 

In order to confirm that the foreign DNA was integrated into the chloroplast 

genome, Southern blots were probed with a 0.61 kilobase (kb) fragment spanning the 

trnI-trnA junction in the rrn operon of the tobacco plastid genome (Figure 3-3B).  

Insertion in this region is indicated by the presence of a hybridization band corresponding  
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Figure 3-2:  PCR analysis of 1o regenerants of leaves bombarded with pLD-CtV-cpo.   
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Figure 3-3:  Diagram of A) chloroplast transformation vector, pLD-CtV-cpo 
indicating site of homologous recombination into B) native plastid rrn operon.  
Flanking sequences direct single copy insertion between trnI and trnA resulting in C) 
transformed plastid genome.  Blue arrows indicate pertinent restriction sites for Southern 
analysis of CPO and pCPO lines.  Fine black lines indicate size and origin of probe and 
expected band size in transformed lines. 
 
to the size of foreign sequence plus the length of the probe whereas wild-type samples 

will give bands of the probe length only.  The presence of both the wild-type band in  

addition to the larger band indicates that plants possess both transformed and 

untransformed copies of the plastid genome, a condition referred to as heteroplasmy.  

Where the wild-type band is absent and only the larger band is observed plants are 

considered homoplasmic and contain only transformed copies of the plastome.  Total 

plant DNA was subjected to sequential digestion with SacI and BamHI.  Control DNA 

isolated from untransformed wild-type plants yielded the expected band size of 0.61 kb 

where as transformed plant lines for CPO and pCPO yielded bands of the expected sizes, 

2.7 kb and 2.8 kb respectively indicating presence of exogenous DNA in the region 

spanned by the probe.  Of the two primary transformants for CPO analyzed one 

individual, C 3, was homoplasmic while the other, C 6, harbored a mixed population of 

trnI 
Prrn 

Specr 
CPO 

TpsbA 
trnA 

trnI trnA Prrn 16S  23S 

A. 

B. 

Prrn 

Specr CPO 

TpsbA 

trnA trnI Prrn 16S   

SacI BamHI 
0.61 kb 

BamHI SacI 
2.74 kb 

C. 
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wild-type and transformed plastome copies (Figure 3-4A) as indicated by the detection of 

both the 0.61 and the 2.7 kb bands.  R1 progeny (first filial generation from primary  

 
A.       B.          C. 
Figure 3-4:  Confirmation of chloroplast insertion.  Total DNA was hybridized to 
determine site of integration and homoplasmy.  C3-C6 are chloroplast transformants, wt 
is non-transformed SR1 tobacco A) primary transformants probed with 0.61 trnI-trnA 
fragment.  B) R1 progeny after additional regenerations hybridized with same probe.  C) 
Same blot as B stripped and probed with full length cpo. 
 
transformants) of the CPO lines, which had been subjected to two additional regeneration 

cycles, were all homoplasmic (Figure 3-4B) as indicated by the absence of the 0.61 kb 

wild-type band.  The R1 blot was stripped and probed with full length cpo resulting in a 

uniform band at 2.7 kb that is absent in the wild-type lane (Figure 3-4C), confirming that 

the expected integration event had occurred. 

Transformants for pCPO were analyzed by Southern analysis after two 

regeneration cycles followed by rooting in spectinomycin media (Figure 3-5A).  Of the 

five lines analyzed, three were found to be homoplasmic (pC1, pC3, pC4), one was 

heteroplasmic containing a mixed population of transformed and untransformed copies of 

the plastome (pC5), and one line (pC2) appeared to be untransformed, giving the same 

hybridization pattern as the wild-type. 

DNA isolated from leaves from R1 progeny of GUS chloroplast transformants was  

wt  C3         C6     C3       C4      C5       C6    wt
  

2.7 

0.61

2.7 

  C3       C4      C5       C6    wt
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 A.         B. 
Figure 3-5:  Results of Southern analysis of A) pCPO chloroplast transformants and B) 
GUS chloroplast transformants.   
 
also analyzed by Souther blotting following digestion of genomic DNA with BglII., 

which is expected to cleave upstream of rrn operon and downstream from the insertion 

site within trnA.  The same 0.61 kb probe (Figure 3-3B) was employed to confirm 

insertion and achievement of homoplasmy.  The resulting hybridization pattern 

demonstrated that both GUS lines investigated were homoplasmic with bands at 7 kb for 

transformants as compared to 4.4 kb for untransformed wild-type plants (Figure 3-5B).  

An unexpected hybridization band was seen every time the Southern analysis was 

performed, regardless of the transformed line being investigated, possibly due to 

incomplete digestion. 

