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Abstract 

The structures obtained from homology modeling methods are of intermediate resolution 

1-3Å from true structure. Energy minimization methods allow us to refine the proteins and 

obtain native like structures. Previous work shows that some of these methods performed 

well on soluble proteins. So we extended this work on membrane proteins. Prediction of 

membrane protein structures is a particularly important, since they are important 

biological drug targets, and since their number is vanishingly small, as a result of the 

inherent difficulties in working with these molecules experimentally.  Hence there is a 

pressing need for alternative computational protein structure prediction methods. This 

work tests the ability of common molecular mechanics potential functions (AMBER99/03) 

and a hybrid knowledge-based potential function (KB_0.1) to refine near-native structures 

of membrane proteins in vacuo. 

 A web based utility for protein refinement has been developed and deployed based on the 

KB_0.1 potential to refine proteins. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Protein refinement Web server, membrane proteins, protein refinement, 
amber03/99, Knowledge based mechanics model. 
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CHAPTER 1: INTRODUCTION 

Proteins are the micro machines on which biological systems are based. Understanding 

protein’s structure and functionality helps us design new drugs and understand the 

underlying mechanism of human disease. Protein structure prediction and protein folding 

are considered fundamental problems of modern computational/ molecular biology,  

There has been research progress from the past several decades in understanding the 

underlying biophysical interactions in proteins either by simulating the proteins or by 

studying their behavior using experimental techniques.  

1.1) Introduction to Proteins 

Proteins are composed of individual units called amino acids.  These amino acids are linked 

by peptide bonds. There are twenty different naturally occurring amino acids which differ 

in the chemical nature of their side chains. The nature of the side chain influences the 

properties and structure of the proteins. 

Each amino acid consists of  

 A central carbon atom usually referred 

as Alpha Carbon (C) atom. 

 an amino group 

 a carboxyl group 

 a side chain  
Figure 1: The general structure of an 

alpha amino acid  
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Proteins are intimately involved in nearly every cell activity, from replication of genetic 

code to transporting oxygen, and are generally responsible for regulating the cellular 

machinery and determining the phenotype of an organism. Diseases like transmissible 

spongiform encephalopathies [24], are usually caused due to improper folding of protein 

which may result from genetic and/or environmental influences. Examples of proteins 

include hemoglobin, thyroid hormone, insulin, and myosin. 

There are 20 possibilities of amino acids based on the R group side chain associated with 

the amino acids  

These amino acids are 

classified  as acidic (negatively 

charged) , basic (Positively 

charged), polar( side chains 

with pure hydro carbon alkyl 

groups or aromatic), non-

polar(Side chains with 

functional groups acids, 

amides, alcohols, and amines), 

Hydrophobic (un likely to be 

in contact with the aqueous 

environment), hydrophilic 

(likely to be in contact with 

the aqueous 

environment)based on 

chemical and structural  

behavior of their side chains. 

 
Figure 2: List of 20 different amino acids[36],Reprinted 
from [36] 
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1.2) Protein Structure 

Primary Structure  

The primary structure refers to the sequence of amino acid of the protein .The amino acids 

form covalent bonds (peptide bonds) between each other during the protein biosynthesis. 

The polypeptide chain thus formed has two ends a carboxyl terminus (C-terminus) and 

amino terminus (N- terminus).The counting of residues starts from the N-terminus. The 

sequence of the protein defines its structure and functions [41]. 

 

 

  

 

 

 

 

 

Secondary Structure in Proteins 

The secondary structure of a protein is the local spatial arrangement of its C carbons 

(those atoms that are not part of the side chain, often referred to as the main chain) 

[IUPAC-IUB, 1970]. There are commonly three secondary structures in proteins, namely - 

helices, -sheets, and turns.  The other structures are usually classified as random coil, or 

other.  

 
Figure 3: Primary structure of protein

 [35]
; the figure shows  

Sequence of amino acids forming a protein 
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Alpha helix   

The alpha helix (α-helix) is a 

major part of secondary structure. 

The polypeptide chain turns about 

itself to form a spring like structure 

with each of the poly peptide bond, 

hydrogen bonded with other 

peptide bonds on the chain thus 

forming alpha-helix [34].  

 It can be either a right-handed or 

left-handed coiled conformation.  

This secondary structure is also sometimes called a classic Pauling-Corey-Branson alpha 

helix [19]. 

Beta sheet 

The secondary structure has another major 

element called beta-sheet; it has several 

individual beta strands. A beta strand is chain 

of 3-10 amino acids connected by polypeptide 

bonds. These beta strands are connected to 

one another by two or more hydrogen bonds 

forming a pleated sheet [33].   

