University of New Orleans

ScholarWorks@UNO

University of New Orleans Theses and

Dissertations Dissertations and Theses

8-7-2003

Image Compression Using Cascaded Neural Networks

Chigozie Obiegbu
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation

Obiegbu, Chigozie, "Image Compression Using Cascaded Neural Networks" (2003). University of New
Orleans Theses and Dissertations. 34.
https://scholarworks.uno.edu/td/34

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/34?utm_source=scholarworks.uno.edu%2Ftd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

IMAGE COMPRESSION USING
CASCADED NEURAL NETWORKS

A Thess

Submitted to the Graduate Faculty of the
Universty of New Orleans
in partid fulfillment of the
requirements for the degree of

Master of Science
in
The Department of Electrica Enginesring

by
Chigozie Obiegbu
B.Eng., Federd University of Technology Owerri, 1997

August 2003

ACKNOWLEDGMENTS

The completion of this thess has involved an enormous amount of hep from a
number of people. First and foremost of these is Dr. Dimitrios Chardampidis, my thess
advisor, for providing the origind idess, suggestions, and motivation for the work. He
freely bestowed his time, guidance, brilliance, and wisdom considerably beyond the call
of duty; and was a modd of professorid respongbility, professondism, and
commitment. What | have learned from him cannot be quantified. Specia thanks to other
members of my thess committee, Dr. Juliette loup and Dr. Terry Riemer for enriching
my experience in academia by shaing with me thar intelectud curiosty, professond
ingght and integrity, and persond warmth and understanding through their courses. |
would especidly like to thank Dr. Juliette loup for carefully reading through the entire
draft of my thess and offering severd hdpful editorid comments.

If anyone has had to be patient with me in the course of writing this thess it is
my specid friend, Mdissa Bias. Her companionship has helped me to put forth my full
effort, and to mantan my sanity. Sincere appreciation goes to Vijay Kura, a felow
graduate student and a good friend, for lending some of his exquiste programming skills
a the beginning sages. And lagt, but mogt of dl, to my parents, James and Mmachukwu
Ohbiegbu, | owe everything; they susain me in al that | do and it is to them that this work

is dedicated with love; and in loving memory of my dearest cousin, Uchenna Ebdedike.

TABLE OF CONTENTS

LIST OF TABLES ... oottt st b e ne e st e e nne e \

LIST OF FIGURES ...ttt n e nne e s n e Vi

ABSTRA CT ettt et e s be e st e e be e e s be e bt e sabe e beeenbeenreenareens viii
CHAPTER

IR 1 10 o (¥ Tox o] o AP STRTTSRP 1

2. Techniques for Image COMPIESSION.........cererereeieeierie st sre e enes 4

2.1 Vector QUANTiZALION........ccveeireecireeeree et eereesreeeteesreesreesreesteesareesreesareenreeeans 4

2.2 Predictive COOING......cccooiiiiiiseeeeie ettt s 6

2.3 Transform COUINgG.......ccouveiuiiiiriieeiie e 8

2.3.1 Discrete CosiNe TransfOrM........ccoeeeeerinreieneseseeeseseeese e 9

3. Artificial Neural Network Technology- an OVEIVIEWcccceeeeveerenereniennens 14

3.1 Basic Principles of Learning in Neural Networkscccocveveeceevvenennnan, 15

3.1.1 Type of Connection between NEeUronS..........ccocereeeereereneseeseneennes 17

3.1.2 Connection between Input and Output Data...........ccccceeeeceeieernenne 19

3.1.3 Input and Transfer FUNCLIONSccoceereeie e 19

314 TyPe Of LEAMNING....ccoeivirteriirieriieeeee ettt 22

3.1.5 Other Parameters for NN Architecture Design........ccccceeevveenieennane 27

3.2 Backpropagation NEtWOIKcccceeierierineneneseresesee e 29

3.3 Radia-BasisS FUNCLON NEEWOIKooeeee oo eeeeaa e 39

3.4 General Regression NEtWOrKccceveieninenineneeeeeee e 43
3.5 MOAUIAr NEIWOTK ..ot 49

3.6 Probabilistic NEIWOIKcccririiiriiereeee e 54

3.7 Learning Vector Quantization NEWOrK...........ccocererereeieeieenenesese e 60
3.8 The Cascade Architecture Neural NEtWOrKcooeverenennienenieieneneens 65

4. Image Compression Using Neural NEtWOrKS.........ccccooevererienieenenesene e 72
4.1 Single-structure NN image compression implementation.............ccccceeue. 74
4,11 Pre-PrOCESSING...cccieeieereesreeiseseesseessesseesseessesssesseessessessesssessssssessees 74

.12 TIAINING .eeitiitieiieeei ettt sr e b e e s e b nresne e 74

4.1.3 SIMUIBLTION......eieeeeiisieeeesierie et 76

4.1.4 POSI-PIrOCESSING ...ceuveueeeereesrertesseseeeeeessessessessessessesseesessessessessessees 76

4.2 Pardle-structure NN image compression implementation............ccccee.... 77
4.3 Proposed Cascade ArChiteCIUreoceeveeeeeeese e sees e 78
4.3.1 ENCOING PrOCESScuveivereinrerieruerieeeeiessessessessesiessesseeeessessesseseesnenes 78

4.3.2 DECOUING PrOCESSc.eeiueeireereeriesteeiteseesseesseseesseenseseesseessessessseenees 81

B, RESUITS. .ttt e ne e 83
5.1 Comparisonsinterms of PSNR.........cccoiiiiiiineeee e 83
5.2 Comparisonsin terms of Computational Complexitycccoveevveceereeenne. 89

6. Discussion and CONCIUSIONScccoouerierierueriereeeeseesee et see e e sne e 90
REFERENCES ... e 94
A 1 PP SPRRRPPRPTRI 98
APPENDIX L. s nn e s 99

LIST OF TABLES

Neural Network ArchiteCtureS........cocvveeeeeeienenese e
Comparison between single structure and cascade architectures

PSNR values for JPEG algorithm..........cccoveriineniiiinienee

1.0

20

3.1

32

3.3

34

35

3.6

3.7

3.8

4.0

4.1

4.2

4.2

5.1

5.2

5.3

54

5.4

5.4

LIST OF FIGURES

Block diagram of JPEG COMPIESSIONccceeueeeerieeieceesreeseeseesre e e seesreesreeeesseeneas 10
Zigzag sequence for Binary ENCOAINGccvveriririieieiesie e 12
Graph of hyperbolic tangent fUNCHION............ccoiiiiiriee e 21
MUILIPIE-TNPUL NEUION........ecuiiceieiece et esreeresnne s 22
Architecture of Backpropagation Neural NEtWOrKccooveriieeieienenerenenee 30
ATChItECIUIrE Of RBIF ...t 41
ATChIteCture Of GRININoiiiice e 47
Architecture of Modular Neural NEtWOrK..........c.ccooiiiiiiinineeee e 52
Architecture of Probabilistic Neural NEtWOrK ... 57
Cascade Correlation NEIWOIKc.cceiiriiininieeeeeee s 68
Image Compression BIOCK Diagram.........cccccceieeieiieceesie et 73
Single-structure neura network image compression/decompression scheme........... 76
(a) Encoding scheme for proposed cascade architecture..........cccveveeccieeveeccieecieee, 82
(b) Decoding scheme for proposed cascade architecture...........ccoveeevceeveeeeeceeseennn. 82
PSNR vs. CR for reconstructed Lenaimage.........ccooueverereneneneneeeeeeseesee e 85
PSNR vs. CR for reconstructed PEppers imagecoeceeeeieeieseeseesee e 86
PSNR vs. CR for reconstructed Baldoon imagecoevererenenenieesese e 87
(8) OrigiNal LeNaA IMAJEcccveeieriierieeiesiee ettt sttt st naesaeesaesneens 88
(b) Reconstructed Lenaimage at 8:1 CR using single-structure NN............ccccee..... 88
(c) Reconstructed Lenaimage at 8:1 CR using cascade method.cccceveeiiennenne 88

Vi

5.4 (d) Reconstructed Lenaimage at 8:1 CR using JPEG

vii

ABSTRACT

Images are forming an increesngly large pat of modern communications,
bringing the need for efficient and effective compresson. Many techniques developed for
this purpose include transform coding, vector quantization and neurd networks In this
thess, a new neurd network method is used to achieve image compresson. This work
extends the use of 2-layer neurd networks to a combination of cascaded networks with
one node in the hidden layer. A redigribution of the gray leves in the training phase is
implemented in a random fashion to meke the minimization of the mean square eror
goplicable to a broad range of images. The computationad complexity of this gpproach is
andyzed in terms of overdl number of weights and overal convergence. Image qudity is
measured objectively, using pesk sgnd-to-noise ratio and subjectively, using perception.
The effects of different image contents and compression ratios are assessed. Results show
the performance superiority of cascaded neurd networks compared to that of fixed-
architecture training paradigms especidly at high compresson ratios. The proposed new
method is implemented in MATLAB. The results obtained, such as compression ratio and

computing time of the compressed images, are presented.

viii

CHAPTER 1

I ntroduction

Computer images are extremely data intensive and hence require large amounts of
memory for storage. As a reault, the tranamisson of 4ill images from one machine to
another can be very time consuming. For this reason gill image compression is subject of
an intense worldwide research effort [1]-[8]. By using data compresson techniques, it is
possble to remove some of the redundant information contained in images, requiring less
dorage space and less time to transmit. The objective of digitd image compresson
techniques is the minimization of the number of bits required to represent an image,
while maintaining an acceptable image qudity. Another issue in image compresson and
decompression is the processng speed, especidly in red-time gpplications. It is often
desrable to be able to carry out compresson and decompresson in red-time without
reducing image qudlity.

Numerous lossy image compression techniques have been devedoped in the past
years. The transform-based coding techniques have proved to be the most effective in
obtaining large compresson ratios while retaining good visud qudity. In low noise
environments, where the bit eror rate is less than 10°°, the JPEG [3]-[4] picture
compresson dgorithm, which employs cosne-transforms, has been found to obtan
excdlent results in many digital image compresson applications. However, an increesing

number of gpplications are required for use in high noise environments [12] - [14], eg.,

2

the transmisson of a compressed picture over a mobile or cordiess telephone. In these
goplications, the bit error rates due to noise on the transmisson channe may be as high
as 10°2[12], [14]. At these error rates, JPEG and similar compression agorithms, which
rely on entropy coding, are not suitable [12].

Recently, neurd networks have proved to be useful in image compresson because
of ther pardld architecture and flexibility [15]-[20]. They do not use entropy coding and
are therefore intringcdly robust, meking them an atractive choice for high noise
environments. Of course a price must be paid for this robustness. In this case, the price is
a reduction in decompressed image qudity for the same compression efficiency.
However, as shall be seen in chapter 4, the reduction in image quality is not excessive.

Although the padld-dructure neural networks are robust, they suffer from
severa drawbacks. The main drawbacks are:

1) high computational complexity;

2) moderate recongtructed picture qudity;

3) vaiddlehit-rate;
In this thesis the firs two drawbacks are tackled in a proposed neura network (NN)
method that uses a cascade of feedforward networks with one node at the hidden layer.
The third drawback is not directly tackled to avoid increesng the computationa
complexity of the system. However, provison is made for the rare occasons when the
compression efficiency is much lower than expected. Compared to the current parale-
gructure NNs, the proposed NN has a lower computationa complexity, faster

convergence, and higher compression efficiency.

3

The chepters of this thess are organized as follows. Chapter 2 briefly reviews
three of the mgor gpproaches to image compresson, namdy predictive coding, transform
coding and vector quantization. In particular, the JPEG technique is described. Chapter 3
discusses NN technology, including various architectures and dgorithms. These
architectures include Backpropagation, Radid-bass function, Generad Regresson,
Modular, Probabilistic, and Leaning Vector Quantizetion. The dngle-structure NN
congsting of two layers and the parald-structure NN are embedded in the discusson. In
Chapter 4, the single-structure NN as an image compression tool is implemented, and the
proposed NN method using a cascade of feedforward networks is presented. A
background on this gpproach is given followed by its gpplication to image compression.
Chapter 5 presents experimenta results. The error metrics used in computing the results
are described. Graphicad and pictorid results ae fully illugrated. Performance
comparisons ae made with JPEG and dngle-structure/parald-structure NNs. Issues
relaing to a comprehensve evauation of the image compresson techniques presented
herein are discussed in Chapter 6. The practicdity and ussfulness of the new method is
mentioned.

The thess concludes by suggesting certain modifications to the new NN method
to achieve even better results. Specific remarks on the development of the code used in

the new NN method assists in highlighting the usefulness of the completed work.

