
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-21-2004

COTS GIS Integration and its Soap-Based Web Services COTS GIS Integration and its Soap-Based Web Services

Ying Wu
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Wu, Ying, "COTS GIS Integration and its Soap-Based Web Services" (2004). University of New Orleans
Theses and Dissertations. 82.
https://scholarworks.uno.edu/td/82

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ The University of New Orleans

https://core.ac.uk/display/303942771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/82?utm_source=scholarworks.uno.edu%2Ftd%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

COTS GIS INTEGRATION AND ITS SOAP-BASED WEB SERVICES

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

The Department of Computer Science

by

Ying Wu

Master of Engineering, Beijing University of Aeronautics and Astronautics, 1999

Spring 2004

 ii

Copyright 2004, Ying Wu

 iii

Dedicated to:

My parents, JingQun Wu and LiWen Ren

My Husband, Liang Xu

 iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Shengru Tu,

for his guidance, support and encouragement. His kindness and generosity made me feel

very comfortable working with him.

I also want to thank the members of my committee, Prof. Mahdi Abdelguerfi, Prof.

Ming-Hsing Chiu, for their priceless instruction, help and guidance on my graduate study.

I am also grateful to Dr. Shengru Tu and Dr. Mahdi Abdelguerfi for their kind

help and financial support of my research. Without their support and help, I would never

have been able to complete this project.

I deeply appreciate my husband, Liang Xu, for his greatest support of my life and

study. Greatest thanks for my parents, who have encouraged and guided me to

independence, thanks for their support and patience while I pursued this master’s degree.

 v

TABLE OF CONTENTS

LIST OF FIGURES..viii

LIST OF TABLES .. x

ABSTRACT...xi

CHAPTER

1. INTRODUCTION…………………………………………………………………….1

2. BACKGROUND……………………………………………………………………...4

2.1. Geographic Information Systems……………………………………………..….4

2.2. COTS software products for GIS………………………………………….……..5

2.2.1. ArcGIS—GIS Software family from ESRI………………………………6

2.2.2. GeoMedia—desktop GIS Software from Intergraph……………….…….7

2.2.3. Microstation— CAD program from Bentley……………………………..8

2.3. The New Orleans District of the U.S Army Corps of Engineers………………..8

2.4. The data resources and software applications at the Army Corps………………9

3. SYSTEM DESIGN…………………………………………………………………..11

3.1. The Project on System Integration…………………………..………………….11

3.2. Spatial Data Consolidation………………………………………….…………..12

 vi

3.2.1. Consolidating Vector Data Sets…………………………………….……13

3.2.2. Consolidating Raster Images……………………………………...……..14

3.3. Back-End Server Enhancement…………………………………………..……..16

3.4. Internet Map Services…………………………………………………...………23

3.4.1. Create and administer Web sites using ArcIMS……………..…………..23

3.4.2. Web-based spatial data search on arbitrarily organized file system..……24

3.5. SOAP-Based Web Services Framework…………………………………….….27

3.6. A Hybrid Web Service Architecture…………………………………..….…….29

4. IMPLEMENTATION……………………………………………………….….……31

4.1. Technologies Review……………………………………………………………32

4.1.1. ArcSDE Server and development API……………………………...……32

4.1.2. ArcSDE raster adapter and JNI…………………………………………..32

4.1.3. TIFF LIB and GEOTIFF LIB……………………………………………33

4.1.4. Web services……………………………………………………………..34

4.1.5. ArcIMS and ArcXML…………………………………………………....35

4.2. Use of the Shared Spatial Database……………………………………………..35

4.3. ArcSDE Adapters: Raster Adapter and Vector Adapter………….……………..37

4.3.1. ArcSDE Raster Adapter………………………………………...………..37

4.3.1.1.Coordinate System…………………………………………..……….38

4.3.1.2. Resolution level……………………………………….…………….40

4.3.1.3.Functions provided by the C DLL…………………………………...42

4.3.1.4.Implementation and performance analysis…………………..………45

4.3.2. ArcSDE Vector Data Adapter…………………………………..………..49

 vii

4.4. Deployment of ArcIMS…………………………………………………..……..50

4.4.1. Publish real data onto Internet……………………………………….…..50

4.4.2. Web-based spatial data search on arbitrarily organized file system……..52

4.5. Metadata Service deployment………………………………………………..….55

4.5.1. Setting up Metadata Service………………………………………..……56

4.5.2. How to create” Live” data …………………………………………...….58

4.5.3. Administration table………………………………………………….…..60

4.6. Implementing SOAP-Based GIS Web Services for MicroStation…………...…61

5. CONCLUSION…………………………………………………………...………….66

REFERENCE…………………………………………………………………………….68

VITA……………………………………………………………………….…………….71

 viii

LIST OF FIGURES

Figure 1...7

Figure 2... 13

Figure 3... 18

Figure 4... 21

Figure 5... 24

Figure 6... 25

Figure 7... 26

Figure 8... 28

Figure 9... 30

Figure 10... 36

Figure 11... 38

Figure 12... 40

Figure 13... 41

Figure 14... 42

Figure 15... 44

Figure 16... 47

Figure 17... 51

Figure 18... 52

 ix

Figure 19... 53

Figure 20... 54

Figure 21... 54

Figure 22... 55

Figure 23... 57

Figure 24... 58

Figure 25... 59

Figure 26... 60

Figure 27... 61

Figure 28... 62

Figure 29... 63

Figure 30... 64

Figure 31... 65

Figure 32... 65

 x

LIST OF TABLES

Table 1 .. 22

Table 2 .. 37

Table 3 .. 43

Table 4 .. 46

Table 5 .. 49

Table 6 .. 49

 xi

ABSTRACT

In the modern geographic information systems, COTS software has been

playing a major role. However, deploying heterogeneous GIS software has the

tendency to form fragmented data sets and to cause inconsistency. To accomplish data

consolidation, we must achieve interoperability between different GIS tools.

In my thesis project, I developed Vector and Raster Data Adapters to

implement the spatial data consolidation. I deployed ArcIMS to publish the spatial

data and metadata onto Internet. Furthermore, the SOAP-Based GIS Web services are

implemented to achieve the enterprise information system integration.

The contribution of ours in this project is we have streamlined the COTS GIS

server, the J2EE coordinator server, the web service provider components, and the

COTS web publishing tools into a hybrid web service architecture, in which the

enterprise information system integration, the web publishing, and the business-to

business online services are uniformed.

1

CHAPTER 1

 INTRODUCTION

Building systems from commercial off-the-shelf (COTS) products has been a

dominant practice in the information technology (IT) industry, as highlighted by the

COTS-based systems initiative at the Carnegie Mellon Software Engineering Institute [1]

and the International Conferences on COTS-Based Software Systems [2]. The advantages

of using COTS are numerous including market-tested reliability, market-approved

features, and an opportunity for expanding software capabilities and improving system

performance by the commercial marketplace. However, the claimed performance and

functionality of the COTS based systems are too often not realized in practice. Indeed,

there have been more failures than successes in using COTS software products [3]. The

mounting experience from both success stories and failings lessons shows that the

effective use of COTS software products in major software systems demands new skills,

knowledge and different techniques and processes [27]. The uses of GIS COTS software

products usually achieved better results. This is because of at least three reasons. First,

the requirements of GIS were typically well defined in specific GIS domains. Second, the

traditional uses of GIS tools were for a group of domain experts, or a department or a

project of controllable size. Third, the GIS COTS software products are usually built

based on scientific theories with rigorous mathematics. However, as more and more

2

geographic information systems become web enabled and enterprise-wide, the use of GIS

COTS products encounters the same challenges that the general COTS based systems are

faced with in system integration.

The leading GIS vendors such as ESRI and Intergraph are providing suites of

products that span from the traditional GIS databases and applications to web publishing

and global data sharing. While these efforts are undeniably fruitful and beneficial to the

users, integration of multiple systems constructed with COTS products of different

vendors has become keen for large institution users.

In this thesis, I report the design and experiments on integration of COTS

software for a large organization, where a number of GIS COTS software installations

including ESRI’s ArcInfo and Intergraph’s GeoMedia are in use and each of them has

established substantial data sets and user bases. The final goal of this enterprise-wide

project is to provide users of various types with harmonious views representing various

businesses. Technically, our strategy is first to consolidate the data sets into a commonly

shared database, then to deploy map publish software for the corporate web site and to

establish SOAP-based web services for internal third-party software users and external

business partners.

The foundation of our data consolidation efforts has been the spatial database

standard defined by the Open GIS Consortium (OGC). Since most GIS software vendors

have been supporting OGC’s standard, this effort has been straightforward for the vector

data sets. However, we have realized a significant gap in data consolidation: the

standards of raster images are all file formats rather than direct database storage.

Currently, the few advanced images database technologies are still proprietary. This gap

3

forced us to develop an adapter for the high-performance image map database of a

leading vendor, ESRI’s ArcSDE server. This adapter has made ArcSDE’s image capacity

accessible through the open standard protocol SOAP.

While web publishing and web services are welcome by various users, they must

be supported by a sufficiently capable server that enforces business rules and handles

hundreds of concurrent requests. For web map publishing, ESRI’s ArcIMS servers has

illustrated its very good capacity. However, for business-to-business and tool-to-tool web

services, we had to develop an unbiased solution. In my experiments, I have chosen the

industry’s best practice – the Java 2 Platform Enterprise Edition (J2EE) server. This

server abridges and coordinates between the COTS software and the database and the

service delivery components. The theme of this coordinating server is to improve

performance. Many traditional design principles for distributed software are applicable to

the design of web services, but also are more crucial to apply to the GIS web services.

In the remaining parts of this thesis, Chapter 2 provides the background about

GIS, the COTS GIS products used in this project, and the background information of this

project. Chapter 3 describes our design and architecture of the whole system. In chapter

4, I provide the details of the implementation. Chapter 5 concludes this research.

4

CHAPTER 2

 BACKGROUND

In this chapter, I describe the background of this project, Geographic Information

System (GIS) and the diversified GIS related businesses of the New Orleans District of

the U.S. Army Corps of Engineers (“the Army Corps” for short).