 
Figure 4: Two alpha helixes in protein 1ROP.  

 
Figure 5: A beta sheet in protein 1BKZ 
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Tertiary Structure of Proteins 

Tertiary structure is the final geometric shape a protein assumes.  The bonding interactions 

between the side chains of each amino acids will result in several folds and bends in the 

protein chain [20].  These interactions finally stabilize to form tertiary structure.  The 

tertiary structure consists of several secondary structure elements i.e. α-helices and beta 

sheets. 

 

 

 

 

 

 

 

 

 

Quaternary Structure 

Quaternary structure is the assembly of two or more protein chains – if the protein chains 

have the same sequence, then this is known as a homooligomers – if they have different 

sequences, then the protein is a heterooligomer.  The quaternary structure can be assumed 

as a structure consisting of stable tertiary structures as subunits which are stabilized by 

variety of interactions like non-covalent forces, disulfide bonds, hydrogen bonding and salt 

bridges [27, 28].   

 
Figure 6: Tertiary structure showing alpha helix and beta sheet 
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  1.3) Protein Folding Theory 

 

Protein folding is a physical process where a random coil (sequence of amino acids) 

undergoes hydrophobic collapse and eventually comes to a stable 3-dimensional structure 

(native structure). It is puzzling that in the protein folding process a protein undergoes a 

spontaneous self assembly of amino acids and forms a unique three dimensional structure 

despite the possibility of enormous conformational spaces [29][43].  It is assumed that if we 

understand the underlying physical mechanisms involved in protein folding, we can model 

them on computers and use algorithms to predict native structures from their amino acid 

sequences. Science magazine in 2005 listed the protein folding problem as one of the 125 

biggest unsolved problems in science [15].  

 

 

 

 
Figure 7: Protein Folding [initial state (left)  Final folded state (Right)][37] reprinted from 
Wikipedia 

Random Coil 
 

Stable Native state  
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1.4) Protein Structure Prediction 

One of the most challenging problems of computational molecular biology is the prediction 

of the proteins spatial conformation from its primary structure.  Scientists and researchers 

have been trying to find the protein's 3-dimensional structure which helps us to 

understand its functionality and provides means for planning experiments and drug design.  

Why is predicting 3D structure so important? 

The gene is the basic unit of hereditary.  It is comprised of DNA (genetic information), and 

its gene products, which through an extremely complex series of interactions with the 

products of other genes, play a large role in determining the appearance and behavior of an 

organism. The DNA in the gene is transcribed into messenger RNA which is translated in to 

sequence of amino acids.  This sequence of amino acids in turn folds up in to a three 

dimensional structure to form a protein. This protein now interacts with other proteins 

(lock and key arrangements, etc.) and this interaction mediates the functions of the 

organism [16].  

“In fact, the 3D interactions between proteins and substrates are essentially the 

organism. We cannot completely understand (any predictions about) the phenotype of the 

organism without knowing the 3D structure of the proteins in a genome.”  -Ram Samudrala 

[39]. 

The classical method of solving the protein structure is done by using X-ray 

Crystallography and Nuclear magnetic resonance (NMR). These methods give good 

accuracy rate with resolution of 0.1A-0.3A in many cases [40]. The disadvantage with these 
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techniques is that these techniques are very expensive and take quite a long time to 

determine the structure.  

In 1973 Prof B. Christian Anfinsen has proposed that the information determining 

the tertiary structure of a protein resides in the chemistry of its amino acid sequence [41]. 

His research sets a new challenge for many researchers to start predicting tertiary 

structure from the amino acid sequence.  

After the discovery of a protein’s propensity to fold into its unique native state 

without any additional genetic mechanisms, there has been a great deal of research over 

the past 25 years on the prediction of 3D structure from sequence alone, without further 

experimental data.  Sequencing of proteins is relatively fast, simple and inexpensive. 

Despite significant efforts, the protein folding and protein structure prediction problem 

remains as an unsolved problem. Due to several genomic projects increasing over time 

around the world, it is evident that there is a large gap between the number of known 

sequences and number of known three-dimensional structures.  There are a few 

contemporary approaches toward protein structure prediction that can be roughly divided 

into three categories of increasing difficulty. 

Homology/Comparative Modeling  

The homology Modeling is based on the fact that evolutionarily related proteins with 

similar sequences usually exhibit similar structures. For example, two sequences that have 

just 35% sequence identity usually have the same overall fold. Proteins which are 

evolutionarily related have similar sequences and the proteins which are naturally 
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homologous have similar protein structure [17].  By evolution three dimensional structure of 

protein is more conserved than the sequence itself [17]. 