CHAPTER 2

Techniques for Image Compression

Image compresson methods are categorized as losdess and lossy. Losdess
methods preserve dl origind information without changing it. Lossy methods reduce
information to attain better compression ratio. Losdess compresson has been found to be
adequate when low compresson ratios ae acceptable Significantly subgtantia
compression ratios can only be achieved with lossy compresson schemes, which will be
the main focus of this thess. Due to the extensive breadth of this fidd, it is impossble to
lig dl of the currently avalable image compresson techniques. However, exising
research fdl into one of three mgor caegories. vector quantization, predictive coding, or

transform coding.

2.1 Vector Quantization

Quantization refers to the process of gpproximating a continuous set of vaues in
the image data with a finite (preferably smdl) set of vdues The input to a quantizer is
the origind data, and the output is dways one among a finite number of leveds The
quantizer is a function whose st of output vadues is discrete and usudly finite. The
concept of quantizing data can be extended from scadar or one-dimensiona data to vector

data of arbitrary dimension.

5
Vector Quantization (VQ) [9] — [11] uses a codebook containing pixel patterns
with corresponding index for each of them. The main idea of VQ in image coding is then
to represent arrays of pixels by an index in the codebook. In this way, compression is
achieved dnce the sze of the index is usudly a smdl fraction of that of the block of
pixels. The codebook is used to quantize the incoming vectors and is andogous to the
quantization levels in a scdar quantizer. A good codebook can reduce the overdl
digortion of the reconstructed image, and is determinative to the performance of the VQ
process.
At the encoder, the incoming image is partitioned into blocks of sub-images.
These blocks have the dimenson equa to entries in codebook, so comparison can be
done easly between them. An input vector X, conssting of blocks of pixes is quantized.
This is done by encoding X, into a binay index i, which points to an entry in the
codebook. This i, then serves as an index for the output reproduction vector or codeword.
The standard approach to calculate the codebook is by way of the Linde, Buzo, and Gray
(LBG) dgorithm [9]. Findly, the concatenation of dl i, represents the compressed image.
However, the choice of index i, will be different when using different mapping rules.
These mapping rules often depend on minimizing a predefined digortion messure
d(Xn,Yin), where X, and Y, ae the vectors from the image and from the codebook
respectively. A reliable assessment criterion based on the properties of the human visud
sysdem has not yet been defined, hence Euclidean metrics are adopted as a default
digortion measure. Besides the LGB dgorithm, other iterative gpproaches relate to neurd

network models and are based on Kohonen Self-Organizing Maps (SOMs) [21].

6

The main advantages of VQ are the amplicity of its idea and the possble efficient
implementetion of the decoder. Moreover, VQ is theoreticaly an efficient method for
image compression, and superior performance will be gained for large vectors. However,
in order to use large vectors, VQ encoding becomes complex, which requires many
computationd resources (eg., memory, computations per pixel) in order to efficiently
congtruct and search a codebook. For instance, while the LGB dgorithm converges to a
locd minimum, it is not guaranteed to reach the globa minimum. In addition, the
dgorithm is very sengtive to the initid codebook. Furthermore, the dgorithm is dow
gnce it requires, on each iteration, an exhaustive search through the entire codebook.
More research on reducing this complexity must be done in order to make VQ a practica

image compression method with superior qudity.

2.2 Predictive Coding

Predictive image coding agorithms [5] are used primarily to exploit corrdation
between adjacent pixels. They predict the vadue of a given pixel based on the vaues of
the surrounding pixels. Due to the corrdation property among adjacent pixels in an
image, the use of predictor can reduce the amount of information bits required to
represent the image. This can accomplished through the use of predictive coding or
differential pulse-code modulation (DPCM).

The predictor uses past samples x(n- 1),x(n- 2),...,x(n- p),or in the case of
images, neighboring pixels, to cdculate an etimate, X(n), of the current sample. It the
difference between the true vaue and the estimate, namely e(n) = x(n) - X(n), which is

used for storage transmisson. As the accuracy of the predictor increases, the variance of

7

the difference decreases, reaulting in higher predictive gan and therefore a higher

compresson ratio.

The problem of course is how to design the predictor. One approach is to use a
detigticd modd of the data to deive a function which relates the vaues of the
neighboring pixds to that of the current one in an optimad manner. An autoregressve

modd (AR) is one such modd which has been successfully gpplied to images. For a
pthorder causal AR process, the nth vadue x(n) is relaed to the previous p vauesin

the fallowing manner:

x()= 4w x(n- j)+e,, 2.1)

j=1
where {w;} is a set of AR coefficients, and {e,} is a set of zero-mean independent and

identicdly didributed random variables. In this case, the predicted vaue is a linear sum

of neighboring samples (pixds) as shown by

X(n) = gwjx(n- i) . (2.2

=

Equation (2.2) is the bass of linear predictive coding. To minimize the mean squared
error E[(X- x)?], the following rdaionship must be satified:

Rw=d, (2.3
where [R]; = E[x()x(j)] is ijthelement of the autocovariance matrix R and
d, = E[X(n)x(j)] isthe jth dement of the cross covariance vector d. Knowing Rand d,

the unknown coefficient vector w can be computed, and the AR modd (i.e., predictor) is

thereby determined.

2.3 Transorm Coding

Another approach to image compression is the use of transformations that operate
on an image to produce a set of coefficients [5]. A subset of these coefficients is chosen
and quantized for transmisson across a channd or for storage. The god of this technique
is to choose a trandformation for which such a subset of coefficients is adequate to
recongtruct an image with minimum discernible distortion.

A dmple and powerful dass of transform coding techniques is linear block
transform coding. An image is subdivided into nonoverlgpoping blocks of n™ n pixds
which can be consdered as N-dimensond vectors x with N=n"n. A linear
trandformation, which can be written as an M~ N -dimensond marix W with M £ N,

is performed on each block, with the M rowsof W, w being the basis vectors of the
trandformation. Theresulting M -dimensiond coefficient vector y is calculated as

y =Wk. (2.9)
If the basis vectors w, are orthogond, thet is,

1, 0=
0 it j

i
W' W, =
|

: (2.5)

then the inverse transformation is given by the trangpose of the forward transformation
matrix resulting in the recongtructed vector:

R=WTy. (2.6)

The optimd linear transformation for minimizing the mean squared earor is the
Karhunen-Loeve transformation (KLT) [18]. The transformation mairix W congsts of M
rows of the egenvectors corresponding to the M largest elgenvdues of the sample

autocovariance matrix

S=E[xxX]. (2.7)

The KLT dso produces uncorrelated coefficients and therefore results in the mogt
efficient coding of the data since the redundancy due to the high degree of corrdation
between neghboring pixels is removed. The KLT is related to principad component
andyss (PCA) [23], dnce the bads vectors are aso the M principal components of the
data. Because the KLT is an orthogond transformation, itsinverse is smply its trangpose.

A number of practicd difficulties exis when trying to implement the above
goproach. The cdculation of the esimate of the covariance of an image may be unwiddy
and may require a large amount of memory. In addition, the solution for the eigenvectors
and egenvdues is computationdly intendgve. Findly, the cdculatiion of the forward and
inverse trandforms is of order O(MN) for each image block. Due to these difficulties,
fixed-bass transforms such as the discrete cosine transform (DCT) [22], which can be
computed in order, O(Nlog N), are typicdly used when implementing block trandform

schemes.

2.3.1 Discrete Cosine Transform

The currently accepted standard for lossy ill image compression was developed
by the Joint Photographic Experts Group (JPEG) [3], [4], which adopted the linear block
transform coding approach for its standard using the DCT as the transformation [22]. The
JPEG specification defines a minima subsat of the standard, cdled basdine JPEG, which
dl JPEG-aware applications are required to support. This basdine uses an encoding

scheme based on the DCT to achieve compression.

10

Figure 1 describes the basdine JPEG process. The compresson scheme is divided

into the following stages:

1. Apply aDCT to blocks of pixds, thus removing redundant image deta.

2. Quantize each block of DCT coefficients using weighting functions optimized for
the human eye.

3. Encode the resulting coefficients (image data) using a Huffman variable word-

length agorithm to remove redundancies in the coefficients.

The image is fird subdivided into 8 x 8 blocks of pixels. As each 8 x 8 block or sub-
image is encountered, its 64 pixels are level shifted by subtracting the quantity 2™,

where 2" isthe maximum number of gray levels.

8X8

; DCT Encoder
Elxelk —» —P® Quantizer [P — >
oc

Figure 1.0: Block diagram of JPEG compression.

The 2D discrete cosne transform of the block is then computed. The DCT helps
separate the image into parts (or spectra sub-bands) of differing importance with respect
to the images visud qudity. The DCT is smila to the discrete Fourier transform: it
tranforms a dgnd or image from the spaid doman to the spatid frequency domain.
With an input image, A, the output image, B is
BUY) = LCUICWA & A,) cose P (2 +1) coss PV (2 + 1. 2.8)

4 i=0 j=0 ﬁ H gﬁ H

where C(u), C(v) = 1/C2 for u,v = 0 and 1 otherwise

11
The input imege is N, pixds wide by N, pixds high; A(, j) is the intengty of the pixd
inrow i and column j. B(u,v)is the DCT coefficient in row u and column v of the DCT
matrix. The DCT input is an 8 by 8 array of integers. This array contains each pixd's gray
scde leved; 8 bit pixels have levels from O to 255. The output aray of DCT coefficients
contains integers, these can range from -1024 to +1023. For most images, much of the
ggnd energy lies a low frequencies, these gppear in the upper left corner of the DCT.
The lower right values represent higher frequencies, and are often smal - smdl enough to
be neglected with little visble digortion. A quantizer rounds off the DCT coefficients
according to a quantization matrix. This matrix is the 8 by 8 matrix of Sep Szes
(sometimes cdled quantums) - one dement for each DCT coefficient. It is usudly
symmelric. Step szes will be amdl in the upper left (low frequencies), and large in the
lower right (high frequencies); a step sze of 1 is the most precise. The quantizer divides
the DCT coefficient by its corresponding quantum, and then rounds to the nearest integer.
Large quantums drive smdl coefficients down to zero. The result: many high frequency
coefficients become zero, and therefore easier to code. The low frequency coefficients
undergo only minor adjustment. This step causes the lossy nature of JPEG, but alows for
large compression ratios.

After quantization, it is not unusud for more than haf of the DCT coefficients to
equa zero. JPEG incorporates run-length coding to teke advantage of this. For each norn+
zero DCT coefficient, JPEG records the number of zeros that preceded the number, the
number of bits needed to represent the number's amplitude, and the amplitude itsdf. To
consolidate the runs of zeros, JPEG processes DCT coefficients in the zigzag pattern

shown in figure 2.

DCT Matrz :’

. :
. The sequence continues for

. the entire & x 8 block
Fioure 2. Zig-zag Sequence for Binary Encoding
The number of previous zeros and the bits needed for the current number's
amplitude form a par. Each par has its own code word, assgned through a variable
length code (for example Huffman, Shannon-Fano or Arithmetic coding). JPEG outputs
the code word of the par, and then the codeword for the coefficient's amplitude (adso
from a varidble length code). After each block, JPEG writes a unique end-of-block
sequence to the output stream, and moves to the next block. When finished with al
blocks, JPEG writes the end-of-file marker. At this point, the JPEG data Stream is ready
to be trangmitted across a communications channe or encgpsulated ingde an image file
format.
JPEG is not dways an ideal compression solution. There are severd reasons.
= Does not fit every compresson need. Images containing large aress of a sngle
color do not compress very well.

= Can berather dow when it isimplemented only in software.

13

= Hard to implement.

= Not supported by very many file formats.
Recently, novel approaches have been introduced based on pyramida sructures [24],
waveet transforms [25], and fractal transforms [26]. These and some other new
techniques [27] ingpired by the representation of visua information in the bran can
achieve high compresson ratios with good visud qudity but ae nevethdess
computetiondly intensve.

With this brief review of conventiond image compresson techniques a hand,
various types of neura networks and ther architectures will be reviewed, and ther role

as an image compressiontool considered.

14

CHAPTER 3

Artificial Neural Network Technology- an Overview

Artificiad Neurd networks are software or hardware systems that try to smulate
the human brain functiondity. From the beginning of ther presence in scence, Neurd
Networks (NNs) are being investigated with two different scientific approaches. Fird, the
biologicd agpect explores NNs as smplified smulations of the human bran and uses
them to test hypotheses about human brain functioning. The second approach treats NNs
as technologicd systems for complex information processing. This thess is focused on
the second agpproach by which NNs are evaluated according to thelr efficiency to ded
with complex problems, especidly in the aeas of asociation, classficaion and
prediction, but specificdly in the area of image processing.

