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Abstract 
 

 Previous work has shown D1/D2 requisite synergism can still occur in the striatum in the 

absence of action potentials.  Some nonclassical communication such as gap junctions may be 

allowing the segregated dopamine (DA) receptors to interact to produce stereotyped motor 

activity.  Connexin-32 (Cx32) and connexin-36 (Cx36) were targeted for study due to their 

abundance in neural tissues and presence in the striatum.  Mice lacking either the Cx32 or Cx36 

gene and their respective wild-type littermates were compared on a climbing behavior task used 

to gauge their dopaminergic activity after receiving either saline, D1 agonist, D2 agonist, or both 

D1 and D2 agonists.  The results showed that D1/D2 requisite synergism was still intact in both 

strains of mice.  The Cx32 WT mice displayed significantly greater scores than the KO mice in 

the D1/D2 treatment.  The Cx36 mice did not display a significant genotype difference, but a 

trend was observed with the KO females having larger scores relative to WT females or to males 

of either genotype. 
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Introduction 
 

 Dopamine (DA) is a neurotransmitter that became a topic of research when it was first 

discovered in 1959.  The highest concentrations of DA are found in the brain, specifically in the 

basal ganglia, midbrain, and hypothalamic regions (Carlsson, 1959). Since its discovery, a broad 

array of functions has been related to DA including movement, motivation, attention, 

reinforcement, and cognition (LaHoste and Marshall, 1996).  Disruptions in the DA system play 

a role in the development of many perplexing human ailments.  Disorders such as schizophrenia, 

Parkinson’s disease, and attention-deficit/hyperactivity disorder all show an abnormality 

regarding DA function (Majovski et al., 1981; LaHoste et al., 1996).   

 Dopamine’s role in motor control has been examined for many years due to its well-

documented depletion in Parkinsonian patients, who display abnormal motor behaviors, such as, 

tremor, rigidity, akinesia, or postural abnormalities (Maier-Hoehn, 1992).  Those with 

Parkinson’s disease become DA-deficient in the striatum, the main input structure of the basal 

ganglia, where 80% of the brain’s DA is found.  The deficiency was found to be related to a 

gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) 

(Hornykiewicz, 1966).  The striatum and SNpc are both crucial structures within the basal 

ganglia that influence movement.   

Dopaminergic pathways 

There are two major dopaminergic pathways that follow a dorsal or ventral 

mesotelencephalic route.  The ventral or mesocorticolimbic pathway, originating in the ventral 
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tegmental area (VTA; A10), terminates predominantly in the nucleus accumbens, olfactory 

tubercles, medial caudate-putamen, and prefrontal cortex (Fuxe et al., 1985).  

The DA projections to the nucleus accumbens are strongly implicated in having a role in 

the addictive properties of drugs of abuse (Bozarth and Wise, 1983; Kuhar et al., 1991) as well as 

in reinforcement in general (Wise and Rompre, 1989).  The dorsal or nigrostriatal pathway is the 

most pronounced dopaminergic pathway in the brain, and its normal functioning is essential for 

motor control (Hornykiewicz, 1973; Feldman et al., 1997).  The nigrostriatal pathway is 

composed of dopaminergic fibers originating in the SNpc, that project primarily to the caudate 

and putamen (Fuxe et al., 1985).  The neuronal makeup of the structures in this nigrostriatal 

pathway provides clues to understanding the pathway’s function.   

Basal Ganglia 

The basal ganglia are made up of a group of brain structures that affect behavior, 

especially voluntary movement (Fig. 1).  The striatum is the main structure within the basal 

 

 

 

 

 

 

 

 

 

 
        

 
 
Figure 1.  Schematic representation of the basal ganglia.  Dopaminergic neurons of the SNc have either 
inhibitory or excitatory effects on striatal projection neurons depending on the postsynaptic DA receptor.  
The main output structure of the basal ganglia is the SNr, which facilitates behavior when it is inhibited.   
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ganglia, and it has three components: caudate, putamen, and nucleus accumbens.  (In rodents the 

caudate and putamen are fused and therefore referred to as the caudate-putamen (CPu)). About 

90-95% of the striatum is made of GABA-ergic medium spiny neurons whose axons project 

outside of the striatum.  The remaining 5-10% of striatal neurons consists of large aspiny 

cholinergic and medium-size GABA-ergic interneurons whose axons do not exit the striatum 

(Gerfen, 1992).  Other structures of the basal ganglia include the globus pallidus (GP), the 

substantia nigra pars reticulata (SNr) and the subthalamic nucleus.  

Through its connections with other brain structures, the basal ganglia form a loop that 

modulates cortical activity. The main input to the basal ganglia comes from the cerebral cortex, 

and the basal ganglia’s main output is to the cerebral cortex via the thalamus (Herrero et al., 

2002).  