 
Foreign Genes are Predominantly Transcribed by Plastid RNA 
Polymerase 

 
Northern analyses of CPO and pCPO lines were performed to confirm 

transcription of foreign gene in chloroplast transformants.  The complex hybridization 

patterns observed in these lines were typical of those seen for transgenes integrated into 

chloroplast polycistronic transcription units such as the rrn operon (Quesada-Vargas, 

~7 kb 

4.4 kb 

2.8 kb 

pC1 pC2 pC3     pC4      pC5        wt  wt      GUS 1          GUS 2 

0.61 kb 
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2005).  Transcript analysis of CPO lines C2, C3 and C4 (Figure3-6A) indicated that the 

predominant mRNA in leaf tissue was most likely the aada:cpo dicistron corresponding 

to transcript c in Figure 3-7.  The nuclear transformant for cpo included in this analysis 

harbored only the monocistron for cpo as expected.  The exposure time of 4 hours that 

was allowed for this autoradiograph (Figure 3-6A) was insufficient for visual detection of 

nuclear cpo transcripts but this transcript was detectable by phosphorimaging.  An 

extended exposure time of approximately 16 hours enabled visual detection of the nuclear 

transcript (not shown). 

Quantification of transcript number indicated a 9- to 16-fold greater abundance of 

cpo (aadA:cpo) mRNA in chloroplast transformants over the nuclear transformant 

(Figure 3-6B).  Chloroplast transformant C1 was presumed to have escaped selection and 

putatively carries the 16S mutation conferring spectinomycin resistance. 

A.            B. 

Figure 3-6:  Results of northern analysis of CPO lines.  A) Autoradiographic image of 
transcripts hybridized to 32P  labeled, full length cpo.  B)  Quantitation of transcript 
number by STORM phophorimager/ ImageQuant software. 
 

Inclusion of psbA 5’ UTR facilitated cleavage of the aada:cpo dicistron into 

monocistronic units (Figures 3-7, 3-8A, transcripts c and d).  In analysis of transcript 

abundance for pCPO lines the values for both the dicistron and the monocistron were 

a 

b 

c 

d 

Nuclear   C1       C2     C3      C4     wt 

C1 C2 C3 C4 NUC
0

5000

10000

15000

re
lat

ive
 tr

an
sc

rip
t

ab
un

da
nc

e (9X)

(16X)

C1 C2 C3 C4 NUC
0

5000

10000

15000

re
lat

ive
 tr

an
sc

rip
t

ab
un

da
nc

e (9X)

(16X)



 

47 

combined (pooled) for comparison to CPO lines.  No significant difference (P> 0.05) was 

detected in relative transcript abundance between the pooled values for pCPO lines and 

the dicistron values for CPO lines evaluated (Figure 3-8B).  Neither was the difference 

significant (P> 0.05) between relative abundance of the monocistron and the dicistron 

within pCPO lines (Figure 3-8C).  Abundance of larger transcripts corresponding to a and 

b in Figure 3-7 was not considered. 

 
 
Figure 3-7:  Schematic representation of transcripts generated by chloroplast 
transformants.  Diagram indicates transcript sizes for pCPO lines (figure 3-8); CPO 
transcripts were found to be similar except that they were ~100 nucleotides shorter 
overall due to exclusion of psbA 5’ UTR. 
 

 
A.          B.         C. 
Figure 3-8:  Results of northern analysis of pCPO lines.  A) Phosphorimage of 
transcripts hybridized to 32P  labeled, full length cpo.  B) Comparison of abundance 
between pooled (di- and monocistron) transcripts for pCPO lines and CPO lines 
(dicistron).   
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CPO Protein Accumulates in Chloroplast Transformants 

To determine if CPO protein accumulated in transplastomic plants western 

blotting and quantification of chemiluminescent signals was performed.  These analyses 

confirmed expression of the enzyme in leaf tissue of chloroplast transformants.  The 

expected 31 kilo Dalton (kDa) protein product was detected in samples from chloroplast 

transformants.  The corresponding band was evident in the nuclear transformant and 

detected in the purified enzyme control, but was absent in the wild-type sample (Figure 

3-9A, lower).  Equal loading of total soluble protein (TSP) was indicated by visual 

inspection of Coomassie stained gels for initial experiments with CPO R 1 progeny 

(Figure 3-9A, upper).  Inclusion of samples of purified CPO enzyme of known 

concentration in these experiments allowed quantification of the chemiluminescent 

signal.  Chloroplast transformants demonstrated a significantly higher (P≤ 0.01) level of 

CPO expression than the nuclear transformant (Figure 3-9B) in three independent  

A.      B. 
Figure 3-9:  Confirmation of CPO protein expression in chloroplast transformants.  
A) Coomassie stained gel indicates equal loading of TSP (above) and western blot 
(below) of R1 progeny confirms expression of CPO protein.  B) Quantitation of CPO 
abundance in chloroplast and nuclear transformants.  Asterisks (**) indicates a 
confidence level of 99%. 
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experiments.  However this level was lower than that predicted for expression in the 

chloroplast (DeCosa et al., 2001; Tregoning et al., 2003). 