The reasons why NNs often outperform classcd datiicd methods lie in ther
abilities to analyze incomplete, noisy data, to ded with problems that have no clear-cut
solution and to learn on higtorical data. Because of those advantages, they have shown
remarkable success in areas such as image trangmisson over high-noise environments.
NNs, however, do have disadvantages. One such is the lack of tests of Hatistical
sgnificance of NN models and parameters estimated [32], [35]. Furthermore, there are no
established paradigms for deciding which architecture is the best for certain problems and
data types. This problem is partly investigated in this theds. Despite those disadvantages,

many research results show that neurd networks can solve dmost dl problems more

15

efficiently than traditiond modding and daidicd methods It is mathemdicdly proven
(usng the Ston-Welerdtrass, Hahn-Banach and other theorems and corollaries [36]) that
two-layer neurd networks having arbitrarily squashing trandfer functions are capable of

goproximating any nonlinear function.

3.1 BadcPrinciplesof Learningin Neural Networks

NNs consst of one or more layers or groups of processng elements caled
neurons. The term neuron denotes a basc unit of a neura network mode intended for
data processng. Neurons are connected into a network in a way that the output of each
neuron represents the input for one or more other neurons. The connection between
neurons can be ether one-directiond or bi-directiona, and according to its intensity the
connection can ether be excitatory or inhibitory. Neurons are grouped into layers. There
are two main types of layers. hidden and output layers. Some authors refer to the inputs
as another layer, but this will not be the case in this thess The hidden layer receives
input data. Here, the information is processed and sent to the output layer neurons, where
the network output is compared to the desired output and the network error is computed.
The eror informatiion then flows backward through the network and the vaues of
connection weights between the neurons are adjusted using the error term. The process is
repested in the network for the number of iterations necessary to achieve the output
closest to the desired (actud) output. Findly, the network output is presented to the user.
Neurd network learning is basicadly the process by which the sysem arrives a the vaues
of connection weights between neurons. The connection weight is the srength of the

connection between two neurons. If, for example, neuron | is connected to neuron i,

16

w;, denotes the connection weight from neuron j to neuron i (w; is the weight of the

reverse connection from neuron i to neuron j). If neuron i is connected to neurons

cdled 1,2,...,n, their weights are stored in the variables w,;,w,,,w.;. A neuron receives as

many inputs as there are input connections to that neuron and produces a single output to

other neurons according to atransfer function.

The process of neura network design congsts of four phases:

1

2.

arranging neurons in various layers,

determining the type of connections between neurons (inter-layer and intra-layer
connections),

determining the way neuron receives input and produce output, and

determining the learning rule for adjusting the connection weights.

The result of NN design is the NN architecture. According to the above design

processes, the criteriato distinguish NN architectures are as follows:

number of layers,

type of connection between neurons,
connection between input and output data,
input and trangfer functions,

type of learning,

certainty of firing,

tempord characterigtics, and

learning time.

17

3.1.1 Typeof Connection between Neurons
Connections in the network can be redized between two layers (inter-layer
connections) and between neurons in one layer (intra-layer connections) [28]. Inter-layer
connections can be classfied as fully connected - each neuron in the firg layer is
connected to each neuron in the second layer; partialy comected - each neuron in the
fird layer should not necessarily be connected to every neuron in the second layer; feed-
forward - connection between neurons is one-directiond, neurons in the first layer send
their output to the neurons in the second layer, but they do not receive any feedback; bi-
directiona - there is a feedback when the neurons from the second layer send their output
back to the neurons in the first layer; hierarchica - neurons in one layer are connected
only to the neurons of the next neighbor layer; resonance - two-directiond connection
where neurons continue to send information between layers until a certain condition is
stified.
Examples of somewel known NN architectures with inter-layer connections:
= Perceptron (developed by Frank Rosenblat, 1957) - first NN, two-layered, fully
connected,
= ADALINE (developed by Bernard Widrow, Marcian E. Hoff, 1962) - two-
layered, fully connected,
= Backpropagation (developed by Paul Werbos, 1974, extended by Rumelhart,
Hinton, Williams, 1986) - firds NN with one or more hidden layers, connection
between hidden layersis hierarchicd,
= ART (Adaptive Resonance Theory) (desgned by Steven Grosberg, 1976)

-resonance connection, three-layered network,

18

» Feedforward Counterpropagation (designed by Robert Hechi-Nielsen, 1987)
-dructure smilar to Backpropagation network, three-layered, but non-
hierarchical. Thereis aso a connection between neuronsin one layer.

Connections between neuronsin one layer (intra-layer) can be:

a) Recurrent - neurons in one layer are fully or partidly connected. The connection is
redized in a way that neurons communicate their outputs with each other after they
receive their inputs from another layer. The communication continues until neurons
reach a stable condition. When the stable condition is reached, neurons are allowed
to send their output to the next layer.

b) On-center/off-surround - in this connection a neuron in one layer has an excitatory
connection toward itsdf and toward the neighbor neurons, but an inhibitory
connection toward other neuronsin the layer.

Some of the intra-layer networks with recurrent connection are:
= Hopfiedd's network (desgned by John Hopfied, 1982) - two-layered, fully-

connected, neurons of output layer are mutudly connected with recurrent intra
layer connection,

= Recurrent Backpropagation network (desgned by David Rumdhat, Geoffrey
Hinton, Ronad Williams, 1986) - recurrent intra-layer connection, but one-
layered, where pat of the neurons recelve inputs, and the other part is fully
connected with recurrent intra-layer connection,

and some of the networks with on-center/off-surround connection are;
= ART1, ART2, ART3 (designed by Steven Grosberg, 1960) - resonance on-

center/off-surround connection,

19

= Kohonen's self-organizing network (created by Teuvo Kohonen, 1982),
= Counterpropagation networks,
= Compitive learning networks.

Details on the above architectures are discussed later in the text.

3.1.2 Connection between Input and Output Data

NNs can aso be distinguished according to the connection between input and
output that can be:
1) autoassociative - input vector is the same as output (common in pattern recognition
problems, where the objective is to obtain the same datain output as they are in input),
2) heteroassociative - output vector differs from the input vector.
Autoassociative networks [17], [36], [37] ae used in pattern recognition, signd
processing, noise filtering and smilar problems that am to recognize the patterns of input

data.

3.1.3 Input and Transfer Functions
In order to understand the main types of NN architectures that will be explored
below, the basc principles of NN functioning will be described through the equations of

input and output of neurons, transfer functions and learning rules.

I nput (Summation) Functions
When a neuron receives input from the previous layer, the vadue of its input is

computed according to an input function, usudly cdled a "summation® function. The

20

smples summaion function for the neuron i is determined by multiplying the output

sent by the neuron j to the neuron i (denoted as output;) with the connection weight

between neurons i and j, then summaizing those multiplications for dl j neurons

connected to neuron i, asgiven by:

input, = § (w, »output), (3.2)

i=1
where n is the number of neurons in the layer that sends its output received by the

neuron i. In other words, input, of a neuron i is the sum of al weghted outputs thet

arive into that neuron. Besides this standard network input, there are two additiona
gpecific types of inputs in a network: externd input and bias. For the former, neuron i
receives input from the externa environment. For the latter, a bias vaue is used for
neuron activation control in some networks. Input vaues can be normaized to an interva
(usudly [0,1] or [-1,1]) to avoid the extreme influence of high-valued inputs. Therefore,
normaization is recommended in most neurd networks (it is obligatory in Kohonen's
network) [16], [21]. Detalls about data normalization used in this thesis will be explained

later in the text.

Output (Transfer) Functions

After recalving the input according to the summation function presented in
formula (3.1), the output of a neuron is computed and sent to the other neurons it is
connected to (usudly to the next layer neurons). The output of a neuron is computed
according to a transfer function, which may be a liner or a nonlinear function of its

input. A paticular transfer function is chosen to satisfy some pecification of the problem

21

that the neuron is atempting to solve. Severa of the most frequently used transfer
functions are the dep function, sgnum function, sgmoid function, hyperbolic-tangent
function, linear function, and threshold linear function. The output of each trandfer
function is computed according to a set formula

Only two of the above-mentioned trandfer functions are used in this thess

namely, the hyperbolic-tangent and the linear functions. The former has the form:

e'-¢e!
eU +e—u

output, = (3.2

where u=gxnput,;. g=UT is the gain of the function, where T is the threshold. The

gan determines the skewness of the function around O. The function has continuous
vdues in the intevd [-1,1]. The hyperbolic-tangent function is commonly used in
multilayer networks that are trained using the backpropagation agorithm, in part because

thisfunction is differentiable. The graph is shown in the following the figure below:

Figure 3.1: Graph of hyperbolic tangent function

2

Because of its ability to map vaues into pogtive as wel as negative regions, this function
is used throughout Matlab implementation in thisthess.

A linear function has the form:

output, = g x\npuit, (3.3
It should be pointed out that Matlab names the hyperbolic tangent tansig, which has the
same shagpe, and the linear function purelin. Figure 3.2 below depicts the overdl picture
of the input, trandfer function, and output of atypica multiple-input neuron.

Choice of the appropriate transfer function is made in the network design phase,
dill dlowing the change of threshold vaue (T) and gain (g). The best trandfer function is

usualy obtained by experimenting on a particular problem.

& djustable weights

Sumination

—— Ot

Transfer function

Figure 3.2 Multiple-input neuron

3.1.4 Typeof Learning

"Learning” is the process of cdculaing the weights among neurons in a network
[29]. NNs can be desgned by supervised or unsupervised learning. In supervised
learning, the network is presented with a set of input and desred output patterns. The
resulting (actual) outputs are compared with the desired outputs and their differences are

used to adjust the network weights. In unsupervised learning, the network is presented

23

with only input patterns. Without desired responses, the network has no knowledge about
whether or not its resulting outputs are correct. As a result, the network has to sdf-
organize (cluger) the data into smilar classes by adjuging its weights so tha the
clusering improves. This type of learning is commonly used for patern recognition
problems and clugtering. Kohonen's sdf-organizing network is based on unsupervised
learning.
Every NN goes through three operative phases.
1) learning (training) phase - network learns on the training sample, the weights are
being adjusted in order to minimize the objective function (for example the RMS
Or root mean square error),
2) tedting phase - network istested on the testing sample while the weights are fixed,
3) operative (recdl) phase - NN is gpplied to the new cases with unknown results

(weights are dso fixed).

Learning Rules

A learning rule represents the formula that is used in NN to adjust the connection
weights among neurons. Among various learning rules developed o far, four of them are
most commonly used: Ddta rule, Generdized Ddta rule, Ddta-Bar-Deta and Extended

Ddta-Bar-Ddtarules, and Kohonen'srule.

1) Ddtarule
Ddta rule is aso wdl known as Widrow/Hoff's rule [29], or the rule of least mean

squares, because it ams to minimize the objective function by determining the weight

24

vaues. The am is to minimize the sum of square error, where eror is defined as the
difference between the computed and the desred output of a neuron, for the given input
data. The Ddtarule equetionis.

Dw;; =h xy, >g,, (3.4
where Dw;; is the adjusment of the connection weight from neuron jto neuron
i computed by:

Dwj = Wi - wii?, (35)
Y4 isthe output value computed in the neuron j ; €; isthe raw error computed by:

€& =Ys " Yar (36)
h is the learning coefficient, and y, is the desired (actua) output that is used to compute
the error.

The raw error in formula (3.6) is very rarely backpropagated; more often other
error forms are used. In a classca Backpropagation NN, the error is backpropagated
through the network using the gradient descent dgorithm described in section 3.2.1. The

gradient component of the globd error E backpropagated into a connection k is
d, =—, (3.7)

which enables locdization in a sense that each paticular connection in the network is
adjusted. Since Ddta rule (or its variations) is commonly used in supervised networks, it
IS necessary to mention the main problem that can occur in backpropageting the error,
i.e, the locd minima The locd minima problem occurs when the minimum eror of the

function is found only for the locd aea and learning is stopped without reaching the

2
globd minimum. Since the problem is manly apparent in the Backpropagation
agorithm, it will be discussed in detall later in the text together with suggested solutions.

2) Generdized Ddtarule
Generdized ddta rule is obtained by adding a derivation of input neurons into the

Ddtarule equation such that weight adjustment is computed according to the formula
DWji =h XYy "€ xf(l,), (3.8)
where f((1,) is the derivative of the input |, into neuron i. This rule is appropriate to be

used with non-linear transfer functions.