Multiple dopamine receptors 

All DA receptors use guanine nucleotide binding proteins (G-proteins) to effect change 

intracellularly.  In most cases, adenylyl cyclase (AC) is the second messenger involved in DA 

receptor activation.  Kebabian and Calne discovered that two different families of DA receptors 

(D1, D2) existed.  The D1 family of receptors is coupled with stimulatory G-proteins (Gs) that 

stimulate AC activity, while the D2 family of receptors is coupled with inhibitory G-proteins (Gi) 

to inhibit AC (Kebabian and Calne, 1979).  Further study, using new cloning technology, has 

revealed the D1 family includes D1 and D5 sub-type receptors, and the D2 family includes D2, 

D3, and D4 sub-type receptors.  (The subscript numbers are used to indicate the specific type of 

DA receptor, while the normal type numbers indicate the family).  The D1 and D2 sub-type 

receptors are found in much greater abundance in the brain than the D3, D4, or D5 sub-types 
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(Sibley and Monsma, 1992).  The downstream actions of these receptors are still being theorized 

and researched. 

D1/D2 requisite synergism 

The D1 and D2 receptor families both serve an important function in regards to motor 

behavior.  Dose dependent effects on motor behavior can be observed after stimulation of DA 

receptors with indirect agonists (e.g., amphetamine), or with post-synaptically acting agonists 

that do not distinguish between D1 and D2 receptors (e.g., apomorphine).  Lower doses of these 

agonists elicit locomotion, whereas higher doses elicit species-specific patterns of stereotyped 

motor behavior (e.g., intense sniffing in rats).  Although not originally appreciated, it is now 

known that in normal rats co-activation of D1 and D2 receptors is required to elicit locomotion 

and motor stereotypy, which is a phenomenon now referred to as D1/D2 requisite synergism 

(Walters et al., 1987; White et al., 1988; LaHoste and Marshall, 1993).  Earlier studies showing 

locomotion and stereotypy following administration of an exogenous D2 agonist did not account 

for endogenous DA, which stimulates D1 receptors.  Such effects disappear when the 

endogenous DA is depleted by α-methyl-para-tyrosine (AMPT) (Braun and Chase, 1986) or by 

blockade of D1 receptors (LaHoste and Marshall, 1992).   Furthermore, the motor activating 

effects of a mixed D1/D2 agonist, like apomorphine, can be completely blocked by prior 

administration of either a selective D1 or D2 antagonist (Lewis et al., 1983; Mailman et al., 

1984).  This remarkable D1/D2 synergism is not restricted to the behavior of rats; it is observed 

in every species studied, including mice, the species of choice for genetic engineering. 

Mice respond to DA agonists with particular motor behaviors.  A high dose of 

apomorphine will induce stereotyped cage climbing behavior in mice when they are placed in a 

wire mesh cylindrical cage.  The mice will spend the majority of their time with all four paws on 
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the apparatus, rather than merely running up and down (Protais et al., 1976; Costall et al., 1978).  

This effect can be blocked by a selective D1 or D2 antagonist (Iorio et al., 1983; Moore and 

Axton, 1988).  Cage climbing behavior can also be produced by combined, but not separate, 

administration of a selective D1 agonist (SKF 38393) and a selective D2 agonist (quinpirole) 

(Moore and Axton, 1988).    Therefore, as in rats, concurrent activation of the D1 and D2 

receptors in mice seems to be required to activate motor behavior, indicative of D1/D2 

synergism. 

Synergism is a well-known concept in the field of pharmacology, whereby the effect of 

two agonists given concomitantly is greater than the sum of their effects when given separately.  

In the case of DA receptor interaction, the synergism is extreme because separate stimulation of 

each receptor sub-type elicits no response of its own.  The absence of a response is most evident 

 
Figure 2.  Dose-response curves representing the non-requisite and requisite forms of synergism.  Drugs A and B are 
given separately and concomitantly in each graph, with their dose-response curves superimposed.   

 

when immediate-early gene expression is examined (LaHoste et al., 1993).  Thus, the term 

“requisite synergism” has been introduced to distinguish this phenomenon from the traditional 

“non-requisiste” synergism (Fig. 2).   
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Breakdown in D1/D2 synergism 

The D1/D2 receptor interactions described above hold true under normal conditions, but 

the requisite D1/D2 synergism is broken down with prolonged DA depletion in the striatum.  

When reserpine, a catecholamine depleting agent, is repeatedly administered systemically to a 

normal rat, selective D1 or D2 agonists become sufficient to independently elicit heightened 

locomotion and stereotypic behaviors (Arnt, 1985; LaHoste and Marshall, 1993) and increased 

inhibition of cells in the caudate/putamen (Hu et al., 1990).  In mice as well, repeated reserpine 

treatment allows selective D1 or D2 agonists to induce motor activity (Pichler and Pifl, 1989; 

Ferre et al., 1994).  Another method of D1/D2 breakdown is the administration of the selective 

dopaminergic toxin   6-hydroxydopamine (6-OHDA) to the nigrostriatal pathway.  The resulting 

death of the dopaminergic neurons and depletion of endogenous DA liberates the respective DA 

receptors from their normal interdependence.  Following a unilateral 6-OHDA lesion, 

independent stimulation of D1 or D2 receptors will induce rotation (Arnt and Hyttel, 1984), 

which is indicative of an asymmetric breakdown in D1/D2 synergism.  In rats with bilateral 6-

OHDA lesions, the animals display heightened locomotor activity and motor stereotypy in 

response to D1 or D2 agonists alone (LaHoste and Marshall, 1992).  In addition to their effects 

on D1/D2 synergism, reserpine or 6-OHDA treatments result in a pronounced supersensitivity of 

the receptors to agonist.  Thus, there is an invariable association between the breakdown in 

D1/D2 synergism and DA receptor supersensitivity (Hu et al., 1990; LaHoste and Marshall, 

1992).   