2.1 Geographic Information Systems

GIS is a tool used by individuals and organizations, schools, governments, and

businesses seeking innovative ways to solve their problems. Mapmaking and geographic

analysis are not new, but GIS performs these tasks better and faster than the old manual

methods do. The U.S. Geological Survey agency defines a GIS as a computer system

capable of assembling, storing, manipulating, and displaying geographically referenced

information, the data identified according to their locations [5]. A map in a GIS works

for a viewer by relating information from different sources, which are stored in separate

layers in its dataset. By storing all kinds of correlation data into GISs’ database according

to layers and locations, we can easily query, update and insert information from many

different sources in many different forms according to the different applications.

Geographic information systems work with two fundamentally different models,

the vector model and the raster model [5]. In the vector model, information about points,

lines, arcs and polygons is encoded and stored as a collection of two dimensional (2D) or

5

three dimensional (3D) coordinates. The location of a point feature such as a tree can be

described by a single coordinate. Linear features such as pipes and streets can be stored

as a collection of point coordinates. Polygonal features, such as buildings and blocks, can

be stored as a closed loop of lines. Vectors model is very useful to describe the logic

nodes with less detail information such as: a library in a university campus area. But it is

not easy to describe continuously varied information. The raster mode is good at this

way.

GIS has its special information structure named geographic references. There are

two types of geographic reference, the explicit geographic reference and the implicit

reference. The explicit geographic reference has the coordinate information. The implicit

reference has no such information; it only contains some information such as Zip code

and address. Both of geographic references allow you to locate features on the earth's

surface for analysis, such as a business or forest stand, and events, such as an earthquake.

2.2 COTS software products for GIS

According to the perspective of the Software Engineering Institute (SEI), a COTS

product is: sold, leased or licensed to the general public; offered by a vendor trying to

profit form it; supported and evolved by the vendor, who retains the intellectual property

rights; available in multiple, identical copies; and used without source code modification

[6].

 Using "Commercial Off-the-shelf" (COTS) software components to build

systems has been a means of developing software to reduce risk and cost and increase

functionality and capability of the system. Building a system based on COTS components

involves buying a set of pre-existing, proven components, building extensions to satisfy

6

local requirements, and gluing the components together. The advantage claimed is that

the COTS components are honed in the competitive marketplace resulting in increased

capability, reliability, and functionality for the end user over what would be available

from custom built components. COTS software components from different vendors are

expected to be integrated, applicable in a wide range of environments, and support

extensions and tailoring to local requirements.

Currently, leading vendors of GIS products such as ESRI and Intergraph as well

as smaller vendors such as Z/I Imaging often provide application programming interfaces

(APIs) or for users to connect their software products with others’. Many middleware

vendors are filling their gaps by providing adapters between popular software suites.

Their next step should be providing higher-level components such as J2EE-CA adapters.

This has been a trend in other general software industry, but has not been seen in the GIS

software communities [7].

In this project, we employed several leading GIS COTS products ArcGIS,

GeoMedia and Microstation which are mainly software tools for generating spatial data

for many GIS projects at USACE – New Orleans (US Army Corps of Engineers).

2.2.1 ArcGIS—GIS Software family from ESRI

The ArcGIS system is an integrated geographic information system consisting of

three key parts [8]:

• ArcGIS Desktop Software, an integrated suite of advanced GIS

applications.

• ArcSDE gateway, an interface for managing geodatabases in a database

management system (DBMS).

7

• ArcIMS software, internet-based GIS for distributing data and services.

ArcGIS provides a framework for implementing GIS which can be deployed on a

single desktop, or be distributed on a heterogeneous computer network of workstations

and servers. Users can deploy various parts of this system to implement a GIS of any size

– from a single-user system to large enterprise, and even societal GIS systems. It has the

architecture as shown in Figure 1.

Figure 1: The architecture of ArcGIS

2.2.2 GeoMedia—desktop GIS Software from Intergraph

GeoMedia is one of software products of Intergraph Corporation. It provides the

smart tools to capture and edit spatial data. You are able to use an industry-standard

relational database for maintenance so you can keep up to date; analyze data

8

relationships; turn information into precise, finished maps for distribution and

presentation; and put GIS data into the hands of users throughout the enterprise[9].

2.2.3 Microstation— CAD program from Bentley

Microstation is a full-featured 2-D and 3-D CAD program for MS-DOS,

Microsoft Windows, Macintosh, and Unix workstations from Bentley Systems, Inc.

created in 1984, MicroStation is a high-end package used worldwide in environments

where many designers work on large, complex projects. MicroStation Modeler is a

superset of MicroStation that provides solid modeling, and MasterPiece is MicroStation's

rendering and animation program.

The latest version of Microstation is a single, comprehensive platform for design

and engineering projects and is the foundation of the V8 Generation of software from

Bentley. MicroStation capabilities make it better suited for 3D modeling, data versatility,

workgroup productivity and application development [10].

2.3 The New Orleans District of the U.S Army Corps of Engineers

The U.S. Army Corps of Engineers (USACE) is the world's largest public

engineering agency. The New Orleans District of the USACE plans, designs, constructs,

operates and maintains federally sponsored navigation, flood control, hurricane

protection and water resources development projects in 30,000 square miles of south

central and coastal Louisiana. The district's jurisdiction includes more than 2,800 miles of

navigable waterways, 950 miles of levees and floodwalls, 12 navigation locks, six major

flood control structures, one freshwater diversion structure, and other projects to protect

and enhance the coastal and inland wetlands of Louisiana. The district regulates activities

9

in navigation channels and wetlands, and provides real estate and engineering consultant

support for other government agencies. The District helped make the ports of South

Louisiana number one in the nation in total tonnage and number one in grain exports, and

maintains 2,800 miles of navigable waterways including 400 miles of deep-draft channels

(45 feet deep from the Gulf of Mexico to Baton Rouge). The New Orleans District of

USACE operates 12 navigation locks. The District makes it possible to live and work

along the lower Mississippi River by building 950 miles of levees and floodwalls and 6

major flood control structures to protect against river and hurricane flooding. The

district's Old River Control Structure, northwest of Baton Rouge, prevents the Mississippi

from changing its course (to the Atchafalaya River Basin). It was such a diversity that has

forced the Army Corps to deploy heterogeneous GIS software suites, and motivated us to

seek a flexible architecture to integrate existing fragmented GIS components.

2.4 The data resources and software applications at the Army Corps

With so many diversified businesses, the Information Service at the New Orleans

District is supporting GIS applications, hydraulics numerical computation, spatial data

warehouse design, and spatial data integration. The data and software are used to provide

engineering management decision tools for short and long-term water resource,

navigation, and environmental projects. Currently, the internal data resources are of

various formats such as SWMM [11], UNET [12], LIDAR [13], geo-referenced images,

USGS DEM [14], HEC [15], and ASCII.

At the Army Corps, the GIS software tools are mainly COTS products made by

ESRI [16], Intergraph [17] and Bentley such as ArcInfo (ESRI’s flagship GIS toolkit for

desktops and workstations, including ArcView and ArcMap), GeoMedia (including

10

GeoMedia Professional, Intergraph’s flagship desktop GIS tool) and Microstation

(MicroStation Version 7 and Microstation v8, Bentley’s graphically oriented applications for

Architecure/Engineering/Construction professionals). Each software suite has a substantial

number of users running the daily businesses. In addition, some small software pieces are

also used for special purposes. They were written in different languages such as Java,

JSP, C/C++, and Tcl-Tk driven VTK toolkit [18, 19]. Currently, they access geographic

information by files rather than databases.

As the data and applications have been constantly growing and diversifying,

management of the data and applications become more and more challenging.

11

CHAPTER 3

SYSTEM DESIGN

3.1 The Project on System Integration

Most of the work reported in this thesis is based on a research project that

supports the system integration for the New Orleans District of the U.S. Army Corps of

Engineers (USACE). The USACE district plans, designs, constructs, operates and

maintains federally sponsored navigation, flood control, hurricane protection and water

resources development projects in south central and coastal Louisiana. Engineers and

analysts have been using a myriad disparate commercial software packages to manage its

GIS and CAD projects including products of companies such as Intergraph, ESRI, and

Bentley. A team of IT workers have been working on the initiative called Enterprise GIS

(E-GIS) aims at integration of all these software programs through a centralized means of

data access.

The final goal of our project is to establish an Enterprise Geographic Information

System (EGIS) that provides various users with consistent, responsive, secured and

global views across different businesses.

This project has gone through two phases listed below:

• Phase One: spatial data consolidation

12

• Phase Two: COTS GIS integrations

• Phase Three: web map services, SOAP-based web services, and back-

end server enhancement

Currently we are in Phase Three in which both proprietary and open-standard

cutting-edge technologies are involved. It turns out that this gradual chicken-little

approach has formed a systematic process toward the E-GIS’s goal.

3.2 Spatial Data Consolidation

Since the data sets are fragmented at the Army Corps, pulling out maps and data

sets from different databases or files is not automated and time consuming. As a result,

the data sets of some areas are no longer consistent. That is, the updates for the same area

spread over in multiple versions; no single version contains all the up-to-date data.

Learning from the lessons of having fragmented data sets, consolidating spatial

data was our first attempt toward the E-GIS. It helps reduce the overhead of managing

fragmented data sets, and guarantee data consistency and integrity. While consolidating

vector data sets were straightforward, doing so for raster images lacks supports from

industrial standards. I had to develop an adapter for ArcSDE server, the COTS product of

best practice, that manages raster images. In Phase One, we accomplished the

architecture in Figure 2.

13

Figure 2: Spatial Data Consolidation

3.2.1 Consolidating Vector Data Sets

To store the vector data sets originally managed separately by either GeoMedia or

ArcInfo into the same Oracle Spatial database can dramatically simplify the enterprise-

wide data management. Owing to the tremendous efforts on interoperability by the Open

GIS Consortium (OGC), most of the GIS vendors have made their products compliant --

capable of accessing and manipulating data stored in the OGC spatial database standard.

Oracle Spatial Database is a leading COTS product that fully implemented OGC spatial

database standard. In our project, the Oracle spatial database has taken a pivot role in

managing vector data sets. Since the ESRI’s ArcView and Intergraph’s GeoMedia are

both used at USACE, We have to be able to store the vector data sets originally managed

by either GeoMedia or ArcInfo into the same Oracle Spatial database. This was achieved

in Phase One. Having these two COTS products accessing the shared database directly,

8
(request)

(image)
 7

GeoMedia
Pro

attributes,
metadata,
…

 image
 hierarchy

geographic
vector data

shared
database

1

2

 adapter

ArcSDE

raster-based
images

(images)

other ESRI
products

3

4 5

14

the features of both COST projects such as catalog management can be leveraged to the

full extent. This can dramatically simplify the enterprise-wide data management.