3) Delta-Bar- Delta and Extended Delta- Bar-Deltarules

As can be seen from the previous section, the learning coefficient is an important
parameter for the speed and efficiency of NN learning, and is typicdly determined as a
gngle leaning rate for al connections in the network. The Dedta-Bar-Delta (DBD)
learning rule was developed in 1988 by Jacobs [30] in order to improve the convergence
goeed of the dasscd Ddta rule. It is a heurisic gpproach of locdizing the learning
coefficient in a way that each connection in the network has its own learning rate. Those
rates change continuoudy as the learning progresses. Dynamic weight adjusment in the
DBD rule is done according to the Saridis heuristic approach. The learning rate of a
connection in the network is increased if the sgn of the weight for that connection is the
same for a number of time steps (or over the region of reatively low curvaure). On the
other hand, when the sgn of the weight is changed for a certain number of time steps, the
rate for that connection is decreased. Thus, Ddta rule equation (3.4) is modified so that

the learning rate is different for each connection k:

2
DW; i, =h Xy, & . (3.9)
Weight increments ae conducted linearly, while decrements ae conducted
geometricaly. Despite its advantages over the classicd Ddta rule, Ddta-Bar-Deta has
some limitations, such as lack of a momentum term in the learning equetion and large
“jlumps’ that can skip important regions of the error surface due to the linear increments
of the learning rates. This cannot be prevented by dow geometrical decrements.
In order to overcome these shortcomings, Extended-Deta-Bar-Deta rule
(EDBD), proposed by Minai and Williams [30] introduces a momentum term a ., which
a0 varies with time. The momentum term is used to prevent the network weights from

saturation (see detals in section 3.2.1), and the EDBD rule enables locd dynamic

adjustment of this parameter, such that the learning equation becomes:

DN}i(k) =h, Xy, >& +akD\NEi_(lk)l (3.10)
where a, is the momentum of the connection Kk in the network and t is the time point in
which the weghts of the connection k are adjusted. Both the learning rates and the
momentum term are adjusted exponentidly, not linearly or geometricdly as in DBD. The
magnitudes of the exponentid functions ae the weghted gradient components
d, (equation 3.7), which makes a larger incresse in the areas of a smdl error curvature,

and a smdler one in the areas of large curvaiure, thereby preventing the big “jumps’
present in the DBD rule.

The above learning rules use the desired (red) output to compute the error, thus
they learn supervised. If the desred output is not known, one of the unsupervised

learning rules should be used, such as the following Kohonen'srule.

27

4) Kohonen'srule

Since Kohonen's network does not learn on known outputs, the weights are
adjusted using the input into the neuron i :

Dw;; =h >extinput; - w;;, (3.11)
where extinput, is the input that neuron i receives from the externd environment.

Kohonen's rule is used in Kohonen's sdlf-organizing network. Details concerning learning

equations are given in section 3.3.2.

3.1.5 Other Parametersfor NN Architecture Design
According to the number of layers, NN architectures can be one-layered (with the
output layer only) or multi-layered (with one or more hidden layers additiondly). The
number of necessary hidden layers should be experimentdly determined. It is to be
expected that more hidden layers should be used for approximating a very complex nor:
linear function, dthough it is proven tha two-layered NNs can gpproximate any non
linear function as mentioned earlier.
NNs can be divided into:
a) determinigic networks - when a neuron reaches a certain activation leve, it sends
impulses to other neurons (it "fires"),
b) dochagtic networks - firing is not cetan and it is peformed according to

probabiligtic digtribution (for example, the Boltzman machine).

28

Characteristics
Architecture Type of connection Learning
Inter-layers | Intra-layers Type Equation
Two-layered
fully) : - .
Perceptron connected supervised Dw;; =h (Y4 - Ys)
ADALINE/ fully . 18 2
MADALINE | connected] unsupervised ﬁill(ydi V)
fully on-center/
Kohonen's off- unsupervised | Dw; =h »extinput, - w,
connected surround] J
Hopefield's fully Recurrent unsupervised E=- 142 W. Y.y
connected Cross-bar 2 ?—i % 77
Multi-layered
Backpropagation | hierarchical | recurrent | supervised Dw,, =h xy, xe,
Recurrent fully recurrent : Dw, =2(y, - Y)r,
Backpropagation | connected cross-bar unsupervised : ‘ o
on-center/ | Unsupervised DwW. =h xv. x
Redia-Bass My o | off- phese+ | =N
connec surround | supervised | Ti = FENPUE) (" + A Warg
fully .
o connected, on-center/ | Unsupervised _
Probabiligtic nom. off- phase + Dw,, =h xy, >,
hierarchical surround supervised
. -center/ | Unsupervised
Learning Vector fully on-cen _
Quantization connected of- phase + Dw,y =h >y, >e,
surround supervised
fully
Counter- connected, recurrent . Dw,; =h >extinput; - w;;
propagation non- cross-bar Supervised between 1% and 2 layer
hierarchical
Resonance | on-center/
ART networks fully off- unsupervised
connected surround

Table 1. Neura Network Architectures

NNs can aso be classified as
a) datic networks (receive inputsin one pass),
b) dynamic networks (receive inputs in time intervals, they are dso cdled spdio-

tempora networks).

29
NN learning can be:
a) bach learning - network learns only in the learning phase, in other phases weights
are fixed,

b) on-linelearning - network aso adjusts its weights in the recall phase.

Table 1 [31] above shows a brief overview of well-known NN architectures according to
the above parameters for architecture design. Further &xt presents detalled description of

various NN architectures.

3.2 Backpropagation Networ k

Back-propagation (BP) [15], [19], [37] is a multi-layer neura network using
ggmoidd activation functions. Origindly developed by Paul Werbosn in 1974, extended
by Rumedhart, Hinton, and Williams in 1986, this was the fird network with more than
one hidden layer. Its role was primarily to solve the "credit assgnment” problem imposed
by the Perceptron network, which is the problem of assgning the adjustments of
parameters or connection weights. The suggested solution was to locdize the error by
computing it a the output layer and backpropagating the error to each hidden layer such
that weights of connections are adjusted until the input layer is reached.

The classcd Backpropagation dgorithm involves eror optimization usng a
determinigtic gradient descent dgorithm, which will be described in detal. However,
recent research includes some other deterministic (second order methods) [32], [33] for
error optimization, such as conjugate gradient and the Levenberg-Margardt dgorithm that

tries to overcome the main disadvantage of the steepest descent method, i.e., the danger

30
of locd minima In this thess implementation, second order methods will not be used,
but some parameter adjustments to avoid the man shortcomings of the classcd

Backpropagation agorithm will be implemented.

Architecture of the network

The network is made up of an input layer, a least one hidden layer, and an output
layer. Nodes in each layer are fully connected to those in the layers above and below.
Each connection is associated with a syngptic weight. Typica backpropagation

architecture is presented in Figure 3.3 (for clarity reasons only 1 hidden layer is shown):

0 Q_Q =~ O]

Hidden layer

Output layer

Figure 3.3: Architecture of Backpropagation Neural Network

Data flow through the network can be briefly described in few steps:

1) from the input to the hidden layer: the input layer loads data from input vector X, and
sends them to the firgt hidden layer,

2) in the hidden layer: units in the hidden layer receive the weighted input and trandfer it

to the next hidden or to the output layer using one of the transfer functions,

31

3) as information propagates through the network, dl the summed inputs and output
dtates are computed in each processing unit,

4) in the output layer: for each processng unit, the scaled locd error is computed and
used to determine the weight increment or decrement,

5) Backpropagation from the output back to the hidden layers. the scaed locd error and
weight increments or decrements are computed for each layer backwards, sarting from

the output layer and ending at the first hidden layer, and the weights are updated.

Computation in the network
When the input layer sends data to the firg hidden layer, each hidden unit in the
hidden layer recaves weghted input from the input layer (initid weights are set

randomly) according to the formula[15]:

o _
I =a wii o (31D
i

where 119 is heinput to neuron j inlayer s, WY is the connection weight from neuron

j toneuron iinlayer s, and x** is the output of the neuron i in layer s- 1. Unitsin

the hidden layer trandfer those inputs according to the formula:
S a S S- O S
X9 = 83 wid = 18= £ (1), (312)
i a
where x!¥ is the output of the neuron j in layer s, and f is the transfer function
(sgmoid, hyperbalic tangent, or any other function). If there is more than one hidden

layer, the above trandfer function is used through al hidden layers until the output layer is

32

reached. At the output layer, the network output is compared to the desired (red) output,

and the globd error E isdetermined as.

E =

N |-

a (d, - %)%, (3.13)

where d, is the desired (red) output, x, is the output of the network, and Kk is the index
for the component of the output, i.e, the number of output units. Each output unit has its
own loca error € whose raw formis (d, - x,), but what is backpropagated through the

networks is the scaled error in the form of a gradient component:

e(kx) =-qE/l k(X) :-ﬂE/ﬂXk xﬂxk /1“k :(dk - xk)xf((lk) . (314)

The objective of the Backpropagetion learning process is to minimize the above
globa error by backpropagating it into the connections through the networks backwards
until the input layer is reeched. By modifying the weights, each connection in the
network is corrected in order to achieve a smaler globad error. The process of
incrementing or decrementing the weights (learning) is done by usng a gradient descent
rule

DW= -h X(TE/w{?), (3.15)
where h is the learning coefficient. To compute partia derivations in the above equation
we can use (3.14), which gives:

TE/TwhT = (TE/ M) XM T/ Wf) = - el = (3.16)

When the above result isincluded in formula (3.15), the weight adjustment is

DW =h sl o= (3.17)

which leads to the main problem of setting the appropriate learning rate.

There ae two mutudly conflicting guiddines for determining h. The first
guideline is to keep h low because it determines the area in which the error surface is
locdly linear. If the network ams to predict high curvatures that area should be very
smdl. However, a very low learning coefficient means very dow learning. In order to
resolve this conflict, the previous deta weghts in time (t-1) are added in equation
(3.17), so that the current weight adjustment is.

D! =h el od= +a xowi 1, (3.18)
where a is the momentum term which makes learning fager when the learning
coefficient is low. Learning can be accderated dso if the weights are not adjusted for
each traning vector but cumulaively, where the number of training vectors after which
the weights are adjusted is called the epoch. An epoch that is not very large can improve
the convergence speed, but a large epoch can make the computation of the error more
complex and therefore decreases its benefit. Another problem that can occur in
Backpropagetion is that some processng units will stop to learn if their incoming weights
become large. In such case the summation vaues become large and the weights are
saturated (vaue O or 1) leading the derivation to z2ro and the scaled error to zero. Such
saturation can be prevented by adding a smal bias vaue (or F offsat) to the derivative of

the sgmoaid trangfer function.

I mprovements of Standard Backpropagation Network Learning Rules
Snce one of the man disadvantages of Backpropagation is its dow learning,
much effort has been expanded in improving the learning rules and other parameters.
Some of the achievements are [19], [38]:
Ddta-Bar-Ddta (DBD) rule - a learning rule that uses past vaues of the gradient to
find the loca curvature of the eror and dlocates a different learning coefficient to
each connection in the network,
Extended Ddta-Bar-Dedta (EDBD) rule - besdes usng a different learning rate for
each connection, it uses a different momentum term for each connection (equations
are described in section 3.1.4),
QuickProp and MaxProp - learning rules that use quadratic estimation heurigtics to
determine the direction and step size for the weight changes,
Reslient Backpropagation (Rprop) - A locad adaptive learning scheme that eiminates
the hamful effect of having a sndl dope a the extreme ends of the sgmoid

"squashing” transfer functions.

Because of its advantages in dynamic and locad adjusments of learning raes to
the topology of the error function, the Rprop is used in the implementation, and will be
further discussed beow. Backpropagation neurd network dlows the usage of a different
error function, such as quadratic and cubic, but they will not be discussed here since they

are not included in the implementation.

Resilient Backpropagation (Rprop)

Multilayer networks typicaly use sgmoid trandfer functions in the hidden layers.
Sigmoid functions are characterized by the fact that their dope must gpproach zero as the
input gets large. This causes a problem when using steepest descent to train a multilayer
network with sgmoid functions, since the gradient can have a very andl magnitude; and
therefore, cause smdl changes in the weights and biases, even though the weights and
biases are far from their optimal values.

The purpose of the Rprop [38] training adgorithm is to diminate these harmful
effects of the magnitudes of the partid derivatives. Only the sgn of the derivative is used
to determine the direction of the weght updae the magnitude of the derivative has no
effect on the weight update. The size of the weight change is determined by a separate
update vaue. The update value for each weight and bias is increased by a factor ddt inc
whenever the derivative of the performance function with respect to that weight has the
same dgn for two successve iterations. The update vaue is decreased by a factor
ddt dec whenever the derivative with respect that weight changes sgn from the previous
iteration. If the derivetive is zero, then the update vaue remains the same. Whenever the
weights are ostillating the weight change will be reduced. If the weght continues to
change in the same direction for severd iteraions, then the magnitude of the weight

change will be increased.