Threading Methods 

The threading methods compare the unknown protein sequence against a library of 

structural templates thus producing a list of scores for each template in the library [30]. 

These scores are sorted, the template structure with the best score is assumed to be 

adopted by the unknown protein.  The threading method, along with the comparative 

modeling method, use the structures of already solved proteins as templates. 

Ab initio Method 

The ab initio method is based on thermodynamic hypothesis which states that “The native 

state of a protein is the one for which free energy achieves the global minimum”  [30].  This 

approach does not depend on prior information from any other proteins. It is clearly the 

most difficult approach and arguably the most useful approach. But there could be some 

unresolved issues with this approach. 

This method requires two things, a search algorithm to explore the protein 

conformational space and an energy function which evaluates whether a state is a native or 

not. It is extremely complex to find a useful energy function and a useful search algorithm 

to traverse the conformational space [30].  

It can be understood that under normal physiological conditions there is a 

possibility of one and only one conformation which has low energy than any other 

conformation. So, now the search can be done in all possible conformations in random 
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fashion until the conformation with lowest energy is found. The time complexity involved 

searching all the conformations is extremely high.  Decreasing the time complexity of the 

folding process is an extremely complex task, as our algorithm should be capable of 

calculating the heuristic methods of finding a kinetic pathway by escaping the irrelevant 

conformations and finally lead us to one conformation which has lower energy than any 

other conformation [23]. We will further discuss these methods in next chapter. 
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CHAPTER 2: WEB SERVICE FOR PROTEIN STRUCTURE REFINEMENT 

 

Protein structure refinement is the process of improving the structures of protein models  

to make them more like the native structures. The models obtained from comparative 

modeling and threading have a resolution within 1-to 3Å root means square deviation  

range with true structure [1]. The root mean square deviation (RMSD) is the measure of the 

average distance between the backbones of superimposed proteins. It is extremely 

challenging problem to minimize this rmsd from near native structure to true structure. 

The energy minimization methods help us refine the proteins models at such low resolution
 [1]

. 

Recently, there has been some very encouraging progress toward solving this problem by 

using techniques that involve optimization of new potential functions [1]. Dr. Christopher 

Summa and Dr. Levitt have tested whether Potential energy minimization (PEM) could be 

applied for refinement and they proved it worked. The web server is uses their method for 

refinement of proteins over internet. This allows any user to upload his model (either pdb, 

ent) and obtain a refined structure. 

2.1) Introduction to KB/MM Structure Refinement Method 

The quest for proteins modeling has given rise to modeling of protein based on its 

energetics. There has been some progress in developing a molecular mechanics potential 

energy function, which model a protein as a collection of atoms connected by springs that 

hold bold lengths and angles [16]. These molecular mechanics potential energy functions 

(MMPEF) have two types of terms: “bonded” and “non-bonded”  [16]. These functions treat 

atoms as spheres, and bonds as springs. Thus bond stretching, bends, twists are modeled 

based on spring deformation (Hooks Law) [31]. 
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The bonded terms also include a torsional potential contributed by torsional angle 

rotation between atoms that are adjacent.  The non bonded interactions between the atoms 

are due to van der Waals attractions, steric repulsion and electrostatic attraction/repulsion 

depending on their distance from each other[16, 31]. These van der Waals attractions and 

electrostatic forces are modeled based on the Lennard-Jones function and Coulomb’s Law 

respectively. All these bonded and non-bonded interactions of the Molecular mechanics 

potential energy functions  are derived from several sources either based on quantum 

mechanics, thermodynamic data, or some combination of the two [4, 5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 These functions are largely 

used in protein folding simulation, template free modeling methods, and are also used to 

 
Figure 8: Interactions included in representative 

potential energy function for Molecular Dynamic 

simulation. Reprinted from [26] 



  13 

refine X-ray crystal structures [32]. The molecular dynamics simulation is a computer 

simulation where models of atoms and molecules are allowed to interact with each other 

and the forces between them are approximated by solving Newton’s classical laws of 

motion.  So during the refinement process if a force is applied on the protein, the effect of 

force on one atom is calculated and additional effect of displacement of this atom due to the 

force affects other atoms (either bonded or non bonded ) is calculated, thus resulting in 

displacement of atoms resulting in new positions and velocities of the atoms. 