Our initial experiments were very convincing. As its initial characteristics,

GeoMedia stores vector data sets in its data warehouse, a database. On the other hand,

ESRI’s products access databases through their spatial database engine, ArcSDE. By

connecting ArcSDE to GeoMedia’s warehouse database (an Oracle database), ArcView

could immediately display every map made by GeoMedia through ArcSDE without any

manual operation. Furthermore, ArcView’s catalog viewer could display every item that

GeoMedia’s catalog could display. In another experiment, we imported the vector map

files (called Shapefile) produced by ArcInfo into the Oracle database by using ArcSDE’s

importing capability. Then, with the “insert feature class metadata” command (a button

click), GeoMedia can access every piece of geographic information and feature data in

those maps, except for the high-level map descriptions.

3.2.2 Consolidating Raster Images

Traditionally, desktop GIS application tools all access images based on files.

However, as the geographic information systems grow to enterprise-wide and Internet

enabled, file-based image accessing has a number of disadvantages in supporting

geographical query processing. Especially for large images, transmitting the files often

unnecessarily slows down the response, when the user only needs to see a (small) part of

the image.

In the past, we defined a simple hierarchical structure and stored large images into

a database by partitioning the images into small blocks and recursively producing an

overview hierarchy consisting of equal-size overview images that cover multiple blocks’

15

areas. Accessing images is optimized by fetching the right size of the image (or overview

image) with the right resolution depending on the nature of the request. For example,

loading an image with multiple megabytes would cause substantial delay. With the

hierarchies in the database, the access delay will be kept under a reasonable threshold

because a request to view any part of the same image always results in a few needed

blocks to be delivered. This approach successfully supported a GIS web view service

[22]. The advantage of doing so is the elimination of any long waiting time for loading

large image files.

ESRI’s ArcSDE stores images in the database by decomposing images into 128

by 128 pixels. The entire process of constructing the overview hierarchies is completely

automated. Viewing any part of the images does not suffer from any tangible delay. By

storing the images in the same database that hosts the vector data sets, seamless

integration between vector and raster data sets is achieved easily. This is particularly

important, because vector maps are often projected over images. ArcSDE’s database

approach to storage of images represents the best practice in the industry. However, it is

not an industrial standard. Image format standards are all based on files.

GeoMedia handles images differently. The raster-based images are brought into

GeoMedia’s data warehouse but left out from the database. While projecting vector maps

over raster-based images is well supported, no performance optimization is provided.

By consolidating images in the same database, the image data integrity problem

can be naturally solved as we did with the vector data sets. Not only does this approach

open an avenue for accessing speed improvement, it also allows us to assemble images

across image file boundaries. These advantages are illustrated by ArcSDE. ESRI’s

16

software tools from desktop applications to web publishing exhibit data consolidation and

optimization. We chose to consolidate the raster data into ArcSDE Sever for web

publishing and web services. I have developed an adapter that allows other software

components including GeoMedia to retrieve images of any location, of any scope with a

proper resolution level in a minimum time. The details of implementation is given in

Section 4.3.1.

3.3 Back-End Server Enhancement

It has been clear that COTS software integration is more than sharing a database.

Different COTS components need to interact with one another, often through some

adapter. When the interactions happen in a large-scale system, service requests, responses

and the service delivery components such as the adapters must be well managed. We

have chosen the J2EE server technology as the mechanism for the back-end server

management.

The JavaTM 2 Platform Enterprise Edition (J2EE) defines an industrial standard of

a software framework for developing multiple-tier enterprise applications. The J2EE

standard intends to embrace resources with a component-based application model. The

J2EE framework provides implementation of many commonly required system-level

services including the database/data resource connections pooling service, the naming

service, the transactions management, the persistence management, and the security

management. Each of these services requires significant development efforts. The

application servers that implement the J2EE standard are called J2EE application servers.

J2EE application servers lift a great amount of burden from the developers and

17

integrators. As a result, they can focus on implementing business rules. The application

business rules are encapsulated in the Enterprise Javabeans (EJBs) [20].

One of the key capabilities of J2EE application servers is connection pooling.

Establishing a connection between systems is expensive in terms of time. The connection

pool creates and then maintains a desired number of connections. The expense to

establish connections is avoided by recycling old connections for new use. The popular

Java database adapter for relational databases, JDBC, is native to J2EE application

servers. Every J2EE application server provides JDBC connections pooling service.

However, for data resources (such as a GIS) that provide high-level information (such as

area maps), the J2EE application server does not know how to manage the connections.

To solve this problem, the J2EE standard includes the J2EE Connector Architecture

specification (J2EE-CA) as a protocol for non-relational data resources to be managed by

J2EE application servers [21]. The J2EE-CA adapters are implemented in methods

dependent on the data resource software such as a GIS. By encapsulating the application

software dependency in the adapters, all the other components in the system are

independent of the data resource software; this is a common practice. The unique

advantage of the J2EE-CA is that any data resource software can fully leverage the J2EE

application servers’ system-level services by making the adapter compliant to the J2EE-

CA. standard.

18

Figure 3: Interactions between the J2EE Connector Architecture components

A J2EE-CA adapter must communicate with three parties, the data resource, the

client applications, and the J2EE server shown in Figure 3 [21]. The adapter must be able

to access the data resource using the methods provided by the data resource software such

as a GIS product. Typical COTS GIS database software provides some application

programming interfaces (API). These APIs give the methods for the adapter to access the

data resource (Link 1 in Figure 3). The business applications must be able to access the

data resource through the adapter. The J2EE-CA recommends a set of optional common

client interfaces (CCI). In our implementation, we let the business applications request

data by XML messaging (Link 2 in Figure 3). These two aspects are common to all kinds

of adapters. The additional requirement for the J2EE-CA adapters is the system contracts

(Link 3 in Figure 3). The system contracts consist of three sets of Java interfaces for

connection management, transaction management, and security management. These

interfaces are not called by the client applications but by the J2EE application server. By

J2EE application server

EJBs
(business
application
components)

J2EE-CA
resource
adapter

Data resource
management
system, e.g., GIS 1

2
J2EE application
server’s system-
level services

4

3

Data
consumer

5

19

implementing these interfaces, the adapter submits the control to the J2EE application

server. Every J2EE-CA adapter must be deployed in the J2EE application server.

Typically, adapters are accessed by the business EJBs. Link 4 in Figure 3 indicates that

all the EJBs are managed by the system-level services, too. External data consumers such

as web servlets can access the adapter through an EJB or directly (Link 5 in Figure 3).

After we succeeded in the (image) adapter, we are now ready to layout the

architecture for developing the enterprise geographic information system, in which many

other GIS applications will be able to share the database. A true enterprise geographic

information system must also be able to integrate itself into the enterprise business

information systems. This trend has been recognized by Intergraph who has responded to

this requirement in their latest GeoMedia release [24]. As described in Chapter 2, the GIS

applications at the Army Corps is so much diversified that the need for a GIS services

manager is justified. Since the Army Corps anticipates a platform-neutral, open

environment, we have chosen a J2EE application server to host the GIS services manager

shown in Figure 4. This is a high-level architecture of the Enterprise GIS. Since we want

to leverage the existing COTS products’ capacities to the full extent, the GIS services

manager does not intercept the connections between the COST components and the

database. On the other hand, the manager facilitates data accesses for the other

applications such as the SWMM analyzer and LIDAR data rendering applications

mentioned in Chapter 2. Compared to Figures 2, there are many additional components in

Figures 4.

First, the “other applications” are considered in this architecture. These

applications may request any kind of GIS data and non-GIS data. Consequently, two

20

types of adapters are introduced. They are the GIS data adapter that fetches data from the

ArcSDE server and the standard JDBC adapter facilitates accessing non-GIS data.

Finally, a J2EE application server along with a companion web server are utilized to

manage a set of Enterprise JavaBeans (EJB) that encapsulate the business rules, as well

as three types of adapters including the GIS data adapter, the JDBC adapter, and the

image adapter (providing the same function as the adapter in Figure 2). Since the “other

applications” vary widely, we let them access the GIS information in a very flexible

protocol, HTTP. To shield the details of the data resources, “other applications” access

the Enterprise GIS through servlets, which in turn communicate with “session enterprise

beans” [20] (represented by item “EJB” in Figure 4). The explanations for the

connections are listed in Table 1.

Specifically, the connection pooling service is particular handy for our system.

Considering the development of the Enterprise GIS, the more enrichment of the GIS

applications and web publishing, the more Army Corps’ users and outside entities will

use the system. As a result, the backend system may be overwhelmed. Experience shows

that the most fragile spots are not in the database but at the connections between the data

resources and the applications [21]. For example, even though the adapter we made in

Figure 2 works fine with a few concurrent requests, it can be overwhelmed by many

simultaneous requests long before ArcSDE is drawn. As another example, when many

current requests coming from the “other applications”, multiple JDBC connections will

also be needed.

21

Figure 4: A Sketch of the Enterprise GIS

The solution is to have a pool of connections. As described above, J2EE

application servers have built-in connections pooling capability, and the adapter must

fulfill the J2EE-CA system service contracts. We have built a J2EE-CA adapter based on

the adapter described in Section 3.2.2. Among the J2EE-CA system contracts, we have

implemented the interfaces for the connection management. Even though the other

interfaces for the transaction management and security are left blank. The adapter could

be deployed into the J2EE application server and perform. Although all the vector data

and attributes in the GIS are accessible using the JDBC adapter, this kind of low-level

operation cannot sustain possible changes in the COTS products upgrading. For instance,

the vendor can slightly change the internal database table structures in their future release

 image
 hierarchy

attributes,
metadata,
…

geographic
vector data

raster-based
images

shared
database

other
ESRI
products

(images) (non GIS data)
14

6

ArcSDE

5

3

4

9

GeoMedia
Pro

2 7

1

8

Web
server

servlet

Other
applications

12
13 10 11

J2EE application
server

image
adapter

GIS data
adapter

JDBC
adapter EJB

22

in order to improve or enhance something. Then our integration would be broken. Thus,

the “other applications” access GIS data through the GIS data adapter which in turn

connects to the ArcSDE server using the ArcSDE API. In order for these two non-JDBC

adapters to submit the control of themselves to the J2EE application server, they have to

comply with the J2EE Connector Architecture and they must reside in the J2EE

application server. As a result, GeoMedia uses the image adapter through a servlet,

servelet-Image, in HTTP.