Dealing with Local Minima and Overtraining
Two of probably the most famous problems with Backpropagation are locd

minima and overtraining. Because of the way tha error is backpropagated through the

36

network (gradient descent optimization), learning can gick in a locd minimum and
minimize the error only locdly. There are a number of solutions for this problem. Some
of them are determinigtic and use second order equations to compute the error, while
others are stochastic, and rely on random numbers rather than on equations. One of the
gochagtic methods for avoiding locd minimais smulated annedling.

Overtraning is the universd problem for al types of NN dgorithms. It occurs
when the network learns the training sample perfectly, but is not adle to generdize on the
test sample. One of the main dill unanswered questions on how long it takes to learn can
be approached in the following ways [33]:

cross vdidation usng the vaidaion sample to determine when to stop learning. The
training will cortinue as long as the error on the vdidation sample improves. When it
does not improve, the training will stop. Such iterative procedure is usudly cdled the
"Save bedt" procedure, which dterndaively trains and tests the network until the
performance of the network does not improve for n number of iterations. After the
best network is sdected, it is teted on a new test sample to determine its
genegrdization ability (snce this method is used in our experiments, it is described in
detall in section),

adding bias and random error in parameter estimates,

jackknifing,

bootstrapping, and others.

I nput Parameters to Build the Network

1) number of input, hidden, and output layer units

37

The number of hidden units can be daticdly st to a fixed number or dynamicdly
optimized during the learning phase of the NN. In this implementation, one node is used
and another node added if the god is not met (thisis discussed in detall in section 4).
2) learning coefficients
Learning coefficients can be st:
daicdly and globdly for the whole network in a way that coefficients do not
change during the learning process,
daticdly and locdly by stting a different learning rate for each hidden layer or
connection,
dynamicaly and globdly by changing the globd learning rate while the learning
process improves,
dynamicdly and locdly by assgning a different learning rate to each connection
in the network and changing them during the learning process.
3) Bias (F'Offset)
As explained in the previous section, this parameter prevents the network from saturating
the weights.
4) learning rule
Thisis aprocedure for modifying the weights and biases of the network.
5) transfer function
The choice of a trandfer function is made according to its ability to map into podtive as
well as negative regions. This trandfer function is often used in image compression.

6) bipolar inputs

33

Input values are scaled between -1 and 1. Because podtive and negative vaues in the
input variables are desired, this option is used in the thesis implementation.
7) MinMax table

Inputs to the network are preprocessed using the so-caled Minmax table crested from the
traning daa Such a table condsts of minimum m @i =1..,n) ad maimum
M. (i =1...,n) vaues for each of the n variables in the network, where n is the sum of
the number of input varidbles | and the number of desred output variables D. Those

vaues together with the network range parameters (specified in the 1/0 set of parameters)

are used to scade each input and output variable according to the formula

:(R| - ri)xxi +(Mi X - me.)
(Mi'm) ’

S (3.19)

where s is the scaded new vaue for the variable i, R is the upper limit of the network
range for inputs (or outputs), and r; is the lower limit of the network range for inputs (or

outputs). Such a scaling process is necessary because of the output range of transfer
functions used in the networks. For example, the hyperbolic tangent function has the
output range of F1,1], and therefore the inputs to and outputs of the network need to be
mapped into the same range. Upon completion of the learning process, output vaues of
the network are rescaed, so that original real values are presented to the user.

8) epoch

An epoch is a presentation of a set of training (input and/or target) vectors to a network
and the caculaion of new weights and biases. Training vectors can be presented one a a

time or dl together in abatch.

39

3.3. Radial-Basis Function Network

A Radid-Bass function network (RBFN), proposed by M.JD. Powe [34], is a
genera-purpose network which can be used in the same Stuations as a Backpropagation
network for prediction as wel as for classfication problems. Since it uses a radidly
symmetric and radidly bounded trandfer functions in its hidden layer, it is a generd form
of probabilistic and general regresson networks. It overcomes some disadvantages of
Backpropagation such as dow training time and the locd minima problem, but requires
more computation in the recdl phase in order to perform function agpproximation or

classification.

Computation in the Network

Any nework usng radidly symmetric hidden units belongs to the class of Radid-
Basis Function networks. A patern of hidden units is radidly symmetric [30], if it: (@
has a "center”, i.e. an input vector stored in the weight vector between the input and the
hidden layer, (b) has a distance measure which determines the distance of each input
vector from the center, (c) has a transfer function which maps the output of the distance
function.
Such a genad definition adso includes Generd Regresson networks, Probabilidtic,
Counter-propagation, and other smilar networks. The most common distance measure
used is the Eudidean digtance, while a Gaussan is the usud transfer function (or kernd)
in the hidden layer. The output of this hidden layer is the same for dl inputs within a
fixed radial digance from the center, i.e, for the inputs tha are radidly symmetric. The

performance of RBFN "depends on the number and position of the radia-basis functions,

40

their shape, and the method used for determining the associative weight matrix W [35].

Some existing strategies for training RBFNs can be classified as follows:

1) RBFNswith afixed number of centers sdected randomly from the training deta,

2) RBFNs with unsupervised procedures for sdlecting a fixed number of Radid-Bass
Function centers,

3) RBFNs with supervised procedures for sdecting a fixed number of Radid-Basis

Function centers.

The above draegies dl have the same disadvantage: the number of centers must
be determined in advance. To overcome this shortcoming, severa authors suggested
algorithms, such as the growing cell dructure (GCS) proposed by Fritzke, didtribution of
radid-basis functions with space-filling curves proposed by Whitehead and Choate,
dynamic decay adjusment (DDA) dgorithm proposed by Berthold and Diamond, and
merging two prototypes at each adaptation cycle. All the above agorithms involve ether
cascade or pruning principles[39].

The focus below will be on the RBFN agorithm proposed by Moody and Darken
[30], which uses Euclidean distance and a Gaussan trandfer function in the hidden layer.

The input to the hidden unitsis computed according to the formula [37]:

Ik=||><-ck||:1/_;§1(xi-cm)2, (3.20)

where ¢ isthe center. The output is computed using a Gaussian transfer function:

el

f09=i (x- d)=e (321)

|XN

=N
[SEREFeY

4

where the center ¢ is determined by a clugtering agorithm and by the nearest neighbor

technique.

Architecture of the Network

The RBF learning agorithm can be briefly described as follows:

- traning darts in the hidden layer with an unsupervised learning dgorithm in order to
determine the center,

- traning continues in the output layer with a supervised learning dgorithm in order to
compute the error,

- dmultaneous gpplication of a supervised learning dgorithm to the hidden and output
layersto fine-tune the network.

A common RBFN architecture is shown in the figure below.

0 Q_Q =~ O]

Hidden layer
(pattern units)

Summation

Output layer

Figure 3.4: Architecture of RBFN

V)

Learning through the architecture can be described in the following steps.

1) from the input to the hidden layer: Clustering phase. In this phase the incoming
weights to the prototype layer learn to become the centers of clusters of input vectors
using adynamic agorithm.

2) in the hidden layer: The radii of the Gaussan functions at the cluster centers are
computed usng a 2-nearest neighbor technique. The radius of a given Gaussan is st to
the average distance to the two nearest cluster centers.

3) in the output layer: Error is computed a the output layer usng one of the learning

rules. It is aso possble to include one additiona hidden layer to improve learning.

Application of the Network

Karayiannis and Weigun [35] give a brief overview of the previous usage of a
Radid-Basis network that starts with Broomhead and Lowe year who firg implemented
this network and showed how it models nonlinear relationships. The ability of a RBFN
with one hidden layer to agpproximate any nonlinear function is proved by Pak and
Sandberg. Then Michdli showed how this network could produce an interpolating
surface, which passes through dl the pairs of the training s=t.

Advantages of aRBFN can be briefly summarized as follows:
- fadt training,
- better decison boundaries than Backpropagation when used for classfication and

decision problems,

43

- hidden unit can be interpreted as a dendgty function for the input vectors and thus
measures the probability that a new vector is a member of the same distribution as
othersin the input space.

Disadvantages:

- despite fast learning, it can be dower than Backpropagation in the recall phase,

- gnce the initid learning phase of a Radid-Basis Function network is the unsupervised
clugtering phase, some discriminatory information could be logt in this phase,

- it is difficult to determine the optima number of prototype units [35]. The authors who
propose several ways to overcome this disadvantage: a Growing Radia-Basis (GRBF)
network that gtarts with a smal number of prototypes a each growing cycle and grows
in the training process by splitting of the prototypes in each cycle. They dso suggest
two criteria to determine which prototype to split, and test different hybrid learning
schemes for incorporating existing learning schemes into RBFN, such as unsupervised
learning for dudering, learning vector quantization, and linear neura networks, with
very satisfactory results. The authors dso propose a supervised learning scheme based

on minimization of the locdized dass-conditiond variance.

I nput Parameters to Build the Network

The RBFN uses the same input parameters as the Backpropagation network

34 General Regression Network
According to Specht [40], the Generd Regresson Neural Network (GRNN) is a

gengdized form of the Probabiligic network, which is primaily desgned for

44

classfication problems. GRNN can be used for sysem modeling and prediction, with the
goecid ability to ded with sparse and nondationary data Its disadvantages, such as
memory intendveness and time-intensveness in the recdl phase, are not limiting factors

for today's fast computers.

Computation in the Network

GRNN is desgned to peform a nonlinear regresson anayss. If f(x,z) is the

probability dengty function of the vector random variable X(input vector) and its scaar
random variadble z (measurement), then the computation in GRNN consists of caculating
the conditional mean E(z | x) of the output vector, given by [37]:

¥

oA (x,2)dz
E(z|X) =f—. (3.22)

of (x,2)dz

-¥
The joint probability dendty function (pdf) f(x,z) is required to compute the above
conditiond mean. GRNN gpproximates the pdf function from the training vectors using
Parzen window edimation, a nonparametric technique tha approximates a densty
function by congructing it out of many smple parametric pdfs [40]. Parzen windows are

Gaussian with a constant diagond covariance matrix:

A 1 18& ?'Diz %) §
XD == A S e & (323)
p (ZpSZ)(N /2 P i::l_g 6

45

where P is the number of sample points x;, N is the dimenson of the vector of sample
points X;, S is a smoothing consant, and D, is the Euclidean distance between xand

x; computed by:

D, =|x- >9||=\é_11(><- x), (3.24)

where N is the number of input units to the network, s is the width parameter which
satidfies the following asymptotic behavior as the number of Parzen windows P becomes
large:

P3%.Y® ¥(Ps"P)=¥ ad (3.25)

P3%Yi® ¥(Ps“"P)=0 orwhen s -_> ot E<1l, (3.26)

p(E/N)’

where S is the scde and, N is the number of input units When esimated pdfs are

inserted into equation (3.22), the following formula for computing each component z; is

obtained
D7
azez’
Z]- (X) :|=1—Dz (327)
6 3
a e 2s

Since computation of Parzen the edtimation is time consuming when the sample is large,
a clugtering procedure is often incorporated in GRNN. According to this procedure, for

DIZ
any given sample x,, indead of computing a new Gaussan kemnd e =° a center x for

each point, the distance of that sample to the closest center of a previoudy established

46

kernel is found, and the old closest kernd is reused. Such an approach transforms the

equation (3.27) for z;, into:

z =2 ____j=1..M, (3.28)

where

A° AK =A(k-)+z and B ° B (k) =B (k-) +1. (3.29)

Architecture of the Network

The network conssts of the input layer, the pattern layer and the output layer (see
Figure 35). There is dso an additiond summation/divison layer whose function will be
explained later. The process of network learning is conducted as follows:
1) from the input layer to the pattern layer: training vector X is distributed from the input

layer to the pattern layer, and the connection weights from the input layer to the k™ unit

in the pattern layer store the center X, of the k™ Gaussian kernd.

2) in the pattern layer: The summation function for the k™ pattern unit computes the

Euclidean distance D, between the input vector and the stored center X, and transforms

D?

it through the exponentid function e>’. Then B coeffidients are set as connection
weights from the pattern layer to the firgd unit in the summation/divison layer, and A

coefficients are set as the weights to the remaining unitsin the summatiorvdivison layer.

47

QD\ @ /@ Input
O :

. e O Pattern layer
Bi(k Al(k)/ AR Ar(K)
5 Q‘ b \Q Smmation and
division

S

v

Figure 3.5: Architecture of GRNN

v

3) in the summation/division layer: the summation function of this layer (which is the

dandard weighted sum function) computes the denominator of equation (3.27) for the

firgt unit (j), then the numerator for each next unit (j +1). To compute the output Z, (),

the summation of the numerator is divided by the summation of denominator and such
output is forwarded to the output layer (note that the first unit of the summation layer
does not generate the output).

4) in the output layer: output layer receives inputs from the summation/divison layer,
outputs the estimated conditional means, and computes the error on the basis of the red

output from the environment.