Replacement of the ribosome binding site (RBS) with psbA 5’ UTR was expected 

to enhance translation of CPO in chloroplast transformants so these plants were also 

analyzed for protein content.  Sypro Ruby protein blot stain allowed determination of 

equal loading to be carried out on the same membrane as was treated with antibodies.  

Western blotting confirmed expression of CPO in both types of transplastomic plants, 

those with an RBS (C) and those in which the psbA 5’ UTR (pC) was included (Figure 3-

10A).  The expected 31 kDa protein was evident in both the nuclear transformant and the 

control purified enzyme, and was absent in the wild-type sample (Figure 3-10A).  

Quantification of chemiluminescent signals was unable to detect a significant difference 

(P> 0.05) in protein accumulation between RBS plants and psbA 5’UTR plants grown in 

the lab under fluorescent light (Figure 3-10B). 

 

A. B. 
Figure 3-10:  Comparison of CPO protein expression in chloroplast transformants 
with differing 5’ regulatory sequences  A)  Western blot confirms expression of CPO 
protein.  B).  Quantification of CPO abundance in RBS and psbA 5’ UTR chloroplast 
transformants and nuclear transformant 
 

To further investigate the ability of psbA 5’ UTR to enhance foreign protein 

expression in chloroplast transformants, selected psbA 5’ UTR plants (pC2 and pC4) as 

well as an RBS plant (C5) were moved to the greenhouse for maximum light exposure 
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while another member of pC4 line was retained in the lab.  All individuals included in 

this survey had aged and were sampled at ~1m in height, leaves ~30 cm x15 cm, but prior 

to emergence of inflorescence.  Western blots confirmed expression of the CPO enzyme 

in all transformants, chloroplast and nuclear, as evidenced by 31 kDa band corresponding 

to that of the purified enzyme and absence of this band in the wild-type sample (Figure 3-

11A).  Quantification of the chemiluminescent signal indicated a significant (3 to 4 fold, 

P≤ 0.01 and P≤ 0.001 respectively) increase in CPO accumulation in leaf tissue of the  

psbA 5’ UTR chloroplast transformants exposed to full sunlight over both the RBS plants 

in the same environment and the psbA 5’ UTR plant maintained in the lab (Figure 3-

11B). 

A. B. 
Figure 3-11:  Comparison of CPO protein expression in lab grown versus 
greenhouse grown plants. A)  Western blot confirms expression of CPO protein, 
superscript lg indicates lab grown  B)  Quantification of CPO abundance in RBS and  
psbA 5’ UTR chloroplast transformants exposed to full sunlight versus lab grown.  
Values on Y axis are ratios of µgCPO/mL protein extract standardized to RBS plant.  
Asterisks (**, ***) indicate confidence level of 99%and 99.9% respectively. 
 
Enzyme Assay Confirms CPO Activity in Chloroplast Transformants 

To determine if the CPO protein produced by transplastomic plants was 

enzymatically active spectrophotometric assays were carried out (Figure 3-12).  Leaf 

extracts of three primary chloroplast transformants catalyzed the conversion of the 

substrate monochlorodimedon (MCD) to monochloromonobromodimedon (MCMBD) by 
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the addition of a bromide ion in the presence of acetate and hydrogen peroxide resulting 

in the reduction of A290 values over time.  These three lines, C2, C3 and C4 were positive 

for CPO expression by northern (Figure 3-6) and western (Figure 3-9) analyses. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3-12:  Spectrophotometric analysis of CPO enzyme activity in chloroplast 
and nuclear transformants.  Extracts of primary ribosome binding site chloroplast 
transformants (C) were able to catalyze the conversion of the substrate MCD to MCMBD 
resulting in the reduction of A290 values over time.  C1, assumed to have escaped 
antibiotic selection due to a resistance mutation, did not demonstrate any activity in this 
assay.   
 
Cross Pollination Experiments Confirm Maternal Inheritance 

Cross pollination experiments were carried out with CPO transformants and  

non transformed wild-type plants to confirm maternal inheritance of the aadA transgene.  

For each type of cross, ten capsules were collected and 250 seeds from each of the four 

types (1000 seeds total) were germinated on antibiotic media.  When the maternal parent 

was the chloroplast transformant, progeny are uniformly green when germinated on 

spectinomycin media whether the paternal parent was wild-type or transformed.  When 
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the paternal parent was transformed but maternal parent is of the wild-type, progeny were 

uniformly bleached on spectinomycin media (Figure 3-13) as expected if the resistance is 

inherited through the maternal cytoplasm. 

 

 

 

 

 

 

 

 

 
Figure 3-13:  Confirmation of maternal inheritance.  Progeny demonstrate susceptible 
phenotype when maternal parent is wild-type, resistant phenotype when maternal parent 
carries aadA transgene. 
 