Currently, we are in the process of prototyping this services management system

using the J2EE application server technology.

No. explanation protocol
1 GeoMedia accessing geographic data Oracle Net8
2 GeoMedia accessing tables holding attributes and metadata Oracle Net8
3 ArcSDE’s database connection, it may access every GIS

information in the database.
Oracle Net8

4 ESRI products communicate with ArcSDE TCP
5 Loading raster-based images into ArcSDE (local)
6 Image adapter fetches images from ArcSDE TCP/IP
7 GeoMedia receives images from image adapter FTP
8 GeoMedia sends requests to image adapter HTTP
9 GIS data adapter fetches GIS information from ArcSDE TCP
10 Other applications receive non-GIS information from

servlet-non-GIS
HTTP

11 Other applications sends requests to servlet-non-GIS HTTP
12 Other applications receive GIS information from servlet-

GIS
HTTP

13 Other applications send requests to servlet-GIS HTTP
14 J2EE application server’s JDBC connection to the shared

database for non-GIS data
TCP

Table 1: Communications between Components of the Enterprise GIS

23

3.4 Internet Map Services

The tremendous growth in Internet use has resulted in an increased demand for

the delivery of geographic data, maps, and applications over the Internet. Many leading

GIS vendors developed their web solution and add it into their GIS product family, such

as Intergraph’s GeoMedia Web Map and Esri’s ArcIMS, to meet this growing demand.

3.4.1 Create and administer Web sites using ArcIMS

To support spatial data web publish for USACE, we deplyed ArcIMS (Internet

Map Service) from ESRI product family. ArcIMS is a GIS solution which allows us to

centrally build and deliver maps, data, and tools over the Internet. ArcIMS takes

advantages of the Internet technology that makes it possible to share information and data

with many users, either locally or around the world. ArcIMS is also a flexible and

scalable tool to publish maps and develop applications based on the complexity of the

needs.

 ArcIMS runs in a distributed environment and consists of both client and server

components as shown in Figure 5. The ArcIMS HTML Viewer and ArcIMS Java

Viewers are clientside components. On the server side, the ArcIMS server can provide

three different types of services. They’re Feature Service, Image Service and Metadata

Service.

The ArcIMS server can accept map request from Internet client. The IMS server

forwards the request to ArcSDE server that will in turn access the geo-spatial database

and retrieve the spatial data of interest. The spatial dataset is transmitted back to the IMS

server in a reverse direction and the IMS server will serve the client with a map.

24

ArcIMS provides four applications to help us create and administer web sites.

There are ArcIMS Manager, ArcIMS Author, ArcIMS Administrator, and ArcIMS

Designer. ArcIMS Manager is a Web-based application that supports the three main tasks

in ArcIMS—map authoring, Web site design, and site administration. These tasks can

also be completed using the other three applications.

Figure 5 : ArcIMS Architecture

3.4.2 Web-based spatial data search on arbitrarily organized file system

At USACE, most data are stored in the different file systems and different

computers. It is not easy for administrator to manage them. They need some approaches

for administrating the data in the file system. We developed a Web-based map search tool

for them. In this application, we take advantage of the HTML viewer of ArcIMS which is

a lightweight viewer employs JavaScript and Dynamic HTML. Java Servlet technology

was used to query metadata stored in database.

25

ArcIMS features largely in this approach. The ArcIMS Spatial Server is the

backbone of ArcIMS. It processes requests for maps and related information. When a

request is received, the ArcIMS Spatial Server performance one or more of these

functions shown in Figure 6:

• Image—creates image files from maps

• Feature—streams map features

• Query—searches for features matching search criteria

• Geocode—performs address-matching operations

• Extract—creates shapefiles from selected map features

• Metadata—publishes metadata

• Route—caculates routes between a set of two or more stops

Figure 6: ArcIMS Spatial Server

26

Figure 7: The architecture of web-based map search tool

The architecture of our application shows in Figure 7. The bounding coordinates

are sent to a servlet which will retrieve the data stored in database and get a list of maps

stored in the file system and located in the area we specified. The client can choose maps

from the list in HTML viewer. The viewer send the client’s request and ask ArcIMS add

the selected map onto the background as a dynamic layer. ArcIMS processes the request

and gets the information from the computer where the chosen spatial files are stored,

assembles them into the Image Service. Then retunes a new “snapshot” of map to the

client.

27

3.5 SOAP-Based Web Services Framework

In the following research, we extended our previous design by introducing Web

Service technology so that MicroStation or other GIS application in a distributed

environment can also access spatial data through ArcSDE. In effect, web Services

represent a widely accepted point-to-point communication protocol that connects a pair

of computational parties shown in Figure 8 (a). For nontrivial systems, behind each web

service is a backend system that fulfills the task. In front of each web service client is

typically an application that consumes the service. This application can be as simple as a

web browser or as complex as another GIS or CAD application suite. Figure 8 (b) depicts

a conceptual structure of such a web services system. The “service consumer” and the

“web services client agent” components are in the same local area network (LAN) or

even in the same computer; they may communicate in TCP. In our experiments, we used

Java RMI. Similarly, the backend system and the web services interaction component

typically locate in the same LAN. However, between the web services provider and the

web services client, we can only assume the SOAP/HTTP protocol because different

departments and external clients are to be involved in the system.

Conceptually, the web services provide us with another mechanism to construct

distributed computing systems. Many design principles for distributed software are

applicable to the design of web services, but also are more crucial to apply to the GIS

web services.

28

(a) The conceptual model of web services

(b) The web services model that includes the backend and front-end

Figure 8: The web service model

Compare to general purposed web services, GIS web service requires more

careful design due to at least three factors. First, services provided by GIS system

typically requires heavy CPU utilization for complex computation. Second, GIS services

are often heavy-duty software tools that traditionally stand-alone. Third, their moving

towards the web service era is lagged. For enterprise GIS, successful communications

between components are essential but not adequate. Performance should always be a

pivot consideration in the design for GIS web services system.

This wrapper web service is going to be developed by Java language and using

SOAP message to stream the output image data. The Java web service is going to access

a DLL library using the JNI (Java Native Interface). The DLL includes the methods that

can access the spatial dataset in the database through SDE server. There are only three

methods in the DLL, one is for establishing a connection to SDE server, the other is for

service
processing
layer

service
interaction
layer

web service provider

client
interaction
layer

service
consumer

web service client

(HTTP over the Internet)

soap request/response

response

request
backend
system

web
services
interaction
component

web services provider

response

request
web
services
client
agent

service
consumer

web services client

soap request/response

(HTTP over the Internet)

29

disconnect. The main method is the getRasterFile(), this method will be designed to

return a array of bytes to the caller. The web service will use this byte array to construct

the SOAP message.

3.6 A Hybrid Web Service Architecture

Over years, the software architecture of the E-GIS has evolved into a hybrid web

service architecture shown in Figure 9. In this architecture, the essential principle is to

consolidate all spatial data sets into a shared spatial database (an Oralce database in

particular). Enhanced by the ArcSDE Server, the raster images can also be stored in and

managed by the database. Our adapter allows us to connect the ArcSDE server to web

Service clients, in the standard SOAP protocol. By accommodating both the COTS

Internet Map Service software ArcIMS and SOAP-based web services in the web server,

we have not only full leveraged the features of ArcIMS, but also supplemented the COTS

with more flexible web service provider components. They can be used by both external

business partners and the other software tools that are not capable of accessing OGC

standard spatial data or ArcSDE images. When these web services are popular, the

management of the back-end server software must be scalable. Therefore, we have

introduced the J2EE server into the architecture in order to enhance the back-end service

performance. We believe this hybrid architecture can endorse performance, scalability

and flexibility, while minimizing software development efforts by using COTS products.

30

Figure 9: The integration of COS GIS System

31

CHAPTER 4

IMPLEMENTATION

Our approach to enterprise GIS system is to put spatial data into a centralized

database system and make the dataset sharable across heterogeneous GIS desktop

software. We have implemented the vector data integration using Oracle spatial

technology. In our system, the raster data sets are also saved in the Oracle database. ESRI

Company provides raster data import and export functions to its own desktop software. In

order to support raster dataset sharing for non-ESRI client, we developed an adapter that

conveys the raster dataset import and export functionality of ArcSDE server in a set of

interfaces for external components. The adapter was developed using C language and

encapsulated into dynamic link library package for deployment in windows system. The

client software can invoke the functions through any programming environment that

recognizes DLL packages. In our implementation, the DLL package was developed

mainly for calls from VB and Java language, the most common used development

languages for both ESRI and Intergraph.

32

4.1 Technologies Review

4.1.1 ArcSDE Server and development API

ESRI enterprise GIS solution is based on a centralized geo-spatial database. To

facilitate spatial data sharing and management, the solution include SDE (Spatial Data

Engine) server that acts as an application server. SDE server is responsible for receiving

the spatial data request and serving the client request with spatial data accordingly. SDE

server also maintains the data integrity, manage the transaction and tune the overall

performance of the spatial data service. The ArcSDE server also provides a set of API for

customized application development. ArcSDE contains two main application

programmer interfaces for developers to build applications that work with and query

information contained in multi-user geo-databases: ArcSDE Client API for C

programmers and ArcSDE Client API for Java programmers. These APIs provide GIS

functions for advanced application development. ArcSDE works as an application server,

delivering spatial data to many kinds of applications or even serving spatial data across

the Internet.

4.1.2 ArcSDE raster adapter and JNI

ArcSDE raster adapter is developed in the EGIS system to support non-ESRI GIS

application to access and query raster-based spatial information served by the ArcSDE

server. We choose to use the ArcSDE high-level C API for the development based on two

facts. First, at the time of our development, ESRI hadn’t release a full Java version API

for the ArcSDE server, in order to take advantage of the raster data manipulation, we

must use the C API as the primary development language. Second, the C API is the

33

native language of the ArcSDE server application that can achieve the best performance

leverage the full capacity of ArcSDE server.