Application of the Network
Because of its generdity, GRNN can be used in various problems such as prediction,
plant process modeing and control, generd mapping problems, or for other problems
where nonlinear rdationships exis among inputs and output [37]. One of the main
advantages of GRNN is the ability to ded with nondtationary data (time series data whose
daidicd properties change over time). This ability is obtaned by modifying the
computation of theB and A coefficients in equation (3.27) such that a time condtant is
introduced in terms of number of training vectors, as an indication of how fagt the time
series changes its characterigtics.

It can be concluded from the above description of GRNN that it is especidly

adaptable to () nongtationary and sparse data and (b) stationary but noisy data.

I nput Parameters to Build the Network

1) number of input, pattern and output layer units.

2) summation function in the pattern unit (Euclidean, City Block, or Projection).

3) t - timecongant
t is defined in terms of training vectors, and should be adjusted according to the
degree of nondationarity present in the data A smdler time congtant will cause the
network to forget the previous cases faster.

4) q - reset factor
This factor is divided by the number of pattern units, and used as the comparing vaue

for resetting the B coefficients.

49

5) radius of influence
This is a dugeing mechanism for determining the limit of the Eudidean digance by
which an input vector will be assgned to a clugter. The input vector will be assigned
to a cluger if the cluster center is the nearest center to the input vector, or if the
cluster center is closer than the radius of influence. If the input vector does not satisfy
the above conditions, a new center is computed for the vector.

6) sgmascde (S) and sgma exponent (E)

S and E vaues are used in computing the Parzen window width in formula (3.26).

3.5. Modular Network

Proposed by Jacobs, Jordan, Nowlan and Hinton (1991), this network is a system
of many separate networks (usualy Backpropagation). Each of them learns to handle a
subset of the complete st of training cases. It is therefore able to improve the
performance of Backpropagation when the traning set can be naurdly divided into

subsets that correspond to distinct subtasks.

Computation in the Network

This network condsts of several networks called "loca experts' connected by a
gating network that alocates each case to one of the local experts. The output of the loca
expert is compared to the actud output, and the weights are changed locdly only for that
expert and for the gaing network. In that way the gating network "encourages' a
paticular locd expet to specidize in dmilar cases. Other experts specidize in other

cases. Decisons of the gating network are made stochadticaly. While a previous paper

50

suggested that the find output of the whole system is a linear combination of the outputs
of the local experts, Jacobs et a. [41] use a stochastic sdlector and compute the error

according to the formula

E=(Ja° - of d°- o (3.30)

)=a e
where o/ is the output vector of expert i incase ¢, p/ is the proportional contribution

of expert i on the combined output vector, and d°is the desired output vector in case c.
In such a process each loca expert produces the whole output, and the god of one loca
expert is not directly affected by the weights of the other locd experts. Although some
indirect coupling can occur if the gating network dters the responsbilities from one loca
expert to another, dill the sgn of the locad expert error remans uninfluenced. The
number of locd experts in the network is determined in advance, based on the
assumption of the number of subsets or loca regions in the input space of the sample.
Each locd expert is a feedforward network and al experts have the same number of input
and output units. Loca experts as well as the gating network receive the same input. Of

course, their output differs. Output of the gating network is the probability [41]:

e(X])

P, =5 (3.31)

a e()(«) !

where x; is the totd weighted input received by output unit j of the gating network, and
p; is the probability that the switch will sdlect the output from locd expet j. This

output is normelized to sum to 1. The output of the loca experts v, is then corrected by

the probability (3.31), and the find output of the network is

51

N
y=ayixp-. (3.32)
i=1

Unlike Backpropagation where the objective function is to minimize a globd

eror function E, a Modular network tries to maximize the following objective function
J:

ey -y §
J=In¢q pe 2 = (3.33)
= 2

i=1

The eror that is backpropagated for the k™ local expert is ‘|TI_J and for the gdaing

k

N,

k

network , where |, isthe input to the k™ loca expert output node and G, isthe

input to the gating network output node. According to the above learning process, if an
expert gives a andler less error than the weighted average of the errors of dl the experts,
its responsbility for that case will be increased, and vice versa The eror is

backpropagated and the weights are updated according to the chosen learning rule.

Architecture of the Network

The figure below represents the architecture of the Modular neurd network. For
clarity reasons, the architecture in figure 3.6 conssts of two local experts marked as
LEland LE2. Each locd expet has only one output neuron. The gating network and
loca experts have the same number of input neurons, but the number of output neurons in
the gating network is the number of locd experts, i.e, two in our example presented in

thefigure.

52

Input vector

b

LE1 Gating network

Gate layer - Stochastic selector

Output

Figure 3.6: Architecture of Modular Neural Network

Learning is conducted as follows:

1) from the input layer to the local experts and to the gating network: The same training
vector X is didributed from the input layer to each loca expert and to the gating
network. Each expert is a feedforward (usually Backpropagation) network. Output of the
locd experts depends on the feedforward architecture incorporated in the expert. Output
of the gating network is computed as described above.

2) in the gate layer: The gating network sends output to an intermediate layer (caled a
gate) where the probabilities sent by the gating network are used to correct the loca

expert outputs.

53

3) in the output layer: find output to the user is the output of the locd expert with the
highet probability. The eror is computed according to the formula 3.30 and

backpropagated to the loca experts and to the gating network.

Application of the Network
A Modular network can be applied in most cases where Backpropagation is used,
epecidly in problems with different regions in the input space. One of the illudrations of

such problems is the absolute val ue function:

y:i-xif x<of) (334)
where output y is computed by a different function for different subsets of x. Jacobs et
a. [41] applied a Modular network on a spesker independent, four-class vowd
discrimination problem and compared the performance of a Modular network using 4 and
8 locd expets with three-layered Backpropagation networks. The comparison showed
that the performance of tested networks is the same, dthough the Modular network
reaches the error criterion Sgnificantly faster than Backpropagation. A Moduar network
is dso a way to make competitive learning associative, in a sense that a loca expert
whose output vector specifies the mean of a multidimensond Gaussan didtribution
replaces each hidden unit in the competitive network. A Modular gpproach aso enables
the usage of more complex architectures when each loca expert is desgned as one

Modular network.

I nput Parameters to Build the Network
1) number of input, hidden and output layer unitsfor local experts (LE)
Each loca expert has the same hitid dructure since it is not known in advance which
part of the input space will be dlocated to each LE.
2) number of hidden and output units in gating network
Hidden units in the gating network can be determined heurigticaly or optimized in
the learning phase. The number of output units in the gating network determines
the number of loca experts (LES) in the network.
3) learning coefficient
4) learning rule
The EDBD learning rule is used as described in the Backpropagation section.

5) other parameters described in the Backpropagation section.

3.6 Probabilistic Network

A Probabilistic neura network (PNN), one of the stochastic-based networks, is
built on a decades old datisticd agorithm developed by Meigter [36], athough Donad
Specht proposed the complete neurd network agorithm in 1988. It uses nonparametric
edimation methods for classfication and therefore does not suffer from local minima
problems, as do feedforward networks. According to Kartalopoulos [34], Probabilistic
NN is able to approximate the optimum boundaries between categories, therefore it can
be usad as a clasdfier, with the assumption that the training data are a true representative

sample. The Architecture of the Probabiligic neurd network is built upon Bayes

55

cdassfier usng the Parzen window egsimaor to edimate the probability digributions of

the class samples[37].

Computation in the Network

In generd, the classfication problem can be stated as sampling the mcomponent
multivariste random vector X =[X,..,X,], where the samples ae indexed by
k,k=1..,K [33]. The probability that a sample will be drawn from a populaion Kk is
h., and the cost of misclassfying the sample will be c,. The population from which the
training samples are taken is known, and the am is to creste an dgorithm for classfying
unknown samples with the expected misclassfication cost less than or equd to any other.
Such dgorithm is Bayes optimal. If the probability densty functions for dl populaions
k are known, then the Bayes optima decison ruleis. classify X into population i if

hc f,(X)>hc f (X)" j,i. (3.35)
Since the probability dendty functions are usudly not known in practice, it is often
assumed that they are members of a normd digtribution. The training set is then used to
edimate the parameters of the digtribution. However, it is more appropriate to use a
nonparametric estimation method such as Parzen windows, aso used in GRNN. In order
to classfy unknown samples, most common classfiers separate the unknown from each
known member of the training set usng the Euclidean or other disance. The unknown
member is then clasdfied into the population of its nearest neighbor. The Parzen
windows technique goes one step further in a way that it takes into account more distant
neighbors. Parzen's technique estimates a "sphere-of-influence’ function for separaing an

unknown point from the known training sample point. Such a function has a higher vaue

56

if the distance is close and converges to zero if the distance becomes large. Taking the
sum of this function for al known training st members and dassfying the unknown
point into the population with the largest sum is the man idea of the probabiligic

agorithm. Parzen's estimated dengty function is

g(X)=n—aW) (3.36)

where n is the sample Sze, s is the scaling parameter that controls the width of the area

of influence of the digance, and W s the weghting function. Since a Gaussan is usudly

used for weighting, the probability density function takes the form:

el
e =° (3.37)

1 '

s ()"

g(x) =

Although the vdue of s is an important smoothing parameter in the Probabilistic
network gnce it affects the estimation error, there is no mathematical way of determining
it. A too andl vdue of s gives the same effect as the nearest neighbor technique, and
too large does not give clear separation of classes 0 classfication cannot be made. A

large vaue gives aflat curved surface, while asmal vaue resultsin narrow peeks.

Architecture of the Network
The Probabilistic neura network condgts of the input layer, the pattern layer, the
summétion layer, and the output layer. A smplified architecture is shown in the figure

be ow.

57

%g@ ;@ Input

=

Bi(k) Ai(k)

‘(:i U Summation
t)x Output layer

v

Figure 3.7: Architecture of Probabilistic Neural Network

Pattern layer

Learning in PNN is not an iterative process. Only one pass through the training
sample is needed for the network to learn. The flow of information through the layers is
the following:

1) from the input layer to the pattern layer: Training vector X is digributed from the
input layer to the pattern layer,
2) in the pattern layer: The pattern layer condsts of K units, one for each training vector

X. Input in the pettern layer unit j is computed according to the formula:
— T
= (x- w)T(x- w).) (3.39)
The pattern layer units are not fully but sdectively connected to the summation units
depending on the classes they represent. Output from the pattern unit j is performed

according to the activation function:

&
a (xi-w;)?

i=1
2

f(x,w,) —e 7 (3.39)
3) in the summation layer: The number of units in the summation layer is equd to the
number of classes. Each summation unit receives input from the pattern unit of the same
class. Output of the summation units is the edimation of the dass probability dendty
function according to formula (3.39).
4) in the output layer: Each unit in the output layer recaves inputs from each summation
unit and produces a binary output sgna, which is a product of the summation unit's

output and the weight coefficient.

Application of the Network

The probabiligic network is exclusvely desgned for cdasdfication problems.
Although in some cases it can be adjusted for autoassociation, it is primarily a dassfier.
Successful usage of this dgorithm is observed in vector cardiogram interpretation,
radartarget identification, hull-to-emitter corrdlaion on radar hits, for example. It is dso
a vey fag training dgorithm compared to feedforward agorithms, especidly in the case
when it is optimized in an extendve jackknifing process. Another advantage of this
network is that its results can be interpreted as Bayesan poderior probabilities, thus
auitable for confidence estimates. Disadvantages of Probabilistic network ae in the
necessty of having a representative training st and in memory requirements, since the

whole training st is processed while classfying each unknown case.

59

Snce it takes the sum of the dendty function, the Probabilistic network is
egpecidly suitable for problems with sparse data and data outliers, since outliers will

have no strong effect on decisons.

I nput Parameters to Build the Network

In order to build a PNN, the following parameters should be determined:

1) number of input, pattern, and output units
Pettern units are set to the number of training vectors according to the computation
procedure described before. If the training sample is very large, it is recommended to
use a sndler number of pattern units, and then to st the radius of influence to a
positive value. The number of output unitsis set to the number of classes.

2) summation function in the pattern unit: Euclidean, City Block, or Projection

3) radius of influence
This parameter is used for a clustering procedure in the same way as in a GRNN with
the am to make learning faster by finding the closest dready computed Parzen
window for anew training vector.

4) output mode for the output layer
Possble output modes ae probabiligic, competitive, and normdized. The
probabilistic mode directly outputs the vaues produced by the dengity function. The
competitive output produces 1 for the winning unit and O for the others. The output
vaues in the normdized mode are dl postive and normaized such that they sum to

1

5) sgma scde (S) and sigma exponent (E)
In order to find the correct asymptotic behavior for the Parzen window width when
the pattern units become very large, NeurdWare [30] implements an exponentiad

decay of. Parameters S and E are used to compute according to the formula (3.26).