D1/D2 receptor co-localization 

There are several theories which attempt to explain the mechanism behind D1/D2 

synergism and the supersensitivity related to its breakdown.  One theory relies on co-localization 
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of D1 and D2 receptors, which would imply that an intracellular cascade of events would be 

responsible for the change in sensitivity and breakdown in synergism (Fig 3A).  A different 

hypothesis, based on the assumptions of separate populations of striatal neurons containing D1 

vs. D2 receptors, would require some intercellular form of communication to take place.  Since 

medium spiny striatal neurons have dense axon collaterals that synapse nearby the soma, 

collateral inhibition might allow for this interneuronal communication (Fig. 3B).  Due to 

differing results, the cellular localization of the respective DA receptor types has been 

controversial.     

 

Figure 3.  (A) A neuron with both D1 and D2 type receptors is depicted.  (B) Two neurons expressing distinct 
subfamilies of DA receptors communicates via action potentials.  (C) Two neurons with distinct subfamilies of DA 
receptors communicate via gap junctions. 
 
Most in situ hybridization studies have shown that distinct sub-populations of striatal 

projection neurons express mRNA for mainly D1 receptors, while a different sub-population of 

striatal projection neurons express mRNA for mainly D2 receptors.  Additionally, these two sub-

populations differ with respect to their anatomical targets and to the peptide(s) that are co-

localized in these uniformly GABA-ergic neurons (Fig. 4). The D1–expressing neurons project 

primarily to the SNr (i.e., they are striatonigral and constitute the “direct” pathway depicted in 

Fig. 1) and co-express the peptides substance P and dynorphin, as well as GABA.  The D2–

expressing neurons project mainly to the GP (i.e., they are striatopallidal and constitute the 
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first step in the “indirect” pathway) and co-express enkephalin with GABA (Gerfen, 1992; Le 

Moine and Bloch, 1995).  Immunocytochemistry at the electron microscope level using 

antibodies for D1 and D2 receptors also revealed distinct sub-populations of medium spiny 

neurons in striatum (Hersch et al., 1995).  Furthermore, receptor binding studies have shown 

preferential binding of D1 receptors in the SNr, where striatonigral neurons synapse, while the D2 

receptor binding alone is found in the GP where striatopallidal axons terminate (Harrison et al., 

1990; Richfield et al, 1989).   

 

                              
 
Figure 4.  Schematic representation of the CPu.  Only medium spiny neurons (which comprise 90-95% of 
striatal cell bodies) are shown.  The two major inputs to the CPu are the corticostriatal glutamatergic inputs 
and the dopaminergic nigrostriatal inputs.  D1 and D2 receptors are located on separate populations (with 
equal numbers) of medium spiny neurons that differ with respect to their anatomical projections and the 
peptide(s) that they co-express. 
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In seeming contrast to the D1/D2 co-localization evidence presented above, studies in 

which mRNA from single cells was amplified billions of times by multiple rounds of polymerase 

chain reaction (PCR) reported a sizable population of striatal neurons that co-express D1 and D2 

mRNA (Surmeier, 1992).  However, subsequent papers from these investigators suggest that 

while D1 receptors may be co-expressed with D3 or D4 receptors, they are rarely co-expressed 

with D2 receptors per se (Surmeier, 1996).  Similarly, D2 receptors are co-localized with D5 

receptors, but not D1 receptors per se.  When the initial experiments of Surmeier et al. (1992) 

used standard (single round) PCR (as opposed to multiple rounds), little co-localization of D1 

and D2 receptors was seen.  This finding is consistent with their subsequent work (Surmeier, 

1996) and with the in situ hybridization and EM-level immunohistochemistry studies (Hersch et 

al., 1995; LeMoine and Bloch, 1995).  Taken together, these results strongly support the 

hypothesis that D1 and D2 receptors are located on separate populations of striatal projection 

neurons, as indicated in Fig. 3B and 3C.   

Nonetheless, Surmeier’s studies raise the possibility that behavioral synergism could be 

due to D1/D3, D1/D4, or D2/D5 interactions within a given neuron since all previous studies relied 

on pharmacological agents that do not distinguish between sub-types of a receptor family.  To 

test this possibility directly, LaHoste et al. (2000) employed newly developed antagonists that 

are selective for D2, D3, and D4 receptors.  Interestingly, the use of selective D2, D3, and D4 

antagonists revealed that only D2 receptor blockage significantly reduced Fos immunoreactivity 

in the striatum (a reliable marker for combined D1/D2 activity in normal rats) (LaHoste et al., 

2000).  So, assuming the two main types of DA receptors (D1 and D2) are located on separate 

neurons and project mainly to separate areas, the mechanism allowing the neurons to interact, to 

bring about requisite synergism and supersensitivity, must be interneuronal.   
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Interneuronal communication 