The energy functions which are derived based on the statistics of the known native 

proteins are known as “knowledge based”. These energy functions derive statistics based 

on the probabilities of pair wise appearance of residues  in a specific geometry [16]. These 

probabilities are converted into potential energy using the Boltzmann equation:  

ΔG = –RT ln (Pobserved /Pexpected), [6, 11, 16] 

 Where Pobserved is the probability of finding a particular structural element [6, 11, 16], 

 Pexpected is the expected probability of finding that structural element based on chance [6, 

11, 16].  

The advantage of these energy functions is that they can model behavior seen in the 

protein database .The disadvantage is that they can’t predict new behavior out of scope of 

database. [16].  Dr. Christopher Summa and Dr. Levitt introduced Knowledge Based 

/Molecular Mechanics (KB/MM).  The equation representing the potential energy of the 

protein is given as follows  
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The equation has energy terms from both the bonded and non bonded interactions .The 

bond angle bends, bond stretches, bond torsion angle twists contribute to the bonded 

interactions.  The van der Walls forces and columbic forces contribute to the non bonded 

interactions. The energy equation was transformed in to a new equation by replacing the 

non-bonded interactions and all partial charges with a knowledge based statistically 

calculated term fKB .The term fKB was calculated based on the atomic pairwise Potential 

Mean Force (PMF) .For all the 167 atoms types  which were used a pairwise PMF was 

derieved to describe energy interaction with every other atom type[1][9][10].  

 

 

Figure 9: Equation for calculating potential energy of a protein (left); Modified 

energy function having Knowledge based term, Reprinted from [1]. 
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They used three different bins (0.5Å, 0.2Å, 0.1Å) .For generating the energies they have 

used Lu and Skolnick derivation [9].  Depending on the bins they made a histogram and 

when the counts go to zero they have added a repulsive part  to account for steric over lap 

[1]  These curves are smoothened by fitting a quintic spline function [1][9][10]. Using this 

probabilities of occurances of atoms they finally derieved an energy term which contribute 

non-bonded interactions(fKB). 

The KB/MM Hybrid potential is used to perform the refinement of proteins on the 

webserver 

 

 

 
Copyright Dr. Christopher Summa & Dr. Michael Levitt Reprinted from [1] 

Figure 10: Energy profiles for : AN  (alanine backbone nitrogen), AO (alanine backbone 
carbonyl oxygen) and ACA is the alanine  carbon. The symbols shown are the energies from 
the PMF derivation, and the fit shown is a simple smooth curve fit in Excel, not the quintic 
spline as generated in ENCAD [1]. 
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2.2) Implementation of Web Services 

Summa Protein Refinement Server 

The main idea of the web server is to provide a utility where users can refine their proteins. The 

web server takes a protein model as an input and returns the user with a refined protein. 

Work Flow: 

 

 

The web application work flow is as follows  

The user uploads a protein database file (pdb/ent).  The web application cautions if 

the file uploaded is a pdb/ent file for security reasons. 

Figure 11: Work Flow of Web Server 
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The web application creates a temporary directory and stores the uploaded file in to 

that folder. 

The web application gives response to the user that the file has been uploaded and 

then calls the script file which creates the job on the grid. 

The job is created and submitted to the Xgrid controller by the web application , then 

the controller  checks for the agent which is idle and sends the job to that agent.  

The agent now starts to execute the job by calling encadv6lg.exe (is the main 

executable which handles the refinement process) under the environment variables 

of software ENCAD[44] (Dr. Michael Levitt). 

The XGgrid agent executes the job and generates the results. 

The web application keeps on querying the controller for results.  The controller 

finally fetches the results from the agent and stores them in the temporary directory 

that it generates in the first place. 

The results thus generated are displayed as links on the webpage. 

The links for the output folder are generated on the webpage.  

2.3) Tools & Methods 

The basic idea of the web application is to use the executable (encadv6lg.exe) to minimize 

the protein file. The web application is built on PHP (Pre Hyper text Processor), Apple 

Xgrid Technology, Unix shell scripts. 

PHP (Hypertext Preprocessor)  

PHP is widely used general purpose scripting language which was designed for developing 

dynamic web pages. The PHP code between the php tags in php page with html content 
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gets interpreted by php web server.  PHP is available as an open source and it supports 

mostly all widely used operating systems. 

Apple XGrid Technology 

The field of bioinformatics and computational biology are emerging as an important 

discipline for research and industrial applications. The grid computing techniques are very 

useful to reduce time complexity involved in huge genomic data projects and large scale 

distributed applications.   Apple has introduced the XGrid software (a proprietary software 

which implements distributed computing protocol) which was developed by Advanced 

Computation Group under supervision of Apple.  XGrid was used for the jobs as each of 

them were time consuming. The XGrid architecture is outlined in Figure 12. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
figure 12: Xgrid architecture 
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The XGrid works as follows,  

A client submits a job to the controller. 