3.7 Learning Vector Quantization Network

Vector quantization (VQ) is one of the compresson methods usudly used when
large quantities of data must be divided into a number of classes in order to increase the
processing efficiency. As was previoudy discussed in section 2.1, it is the process of
mapping input vectors X, of dimenson n into a finite number of classes, represented by

a codeword or a prototype vector w; (j =1,...,m), where m<n. Mapping is performed

using one of the nearest neighbor techniques such as Euclidean distance or a cogt function
[37]. VQ is a method of unsupervised learning, but has a specid supervised form cdled
Leaning Vector Quantization (LVQ), origindly proposed by Teuvo Kohonen. Such

supervised versions of VQ will be discussed below.

Computation in the Network

Learning in LVQ a takes place in the hidden Kohonen layer. This network differs
from a VQ in its usage of known (desired, true) output classifications t for each input
vector X. If C(x) isaclass of x computed by the network and t is the true class, then
thelearning in LVQ is performed as follows [37]:
1) After receiving an input vector, a Kohonen layer finds the appropriate class in an

unsupervised way, finding the distance d, :

61
d; =|w, - ¥[=min |w - ¥ (3.40)
2) Computed class C(x) is compared to the true class t and the weights are adjusted in
the following way:

Dw, =a(x-w,) if C(x)=t
Dw, =-g(x-w,) if C(x)*t (341)
Dw=0 "ilc

In other words, if the computed class is equd to the true class, then the weight vector is
shifted toward the input vector. It is shifted away from the input vector if the computed
and true classes do not match. Basc LVQ suffers from one important shortcoming: it can
happen that the initid unit for learning is chosen far from the true dass. Then this unit
will be shifted toward the true class, while the others will do nothing. To avoid such
dtuation, a pendizing factor is introduced in the form of a disance bias proportiona to
the difference between the winning frequency of a unit and the average unit winning
frequency (proposed by DeSeno, 1998). This verson of LVQ is cdled LVQ1l (with
conscience). In order to improve learning in LVQ, other variants are developed by Teuvo
Kohonen [21], called LVQ2, LVQ2.1, LVQ3, Extended LVQ and others,

Learning darts with the basc LVQ where Kohonen units compute the Euclidean
disance according to the formula (3.40). The weights of the winning unit are adjusted

according to (3.41). Then LVQ1 takes control by adding a bias b, to the distance d, of

the unitsin the correct class.

de=d +b. (3.42)

62

Using biased disgtances, LVQ1 computes the in-class winner, but aso finds the globd
winner usng unbiased distances. Weights are adjusted such that the in-class winner is

moved toward the training vector (correct class) according to the equations:

Dw_ =a(x- w,) if thein- class winner isequal tothe global winner,
Dw_ = b(x- w,) if thein- class winner is not equal tothe global winner.

(3.43)
If the globd winner is not in the correct class, it is shifted away from it according to the
formula
Dw, =-g(x- w,). (3.44)
Then the new biased distance is computed such tha the estimated maximum distance

d, . IS corected udng the winning frequency p, for that unit and a consant
h (conscience factor), which increases with learning:

b =h>d, . X1- Np,), (3.45)
where N is the number of units in the Kohonen layer per dass The initid vaue for p, is

UN. Itisupdated according to:

p, =@-j)p if iisnotthein- classwinner,or
p,=@Q-j)p +j if iisthein- class winner.

(3.46)

Control is then taken by LVQ2 in order to refine tha is solution is found by
LVQL It is focused on the cases where the winning unit is in the wrong class, but the
second best unit is in the correct class. Thus, the weights in LVQ2 are adjusted if one of
the following occurs if computed and true classes do not match, or the closest prototype
weight vector is the correct class, or if the input vector is close to the binding hyperplane

separating the two closest prototype weight vectors [37]. If one of these three Stuations

occurs when LVQ2 takes contral, then the winning unit (which is in the wrong dass) is

63

moved away from the correct class, while the second best unit is moved closer to the

input vector according to formulas:

We=w, - a(Xx- w)

(W, +w,)
wWE=w, - a(x- w,) '

if xis near to (3.47)

Architecture of the Network

The network conssts of three layers the input, the Kohonen and the output layer. The
summarized learning process through the layersis:

1) from the input layer to the Kohonen layer: inputs are transmitted from the input layer
to the Kohonen layer through full connection.

2) in the Kohonen layer: the Kohonen layer learns usng LVQ technique to compute
distances, then LVQL to adjust winning distances by a pendizing factor, and last LVQ2
to improve learning in finding the second best units that are in correct classes.

3) in the output layer: the computed class C(x) is compared to the correct class t, and

weights in the Kohonen layer are adjusted according to the LVQ1 and LV Q2 equations.

Application of the Network

LVQ is gpplicable to any type of classfication problem where the output classes
are known. Its wide usage is noted in speech recognition, image processng, or other
problems where data compression is reeded and the probability distribution of the pattern
sample is not known [37]. In cases where correct classes are not known, unsupervised
networks such as Kohonen's Sdf-organizing maps (SOM) or regularization clustering

techniques are recommended.

I nput Parametersto Build the Network

The following input parameters must be set in order to build the LVQ network:

1) number of input, Kohonen, and output units:
There are no drict rules for choosng the number of Kohonen units. The number
should be divisble by the number of output, units i.e.,, classes. It can dso be st as a
percentage of the number of training vectors.

2) number of learning iterationsin the LVQ1 and LV Q2 phases.
The number of iterations in the LVQ1 phase is obligatory, while the LVQ2 phase is
optiond. The number of iterations can be determined heurigticdly or it can be st
from thetraining file

3) initid learning rate for LVQ1 and LVQ2
This parameter is used for initidizing rates that are reduced over each learning phase.

4) LV Q2 width parameter
This is the parameter which determines the width of the hyperplane corridor in LVQ2
learning.

5) In-class winner dways learns
This option enables LVQ1 learning with conscience.

6) conscience factor
Thisis the congtant that is used to compute the biasin the LVQL learning.

7) frequency estimation

65
This is the p, paameter that is aso used to compute bias for pendizing winning
units. It can dso be st from the traning sample as the inverse of the number of

training vectors.

3.8 TheCascade Architecture Neural Network
To solve red-world problems with neurd networks, the use of highly Structured
networks of a rather large sze is usudly required. A practicd issue that arises in this
context is that of minimizing the sze of the nework and yet mantaining good
peformance. A newrd nework with minimum dgze is less likdy to lean the
idiosyncrases or noise in the training data, and may thus generdize better to new daa
This design objective may be achieved in one of the two ways.
= Network growing, which garts off with a smal multiplayer perceptron, smdl for
accomplishing the task a hand, and then add a new layer of hidden neurons only
when the design specification is not met.
= Network pruning, which dats of with a large multiplayer perceptron with an
adequate performance for the problem at hand, and then prune it by weakening or
eliminating certain syngptic weightsin a selective and orderly fashion.
The cascade-correlation learning architecture [39] is an example of the network-
growing approach. The rest of this section presents a detailed description of the cascade-
corration architecture, its agorithm and mathematicd background, and its gpplication

to image processing.

Cascade-Correlation

Cascade-Corrdation (CC) is an agorithm developed by Scott Fahlman [39].
There are two types of CC- Pruned CC and Recurrent CC. Both will be briefly discussed
but the results obtained in the implementation are from using the sandard agorithm,
dbet with a few modifications. Strictly spesking, CC is a kind of meta-dgorithm, in
which other agorithms such as back propagation (BP) are embedded. The procedure
begins with a minima network that has some inputs and one or more output nodes as
indicated by input/output considerations, but no hidden nodes. The LMS dgorithm, for
example, may be used to train the network. The hidden neurons are added to the network
one by one, thereby obtaining a multilayer structure. Each new hidden neuron recelves a
synaptic connection from each of the input nodes and dso from each preexising hidden
neuron. When a new hidden neuron is added, the synaptic weights on the input sde of
that neuron are frozen; only the synaptic weights on the output sSde ae trained
repestedly.

Expanding on the above description, learning in CC takes place as repedting two-
phase geps. The fird involves the embedded standard learning agorithm, which in our
case is Backpropagation (BP). During this phase the ided activity as specified in the
traning patern is compared with the actud activity and the weghts of dl traindble
connections adjusted to bring these into correspondence. This is repeated until learning
ceases or a predefined number of cycles have been exceeded.

The second phase involves the creation of a pool of ‘candidat€ units. Each
candidate unit is connected with dl input units and dl exising hidden units It is this

which leads to the cascading architecture, as each new unit is connected to al preceding

67

units. There are no connections from these candidate units to the output units. The links
leading to each candidate unit are trained with the sdected standard learning agorithm
(BP) to maximize the corrdation between the resdua eror of the network and the
activation of the candidate units. Training is stopped if the correation ceases to improve
or a predefined number of cycles is exceeded. The find step of the second phase is the
incluson, as a hidden unit, of the candidate unit whose corrdaion was highest. This
involves freezing dl incoming weights (no further modifications will be meade) and
creating randomly initidized connections from the sdected unit to the output units. This
new hidden unit represents, as a consequence of its frozen input connections, a permanent
festure detector. The weghts from this new unit and the output units will undergo
training. Because the outgoing connections of this new unit are subject to modificaion its
relevance to the find behavior of the trained network is not fixed. These two phases are
repested until either the training pattern has been learned to a predefined leve of
acceptance or a presst maximum number of hidden units has been added, whichever
occurs fird. Figure 3.8 illudrates the incluson of the firs two hidden units into a network
undergoing training. The same deps are taken no matter how many hidden units are

aready included in a given network.

Mathematical Background

Thetraining of the output units tries to minimize the sum-squared error E :

[} 1 [o]
E=a Ea (d ok~ Yok)%, (3.48)
p k

68

where d, is the desired (red) output and y,, is the observed output of the output unit

k for apattern p. The error E isminimized by gradient decent using

€k ~ (dp,k - yp,k) Xf,g(netk), (3.49)
TE/Tw, =& el (3.50)
p
where f ¢ is the derivative of an activation function of the output unit k and I, isthe

vaue of an input unit or a hidden unit i for a pattern p. w;, denominates the connection
between an input or hidden unit i and an output unit K .

Ouiput Undis

O Frozen Connections
X Trained Connectons ? ? ?
Airdnvd

f Activation Function

Hidden Unite
|] £ g
NS |~ i 2 £ s
L i - - e

bias] +1 e &= L) i

KOO0 O
1

Vertical lines sum all incoming activation

Figure 3.8: A neura net trained with cascade-correlation after 2 hidden units have been added.
The vertica lines show unit inputs and horizontal lines show unit output. Square connections
indicate frozen links. Cross connections indicate trainable links.

69

After the training phase the candidate units are adapted, so that the corrdation C

between the vaue vy, of a candidate unit and the residud error e,, of an output unit

becomes maxima. Fahlman with gives the corrdation:

C= é é (yp,k - yk)(ep,k - ék
k]op
= é. é. (yp,kep,k - ék)é. Yok (3.51)
k|p p

é é Yok (ep,k - & *
k]p
where Y, is the average activation of a candidete unit and € is the average error of an

output unit over al patterns p. The maximization of C proceeds by gradient ascent using

d, :é.sk(ep,k- ék)f;;g:
k

€ g (352)

w, % P

where s, is the sgn of the corrdation between the candidate unit's output and the

resdua error at output k.

In summary the gandard CC dgorithm isredized in the following way:
1. Satwithaminima network consisting only of an input and an output layer, both
fully connected.
2. Traindl the connections ending a an output unit with ausud learning agorithm

until the error of the net no longer decreases.

70

3. Generate the so-cdled candidate units. Every candidate unit is connected with all
input units and with al existing hidden units. Between the pool of candidate units
and the output units there are no weights.

4. Try to maximize the correlation between the activation of the candidate units and
theresdud error of the net by training dl the links leading to a candidate unit.
Learning takes place with an ordinary learning dgorithm. The training is stopped
when the correlation scores no longer improves.

5. Choose the candidate unit with the maximum correation; freeze itsincoming
weights and add it to the net. To change the candidate unit into a hidden unit,
generate links between the sdlected unit and dl the output units. Since the weights
leading to the new hidden unit are frozen, a new permanent feature detector is

obtained. Loop back to step 2.

The above five steps are repeated until the overdl error of the net fals below the given

tolerance value. The two variants of the standard CC are briefly discussed below:

Pruned Cascade Correlation
In the sandard Cascade Corrdation the Network is fully connected.
Pruned Cascade Correation [39] is a vaiant of the standard agorithm, which removes
unnecessary links by applying selection criteria or a holdout set. This in turn decreases
the training time required by the network.
Examples of the sdlection criteriaare:
= Schwarz's Bayesian criterion (SBC)

= Akakesinformation criterion (AIC)

71

= Conservative mean square error of prediction (CMSEP)
The PBC, the default criterion, is more consarvative compared to the AIC. Thus, pruning
viathe SBC will produce smdler networks than pruning via the AIC. Both SBC and AIC
ae SHection criteria for linear models, whereas the CMSEP does not rdy on any
datistical theory, but happens to work pretty wel in an gpplication. These sdection
criteria for liner modd can sometimes directly be applied to nonlinear modes, if the

sampleszeislarge.