 The most common form of interneuronal communication occurs at the synapse via action 

potentials.   Alterations in the number and frequency of action potentials are often a means of 

modulation for many neuronal circuits.  If D1 and D2 receptors reside on separate neurons that 

communicate via action potentials, thereby giving rise to D1/ D2 synergism, then blockade of 

action potentials should prevent D1/D2 synergism.  To test this hypothesis, LaHoste et al. (2000) 

administered the fast sodium channel blocker tetrodotoxin (TTX) intrastriatally to rats, and found 

that D1/D2 synergism persisted (as evidenced by Fos expression) despite blockade of action 

potentials.  Moreover, the observed c-fos activity in the absence of action potentials cannot be 

explained by an interaction between co-localized D1 & D3, D1 & D4, or D2 & D5 receptors, 

because the administration of selective D3 or D4 antagonists did not prevent Fos expression in 

amphetamine-treated rats, whereas a D2 selective antagonist did (LaHoste et al., 2000).     

Electrotonic Coupling via Gap Junctions 

An alternative explanation for the body of evidence described above could be that the D1 

and D2 receptors are interacting by means of gap junctions.  Gap junctions are made of two 

hemi-channels or connexons that link the cytoplasm of two cells.  Each cell produces its own 

hemi-channel consisting of a hexamer of connexin proteins.  Although each connexon can be in 

an open or closed state independently, when the two connexons are open, they allow electrical 

current and some small molecules to passively travel from cell to cell (Feldman et al., 1997).  

Electrotonic coupling via gap junctions in the CPu and nucleus accumbens have been shown to 

exist and to be modulated by different DA agonists and antagonists, as revealed by dye-coupling 

(O’Donnell and Grace, 1993; Onn and Grace, 1994).  The percentage of striatal neuron dye-

coupling increased dramatically in rats receiving apomorphine (from 17% to 82% of injected 
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cells) (Onn and Grace, 1994).  Both electrolytic and neurochemical DA-depleting lesions in the 

striatum, treatments that would be expected to result in a breakdown in D1/D2 synergism and 

agonist supersensitivity, resulted in an increase in dye coupling between striatal neurons when 

compared to control animals (Cepeda et al., 1989).  Furthermore, gap junctions in the retina have 

been known to be modulated by DA, which seems to be the mechanism for light and dark 

adaptation (Godley and Wurtman, 1988; Hampson et al., 1992; He et al., 2000).  So, gap 

junctions, specifically their constituent parts called connexins, have garnered newfound attention 

in the field of neuroscience.   

The identification of different connexin gene sequences has allowed researchers to 

localize their primary sites of expression using various in vitro techniques.  In particular, 

connexin 32 (Cx32) and connexin 36 (Cx36) have been cataloged in rat and mouse striatum 

(Matsumoto et al., 1991; Condorelli et al., 2000).  Cx32 is most prevalent in the liver, but it is 

also found in the retina, primarily in oligodendrocytes (Dermietzel et al., 1989).  Cx36 is found 

exclusively in neurons in the brain, particularly in the inferior olive, retina, and olfactory bulbs, 

but also in striatum (Condorelli et al., 2000; Rash et al., 2001).  Recently, it has been discovered 

that Cx36 is essential for the propagation of rod-mediated signals in the retina of mice (Deans et 

al., 2002).  These two connexins are prime targets for research involving plasticity in the striatum 

concerning DA activity.  So, DA-depletion in the striatum leads to:  independence of D1/D2 

receptors to activate motor stereotypy; independence of D1/D2 receptors to allow D1 agonists to 

induce c-fos expression; and increases in dye-coupling and connectivity in the striatum. 

Hypothesis and Rationale 

 The evidence described above suggests that connexins may play a role in D1/D2 

synergism in the striatum. These connexins (Cx32,Cx36) are abundant in neural tissue.  
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Depletion of DA in striatal tissue, which would normally bring about a breakdown in D1/D2 

synergism in a rodent, leads to increases in gap junction dye coupling.  Therefore, mice which 

have been genetically engineered so as not to express Cx32 or Cx36 proteins should behave 

differently than their wild-type littermates on a behavioral test, after separate or concomitant 

administration of selective D1 and D2 agonists.  Climbing behavior in mice has shown to be a 

consistent indicator of DA activity, and is an easily observable and quantifiable form of 

behavior.  I hypothesize that genotype differences (i.e.,   -/- or +/+) between littermate mice of 

either Cx32-engineered or Cx36-engineered strains, will show behavioral differences with 

respect to stereotyped motor behavior (climbing) elicited by separate or combined D1 and D2 

receptor stimulation. 
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Methods 

Animals 

Using homologous recombination, Paul & Willicke and their colleagues generated 

founder mice in which either the Cx32 or Cx36 gene was “knocked out” (Nelles et al., 1996; 

Deans et al., 2001).  As is standard procedure, embryonic stem cells from mice of strain “129” 

were implanted into blastocysts of pregnant female mice of the strain C57BL/6.  The Cx32 and 

Cx36 transgenic mice used in these experiments were bred at the University of New Orleans, in 

the Department of Psychology rodent colony.  The original male and female breeders used to 

start the colony were generously donated by Dr. David L. Paul (Harvard University).  The Cx36 

gene is located on autosome 2, thus breeding of heterozygous males and females yields a 

complement of two homozygous genotypes (both wildtype (WT) and knockout (KO)) and a 

heterozygote (Het) genotype.  Due to the location of the Cx32 gene on the murine X 

chromosome, males only possess one copy of the gene.  Therefore, males can be either wildtype 

or hemizygous for the Cx32 knockout allele, but the hemizygotes are equivalent to the autosomal 

homozygotes for the knockout allele since no Cx32 protein is made. 