The raster adapter developed by C API is compiled into dynamic linked library in

windows system for deployment. The raster adapter DLL package consists of generic

subroutine for interacting with the ArcSDE server as well as application specific

functions. Since, we are going to integrate the raster adapter into our EGIS based on

J2EE framework, we need to address the issue of connecting the J2EE framework with

ArcSDE server.

The Java Native Interface technology is employed for the interaction between the

J2EE framework and ArcSDE server. The JNI comes with the standard Java

Development Kit (JDK) from Sun Microsystems. It permits Java programmers to

integrate native code (currently C and C++) into their Java applications.

4.1.3 TIFF LIB and GEOTIFF LIB

Tag Image File Format (TIFF) is a widely used format for storing image data.

TIFF LIB is a set of C functions (a library) that support the manipulation of TIFF image

files. The library requires an ANSI C compilation environment for building and presumes

an ANSI C environment for use. Our ArcSDE raster adapter needs TIFF LIB to help

generate TIFF image file as the output data format which can be consumed by non-ESRI

client.

TIFF file is the mostly supported image format for GIS purpose. In most cases,

geographical information is added to the TIFF to form so called geo-TIFF file. This kind

of file has geographical information that been saved in the file tag header which can be

34

used to identify the coordinate system and location of the raster file. This is why the

GEOTIFF LIB is employed to geo-reference a TIFF file.

4.1.4 Web services

A web service is a software component that can be accessed over the Internet for

use in other application. Their application field can be wide. They are used in e-business,

Geographical Information System, and many other application areas. Specifically, web

services are a stack of emerging standards that describe a service-oriented, component-

based application architecture.

The main interest of web services is that they can be accessed programmatically

by HTTP protocol. Unlike web sites and desktop applications, web services are not

designed for direct human interaction, and they do not have a graphical user interface.

Rather, web services operate at the code level; they are called by and exchange data with

other software. Web services can be incorporated into software designed for human

interaction.

For example, GIS web services offer a way for developers to include GIS content

and capabilities in their application without having to host the data. The result is

significant savings of development time, expense and computer resources.

By web services, we mean XML web services, the software services exposed on

the web through SOAP. SOAP is an XML-based communication protocol and encoding

format for inter-application communication. Originally conceived by Microsoft and

Userland software, it has evolved through several generations and the current spec, SOAP

1.1, is fast growing in popularity and usage. The W3C’s XML protocol working group is

in the process of turning SOAP into a true open standard, and as of this writing has

35

released a working draft of SOAP 1.2, which cleans up some of the more confusing areas

of 1.1 spec. SOAP is widely viewed as the backbone to a new generation of cross-

platform cross-language distributed computing applications, the web services.

4.1.5 ArcIMS and ArcXML

To support spatial data web publish, ESRI product family also include an IMS

(Internet Map Service) server. The IMS server can accept map request from Internet

client. The IMS server forwards the request to ArcSDE server that will in turn access the

geo-spatial database and retrieve the spatial data of interest. The spatial dataset is

transmitted back to the IMS server in a reverse direction and the IMS server will serve

the client with a map.

The ArcIMS server itself has a built-in map request language based on XML

called ArcXML (The Arc Extensible Markup Language). ArcXML file format provides a

structured method for communication between all ArcIMS components. It defines

content for ArcIMS services and is used for requests and responses between clients, the

business logic tier and servers.

4.2 Use of the Shared Spatial Database

To achieve the vector data sharing for GeoMedia, we employed Oracle Spatial

technology shown as Figure 10. Oracle spatial is a well-defined, object-oriented industry

standard on vector-based data storage and is supported by most GIS vendor. Both ESRI

and Intergraph give support to Oracle Spatial technology. Arcinfo and Geomedia can

both directly access the vector data that stored in Oracle spatial. Oracle spatial is the

major integration point of the whole system.

36

Figure 10: Vector Data sharing for GeoMedia

Database accessing performance has been one of our concerns. More specifically,

our concern is about the impact of crossing accesses. That is, one GIS tool accesses the

data imported by another one. Both Geomedia and ArcSDE create spatial index when

they import vector data sets into the Oracle database. ArcSDE also provides several

options for spatial index creations that can be specified by the users. Different spatial

index methods may affect the spatial data query performance. In an initial evaluation, we

used ArcMap to query vector data through the ArcSDE server from the Oracle database,

and compared the response time of accessing the “native data sets” (imported by

ArcSDE) and that of accessing the “foreign data sets” (imported by GeoMedia) as shown

in Table 2. In testing, the query for every data set was to load the entire layer. No

significant performance penalty to the foreign data sets was observed. This confirms the

feasibility of our data consolidation plan. We also realized that the initial test was

rudimentary. Indeed, performance is related to the nature of queries and the type of

37

indexes. Additionally, ArcSDE has a comprehensive performance tuning guide.

Therefore, further studies on the impact of crossing accesses to query performance are

needed.

Data set name Geometry
type

Features
Count

Imported by
ArcSDE
(second)

Imported by
Geomedia
(second)

Barge Multipoint 778 2 2
Powerlines Polyline 9226 3 3
PrimaryRoad Polyline 1633 3.5 4
Aquifer Polygon 2388 11 13

Geometry storage type: Oracle Spatial Object Model
Spatial Index: true
Open connection delay: 3 seconds

Table 2: Accessing time comparison between native and foreign data sets

4.3 ArcSDE Adapters: Raster Adapter and Vector Adapter

4.3.1 ArcSDE Raster Adapter

We developed software component to support raster data retrieval from ArcSDE

server. ESRI Company provides raster data import and export functions to its own

desktop software. In order to support the raster data sharing for non-ESRI client, we

have to develop a middleware. This middle-ware is to wrap the raster dataset import and

export functionality and provide a set of interfaces for them. This middleware is called

“ArcSDE Raster Adapter”.

 The adapter is developed using C language and encapsulate into DLL package

for deployment. The client software could take advantage of the DLL by invoking the

functions through any programming environment that could manipulate DLL package.

Here the DLL package is developed mainly for call from VB language. It can also be

invoked by Java language through the Java Native Interface.

38

As shown in Figure 11, the Geomedia desktop software sends request through the

adapter. SDE adapter will first make connection to the oracle server through SDE server

and export the raster data into a Tiff file according to the given bounding coordinates.

There are two issues must be addressed for the raster adapter. One is that we need to add

geographic information to the tiff file to generate geo-tiff file. The other is the resolution

control problem. To enhance display performance, the ArcSDE server has built pyramid

for raster dataset. Given bounding coordinate, we can return the required image data with

different resolution to suit to the user’s display resolution.

Figure 11: Raster data sharing for GeoMedia

4.3.1.1 Coordinate System

A coordinate system (CS) defines the location of a point on a planar or spherical

surface. Without a concise definition of the coordinate system used to represent a point, it

39

is difficult to change to a new coordinate system. Changing coordinate systems is

required when integrating data from different sources into a common coordinate system.

A geographic coordinate system is a three–dimensional reference system that

locates points on the Earth’s surface. The unit of measure is usually decimal degrees. A

point has two coordinate values: latitude and longitude. Latitude and longitude measure

angles. Even though geographic coordinates are angular units, ArcSDE stores and treats

them as if they are planar. In this case, longitude values are considered the x-coordinate,

while latitude values are the y-coordinate.

A projected coordinate system is a two-dimensional planar surface. However, the

Earth’s surface is three-dimensional. Transforming three-dimensional space onto a two-

dimensional surface is called projection. Projection formulas are mathematical

expressions that convert data from a geographical location (latitude and longitude) on a

sphere or spheroid to a corresponding location (x and y) on a flat, two–dimensional

surface.

In order to display the geographical information on a monitor of computer, the

spatial object are represented as simple or complex geometries and displayed on the

computer monitor. Thus, we also need to introduce a raster space coordinate system to

help define how a geographical CS or Projection CS are mapping to the computer output

devices.

The Figure 12 below shows the relationship of the three coordinate systems:

• Raster Space CS: Raster space Coordinate System which unit is pixel

• Projection CS: Projection Coordinate System which unit is meter or foot

• Geographic CS: World Coordinate System which unit is degree

40

Meter (foot)

Meter (foot)

Projection CS

Latitude
(degree)

Longitude
(degree)

Geo world CS

Raster workspace CS
pixel

pixel

Figure 12: the relationship of the three coordinate systems

4.3.1.2 Resolution level

ArcSDE populates the raster blocks table according to a declining resolution

pyramid. The height of the pyramid is determined by the number of levels specified by

application. The application such as ArcToolbox or ArcCatalog may allow you to define

the levels or it may request that ArcSDE calculate them, or it may offer both possible

choices.

The pyramid begins at the base, or level 0 which contains the original pixels of

the image. The pyramid proceeds toward the apex by coalescing four pixels from the

previous level into a single pixel at the current level. This process continues until less

than four pixels remain or until ArcSDE exhausts the defined number of levels.

The apex of the pyramid is reached when the uppermost level has less than four pixels.

41

The additional levels of the pyramid increase the number of raster block table rows by

one third. However, since it is possible for the user to specify the number of levels, the

true apex of the pyramid may not be obtained, limiting the number of records added to

the raster blocks table.

Figure 13: Raster pyramid in ArcSDE

When you build a pyramid, more rasters are created by progressively

downsampling the previous level by a factor of two until the apex. As the application

zooms out and the raster cells grow smaller than the resolution threshold, ArcSDE selects

a higher level of the pyramid. The purpose of the pyramid is to optimize display

performance.

The pyramid allows ArcSDE to provide the application with a constant resolution

of pixel data regardless of the rendering window's scale. Data of a large raster transfers

quicker to the client when a pyramid exists, since ArcSDE can transfer fewer cells of a

reduced resolution.

In our raster adapter, we provide the users a functionality to choose the resolution

level by themselves or automatically by the adapter shown in Figure 14. In order to

implement selecting reasonable level automatically and enhance the performance, there is

42

internal method called getLevel in our raster adapter. We use the following formula to

calculate the level we will select:

)]/(log),/(max[log 22 wswclslclevel =

lc , length of the selected clip

ls , length of the screen resolution

wc , width of the selected clip

ws , width of the screen resolution

Figure 14: select resolution level in raster adapter

4.3.1.3 Functions provided by the C DLL

We have developed two version of raster adapter. One version is designed to

return a single tile each time for end user’s request. This solution has more advantages

over the other version in that it provides more flexibility and achieves high performance

by making the system scalable. This version can be easily migrated to Internet based

43

application. In our project, we set up the raster adapter as Web service and server end

user’s request through the standard Web Service interface.