The controller looks for the agent with status “available” .The “available” status 

indicates that the agent has free processors and is ready to work on the job. 

The job is then sent to that agent by the controller. 

The agent completes the job and stores the results in the XGrid folder, which can be 

obtained from XGrid command line utility. 

2.4) Results 

The web application was able to take the input file pbd/ent files.  There is a validation 

system that only accepts pdb/ent files while rejecting other extensions. The input pdb file 

is sent to XGrid to perform minimization. The screen shot for the web server is as follows. 

 

 

 

 

 

 

 

 

 

 

  
Figure 13: The Home page for Protein refinement server 
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2.5) Future Work 

The web application can be extended with some user friendly features. The application is 

now capable of generating results on the webpage.  The user must wait for the results for 

some time (until the minimization is done). In few cases if the grid is filled the job has to 

wait for a substantial amount of time. The other problems are connection problems, if the 

client waiting for execution of the minimization process has some network problems then 

the client fails to get results, though the job has successfully completed. The solution for 

both of these problems is to have an email system implemented on server side where the 

user inputs his pdb to the web server and provides his email id to the server. Later after the 

job gets completed the server emails the results to the user.  

 

 
Figure 14: The webserver showing the links for the refined protein 
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CHAPTER 3: REFINEMENT OF NEAR-NATIVE MODELS OF 
MEMBRANE PROTEINS 

3.1) Introduction 

The computational prediction of the structures of proteins that span the cellular membrane 

is still in its infancy relative to prediction of the structures of water-soluble proteins.  

Prediction of membrane protein structures is a particularly important endeavor, since they 

are important biological drug targets, and since the number of experimental structures of 

membrane proteins relative to water soluble proteins is vanishingly small, as a result of the 

inherent difficulties in working with these molecules experimentally.  Computational 

prediction methods represent an alternative to expensive, time consuming, and often 

difficult experimental methods.  In this work we test the ability of common molecular 

mechanics potential functions (AMBER99 and AMBER03) and a hybrid knowledge-based 

potential function (KB_0.1) to refine near-native structures of membrane proteins in vacuo. 

We employ the technique of potential energy minimization to a set of 88 native membrane 

protein structures to determine the extent to which they are perturbed away from their 

native, experimental structures and show that, for the majority of the proteins in our 

dataset, this technique does not significantly alter the structure, even in the absence of 

treatment of explicit or implicit membrane. As a more stringent test, large sets of near-

native decoys were generated for each of the 88 membrane proteins using the technique of 

normal-mode perturbation.  This technique was employed to sample the configuration 

space around the native state as evenly as possible. 

The mean percentage improvement in Ca-rmsd (root mean square distance of the 

coordinates of the backbone a-Carbons) of the decoy sets (averaged over all 88 proteins) 
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was 4.50% for KB_0.1, 3.97% for AMBER99 and 4.75% for AMBER03.  We conclude that, 

while all three potentials are able to generate a modest improvement of the decoys, they 

clearly are able to draw near-native structures toward the native state rather than away 

from it for most examples we tested even in in vacuo simulations.  More robust search 

methods can be used to greater improvement values, but also represent a significant 

increase in computational cost. 

3.1.1) Membrane Proteins – Importance and Difficulties 

Integral membrane proteins are defined by their ability to associate with, and span the 

plasma membrane of cells.  They differ from water soluble proteins in the nature of the 

amino acid sidechains on their exterior surface – water soluble proteins have a marked 

tendency to display polar, hydrophilic amino acids which interact favorably with water, 

whereas, in the transmembrane regions of integral membrane proteins, the side chains 

displayed are non-polar and hydrophobic, in order to interact with the non-polar 

hydrocarbon chains at the interior of the phospholipid bilayer.  This propensity to be 

associated with the bilayer makes it very difficult to work with these proteins 

experimentally, and the relative dearth of structural information for integral membrane 

proteins is the result. 

  There are currently ~63,000 experimental structures of water-soluble proteins in the 

Protein Data Bank (PDB), but only 246 (unique) structures of membrane proteins.  
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Figure 16 shows the count of membrane proteins structures over the last 25 years. The 

graph indicates that there has not been a considerable growth in number of structures 

signifying the fact that these structures are hard to work with and there is a great need of 

research to be done in this domain. 