 Because of the diversity of genotypes present in every litter of offspring, each mouse pup 

must be subjected to “DNA fingerprinting” for the gene of interest.  After weaning, each mouse 

was genotyped using genomic DNA purified from tail biopsies taken under anesthesia.  Tail 

biopsies were digested overnight at 55°C in proteinase K.  After centrifugation, an equal volume 

of isopropanol was added to the supernatant to precipitate high molecular weight genomic DNA.  

Genomic DNA for each mouse was amplified by PCR using the following protocol:  1) for each 
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connexin gene (i.e., Cx32 or Cx36), a cocktail was made containing: 10X buffer, 25 mM Mg++, 

2.5 mM dNTP’s, a 3’ primer that is common to both WT and KO alleles, a 5’ WT-specific 

primer, and a 5’ KO-specific primer at prescribed concentrations; 2) the cocktail was distributed 

equally into individual tubes; 3) 0.5-1 µg of the genomic DNA for each mouse was added to a 

single tube, along with Taq polymerase; 4) the tubes were then placed in a thermocycler (set for 

30 cycles) to amplify the DNA.  After amplification, the DNA was analyzed using gel 

electrophoresis in a 1% agarose gel.  Genotype was determined by the presence of a WT and/or 

KO band in each lane of the gel (Fig. 5).  Adult male Cx32–deficient (Cx32 KO) mice (n=12) 

 

Figure 5. An agarose gel displaying the different bands of DNA amplified by  PCR for the Cx36 mice sampled. Lanes 
1, 3, and 5 are examples of the three possible genotypes:  Lane (1) shows a heterozygous mouse, which possesses one 
KO allele and one WT allele;  Lane (3) shows a KO mouse, which is homozygous for the transgenic Cx36 gene;  Lane 
(5) shows a WT mouse, which is homozygous for the normal Cx36 gene. 
 

and their wildtype (Cx32 WT) littermates (n=12), along with adult male and female Cx36-

deficient (Cx36 KO) mice (n=12) and their wildtype (Cx36 WT) littermates (n=12) were used in 

this experiment.  The mice weighed between 20-30g at the beginning of the study, and were 

between 2- to 5-months old.  They were group housed at 3 – 10 mice per same-sex cage, and 

they were kept on a 12-hour light/dark cycle from 7:00 am – 7:00 pm, with free access to food 

and water.  All the mice were maintained and used in accordance with the guidelines for animal 

Wildtype band 

Knockout band 
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care and experimentation established by the National Institutes of Health and the University of 

New Orleans Institutional Animal Care and Use Committee (approved protocol #024).   

Apparatus 

 There were six separate cylinders (36 cm high, 18 cm diameter, 1 cm mesh size) in which 

the mice were tested simultaneously.  The cylinders were composed of a plastic mesh material.  

The tops of the cylinders were covered by cardboard, with bedding material spread along the 

bottom.  While in the cylinders, the animals’ climbing behavior was recorded by a video camera, 

and later viewed for quantification by two observers blind to the conditions.  The experiment was 

set up in an isolated room to minimize outside stimuli that might influence the animals.   

Drug treatments 

   Climbing behavior was observed following each of four DA receptor stimulation 

treatments:  A) control, B) D1 receptor stimulation, C) D2 receptor stimulation, D) D1/D2 

receptor stimulation. All mice were tested under all agonist conditions using a Latin square 

design.  Each treatment/test was separated by one week.   As seen in Figure 6, the heterotypic 

antagonist was used to ensure agonist stimulation of only the intended DA receptor subfamily.  

This was necessary in order to block any endogenous DA from binding with the D1 or D2 

receptors.  Agonist injections were given fifteen minutes after antagonists, at which time the DA 

antagonists had reached blood concentrations capable of blocking >99% of their specific 

receptor.  For agonist stimulation of D1 receptors alone, the D2 antagonist eticlopride (0.1 

mg/kg, i.p.) and the D1 agonist SKF 38393 (30 mg/kg, i.p.) were administered.  For agonist 

stimulation of D2 receptors alone, the D1 antagonist SCH 23390 (0.1mg/kg, s.c.) and the D2 

agonist quinpirole (1.6 mg/kg, i.p.) were administered.  The D1/D2 stimulation group received 

an initial injection of saline (10 mg/kg), followed by combined administration of SKF 38393 (30 
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mg/kg, i.p.) and quinpirole (1.6 mg/kg, i.p.).  The control group received two saline (10 mg/kg) 

injections at comparable times to the other groups.  All drug injections were administered in a 

volume of 10 ml/kg of body weight. 