β-glucuronidase is Expressed in GUS Chloroplast Transformants 
 

To determine if plants transformed with the GUS gene were expression the active 

protein fluorometric and histochemical assays were performed.  Translation of the GUS 

protein in chloroplast transformants was driven by a RBS (GGAGG) upstream of the  

translation initiation codon.  Fluorometric analysis indicated an approximately 2 to 3 fold 

enhancement of GUS activity in leaf tissue of chloroplast transformants over the nuclear 

transformant (Figure 3-14B).  Histochemical staining of leaf disks taken from chloroplast  

transformants confirmed expression of the GUS protein in chloroplast transformants 

(Figure 3-14A) as indicated by the appearance of blue color encircling the disks. 

 

 
WT x 
WT 

CPO x 
WT 

WT x 
CPO 

CPO x 
CPO 



 

53 

A.           B. 

Figure 3-14:  GUS expression in chloroplast transformants.  A)  Histochemical 
staining for GUS expression in leaf disks; blue ring is indicative GUS expression.   
B)  Fluorometric analysis indicated significantly more GUS activity in the chloroplast 
transformants than in a nuclear transformant.  Asterisks (***) denote confidence level of 
99.9 %. 
 
Evaluation of CPO Lines for In Planta Resistance to 
Pseudomonas syringae  

 
Chloroplast transformants for CPO and pCPO were assayed for resistance to 

Pseudomonas syringae pv tabaci (ATCC 17914) (Pst) along with a nuclear transformant 

and an untransformed, wild-type control.  In two independent experiments Spearman’s 

and Pearson’s correlation analysis indicated that the relationship between the number of 

colony forming units and time was not significant (P≤ 0.05).  CPO chloroplast 

transformants were not effective in limiting Pst population establishment in planta 

(Figure 3-15). 
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Figure 3-15:  Graphic results for Pst in planta population assays.  Transplastomic 
plants expressing CPO enzyme were not effective in reducing Pst populations over time. 
Abbreviation: colony forming unit (CFU) 
 
In Vitro Evaluation of CPO Transformants for Antifungal Activity 

 
To determine if chloroplast transformants were able to inhibit colony formation 

by selected fungi, pregerminated conidia were incubated with crude leaf extracts from 

tobacco plants transformed with the cpo gene. CPO (C), pCPO (pC, lab grown) 

chloroplast transformants and the nuclear transformant (nuc), significantly reduced 

colony formation by pregerminated conidia of the cotton fungal pathogen 

Verticillium dahliae compared to non-transformed wild-type extracts (P≤ 0.001).  The 

level of control exhibited by representatives of lines C5, C6 and pC differed significantly 

from the CPO nuclear transformant (P≤ 0.001), whereas nuc, pC2 and pC5 were not 

significantly different from each other (P> 0.05) (figure 3-16). 
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Figure 3-16:  Inhibition of pregerminated conidia of V. dahliae by leaf extracts of 
tobacco plants transformed with the cpo gene.  Asterisks (***) indicate a confidence level 
of 99.9 %, n=3.  Abbreviation: colony forming unit (CFU). 

 

Crude leaf extracts from CPO tobacco chloroplast transformants significantly 

reduced colony formation by pregerminated conidia of the cotton fungal pathogen 

Fusarium verticillioides compared to non transformed wild-type plants (P≤ 0.001) 

(Figure 3-17).  Chloroplast transformants with the psbA 5’ UTR incorporated were not 

included in F. verticillioides assay. 

 

 

 

 

 

 

 

Figure 3-17:  Inhibition of pregerminated conidia of F. verticillioides by leaf extracts 
of tobacco CPO chloroplast transformants.  Asterisks (***) indicate a confidence level of 
99.9 %, n=3.  Abbreviation: colony forming unit (CFU). 
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Crude leaf extracts from CPO tobacco chloroplast transformants significantly 

reduced colony formation by pregerminated conidia of the mycotoxin-producing 

saprophyte Aspergillus flavus compared to non transformed wild-type extracts (Figure 3-

18)   In experiments where transformants carried RBS (Figure 3-18A), representatives of 

two lines, C4 and C5 had the greatest inhibitory effect (P≤ 0.01), while C5 had a 

significant effect (P≤ 0.05). 

In assays where chloroplast transformants carried the psbA 5’ UTR (Figure 3-

18B) plants grown in full sunlight exhibited the greater inhibitory effect but leaf extracts 

from all plants included in this assay significantly reduced the establishment of A. flavus 

colonies arising from pregerminated conidia compared to those that had not been exposed 

to plant extracts (P≤ 0.001).  The greenhouse grown RBS plant was more effective than 

the lab grown psbA plant (P≤ 0.001).  There was no significant difference between one 

psbA individual (psbA-4) grown in the greenhouse and the RBS plant (P> 0.05).  Among 

transformants carrying the psbA 5’ UTR (psbA), greenhouse grown plants were more 

effective in reducing colony establishment than a lab grown plant (P≤ 0.001).  The 

difference in colony reduction between the RBS plant and the psbA-2 plant grown in the 

greenhouse was highly significant (P≤ 0.001). 
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 A.      B. 
Figure 3-18:  Inhibition of pregerminated conidia of A. flavus by leaf extracts of 
tobacco CPO chloroplast transformants.  A)  Performance of RBS plants.  B)  
Performance of psbA 5’UTR plants as affected by light intensity.  On this graph psbA-2 
& 4 correspond to pC2 & pC4; RBS corresponds to C4.  Asterisks (*, **, ***) are 
indicative of confidence levels, 95%, 99%, and 99.9% respectively; n=3.  Abbreviation: 
colony forming unit (CFU). 
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Discussion 
 