The other version is designed for GIS desktop customized application. This

version uses the client-server model to communicate with the ArcSDE server. The

communicate takes advantage of the TCP/IP protocol to minimize the network

communication overhead compare to the previous version. The raster adapter will be

installed at the client desktop and act as an agent for the ArcSDE server. End user’s

request will be fulfilled and raster dataset will be returned as soon as the raster adapter

agent finish assemble the spatial information into a raster file, there is no need for the end

user to explicitly control the raster data retrieval process.

Function Name Explanation
SdeConnect, sdeDisconnect Establish and release the ArcSDE connection
getRasterFile(int prj_x_min, int prj_y_min, int
prj_width, int prj_height, char* tablename, int
selected_level)

The main function invoked by end user

getRasterInfo(char* tablename) Look up the raster name in ArcSDE server and
return metadata about the raster data

getRasterColumnInfoList() Get additional information
int getColormapImage(int x_min, int y_min, int
x_max, int y_max, char* tablename, int
column_id, int band_id, int selected_level)

Use the collected metadata information and
selected area information to get raster data for
those who use color map

int getRGBImage(int x_min, int y_min, int
x_max, int y_max, char* tablename, int
column_id, int band_id, int selected_level){

Use the collected metadata information and
selected area information to get raster data for
those who use RGB raster band

long getPrjHeight()
long getPrjWidth()
long getMaxLevel()
long getPrjX()
long getPrjY()
long getImageWidth()
long getImageHeight()
char * _stdcall getPCSString()

Functions used to deliver raster metadata
information back to user

 int getLevel(int xmin,int ymin,int xmax,int
ymax)

Function that calculate the best resolution level
for the current user request

Table 3: Functions provided by raster adapter

44

The basic functions of the first version adapter have been implemented. In Figure

15, we list a minimum subset of functions provided.

Figure 15: Basic Functions Provided by Raster Adapter

For the second version of raster adapter, we only list the functions provided and

give explanation in table 3.

1. Name: sdeConnect ()
Connect to the SDE Server with provided connection parameters.
Usage syntax:
int sdeConnect (char* sdeserver, char* sid, char* db, char* usr, char* pwd);
Parameters:
sdeserver:"XXX" (SDEserver name)
sid: "5151" (SDE server port)
db: "XXX" (Database SID)
usr: "xxx" (SDE server user)
pwd: "xxx" (SDE server password)
Description:
 This function is to initialize a connection to the SDE server.
Returns:
 Return 0 if success.

2. Name: getRasterFile()
Get the max resolution level of the current image
Usage syntax:
Char[] getRasterFile (int x_tile_num, int y_tile_num, int selected_level);
Parameters:
X_num the tile number on the x coordinate
Y_num the tile number on the y coordinate
Selected_level the resolution level specified by the user. The user will select the level

by choosing from a value list. When Selected level equal to –1, the
selected level will be created automatically.

Description:
By entering the x, y tile number and resolution level to retrieve the raster dataset of a particular
tile. To enhance display performance, we can build resolution pyramid for raster dataset. We
can return the required image data with different resolution to satisfy the user’s needs by
setting the selected_level parameter.
Returns:
Return a char array contains the value of image dataset. Since it is RGB file, the array include
3 bands, each tile contains 128*128 pixels, thus the size of this array is 3*128*128

3. Name: sdeDisconnect()
Disconnect from the SDE server.
Usage syntax:
int sdeDisconnect();
Description:
 This function is to disconnect to the SDE server.
Returns:
 Return 0

45

4.3.1.4 Implementation and performance analysis

We consolidate raster-based images using ArcSDE server. ArcSDE has APIs in

Java, C and Visual Basic to access geo-database through ArcSDE. Although ArcSDE’s

Java API has not been completed by ESRI, ArcSDE’s C API has been completed. It is

truly a powerful API that supports both vector and raster data creation, management and

query. Our raster adapter makes call to ArcSDE’s C API. Using this API, we can query

the selected image and its companion color map as well as other attributes. These

functions are essential for raster file reconstruction, when we want to export the raster

data to image files.

• How the raster adapter works

The raster adapter is designed to be flexible enough to user’s request. Upon the

connection to the ArcSDE server, The user will be provided by a list of the available

raster image dataset names in the geo-database as well as metadata of each raster dataset

like the size of the raster data by pixels and available resolution levels of this dataset as

shown in Figure 14.

After given the information about the raster data, the user can request the spatial

information they need. The input value for the raster adapter consists of five parameters.

They are the coordinates of the upper left point of the requested area, the output image

size specified by width and height and the resolution level that decide the display quality.

If the end user doesn’t specify the output resolution level, Raster adapter will use

an algorithm describe in section 4.3.1.2 to help decide which resolution level will be

used. The raster adapter will try to produce an output area that fits the end user’s display

device with the best resolution level.

46

Table 4 provides the workflow of the getRasterFile function in the Raster

Adapter.

No Workflow ArcSDE API
1 Create a stream for query SE_stream_create
2 Allocate an SE_SQL_CONSTRUCT, query

information is encapsulated in this structure
SE_sql_construct_alloc

3 Define the stream query SE_stream_query
4 Fetch the first row SE_stream_fetch
5 Obtain the image metadata in the current row SE_rasterattr_get_image_size

SE_rasterattr_get_max_level
6 Prepare to get raster data SE_rasconstraint_set_envelope

SE_rasconstraint_set_level
7 Send query to ArcSDE server SE_stream_query_raster_tile
8 Loop to retrieve raster data from the stream SE_stream_get_raster_tile

SE_rastileinfo_get_band_id
SE_rastileinfo_get_level
SE_rastileinfo_get_rowcol
SE_rastileinfo_get_pixel_data

9 Free resource hold SE_sql_construct_free
SE_rastileinfo_free
SE_rasconstraint_free
SE_stream_free

Table 4: Work flow of the getRasterFile() function

• Tiff Lib & GeoTiff Lib for geo-referenced raster file

TIFF format images are commonly used by GIS experts. We used the Libtiff open

source library [25] to export TIFF files. There are two ways to implement the color

schema of raster file. Some raster file use color map to index the distinct color with an

image and represent each image pixel by the color index. Other raster files use the RGB

color bands to store the color information. Each band record only one of the RGB

information.

We use the Tiff Lib API to output the raster data to a Tiff file. We also use the

GeoTiff Lib API to register geo-information into the Tiff file. The geographical

47

information will be save as a set of tags and assemble with the raster data to create geo-

referenced raster file.

Figure 16 is an example of the geographical information to be registered into Tiff

file.

Figure 16: An example of the geographical information to be registered into Tiff file

This file tells us the projection coordinate system used. The “RasterPixelIsArea”

keyword indicates that each pixel covers a certain area in the image. The

“ModelTransformationTag” keyword gives us a transformation matrix to calculate the

accurate coordinate for each pixel in the raster image. Our raster adapter will create such

a geographical transformation file and take advantage of the geotifcp utility tool provided

by the GeoTiff Lib to help register the geographical information. The registration

processes require the customized application to call shell command to access the geotifcp

utility.

Geotiff_Information:
Version: 1
Key_Revision: 1.0
Tagged_Information:
ModelTransformationTag (4,4):
399 0 0 407483
0 -399 0 3380874
0 0 1 0
0 0 0 1
End_Of_Tags.
Keyed_Information:
GTModelTypeGeoKey (Short,1): ModelTypeProjected
GTRasterTypeGeoKey (Short,1): RasterPixelIsArea
ProjectedCSTypeGeoKey (Short,1): PCS_NAD83_UTM_zone_15N
End_Of_Keys.
End_Of_Geotiff.

48

• Raster adapter performance analysis

Upon receiving a XML request message, the raster adapter fetches the requested

image from the shared database through ArcSDE, and writes the result images as a file in

a specified directory. The adapter may reside anywhere in the network. To avoid adding

computation burden to the ArcSDE server, we let this adapter reside on the GeoMedia

workstation. The adapter communicates with the ArcSDE server in TCP/IP. The

explanations of the links between components are listed in Table 5.

Compared to using local image files, fetching images from the ArcSDE server

remotely seems subject to performance penalty. To assure that the database access delay

is in tolerable range, we carried out a test using a 10.3MB compressed remote-sensing

image file in TIFF format. Its uncompressed size was 138.5 MB. Since GeoMedia

accesses raster data by files, the initialization time for GeoMedia to access this image was

40 seconds. The same TIFF file was imported into the ArcSDE server that connects to an

Oracle database 8i server. The raster data were automatically saved as BLOB column in

the Oracle database by the ArcSDE server. We then used our adapter to load parts with

different sizes of this image from the ArcSDE server. Table 6 lists the performance for

the adapter to get the parts from the ArcSDE server (in the same LAN). In the right

column, adapter response time was measured from the request to the file is completely

written. The computers that ran the GeoMedia Professional desktop and the ArcSDE

server have the same configuration (850 MHz CPU, 512 MB memory, and the same

SCSI disk drives). This simple test convinced us that our adapter approach is practical.

49

No. explanation protocol
1 GeoMedia accessing geographic data Oracle Net8
2 GeoMedia accessing tables holding attributes

and metadata
Oracle Net8

3 ArcSDE’s database connection, it may access
every GIS information in the database.

Oracle Net8

4 ESRI products communicate with ArcSDE TCP
5 Importing raster-based images into ArcSDE (local)
6 Adapter fetch images from ArcSDE TCP
7 GeoMedia receives images from adapter (local)
8 GeoMedia sends requests to adapter (local)

Table 5: Communications between components of the backend system

 Image part size Adapter response time
128*128 0.0945
768*768 0.026
1024*1024 0.375
20225* 7181 (full size) 35.0

Raster properties: Raster Dimension: 20225 X 7181

Tile size: 128 X 128
Pyramids: True, 6 levels, nearest
Colormap: True
Data compression: LZ77

Table 6: Adapter accessing time

4.3.2 ArcSDE Vector Data Adapter

Since other GIS applications such as MicroStation cannot access spatial data

stored as the type of Oracle Spatial Object Model so easily like GeoMedia. We developed

a vector data adapter to support vector data retrieval through ArcSDE server. The vectors

are a versatile and frequently used geographic data representation, well-suited for

representing features with discrete boundaries such as wells, streets, rivers, states, and

parcels. Typically, features are spatially represented as points, lines or polygons. ArcSDE

stores vectors in a geodatabase which is a repository inside a DBMS and provides open,

high-level C and Java APIs for querying and processing spatial information. Both C and

50

Java APIs provide plenty of functions to access vectors, while the C API is more

powerful to process raster data than Java API. Since our vector data adapter is mainly

called by WS server which is developed by Java, programming it using Java will

simplified the integration and get high performance.