3.1.2) Generation of Membrane Protein Dataset (Data Collection) 

The Membrane protein dataset was generated by collecting membrane protein files from 

the Stephen Whites Lab. Stephen Whites lab website has several membrane protein 

structures solved either by diffraction or NMR methods.  These protein files are in the form 

of PDB file format. The PDB file stores the 3-dimensional structural information of the 

protein (The pdb data is derived from X-ray crystallography, Nuclear Magnetic Resonance, 

and theoretical simulation. The pdb stores all the 3-dimesional co-ordinates of atoms in the 

proteins). The proteins initially collected were 301 membrane proteins. We have selected 

the proteins having single chain .The final set generated contained 88 proteins. 

 
Figure 15: Cumulative growth of membrane protein structural data 

(reprinted from website of Stephen White’s Lab, UC Irvine 2010) 
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1AP9.pdb 1JGJ.pdb 1QD5.pdb 2A65.pdb 2JMM.pdb 2ZFG.pdb 

1AT9.pdb 1K24.pdb 1QFG.pdb 2B2F.pdb 2JO1.pdb 2ZIY.pdb 

1BRX.pdb 1KMO.pdb 1QHJ.pdb 2B6O.pdb 2JQY.pdb 3B9W.pdb 

1BXW.pdb 1LKF.pdb 1QJ8.pdb 2BRD.pdb 2K4T.pdb 3B9Y.pdb 

1BY3.pdb 1MM4.pdb 1QJP.pdb 2C3E.pdb 2K73.pdb 3C02.pdb 

1C3W.pdb 1N9P.pdb 1QKP.pdb 2CFQ.pdb 2NR9.pdb 3DWO.pdb 

1C8R.pdb 1NQE.pdb 1SOR.pdb 2D1U.pdb 2O7L.pdb 3EFC.pdb 

1E12.pdb 1OKC.pdb 1SU4.pdb 2D57.pdb 2O9J.pdb 3EFM.pdb 

1FI1.pdb 1ORM.pdb 1T5S.pdb 2F1C.pdb 2OMF.pdb 3EMN.pdb 

1FQY.pdb 1P49.pdb 1THQ.pdb 2F2B.pdb 2OQO.pdb 3F3A.pdb 

1FX8.pdb 1P4T.pdb 1XIO.pdb 2GUF.pdb 2POR.pdb 3FWM.pdb 

1G90.pdb 1PNZ.pdb 1XQF.pdb 2H8A.pdb 2QDZ.pdb 3GD8.pdb 

1H68.pdb 1PRN.pdb 1YC9.pdb 2IC8.pdb 2QEI.pdb 3GJD.pdb 

1IH5.pdb 1PW4.pdb 1YGM.pdb 2JK4.pdb 2QJU.pdb  

1J4N.pdb 1Q9F.pdb 1YMG.pdb 2JLN.pdb 2UUH.pdb  
 
Table 1: Final set of pdb files used for minimization 

3.1.3) Generation of Near-Native Decoys 

What are decoys? 

In the protein’s conformational space there are lots of possible conformations a protein can 

assume. Based on the proteins conformational space and conformations we try to make 

similar conformations of proteins using computer which have some characteristics of 

native proteins called decoys [8]. 

 Generating all or few of the possible protein conformations by using several algorithms is 

called as decoy generation (Samudrala et al, 1999a).The decoy data sets, consists of a 

solved protein structure and numerous alternative native-like structures. Decoys are used 

for the testing, development of scoring functions and refinement process in protein 

structure prediction [8, 14]. The possible protein conformations are infinite, using validation 

methods only few of the conformations are selected thus reducing the search space.  
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There are few packages available to generate decoys like Decoys R Urs (Ram Samudrala 

and Michael Levitt) [8], ENCAD[44] packages.  We generated the decoy sets using ENCAD 

package. 

We use the Tirion3 method to calculate the low frequency normal modes of motion for the 

native structures. We then perturb the native structure along those low frequency normal 

modes. 

The total decoys sets were 97, one for each pdb file and a mean of ~504 near native 

structure decoys per set were generated. 

3.2) Methods/Tools 

3.2.1) Potential Energy Minimization / Refinement Process 

The Potential energy minimization is one of the earliest methods used for refinement of 

protein structures [35], the structures obtained from several modeling applications are 

refined to obtain a native like structures. The PEM is based on thermodynamic hypothesis   

“The native state of a protein is the one where its free energy achieves the global minimum” 

[1]. 