Chloroplast biotechnology in higher plants provides the opportunity to engineer 

species of agricultural interest for improved agronomic traits, such as microbial 

resistance, while reducing the environmental risk of transgene escape.  Plastids possess 

he potential to accumulate foreign proteins to high levels making them an attractive 

platform for transgene expression.  The lower levels of expression often associated with 

nuclear transformation can lead to enhanced resistance of pests to the very proteins 

introduced as a control measure.  Additionally, at lower concentrations, introduced 

antimicrobial compounds may be insufficient to effectively control less susceptible 

species such as Aspergillus flavus. 

Our original objective was to achieve a higher level of accumulation of the active 

CPO enzyme in tobacco chloroplasts greater than that previously demonstrated in CPO 

nuclear transformants.  The cpo gene was successfully integrated into the tobacco 

chloroplast genome in a site-specific manner and that the CPO lines under investigation 

were homoplasmic for the transgene, as demonstrated by Southern analyses (Figures 3-4 

& 3-5).  Chloroplast transformants did produce more (~1.5-fold) of the enzyme than the 

nuclear transformant used for comparison (Figure 3-9) by western analysis.  While this 

difference was significant (P≤ 0.01) we were not satisfied with the magnitude of the 

difference.  Studies have reported significant improvements (50- to 250-fold) in foreign 

protein accumulation in chloroplast transformants (Kang et al., 2003; Viitanen et al., 

2004) compared to nuclear.  Such dramatic differences could be attributed to 

sequestration of the protein within the chloroplast in cases where the foreign protein may 
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be toxic to the host cell.  Additionally, accumulation of the protein may be limited in 

nuclear transformants due to degradation by host cytoplasmic proteases. 

We considered some possible limiting factors which could affect the level of CPO 

expression observed in our transformants.  Northern analysis clearly demonstrated that 

transcript abundance alone was not a limiting factor (Figure 3-6).  Multiple transcripts 

containing the aadA:cpo message are produced in high abundance.  The dicistron 

corresponding to transcript (c) in Figure 3-7 was the most prevalent and was found to be 

present in 9 to16 times higher copy number than the cpo transcript in the nuclear line. 

We also considered codon usage as a potential limitation to optimal translation 

efficiency in plastid transformants.  Chloroplast genes tend towards A or U in the third 

position of the codon with GC content overall falling well below 50 % for all plastid 

genes (Table 4-1) (Shimada and Sugiura, 1991).  The cpo constructs employed in these 

experiments utilized the native Pseudomonas sequence.  This sequence has a GC content 

of 64 % overall, tending toward G or C 

Tobacco chloroplast genes % GC content 

Genetic system genes 27.9 

Photosynthesis genes 30.9 

NADH dehydrogenase genes 27.0 

Table 4-1:  GC content of chloroplast genes. 

in the third position.  Translation efficiency may be improved through the synthetic 

optimization of the native cpo sequence GC content for chloroplast specific expression. 

The original constructs for cpo as well as the GUS construct contained a Shine-

Delgarno (SD) type ribosome binding site (RBS) upstream of the translational start codon 
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for these genes.  Interestingly fluorometric analysis of GUS chloroplast transformants 

indicated a greater enhancement of expression in leaf tissue over nuclear transformants 

for GUS (Figure 3-14) than was observed in the CPO lines.  Several reports have 

indicated that inclusion of the tobacco native  psbA 5’UTR could facilitate high levels of 

foreign protein accumulation in chloroplast transformants (Table 2-2).  For human serum 

albumen (HSA) in particular, expression was dramatically improved through the 

inclusion of this regulatory element.  In chloroplast transformants where a RBS was 

employed, HSA accumulated to 0.02% of total soluble protein (TSP) in leaf tissue 

whereas inclusion of the psbA 5’ UTR allowed HSA to reach 11.1 % of TSP (Fernandez-

San Millan et al., 2003).  In an effort to improve CPO expression in chloroplast 

transformants, we replaced the RBS with tobacco native psbA 5’ UTR. 