 

Figure 6 (a.) The D2 agonist enters the synapse in the presence of endogenous DA.  The postsynaptic neuron 
experiences D1 and D2 receptor activation.  (b.)  The D1 antagonist is administered prior to the D2 agonist, thereby 
preventing endogenous DA from activating the D1 receptors.   
 

Procedure 

 The mice remained in the cylinders for a total of ninety minutes, with a climbing 

behavior score being taken every five minutes.  Their scores were based on the number of paws 

the mice had on the mesh cylinder at a given moment.  The scores could range from 0 (no paws 

on cylinder) to 4 (all paws on cylinder) (Protais et al., 1976).   

 First, each mouse was placed in a cylinder for fifteen minutes to establish a baseline of 

climbing behavior.  Then, the mice received their first injection (antagonist or saline), followed 

by another fifteen-minute period of observation.  Finally, the second injection (agonist(s) or 

saline) was administered, and the mice remained in the cylinder for the remaining sixty minutes 

of the session (See Table 1).  The experimenter was only present in the room at the time of 

injection to minimize variability in the animals’ behavior.   
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Table 1. Time Course for each Session 

 0 – 15 min. 15 – 30 min. 30 – 90 min. 

DA Receptor(s) 
stimulated 

Placed in 
cylinder First Injection Second Injection 

None -- Saline Saline 

D1 only -- Eticlopride SKF 38393 

D2 only -- SCH 23390 Quinpirole 

D1 + D2 -- Saline SKF + Quin. 

 

Data Analysis 

Data for each strain of mouse was analyzed separately.  Climbing scores were subjected 

to a mixed-design three-way analysis of variance (ANOVA) with one between-subjects factor 

(genotype) and two within-subjects factors (drug treatment and time).  Significant main effects 

were further analyzed by Newman-Keals post-hoc tests; significant interactions were analyzed 

by performing tests of simple effects.  All statistical analyses were performed on SPSS for 

Windows (Version 11.0). 
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Results 

Connexin32 mice 

Time post-agonist was not a significant factor in any analysis; therefore, climbing scores 

were averaged across time points for all subsequent analyses.  Regardless of genotype, Cx32 

mice showed stereotyped climbing behavior only following combined D1/D2 stimulation (Figure 

7).  A 2 x 4 (Genotype x Drug Treatment), mixed, repeated measures 
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ANOVA revealed a significant main effect for Drug Treatment, F(3,66) = 74.51, p < 0.0001, a 

significant main effect for Genotype, F(1,22) = 5.46, p < 0.025, and a significant Drug x 

Figure 7.  Climbing scores across time under all treatments for Cx32 WT(blue) and KO(pink) mice.  The 
arrows indicate the times of the first(green) and second(red) injections. 
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Genotype interaction, F(3,66) = 6.66, p < 0.01.  Post hoc Newman-Keuls tests on the Drug 

Treatment effect showed that the combined agonist group differed significantly from all other 

agonist or saline treatments, none of which differed significantly from each other (p < 0.05). 
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Tests of Simple Effects showed that the significant interaction results from the fact that Cx32 

KO mice displayed lower climbing scores compared to their WT littermates when given 

combined D1/D2 stimulation but not following any of the other drug treatments (Figure 8).   

Connexin36 mice 

Identical analyses to those performed on time-averaged climbing scores for Cx32 mice 

showed that, regardless of genotype, Cx36 mice showed sustained stereotyped climbing behavior 

only following combined D1/D2 stimulation (Figure 9).  A 2 x 4 (Genotype x Drug Treatment), 

mixed, repeated measures ANOVA revealed a significant main effect for Drug Treatment, 

F(3,66) = 3.88, p < .05, but no significant effect for Genotype, F(1,22) = 1.88, p = .184, n.s., or 

for a Drug Treatment x Genotype interaction.  As in Cx32 mice, post hoc Newman-Keuls tests 

on the Drug Treatment effect showed that the combined agonist group differed significantly from 

all other agonist or saline treatments, none of which differed significantly from each other (p < 

0.05). 

Figure 8.  The average climbing score 
collapsed over time post-agonist in the 
D1/D2 treatment group for the Cx32 WT 
and KO mice. (* signifies p < .01) 

*
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 Strict adherence to the rules of inferential statistics requires that nonsignificant main 

effects or interactions not be analyzed further.  However, there was such a high degree of 

variability in the scores of Cx36 mice following combined D1/D2 administration that further 

investigation into this variability was determined to be of potentially important heuristic value.  

Although Genotype was not a significant factor, Cx36 KO mice displayed higher average 

climbing scores than did their WT littermates following combined D1/D2 stimulation (mean   

KO = 1.31; mean WT = 0.57) (Figure 10).  This trend is in the opposite direction to that 

observed in Cx32 mice.  Furthermore, almost all of this trend can be accounted for by higher 

climbing scores in female KO mice relative to their WT littermates or to males of either 

genotype, F(1,20) = 2.35, p = 0.14 (Figure 11). 