Test Criteria: 

 We test with various kinds of force fields if they are applied on the native proteins they 

should not perturb them as if the force field was a perfect energy function of protein then 

its global minimum should match with proteins native state. The idea of comparison and 

test criteria is based on the idea of Dr.Christopher Summa and Dr. Michael Levitt‘s “Near-

native structure refinement using in vacuo energy minimization”. Their work was on 

refinement of soluble proteins. Similarly now we apply this refinement process on the 
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membrane proteins. We compare and contrast the ability of different force fields to move 

the near native structure towards the native state [1]. To simplify this comparison we 

perform single refinement technique i.e., PEM in vacuo [1]. 

To setup comparison criteria between the force fields in vacuo we test 

The refinement process should not significantly perturb the native structure [1]. 

The refinement process should result in movement of near native structures towards 

native [1]. 

Considering the test criteria 1, it is weak because when a force field is applied on the native 

structure, it may reach a local minimum and stop there, here we cannot strongly say if the 

force field really doing a good job. But if we consider the criteria 2 we can have an idea of 

the movement near the native state, whether it is towards the native or away thus we could 

at least analyze if our force field is trying to make structures more like native or deteriorate 

them. In criteria 2 we can get a global picture of shape of the curve at the native state [1]. 

3.2.2) Force fields Employed/Tools 

GROMACS: 

GROMACS stands for GROningen MAchine for Chemistry Simulation.  Gromacs is a package 

which performs molecular dynamics by simulating the Newtonian equations of motion for 

systems with hundreds to millions of particles [42].  Gromacs is considered as optimized and 

fast software for molecular dynamics simulations.  Gromacs is a command line utility for 

UNIX based systems, but there are few user interface implemented by developers [7].   
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AMBER 03/99 Force Field 

Molecular dynamics is a computer simulation which calculates how a molecular system 

behaves over a time span [25]. Gromacs is a package which performs molecular dynamics 

simulation. These packages have built-in routines for energy calculations and minimization 

[19]. AMBER stands for Assisted Model Building with Energy Refinement. 

The amber force field package is a set of molecular mechanics force fields which can be 

applied on the bio molecules. For implementing the refinement process the force fields 

amber03, amber99 are applied on the proteins and observe whether these force fields have 

moved these structures towards the native structure or away from native structure. 

Work flow of the refinement Process 

The data used in this project was collected from Stephen Whites Lab .There were 97 pdbs 

and for each pdb decoys were generated and a mean count of decoys was ~504.Now based 

on criteria 2 we perform refinement process on these decoys. The refinement process 

involved writing lot of scripts in perl and c-shell which are explained in detail in the 

following workflow.   

1) For every pdb, decoys are generated and are stored in respective folder named with 

“pdbname_decoys”. 

2) The script files takes inputs as pdbfoldername and creates a job and submits to the 

XGrid 

3) XGrid checks if there are any agents available in the grid and sends the job for execution 

to the agent. 
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4) The agent starts executing the job. The script file initializes environment and calls 

minimize.pl to collect all pdbs and submit each one to the actual gromacs minimization 

script. 

5) The gromacs minimization script calls stripNonProtein.pl script to remove non protein 

elements from the pdb file. 

6)  The gromacs script calls a set of executables to perform minimization .Initially pdb2gmx 

is executed with arguments amber03/99 and pdb decoy name, pdb2gmx outputs .top, .gro 

which serve as input grompp, the outputs from grompp serve as input to trjconv. Finally 

after the execution of all the three the minimized output is obtained. 

7) After the minimization is done the minimized file is copied back to the decoys folder.  

According to criterion 2 the force fields are applied on the decoys to see their 

improvement/deterioration .According to criterion 1 way the same force fields are applied 

on the native structures to see how much the force filed is deteriorating the native 

structure.  
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Work Flow of the Refinement Process 

 
Figure 16: Work flow sequence diagram for protein refinement process. 



  

3.2.3)Knowledge Based /Molecular Mechanics Force Field  

The Knowledge based molecular mechanics potential derived from the equations proposed 

by Dr. Christopher Summa and Dr. Levitt in Figure 10 is used to refine proteins. The 

knowledge based molecular mechanics hybrid model was discussed in chapter 2 , we used 

the same method here to perform the energy minimization process. 

The workflow of the refinement process is similar to the amber03/99 refinement process 

but here the executable encadv6lg.exe is used to minimize the proteins. The executable 

encadv6lg.exe implements the Knowledge Based /Molecular Mechanics hybrid Force Field. 

  

3.3) Results 

3.3.1) How to compare protein conformations? 