Western analysis of the new CPO lines carrying the psbA 5’UTR (pCPO) showed 

that CPO protein was produced in the transformants, however quantification of the  

chemiluminescent signal did not indicate a significant improvement over the original 

CPO lines (Figure 3-10).  As translation of psbA is known to be highly regulated by light, 

selected plants from pCPO lines were transferred from the growth bench in the lab to the 

greenhouse to determine if exposure to full sunlight would enhance accumulation of CPO 

in transformed chloroplasts.  A 3- to 4-fold increase in CPO accumulation was observed 

in pCPO plants in the greenhouse over pCPO grown in the lab or a RBS plant grown in 

the greenhouse (Figure 3-11).  This result was again below our expectation, and suggests 

that other, as yet unidentified events, possibly block CPO synthesis and/or accumulation 

in transformed chloroplasts. 
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One possibility is that the psbA 5’ UTR does not function optimally when placed 

between aadA and cpo as constructed in these experiments.  Northern analysis clearly 

demonstrates that cpo is transcribed as a member of a polycistronic unit as would be 

expected for transgenes incorporated into the plastid ribosomal operon (rrn).  The initial 

precursor transcript for the operon of 7200 nucleotides in length is extensively processed 

posttrancriptionally (Marchfelder and Binder, 2004).  There are 3 transcripts (see Figure 

3-7) detectable on the original CPO radiograph (Figure 3-6A).  Transcript (a) corresponds 

to the 4.9 kb message which, in the light, is transcribed predominantly by the plastid 

encoded RNA polymerase (PEP) from its native promoter at the beginning of the operon.  

Transcript (b) is presumed to be a cleavage product of (a) and possibly a larger transcript.  

Transcript (c), by far the most abundant in this example, corresponds to the 1.7 kb 

dicistron representing aadA:cpo.  Though it is possible that some portion of this mRNA 

pool (c) results from the endonucleolytic cleavage of a larger transcript, it is more likely 

that this mRNA accumulates to a markedly higher level due to transcription by PEP via 

the engineered σ70 type promoter introduced upstream of the transgenic sequence.   

Northern analysis of pCPO transformants demonstrated an altered hybridization 

pattern (Figure 3-8A) than was seen for CPO lines with a RBS.  Incorporation of the 

psbA 5’ UTR appears to have introduced an endonucleolytic cleavage site which allows 

the separation of at least a portion of the dicistronic mRNA into monocistronic units.  The 

band designated (d) corresponds to the ~0.9 kb transcript for psbA 5’ UTR:cpo .  This 

mRNA could only have resulted from the cleavage of a larger polycistron as no 

independent promoter element for transcription of monocistronic cpo was introduced in 

the new construct.  Quantification of the pooled dicistron and monocistron in pCPO lines 
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showed there was no significant difference between the total abundance of the pooled 

transcripts and the dicistron abundance for CPO lines.  Neither was there a difference in 

transcript number between di-and monocistron abundance in pCPO lines. 

To dismiss the results of northern analysis as “not significantly different” based 

on transcript abundance alone would be an error.  At this juncture we must consider at 

least two possibilities:  that the psbA 5’ UTR cannot function in its intended capacity 

when confined between two coding regions of an operon and/or, that some fraction of the 

monocistronic cleavage product resulting from the inclusion of psbA 5’UTR within a  

 

 
 
polycistron is not a translatable message (or it is translatable but at some reduced level).  

The model presented in Figure 4-1 serves to demonstrate the potential of endonucleolytic 

cleavage to generate untranslatable transcripts from a polycistronic precursor RNA.   

Figure 4-1:  Schematic model of transcript processing.  Large precursor messages 
are processed after, or possibly during, transcription.  Endonucleolytic cleavage is 
indicated by triangles.  Transcripts a, b’ and c represent stable, translatable messages.  
Transcript b lacks the 3’stem loop and is therefore unstable; c’ lacks 5’ elements and is 
untranslatable. (from Marchfelder, 2004)  
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Tobacco chloroplast transformants for the Cry2Aa2 operon (DeCosa et al., 2001) 

have been examined by northern analysis and polyribosome (polysome) fractionation 

assays (Quesada-Vargas, 2005, in press).  Transcription of this 4 gene operon (aadA-

orf1-orf2-cry2Aa2) is predominantly driven by the engineered P1 promoter (σ70) 

immediately upstream of aadA in the pLD-CtV vector and there are no embedded 

promoters within the transgene sequence.  Computational analysis predicted a stem loop 

structure in the native bacterial sequence for cry2A.  Approximately 50% of the total 

mRNA was comprised of the monocistron for the cry2A gene.  While some of these 

smaller transcripts were found to be associated with polysomes, they were observed 

mainly in the non-polysomal fraciton (Quesada-Vargas, 2005, in press).  These results 

may indicate that the polycistron is preferentially translated or, alternatively, that the 

monocistronic cleavage product is somehow impaired, perhaps by degredative activity of 

endogenous exonucleases (Drager et al., 1999; Marchfelder and Binder, 2005). 