Figure 9.  Climbing scores across time under all treatments for Cx36 WT(blue) and KO(pink) mice. 

   agonist    saline       agonist  antagonist 

   agonist 
  saline  saline   

antagonist 
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 The observation described above draws attention to an additional anomaly in the data 

from Cx36 mice.  Re-examination of Figure 9 suggests that, although there was a significant 

main effect for Drug Treatment (but no significant interaction of this variable with Genotype), 

the control WT mice may not be showing significant climbing behavior even in response to 

combined D1/D2 agonists.   In fact, when WT mice are analyzed separately, there is no 

significant effect of Drug Treatment.  The same holds true for KO male mice.  These anomalies 

are addressed in the Discussion.   
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Figure 10.  The average climbing score collapsed 
over time post-agonist in the D1/D2 treatment 
group for the Cx36 WT and KO mice. The 
difference between the means is not statistically 
different. 

Figure 11.  Bar graph displaying the 
average scores (post-agonist) for male and 
female Cx36 WT and KO mice during the 
combined D1/D2 agonist treatment. 
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Discussion 

Despite its restricted anatomical distribution within mammalian brains, DA has a 

widespread influence on movement, motivation, attention, reinforcement and cognition.  

Therefore, disturbances in DA function play a major role in many behavioral disorders including 

Parkinson’s disease, depression, drug abuse, schizophrenia and ADHD.  A hallmark of normal 

dopaminergic function is the requisite synergistic interaction between D1 and D2 subtypes of 

DA receptors.  Previous work indicates that this synergism cannot be accounted for either by 

receptor co-localization within the same neuron or by classical interneuronal communication via 

action potentials.  These findings led to the main hypothesis of the present thesis which is that 

electrotonic coupling between neurons via gap junctions may play a role in D1/D2 synergism.  

Since gap junctions are composed of channels formed by specific proteins called connexins, we 

tested this hypothesis by examining D1/D2 synergism in mice with targeted disruptions of either 

of two connexin genes, namely Cx32 and Cx36.   

Of all the currently known connexins, Cx32 and Cx36 were prime candidates for research 

involving the dopaminergic system due to their prevalence in nervous tissue and their presence in 

the striatum.  The main finding of the present thesis research is that there is not an absolute 

requirement for Cx32  protein in the mouse brain for the manifestation of D1/D2 synergism; the 

role of Cx36 is less clear.  Regardless of  genotype, Cx32 mice displayed stereotypic climbing 

behavior only following combined agonist stimulation of D1 and D2 DA receptors.  Previous 

research has shown that combined administration of D1 and D2 agonists is required in normal 
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mice to elicit cage-climbing behavior (Moore and Axton, 1988).  The lack of Cx32 in these 

transgenic mice does not appear to change the requirement of concomitant D1 and D2 receptor 

stimulation, as D1 or D2 agonists given alone do not result in significantly different scores 

among the genotypes of either strain.  Nonetheless, there were genotype differences in the 

magnitude of the response to combined D1/D2 stimulation.    

Although the absence of Cx32 does not appear to eliminate requisite D1/D2 synergism, 

the behavioral response to combined D1/D2 agonist treatment was significantly diminished in 

mice lacking this protein compared with their WT littermates.  Thus, Cx32-constituted gap 

junctions may have a modulatory influence on this phenomenon.  The significant variation in 

climbing response between the KO and WT mice is likely related to the lack of Cx32, which 

could be directly affecting the synchronous firing of GABA-ergic interneurons in the striatum.  

A recent study by Sutor and colleagues (2000) found that Cx32 null mutants displayed a 

dysfunction of inhibitory synaptic transmission in neocortex, which was associated with 

decreased myelination (Sutor et al., 2000).  The neocortex provides the major input to the 

striatum (CPu) where excitatory corticostriatal synapses oppose DAergic inputs on the same 

dendritic spines of striatal output neurons; this could explain the decreased behavioral response 

to dopaminergic stimulation.  A similar effect at the level of the medium spiny striatal output 

neurons could also explain diminished behavioral response to DA agonists in Cx32 KO mice.  

As shown in Figure 1, DA-mediated behavior is affected by inhibition of SNr neurons.  DA, by 

facilitating the direct inhibitory striatonigral pathway and inhibiting the indirect striatofugal 

pathway inhibits SNr neurons, the main output of the basal ganglia.  If there were a deficiency of 

GABA-ergic inhibitory transmission emanating from the striatum, a diminished behavioral 

response to D1/D2 agonists would be expected.      
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With regard to Cx36 mice, a strict interpretation of the statistical analyses leads to the 

conclusion that these mice, like Cx32 mice, displayed intact D1/D2 synergism; however, unlike 

Cx32 mice, the behavioral response of these mice to combined D1/D2 stimulation did not differ 

between WT and KO mice.  Although there was no statistically significant difference between 

Cx36 KO and WT mice, there was a trend (p = 0.18).  Interestingly, that trend was opposite to 

the effect seen in Cx32 mice: Cx36 KO mice tended to show higher stereotypy scores in 

response to combined D1/D2 stimulation relative to their WT littermates.  The non-significance 

of this difference may be partially attributable to increased variability of behavioral scores within 

this strain, which, in turn, may be due to the fact that it was necessary to include both males and 

females in this study (Cx32 animals were all males).  Thus, there may be a genotype-by-gender 

effect.  An analysis of this potential effect requires reducing the sample sizes in each cell by half, 

thereby reducing the power of the statistical test.  Nonetheless, a nonsignificant trend (p = 0.14) 

for such an interaction was obtained.  Cx36 KO females showed climbing scores (to combined 

D1/D2 stimulation) that were nearly quadrupled relative to WT females or to males of either 

genotype (see Figure 9).  Indeed, most of the difference between Cx36 KO and WT mice, in 

general, can be accounted for by the increased scores in female KO mice.  Thus, Cx36-

constituted gap junctions may play a modulatory role in D1/D2 synergism, but if so, this effect 

would be restricted to female animals. 