There should be a method to compare our initial native conformation with refined 

conformation so that we know how much we have improved or deteriorated the structure. 

The measure used for such purpose is root mean square deviation [19].  

“The root mean square deviation (RMSD) is the measure of the average distance between the 

backbones of superimposed proteins.” [38] The rmsd for a protein is calculated for the C-α 

atomic co-ordinate and is represented by the equation. 

 

 

 

 

 

 
Figure 17: Root means square deviation equation (Reprinted from Wikipedia) 

Where δ is the distance between N pairs of equivalent atoms (usually Cα and sometimes C, N, O, Cβ). 
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3.3.2) Criterion 1: Energy Minimization of the Native Structures 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

For testing criterion 1 the energy minimization is applied on the native structures as 

starting point and find how much the native structure is affected. Each point in the graph 

(Figure 18) represents the native structure of one of the proteins in our dataset, and the 

Ca-RMSD after minimization using a particular potential function is shown.  A value of 0.0 

for Ca-RMSD indicates that the minimized structure is exactly the same as the native, 

experimental structure, which is the ideal case.  Lower values indicate better performance 

than higher values. The AMBER99, AMBER03, KB_0.1 potentials applied on the native 

structures show following results. 

 
Figure 18: Minimization of Native Membrane Protein Structures  
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 The mean deviation in rmsd for AMBER03 is 0.55 Å rmsd, AMBER99 is 0.53 Å rmsd and 

KB_0.1 is 0.54Å rmsd. This indicates that these force fields have not significantly 

deteriorated the structures.   

3.3.3) Criterion 2: Energy Minimization of the Near Native Structures 

For testing criterion 2 the energy minimization is applied on the near native structures as 

starting point and sees how much they have improved/ deteriorated when compared to the 

native structure. 

 

Figure 19: Near native minimization of Membrane Proteins 



  33 

  
 
 
 
The graph (Figure 20) represents the mean percentage improvement in Cα-RMSD for the 

near native structure model sets .If  the graph shows the bar in the left side  from 0.0%  for 

a protein it means that the structure has been improved, if it’s the right side then the 

structure has been degraded. 

The overall percentage improvement in Cα (c-alpha) rsmd with KB/MM was -4.50% 

Amber99 had a -3.97% while Amber03 had -4.75%. 

 

 

 

 

 

Figure 20: Near native minimization of Membrane Proteins 
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The top and worse performers with respect to the force fields are listed in the following 

tables 

 
The top performers with respect to force fields 

KB Amber99 Amber03 

1H68  -27.41834 
2UUH  -24.11730 
1JGJ  -21.73361 
1P49  -19.06765 
2POR  -17.28706 

1BRX -36.0340 
1QKP -32.9541 
2ZIY  -23.9361 
2C3E -23.1384 
1XQF-20.2731 

1BRX -37.8618 
1QKP -34.9888 
2ZIY  -31.0247 
2C3E -23.2400 
1XQF-21.2627 

Table 2: Top performers with each of the force field 
 
 
The worst performers with respect to force fields 

KB Amber99 Amber03 

1QFG  3.039096 
1YGM  3.810338 
2K73  4.442954 
1K24  5.646301 
2D1U  18.607957 

3FWM   3.75568 
2QDZ 6.30944 
2JLN 9.18768 
2BRD 23.28000 
2UUH 38.59200 

3FWM   4.23802 
2QDZ 6.75380 
2JLN 21.47155 
2BRD 23.27045 
2UUH 38.72682 

Table 3: Worst performers with each of the force field 
 
 
Structures improved: 

KB has improved 72 of 88 protein structures 

Amber99 has improved 67 of 88 protein structures 

Amber03 has improved 70 of 88 protein structures 
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3.4) Discussion 

The results show that three potential functions tested were able to refine the membrane 

proteins in our dataset using potential energy minimization.   Interestingly, the KB_0.1 

potential worked as well as, an in many cases better than, the traditional molecular 

mechanics force fields, despite having been derived using interatomic distance statistics 

from a dataset of water soluble proteins only. The study suggests that if a low resolution 

membrane protein fold has been found then we can use either traditional or knowledge 

based techniques to refine the membrane proteins.   

3.5) Future Work 

In addition to our work in this project we intended to test other energy functions 

(CHARMM, ENCAD, GROMACS, implicit solvent models) and test other algorithms for 

searching (local backbone moves, simulated annealing).  Improvements in decoys set 

generation such that each decoy is diverse to every other in a decoy set in a range of 

specific resolution and perform analysis on how the force fields behave. 
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