The vector data adapter has three methods as follow:

• SpatialQueryEx (String tablename)

Establish a connection to a specified spatial table.

• QueryInBox (double minx, double miny, double maxx, double maxy)

Retrieve the features in the bounding box and return a vector which contains

all the geometry objects in the specified area. Every geometry object provide

three kinds of information as follow:

1. shape type: point, line, or polygon.

2. attributes: what this geometry object presents, e.g. city name if it

presents a city.

3. coordinates of the points which this geometry object is made up of .

• SpatialQueryDisconnect ()

Disconnect from the SDE server.

4.4 Deployment of ArcIMS

4.4.1 Publish real data onto Internet

Authoring a map is the first step toward creating an Internet GIS application.

ArcIMS Author can help us to add data layers, set layer symbology, create stored queries,

and so on, then save the edited map as a map configuration file written by ArcXML

51

(AXL file). Publishing a map as a service involves using ArcIMS Administrator to

register the map configuration file with the ArcIMS application Server. A map usually is

published as an Image or Feature Service. ArcIMS Administrator let us can create and

manage these services easily. The last step is designing a Web site using ArcIMS

Designer for the map based on its services running on ArcIMS Spatial Server. Figure 17

and 18 show us two websites. One is based on Feature Service, while the other is Image

Service.

Figure 17: A Web site for Feature Service

52

Figure 18: A Web site for Image Service

4.4.2 Web-based spatial data search on arbitrarily organized file system

There are three parts we need to develop in this application.

• Customize HTML Viewer using HTML and JavaScript

• Connect to and query information from database, create HTML Viewer

dynamically using JSP and Java Servlet.

• Modify configuration file of ArcIMS service using ArcXML, so that the

service can add the layers dynamically without changing itself.

We take advantage of build-in HTML Viewer and modify its Text Frame. When

the user selects an area on the backgraoud—draws a bounding box with mouse, the

bounding coordinates of the rectangle show in the Text Frame (Figure 19). Click “

Submit” button, a java servlet file will be activated. The servlet will connect to the

database and query maps name in this given area, then rewrite the HTML Viewer

dynamically. These maps’ names and locations where they are stored are shown to the

53

user (Figure 20). These maps can be visualized on the background via clicking “Add

Layer” button (Figure 21).

This tool can be used though standard browser. The URL is

http://vcl3.cs.uno.edu/website/Lousisana/viewer.htm

Figure 19: Select an area

http://vcl3.cs.uno.edu/website/Lousisana/viewer.htm

54

Figure 20: Select a map

Figure 21: Map is added to Image Service as a layer

55

4.5 Metadata Service deployment

A Metadata service provides a catalog of metadata. The client might search, or

browser Metadata Service when they need data. Similarly, the client can share, or publish

data to a Metadata Service where others can see it.

ArcIMS is one part of the metadata system we created. ArcGIS and ArcSDE also

play vital roles. Figure 22 shows how these components work together.

Figure 22: The components of Metadata System

ArcIMS provides the mechanism for hosting a Metadata Service, allowing clients

to publish metadata to the service as well as search its contents. MetadataExplorer is a

Web application included with ArcIMS that allows people to search and browse the

contents of a Metadata Service from a Web browser. ArcGIS creates and author metadata

in ArcCatalog then publish it to a Metadata Service. ArcCatalog provides built-in

56

editors—FGDC and ISO—to help user create metadata. When user is ready to publish his

metadata, just connect to the Metadata Servic—with a username and password provided

by the host of the Metadata Service—and copy his metadata onto the service. Now

anyone who accesses the service will be able to see the published metadata.

ArcIMS utilizes ArcSDE and the relational database to store the published

metadata documents. Each time a client publishes a metadata document to the service, a

new record gets created in a database table. Metadata documents are also indexed to

optimize searching and retrieving.

4.5.1 Setting up Metadata Service

Before we set up the Metadata Service, we have to install and configure ArcIMS.

The steps of configuration for ArcIMS are different when we use different web server

and servlet engine. In our ArcIMS system, we use Apache 1.3.20 and Jakarta Tomcat 3.2.

Four files must be created and configure properly when setting up a Metadata

Service. They are

• MetadataServer.axl—configuration file for metadata service. This file is

used to create Metadata Service.

• Aimsacl.xml—an access control list (ACL). This file list username and

password used in ArcCatalog and Metadata Explorer. Figure 23 is a

sample ACL file.

• Authenticate.properties—turning on authentication for Metadata Explorer.

When the authenticate property is enabled, the pathname of ACL file must

be set.

• Aimsmeta.properties—turning on the login page in Metadata Explorer.

57

Figure 23: A sample of ACL file

Figure 24 shows the Metadata Explorer we host for USACE. The URL is

http://vcl3.cs.uno.edu.

This Meatadata Service also can be accessed via ArcCatalog shown in Figure 25.

<?xml version="1.0" ?>
<AIMSACL>

<USER name="*"
services="MetadataServer,SanFran,SearchMap,Gazetteer"/>

<USER name="browse" password="browse"
services="MetadataUSACE,MetadataServer,SanFran,SearchMa
p,Gazetteer,nwihab88,neworleanswestne"
roles="metadata_browser" active="1" />

<USER name="publish" password="publish"
services="MetadataUSACE,MetadataServer,SanFran,SearchMa
p,Gazetteer,nwihab88,neworleanswestne"
roles="metadata_publisher" active="1" />

<USER name="author" password="author"
services="MetadataUSACE,MetadataServer,SanFran,SearchMa
p,Gazetteer,nwihab88,neworleanswestne"
roles="metadata_service_author" active="1" />

<USER name="admin" password="admin" services="SanFran,
SearchMap,Gazetteer,nwihab88,neworleanswestne,moritor,m
oritor1"
roles="metadata_administrator" active="1" />

</AIMSACL>

http://vcl3.cs.uno.edu

58

Figure 24: Metadata Explorer

4.5.2 How to create” Live” data

Live data and maps are dynamic geographic services that allow direct interaction

with map content. This type of content is delivered in one of two ways: as a cartographic

image or “snapshot” of a map, or as compressed vector features that are streamed to you.

Streamed features allow for greater client-side interaction including dynamic labeling,

feature symbolization, and MapTip creation. The client does not need to download

anything to use live data—just add it to the map and begin exploring.

59

Figure 25: Administrate Metadata Service using ArcCatalog

If the client launchs a Metadata Explorer from ArcMap or ArcExplorer. The

records of Live data should have an extra button named “ Add to ArcMap” or “Add to

ArcExplorer” shown in Figure 26. Click this button the map selected will be added to

ArcMap or ArcExplorer as a layer. This is a very convenient tool for the clients to search

data and use them as theirs. However, it is not so easy to define a map as “Live data and

Maps” as the ESRI’s user guide said that we just need to edit the content type as “Live

data and Maps” using build-in Metadata Editor, then publish it. We tried many means to

60

solve this problem. The only way to get a “Live data” is create it for a specific service

(Image or Feature) using ArcCatalog. In Figure 25, we can see the “Live data” created in

ArcCatalog have a bule mark on the lower right corner of their icons. These data are the

real “Live Data and Maps” in Figure 26.

Figure 26: Metadata Explorer launched by ArcMap

4.5.3 Administration table

 Administrative table for metadata server is an extension of the metadata service

to help administrator manage the data. It can store any information that an administrator

wants to have. We create an administrator table as a simply additional database table.

Each entry in the table is linked to a published metadata document. The administrator

61

table should be created before the Metadata Service starts. This will ensure that whenever

a document is published to the Metadata Service, a corresponding record is inserted into

the administrator table. In order to implement this query functionality on Metadata

Explorer, we use Java Servlet and JSP to communicate with the administrator table stored

in database and show the result to the client (Figure 27).

Figure 27: Administrative Query

4.6 Implementing SOAP-Based GIS Web Services for MicroStation

The web services implementation is a part of implementation of a GIS web

service client for Bentley’s MicroStation CAD program. The purpose of this work was to

discover an efficient mechanism to allow the Bentley MicroStation software [26] to

62

access the E-GIS’s central geo-spatial data resource, the ArcSDE servers. Such an

achievement would harness the power and easy use of Microstation to draw geometries

for its projects. Microstation is the program of choice for generating vector data for many

GIS projects at USACE as well as many local governments’ GIS workers.

A solution is to use the old Java capability in MicroStation Version 7 (called

MicroStation/J) and the latest Java web services developer pack (WSDP) to implement

the link between the “web services client agent” and the web services consumer,

MicroStation/J.

Figure 28: The web services for Microstation

The web services we implemented are the WS Server and the WS Client. The WS

server connects to the ArcSDE server to get image tiles. This is implemented by using

Java Native Interface (JNI) because the SDE connector was written in C. The WS Client

is also programmed in Java. It uses RMI request and response to communicate with

MicroStation. This is also a stand-alone client web services that can be used by other

applications.

This wrapper web service is developed with the Java Language and uses SOAP

message to stream the output image data. The Java web service accesses a DLL library

using the JNI (Java Native Interface). The DLL includes the methods that can access the

spatial dataset in the database through SDE server. There are only three methods in the

Arc SDE
server

WS
Client
(Java
WSDP &
Java 1.4)

soap
request/response

request

RMI request

RMI response response (HTTP over the
Internet)

Web services Web services

M
icroStation V

7

JM
D

L

SD
E

connector

WS
Server
(Java
WSDP&
Java 1.4)

63

DLL, one is for establishing a connection to SDE server, the other is for disconnect. The

main method is the getRasterFile(), this method will be designed to return an array of

bytes to the caller. All the web services methods are in the main class sdeWS. The public

methods of this class are the web services’ methods. To configure the methods to be

provided, you have to set the deploy.wsdd file correctly in the installation of the web

services, this is documented in the Developer’s guide. For example, Figure 29 is the

method that connects to the database:

Figure 29: An example how to connect to the database

It is very simple. It calls the getSDEChar method (this method uses JNI to get the

image from the database) and returns the result as a string (in fact this string is a byte

array encoded as a string).