Among 70 protein-coding genes and 9 conserved ORFs present in the tobacco 

chloroplast genome, five (ndhF, psbA, psbM, psbN, and rbcL) are transcribed 

monocistronically (Sugita and Sugiura,1996).  A methyl jasmonate-induced change in the 

length of the 5’ UTR was reported to impair translation of the barley rbcL transcript 

(Reinbothe et al., 1993), suggesting that specific 5’ processing is essential for certain 

chloroplast mRNAs to be functional.  Deletion of the stem loop structure of the psbA 

5’UTR has been shown to reduce transcript abundance by half resulting in a fourfold 

depression in translation efficiency (Alexander et al., 1998).  These results have been 

supported by a more recent study in which a series of deletion and single base mutants for 

the psbA 5’ stem loop were developed (Zou et al., 2003).  Translation efficiency, as 
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determined by GUS activity in relation to mRNA level, was depressed by 1.8- to 6-fold 

in mutant lines over the lines with wild-type psbA 5’ UTR.  Clearly inappropriate 

cleavage within the psbA 5’ UTR has the ability to impair translation efficiency. 

 

 

Figure 4-2:  Representation of secondary structure for psbA 5’UTR.  The protein 
binding element is highlighted in thin frame, SD sequence in dark frame.  
Endonucleolytic cleavage site is indicated by arrow (From Alexander, 1998). 

 

Several nuclear encoded protein factors have been identified in C. reinhardtii 

(Yohn et al., 1998b), spinach (Alexander et al., 1998) and Arabidopsis (Shen et al., 2001) 

that are required for the formation of an RNA binding complex that initiates psbA 

translation.  The central protein binding element in spinach psbA 5’ UTR is provided 

Figure 4.2.  After cleavage at the indicated site, the protein complex can no longer form 

on the mRNA and activation of translation is abolished; formation of the complex prior to 

cleavage at this site protects the mRNA and translation can proceed.  Experimental 

evidence (Danon and Mayfield, 1991; Yohn et al., 1998a) suggests that these factors are 
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highly specific for psbA 5’ UTR sequence elements.  It seems very unlikely that these 

factors would be able to operate in concert with 5’ UTR elements while they are 

embedded in a polycistronic unit and cleavage to the monocistron prior to complex 

binding renders the transcript biologically inactive. 

Where psbA 5’ UTR has been shown to be highly effective in promoting foreign 

protein accumulation it was incorporated into transgene constructs as the leader sequence 

for a monocistronic transcription unit (Staub and Maliga, 1994; Staub and Maliga, 1995).  

Alternatively, where the psbA leader sequence was incorporated between two transgenes, 

the full length leader, including the promoter element was utilized.  In two examples 

where the latter was the case, the gene of interest was fused to the full length psbA leader 

(including promoter) and ligated into the same pLD-CtV vector used for the cpo 

transformation experiments described herein.  Transplastomic tobacco plants expressing 

Bacillus anthracis protective antigen (PA) demonstrated foreign protein accumulation to 

2.7 % of TSP in leaves under 16/8 h illumination and 18.1 % TSP after 3-5 days of 

continuous illumination in growth chambers (Watson et al., 2004).  Employing the same 

regulatory elements for the expression of the Escherichia coli ubiC gene reportedly 

facilitated accumulation of chorismate pyruvate-lyase (CPL) up to 35 % of TSP in mature 

leaves (Viitanen et al., 2004).  Unfortunately neither of these reports included northern 

analysis, or for that matter, RNA analyses of any kind.  The cleavage event we observed 

in pCPO lines would be likely to occur in these experiments as well.  If this event is 

involved in the lower than expected levels of expression then we must ask how the high 

levels of expression were achieved in the aforementioned examples.  Inclusion of the 

psbA promoter in these constructs may have allowed transcription by the PEP of the 
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monocistronic message for the transgene in addition to the polycistron transcribed from 

the native rrn promoter and the dicistron from the engineered PEP promoter on the 

transformation vector.  While the polycistronic message for these genes would be 

susceptible to the same proposed fate as pCPO mRNA, the monocistron would be able to 

associate with the RNA binding proteins specific to psbA in a manner appropriate to 

support translation of protein product. 

A further consideration that should be addressed is the potential for problems 

associated with the localization of an enzyme such as chloroperoxidase in the plastid.  If 

CPO is active in the chloroplast this could affect active oxygen species (AOS) 

concentration (see Equation 1).  It has been established that AOS, such as hydrogen 

peroxide and the superoxide radical, play a role in redox signalling in yeast (Vivancos et 

al., 2005) and plants (Dat et al., 2000; Vranova et al., 2002).  The activity of CPO within 

the plastid could possibly interfere with the redox status of the organelle.  Ironically, 

given that psbA is redox regulated, in lines that include this UTR CPO may be partially  

 

Figure 4-3:  Chlorination of 4-(2-amino-3-chlorophenyl)pyrrole by CPO (From  
Wiesner, 1988) 

 
responsible for its down-regulation.  Also of interest is the ability of CPO to chlorinate 

pyrrole moieties (Wiesner et al., 1988) (Figure 4-3).  Pyrrole moieties are critical in 

biosynthesis of porphin (Figure 4-4B) and eventually protoporphyrin IX, a key 

intermediate in chlorophyll and heme synthesis (Goodwin et al., 1983).  A closer 
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Figure 4-4:  Representation of pyrrole and porphin.  A)  Pyrrole molecule.  B) 
Structure of porphin, a tetrapyrrole. 
 

examination of the effect of CPO expression on plastid function in chloroplast 

transformants may be necessary, despite the apparent overall fitness of CPO chloroplast 

transformants whole plants (Figure 3-1C). 