In light of the trend described above, a further source of variation in the data from Cx36 

mice is the state of estrus of the female mice, which was not controlled for in the present 

experiment.  A number of studies have shown that the level of DA-stimulated behavior, such as 

rotations and stereotyped behaviors, can vary depending on the animal’s current stage of the 

estrous cycle (Joyce and Hartesveldt, 1984; Becker and Cha, 1989; Diaz-Veliz et al., 1994).  
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However, variability due to the estrous cycle alone cannot fully explain this disparity, since the 

WT females did not exhibit a similar effect.  The fluctuating reproductive hormones of the 

estrous cycle and the absence of Cx36 could be interacting to produce this effect.  Accounting 

for the estrous cycle in later experiments using daily vaginal lavages would allow greater 

consistency in behavioral testing, and an additional way to measure the interaction between the 

female reproductive hormones and genotype. 

    The observations described above draw attention to an additional anomaly in the data 

from Cx36 mice.  Re-examination of the data shows that the control WT mice may not be 

showing significant climbing behavior even in response to combined D1/D2 agonists.   In fact, 

when WT mice are analyzed separately, there is no significant effect of Drug Treatment.  The 

same holds true for KO male mice.  Does this mean that these animals do not have intact D1/D2 

synergism?  For several reasons, that conclusion cannot be drawn from the present data.  First, 

the absence of D1/D2 synergism is always manifested by a significant functional response to 

separate agonist stimulation of D1 or D2 receptors alone, an effect that is not seen in the present 

study.  Second, the ability of a D1 or D2 antagonist alone to induce catalepsy (lack of motor 

movement, muscle rigidity, splayed hind legs and “Straub” tail effect in rodents) is evidence of 

D1/D2 synergism since motor behavior is mediated by endogenous DA interacting with its D1 

and D2 receptors.  In the present study, all mice given either a D1 or a D2 antagonist invariably 

showed clear and obvious signs of catalepsy.  Thus, D1/D2 synergism was operative in all of the 

mice used in the present study, regardless of strain or genotype.   

A more likely explanation for the failure of Cx36 mice (except for female KO’s) to 

display significant climbing following combined D1/D2 agonist treatment is that these mice are 

subsensitive to DA agonists and that significant climbing behavior might have been observed 
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had higher doses been used.  (The doses used in the present study were chosen on the basis of 

pilot studies on control and Cx32 mice.)  This subsensitivity could be due to the residual 

presence of a significant number of 129-strain genes (see Methods), as mice of this strain are 

known to be subsensitive to DA agonists (Schlussman et al., 1998).  [Due to differing degrees of 

back-crossing of Cx32 vs. Cx36 mice with control C57BL/6 mice—which after many 

generations ultimately eliminates most 129 genes—it is not unlikely that such an effect would be 

present in one strain and not the other.]  Other factors that were difficult to control for in this 

experiment include possible developmental compensation for the lack of Cx32 or Cx36 in the 

KO mice.  As in all experiments using genetically engineered animals, the target gene is 

inactivated beginning at the single cell stage.  As the animal develops, absence of a given protein 

may elicit a compensatory developmental process, thereby minimizing or eliminating potential 

deficits.  In the present experiments, some degree of compensation for the lack of these gap 

junction proteins could have occurred developmentally and obscured the natural role of the 

protein.  This is a problem inherent in all knockout experiments; that is, the effect of knocking 

out a protein all throughout development does not result in the same phenotype as acutely 

blocking the effect of a protein in adulthood.  

 The present research hypothesizes that gap junctions modulate DAergic activity. 

Connexins 32 and 36 were chosen for study based on previous research indicating that they were 

the most likely known connexins to be involved.  However, gap junctions made up of other as 

yet undiscovered connexins may be the crucial ones in this regard.  The connexin family is large 

and new connexins are being discovered on a regular basis. 

 A potential solution to both of the problems described above would be to acutely 

manipulate the “open” or “closed” state of gap junctions.  However, no currently known 
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pharmacological agents can selectively block gap junctions without exerting simultaneous effects 

on other tissue that are unrelated to electrotonic coupling.   

 In summary, the present experiment found D1/D2 requisite synergism to be intact in mice 

with targeted deletions of Cx32 or Cx36 genes.  The degree of behavioral response to D1/D2 

stimulation was diminished in the Cx32 KO mice when compared to their WT littermates. Cx36 

KO mice displayed a trend toward higher climbing scores relative to Cx36 WT mice.  This trend 

is not significant, perhaps due to increased variability introduced by the inclusion of female mice 

whose estrous cycle could be interacting with the absence of Cx36 to produce elevated climbing 

scores.    
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