The web service will use this String to construct the SOAP message. The SOAP

Message is, in fact, as follows in Figure 30:

public synchronized String getSDEChar(int x_tile_num, int y_tile_num, int
selected_level)
{
 try {
 byte[] imgarray = new byte[16384];
 return RasterAgent.getSDEChar(x_tile_num, y_tile_num, selected_level);
 } catch (UnsatisfiedLinkError e){
 e.printStackTrace();
 return null;
 }
}

64

Figure 30: An example of SOAP Message

By using Apache Axis, the java programs do not have to implement these SOAP

messages. SOAP is handled by Axis itself, which generates SOAP message. This

message sent back to the user can then be parsed. The Output Stream is then used to

display the image. The output stream is a string containing the value of image dataset.

For a RGB file, the array includes three bands, each tile contains 128*128 pixels,

and thus the size of this array is 3*128*128.

The output stream is as follows in Figure 31:

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Body>
 <ns1:getSDECharResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://soapinterop.org/">
 <getSDECharReturn xsi:type="xsd:string">OutputStream
 </getSDECharReturn>
 </ns1:getSDECharResponse>
</soap-env:Body>
</soap-env:Envelope>

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://soapinterop.org/

65

Figure 31: An example of output stream

This is a base64 Binary string that can be decoded into a byte array on the client

side.

 Figure 32 shows the classes of the server side web services:

Figure 32: the classes of the server side web services

…
UVt0kJlsOzpSYWNmaF1fZWlscnd2cHBucXV6dHRfQyodGxkeHyMxRlVTQT
QdHh0bHSYxMyYj
JCIhIiMsTnmMcUo3NTIyMSojICcuGRYcHRsdIB0eIBkUEhcgHyUpN1NMSE
1SSlNPRjk4PDZJ
V2ZvgIuIf4KPiIJxVURGSFBaa2RdaIScjUktJjRNYGBgZGNscG5xeHh0cG1vd
Xx3d3FlTzEe
…

Base 64: Encode the byte array into a string
RasterAgent: Static methods
RasterReader: Native methods (JNI) to connect, getData and

disconnect of the database
SdeWS : the web services methods (connect, getTile and getVector)
SerialRow: used by SpatialQueryEx
SpatialQueryEx: useful for the getVector method

66

CHAPTER 5

CONCLUSION

For large organizations whose core businesses are GIS related, using multiple

COTS GIS suites is a common phenomenon, because different COTS products often

have different strengths in various applications. On the other hand, deploying

heterogeneous GIS software has the tendency to form fragmented data sets and to cause

inconsistency. Data consolidation is an effective way to preserve data integrity. To

accomplish this, we must achieve interoperability between different GIS tools. While

vector spatial data have available standards and the implementations to support

interoperability, raster based images have only one common ground -- files. Compared to

the database approach, the file-based management for raster data is disadvantageous in

terms of performance and flexibility. We implemented an adapter that allowed the file-

based GIS tools to access the raster data storage in databases. Furthermore, we have

enhanced this adapter according to the J2EE-CA standard. Using this kind of J2EE-CA

adapter, any GIS can be embedded into the J2EE framework easily. The J2EE framework

is an ideal server platform for building integrating software components inside the

enterprise geographic information systems. This technology has been matured and

stabilized in recent years.

67

Recently, the service delivery technologies for Internet computing have been

converged to an open standard model, The SOAP-based Web Service is a promising

technology in supporting the system integration tasks of GIS system in a distributed

environment. Web Services represent a widely accepted point-to-point, cross-platform

and standard based communication protocol that connects a pair of computational parties.

Parrel to this general Internet computing model, the GIS community has developed GID

specific standards, the Web Map Service (WMS) and the Web Feature Service (WFS).

These two OGC standards have been implemented by the leading GIS software vendors.

For nontrivial systems like GIS system, behind each web service is a backend system that

fulfills the application specific tasks.

In our project, we have streamlined the COTS GIS server, the J2EE coordinator

server, the web service provider components and the COTS web publishing tools into a

hybrid web service architecture, in which the enterprise information system integration,

the web publishing and the business-to business online services are uniformed.

68

REFERENCE

[1] Carnegie Mellon Software Engineering Institute, COTS-based systems initiative,

http://www.sei.cmu.edu/cbs/cbs_description.html.

[2] J. Dean, A. Gravel (Eds.), COTS-Based Software Systems, (Proceedings of the First

International Conference on COTS-Based Software Systems (ICCBSS 2002), Orlando,

FL, USA, February 4-6, 2002), LNCS 2255, Springer-Verlag, Heidelberg, Germany,

2002.

[3] C. Albert and Lisa Brownsword, Forward, “Meeting the challenges of commercial-

off-the shelf (COTS) products: the information technology solutions evolution process

(ITSEP)”, in [2].

[4] R. Seacord, “Replaceable components and the service provider interface”, in [2]. [21]

Rahul Sharma, Beth Stearns, and Tony Ng, J2EETM Connector Architecture and

Enterprise Application, Addison Wesley, Reading, MA, 2002.

[5] Berkeley. Web GIS and interactive mapping sites.

http://sunsite.berkeley.edu/GIS/intergis.html.

[6] Maurizio Morisio, Marco Torchiano; Definition and Classification of COTS: A

Proposal

http://www.sei.cmu.edu/cbs/cbs_description.html
http://sunsite.berkeley.edu/GIS/intergis.html

69

[7] S. Tu, L. Xu, M. Abdelgurerfi, and J.J. Ratcliff, “Achieving Interoperability for

Integration of Heterogeneous COTS Geographic Information Systems”, Proceedings of

ACM GIS 2002, McLean, VA, pp 162-167.

[8] GIS by ESRI, “What is ArcGIS ”

[9] Intergraph Corporation, GeoMedia Professional, http://imgs.intergraph.com/gmpro/

[10] Bentley System Inc., MicroStation, http://www.bentley.com/products/

[11] Oregon State University, EPA Storm water management model,

http://www.ccee.orst.edu/swmm.

[12] Boss International, the UNET model, http://www.bossintl.com/html/rms-unet.html.

[13] National Oceanic and Atmospheric Administration Coastal Services Center,

Topographic LIDAR, http://www.csc.noaa.gov/beachmap/startup.html.

[14] United States Geological Survey, USGS Digital Elevation Model Data,

http://edcwww.cr.usgs.gov/glis/hyper/guide/usgs_dem.

[15] The Hydrologic Engineering Center, US Army Corps of Engineers,

http://www.hec.usace.army.mil/.

[16] ESRI, ArcGIS, http://www.esri.com/software/arcgis/index.html.

[17] Intergraph, Mapping and GIS solutions, http://www.intergraph.com/software/.

[18] Tcl developer exchange, Tcl Resources, http://www.tcl.tk/.

[19] Kitware Inc., Visualization toolKit, http://public.kitware.com/VTK/.

[20] Vlada Matena and Beth Stearns, Applying Enterprise JavaBeans: Component-Based

Development for the J2EE Platform, Addison Wesley, Reading, MA, 2001.

[21] Dirk Slama, Jason Garbis and Perry Russell, Enterprise CORBA, Prentice Hall,

Upper Saddle River, NJ, 1999.

http://imgs.intergraph.com/gmpro/
http://www.bentley.com/products/
http://www.ccee.orst.edu/swmm
http://www.bossintl.com/html/rms-unet.html
http://www.csc.noaa.gov/beachmap/startup.html
http://edcwww.cr.usgs.gov/glis/hyper/guide/usgs_dem
http://www.hec.usace.army.mil/
http://www.esri.com/software/arcgis/index.html
http://www.intergraph.com/software/
http://www.tcl.tk/
http://public.kitware.com/VTK/

70

[22] Shengru Tu, Xuefeng Li, Xiangfeng He, and Jay J. Ratcliff, “A Systematic

Approach to Reduction of User-Perceived Response Time for GIS Web Services”,

Proceedings of the 9th ACM International Symposium on Advances in Geographical

Information Systems (ACM-GIS 2001), Atlanta, GA, pp 47-52, November 2001.

[23] Z/I Imaging, Image management and distribution,

http://www.ziimaging.com/Products/StorageAndECommerce/default.htm.

[24] Intergraph Inc., Intergraph Announces New GeoMedia 5.0 Product Suite,

(announced on May 6, 2002)

http://www.intergraph.com/gis/newsroom/press02/gm5_rlsf.asp.

[25] SourceForge.net, TIFF Software, http://www.libtiff.org.

[26] Bentley/ESRI ACE-GIS Interoperablility (White Paper),

http://www.bentley.com/files/products/bentleyesri/bentley_esri_wp.pdf

 [27] D.J. Reifer, V.R. Basili, B.W. Boehm and B. Clark, “Eight lessons learned during

COTS-based systems maintenance”, IEEE Software, Sept-Oct 2003.

http://www.ziimaging.com/Products/StorageAndECommerce/default.htm
http://www.intergraph.com/gis/newsroom/press02/gm5_rlsf.asp
http://www.libtiff.org
http://www.bentley.com/files/products/bentleyesri/bentley_esri_wp.pdf

71

VITA

Ying Wu was born in Tianjin, China in1973. Received bachelor degree from

Mechanical and Electrical Engineering Department of Beijing University of Aeronautics

and Astronautics (BUAA) in China (1992-1996). Then she began her gradate study in

Robot Research Institute and got master degree of Robotics at 1999. During 1999-2000,

she worked at Great Dragon Telecommunication Company in China as Software

Engineer

From January 2001, she obtains a graduate assistant position in the Computer

Science Department of University of New Orleans. Research interests include distributed

system, database system and web-based system. Current research work on integration of

COTS Geographic Information System which may employ multiple technologies like

EGIS, Oracle Spatial database, J2EE, SOAP-based Web Services etc.

	COTS GIS Integration and its Soap-Based Web Services
	Recommended Citation

	Title Page
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	 INTRODUCTION
	 BACKGROUND
	SYSTEM DESIGN
	IMPLEMENTATION
	CONCLUSION
	REFERENCE
	VITA