In terms of our ultimate goal, the expression of CPO in transplastomic plants to 

confer microbial resistance, we have demonstrated considerable success.  In experiments 

conducted in vitro, crude leaf extracts from both RBS CPO lines (CPO) and those with 

psbA 5’ UTR (pCPO) have significantly reduced colony formation by pregerminated 

conidia of several microbial species:  V. dahliae (Figure 3-16) and F. verticillioides 

(Figure 3-17), (important plant pathogens) and A. flavus (Figure 3-18), (a mycotoxin 

producing saprophyte.  A visual inspection of the data from pCPO lines for protein 

accumulation as compared to inhibition of A. flavus suggests a correlation between CPO 

A. 
B. 
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abundance and colony reduction in in vitro bioassay (Figure 4-5).  The samples for this 

series of experiments were prepared from the same leaf tissue for protein analysis and 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4-5:  Performance of CPO and pCPO lines in A. flavus bioassay compared to 
CPO protein abundance.  A)  CPO abundance in chloroplast transformants; Y axis 
values are µg CPO/mL protein extract normalized to RBS (C5) plant.  B)  Efficacy of leaf 
extracts from CPO and pCPO lines in inhibition of colony formation by A. flavus spores.  
Note on X axis labels:  pC2 and pC4 and C5 in (A) are equivalent to RBS, psbA 2 and 
psbA 4 in (B)respectively.  Asterisks (**,***) indicate level of confidence, 99% and 
99.9% respectively.  Abbreviation: colony forming units, CFUs. 
 

bioassay.  The potential of CPO expression in transplastomic plants warrants further 

investigation. 

Work will continue in the lab to explore the efficacy of CPO transformants 

against plant pathogens in planta.  Development of a CPO construct optimized for plant 

chloroplast codon usage is underway.  Also future work should include an analysis of the 

possible toxicicity and allergenicity of plants expressing CPO for microbial defense as 

food and feed safety is the primary concern of this research. 
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Appendix 
 
Recipes 
 
Protein extraction buffer:  
 
50 mM Tris pH 6.8 
  5 mM MgCl 
  1 mM EDTA 
  1 mM EGTA 
  5 mM β-mercaptoethanol  
Protease inhibitor cocktail (Sigma #9599) per manufacturer’s recommendation. 
 
 
Western transfer buffer:    Laemmli sample buffer (1X) 
 
  0.2     M glycine      50  mM Tris pH 6.8  
25.0  mM Trizma base   100  mM DTT (dithiothreitol) 
20 %        MeOH      2 % SDS (sodium dodecyl sulfate) 
      10 % glycerol  
        2 % β-mercaptoethanol  
 
 
CPO Enzyme assay cocktail: 
 
COMPONENT    VOLUME FOR 

     ONE SAMPLE 
 
1.0 M sodium acetate buffer, pH 5.2        2.5 mL 
0.3 M NaN3            100 µL 
3.0 M NaBr       100 µL 
0.24 M H2O2       100 µL 
1.5 mM monochlorodimedon (MCD)          100 µL 

     2.9 mL 
 

Note:  MCD must be stored at -20 oC in sealed container with desiccant.  Remove MCD    
 from freezer ~1 hour prior to opening. 
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β-glucuronidase (GUS) assay components: 

GUS fluorometric extraction buffer: 
50 mM NaPO4 buffer (pH 7) 
10 mM β-mercaptoethanol (70 µL in 100 mL) 
10 mM Na2EDTA (372 mg in 100 mL) 
0.1 % sarkosyl (100 mg in 100 mL) 
0.1 % Triton X-100 (100 µL in 100 mL) 
 
GUS fluorometric assay buffer: 
1 mM MUG (4-methylumbelliferyl- β-D-glucuronide; MW 352.3) 

Dissolve 35.2 mg of MUG in 80 mL GUS extraction buffer    
 and 20 mL MeOH 

 
4-MU standard:  
Prepare 100 mL of 1 mM 4-MU by dissolving 19.82 mg of 4-MU   in 100 mL sterile 
milli-Q water.  Place 10 µL of 1 mM stock in 10 mL of water to give final concentration 
of 1 µM.  Aliquot 1 mL into microfuge tubes and store in -20 o C protected from light. 
 
 
GUS histochemical assay buffer:  GUS staining solution: 
0.1 M NaHPO4    9 mL assay buffer 
5 mM potassium ferricyanide   2 mL X-gluc (16.7 mg ml-1 in DMSO) 
5 mM potassium ferrocyanide  2 mL methanol (MeOH) 
0.06 % Triton X-100 
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