Recurrent Cascade Correlation

Recurrent Cascade-Corrdation (RCC) is a recurrent verson of Cascade
Correlation and can be used to train recurrent neural networks (RNN) [40]. Recurrent
Networks are used to represent time implicitly rather than explicitly. One of the mogt
commonly known architectures of RNNs is the ElIman modd [42], which assumes that
the network operates in discrete time steps. In the Elman mode the outputs of the
network's hidden units at a time t are fed back for use as additiond network inputs at time
t+ 1. Context units are used in the Elman modd to store the output of the hidden units.

To use the gandard CC with the Elman modd (and recurrent models in generd),
only one change is needed to the dgorithm. The hidden units vaues are no longer fed
back to al other hidden units. Indead, every hidden unit has links to dl input units and
dso has one <Hf-recurrent link. This sdf-recurrent link is trained dong with
the candidate units other input weights to maximize the corrdation when the candidae
unit is added to the active network as a hidden unit. The recurrent link is frozen aong

with dl other links.

72

CHAPTER 4

I mage Compression Using Neural Networks

After discusson of some of the various types of neurd networks and ther
architectures, this chapter consders their role as an image compression tool. First the
image compresson problem is described, then the implementation of the sngle and
pardle sructure NNs with regard to image compression is presented, after which the
new NN method is presented in detal. Its implementation is fully presented and its
performance evauated. Evauation metrics for comparing the compresson schemes are

also described.

The Image Compression Problem

A sill imege | is described by a function f:Z” Z® {04,....2 - 1}, where Z is
the set of naturd numbers, and k is the maximum number of bits to be used to represent
the gray levd of each pixd. In other words, f is a mgoping from discrete spatid
coordinates (x,y) to gray leved vdues Thus M~ N’ k bits are required to store an
M~ Ndigitd image As was mentioned in Chapter 1, the am of lossy imege
compresson is to deveop a scheme to encode the origind image | into the fewest
number of bits such that the image |¢ recongtructed from this reduced representation

through the decoding process is as dmilar to the origind image as possble i.e, the

73

problem is to design a compress and a decompress block so that | » | cand |1 | <<

where | | denotes the Size in hits. The above scenario is depicted in Figure 4.0.

| lc I
> COMPRESS p| DECOMPRESS >
Origina Compressed Reconstructed
Image Image Image

Figure 4.0: Image Compression Block Diagram

Evaluation metrics

In order to compare the quality achieved by lossy compression schemes, a metric
is needed to quantify the qudity of the recongruction. The metric used to compare the
neura network and JPEG image compresson schemes is the pesk signa-to-noise ratio
(PSNR). Assuming that the origind and recondructed images are represented by
functions f(x,y) and g(x,y) of the pixd plane postion (X,y), respectivdly, the PSNR is
defined by:

(2-1°

PSNR =10log,, (4.1)

where k isthe number of bits representing a pixd, and the mean square error (MSE) is:

1

—caalo-) 42

1 x=1

Qo=

MSE =

<
{0l

MSE is the cumulative squared error between the compressed and the origind image,
whereas the PSNR is a measure of the peak error. This metric does not adequately
evduate the visud qudity of the decompressed image, but it is very smple to compute

and relates to usud sgnd metrics when the origind image | is viewed as the sgnd and

74

A

| is viewed as the same sgnd corrupted by some “noisg’ representing the deformation

due to lossy compression.

4.1 Single-structure NN image compression implementation

Different gpproaches have been implemented for the single-structure NN. In this
implementation, the backpropagation agorithm is employed and Rprop is used to speed
the traning process. All the dgorithms described in this chapter are implemented in

MATLAB.

4.1.1 Pre-processing

The image is split into J blocks {B;, j = 1, 2,..., J} of 9ze M x M pixels. The pixd
values in each block are rearranged to form a M? length paitern Ci ={Cyj, Cyj, ..., Cm2j},
wherej = 1, 2, ..., J (Cjj isthe i dement of the | pattern). It is common practice to
normdize the input patterns using the transformation P; = f(C)) = (C; — ng)/s¢ where
Mg and Sq are, respectively, the average and standard deviation of C;. The reason for
usng normdized pixe vaues is because NNs operate more efficiently when the input is
limited to a range of [0,1]. Patterns P; are used in the training phase of the NN as both

inputs and outputs.

4.1.2 Training
The network is trained to minimize the mean square error between output and

input vaues, thus maximizing the pesk dgnd-to-noise ratio (PSNR), with the proviso

75
that the image PSNR is measured for quantized vaues in [0,255] while the NN learning

uses the corresponding red-val ued network parameters.

The NN conggs of the input and two layers the hidden and output layers with
number of nodes M?, H, and M?, respectively. Refer to Section 3.1.5 for a complete
description of NN architectures. The NN acts as a coder/decoder. The coder conssts of
the input-to-hidden layer weights vix {i = 1,....M* and k = 1,...,H}, and the decoder
consists of the hidden-to-output layer weights Wim, {k = 1...H and m = 1,..., M?}. In the
definitions above, i represents the weight from the i™™ input node to the k'™ hidden node,
and Wgm represents the weight from the k™ hidden node to the m™ output node.
Compression is achieved due to the transformation of patterns P, through the v; x weights,
by seting the number of hidden nodes H smdler than the input pattern length M?
(H<M?). Actualy, even though H<M?, no rea compression has occurred because unlike
the M? origind inputs which are 8-hit pixd vaues, the outputs of the hidden layer are
rea-valued (between —1 and 1), which requires an astronomic number of bits to transmit.
True image compresson occurs when the hidden layer outputs are quantized before
transmisson. Thus the hidden layer neuron values are quantized to 8 bits to obtain an
image that truly corresponds to a given compresson ratio. The encoding/decoding
processes are shown in Figure 4.1 below:

The network is trained with the reslient backpropagation agorithm (Rprop). As
was mentioned in section 3.2, this dlows for faster training. The training parameters,
namdy, the learning rate, epochs, and minimum gradient are set at 0.001, 1000, and
1" 10° respectively. The hyperbolic tangent and liner transfer functions are used for the

hidden and output layers respectively. The bias and layer weights are initidized.

76

Figure4.1: Sngle-structure neural network image compression/decompression scheme.

4.1.3 Smulation

After training, the network is smulated with the input and target matrices. This is
done by multiplying the hidden layer weight matrix wy, by the output of the pre-
processor, adding the bias, and then applying the output layer transfer function to the
result (Equation 3.1.2). This result becomes the output from the hidden layer, which
otherwise could not have been directly obtained by using the Matlab “sm” function. The
same process is repeated to obtain the output from the output layer, with the input to it
being te output from the hidden layer. It must be pointed out that the weights and biases

being referred to are the initid choices.

4.1.4 Post-processing

The next dep is to recondruct the sSmulated image. The coding product
associated to the j™ pattern Pj is the hidden layer output O; ={Oyj, Oz, . . ., Onj}. The set
{O;,mg,S} together with weights wim is sufficient for recondructing an gpproximation
CA,- of the origind pettern C; in the decoding phase. Congdering the overhead {Img,s g}

due to the normdlization function f, the compression ratio (CR) achieved is M?:(H+2).

4.2 Paralld-structure NN image compression implementation

The padld-gructure NN can be viewed as a single-structure NN but with
multiple hidden layers. In tha light, it is implemented in much the same way as the
dngle-gtructure NN. The details presented in the previous section will thus apply here as
well, abat with a different mode of presentation.

Four networks {NETy, k = 1,234} with different number of hidden nodes @, 8,
12, and 16) are used. Each NN is trained smilarly to the NN in section 4.1. The god is to
achieve CR = 8:1. The coding procedure conssts of two phases. In the first phase, each

pattern is associated with a NETk. As with dl NNs, the larger the number of hidden nodes
to which a pattern is assigned, the smaller the associated error & = (PA,- - P) (PA,- -P)’
between the origind P; and estimated patterns PA,-. On the other hand, a large number of
hidden nodes reaults in low CR. Initidly, patterns ae assgned to NNs so that the CR is

as close as possible to the predefined value 8:1.

The second phase is an iteraive procedure. At each successive iteration, the god
is to reduce the total error E? = &€ without changing the CR. Let de’x be the error
reduction caused due to reassgning pattern P; from NETy. to NETk:1. Then the god is
achieved by reassigning a par of patterns. Petern Pj, is reassgned from NET, to
NET},+1 if the reassignment causes a maximum error decrease ok, = rqqx(dqz K, and
pattern Pj, is reassigned from NETy, to NET,1 if this results in a minimum error
increase def, , = rqikn(dqz,k-l). |terations continue as long as the error E decreases.

This pardld architecture has the advantage of providing better image qudity for a
given CR than the methods described in chapter 3 in terms of error E?, induding both

gngle and parald dructures presented in Carato et d. [43]. Furthermore, coding is

78
fagter than previous pardld architectures. Neverthedess, training is dill dgnificantly dow

due to the use of multiple networks. Moreover, the tota number of weights is large. Thus,
training cannot be part of the coding process, otherwise, it cannot be performed in red-
time. Thus, the compresson qudity depends on the traning data and ther smilarity to

the test images.

4.3 Proposed Cascade Architecture

This section introduces an image compresson method based on a cascade of
adaptive units that provides better image quality than previous NN-based techniques. It
borrows some of the idea of Cascade Corrdation in that hidden units are added to the
network one a a time. Each unit is equivaent to a feed-forward NN with a single node at
the hidden layer. The proposed method exhibits a fast training phase that is included in
the encoding process. Thus, it achieves independence of the training data, which makes it
aopropriate for genera image compresson agpplications. The implementation of the new

architecture is decribed next.

4.3.1 Encoding process
The inputs C; = [Cyj, Cyj, ... Cwm2j] are defined as in section 41.1. The
normdization function is
P =1(C) = (G —mg) (4.3)
Petterns P; are used as inputs/outputs to train the first unit. The output of the first unit's
hidden node corresponding to the j'" pattern is denoted as Ojk k = 1 The first unit's

estimated weight vector is denoted as

79
Wi = [Wak, Wak, ... Wm2], k=1, (4.4)

and is equivdent to the weight vector connecting the hidden node to the output layer.
Element W is the i" weight associated to the k™ unit. It is shown below that the weight
vector connecting the input to the hidden node is not required in the implementation. The
output G; 1 and the weight vector W1 are required in the decoding process.

The firgt unit’s error patterns are denoted as

€1 =[eLj1 €1, ... em2j], (4.5)
They are defined as the difference between the origind P; and estimated patterns ng a the
output of the first unit, after training is complete. The element @ is the i dement of the
i error pattern a unit k. If the set of error patterns a the output of unit k is defined as A
then only a subset of these error patterns is used as input/output to train the next unit. It
should be pointed out that this is where this new method differs from most NN-based
image compresson methods. Instead of training with the entire patterns it makes sense to

train with only patterns that do not meet a threshold. This enables fagter training time and
convergence. The subset Ai condss of S error patterns e, j =1, ..., S whose square
sum is lager than a specified threshold Q: Ay = {ef« 1 Ay, €k €8’ > Q}. Again, the
second unit’s hidden node outputs, denoted as Q», and the weight vector W» are stored to

be used in the decoding process.

Smilaly, the second unit's error patterns, eyj, are defined as the difference

between €1 and the estimated error patterns éﬁl a the second unit’'s output. Again, only a
subset of the new error patterns g, is used as input/output to train the third unit. The
procedure of adding/training units is repeated for as long as the CR does not exceed a

specific target. There is an additiond overhead per block indicating how many units

80
encode that block. It is important to note that since only a subset of error patterns trains

each unit, the number of outputs O;k per unit k is variadle. This dlows assgnment of
image-blocks with larger estimation error to more units, while keeping the same CR.

The threshold Q is based on the first unit's error paterns ej; and the CR. More

sedifically,
e, v’ u
Q=ab—aq dd(e))UCR (4.6)
SM i=1 J

The judification for the threshold definition in equaion (4.6) is as follows. A sndl
threshold indicates an expectation for a smdl coding eror. Fird, the threshold Q is
proportiond to the desred CR. A smal CR promises a smal coding error; therefore, the
threshold can be set low. Second, the threshold is proportiona to average standard
deviation (ASD) of the error patterns between the origind and the encoded images (using
only the firg unit). The ASD (content of the square bracket in equation (4.6)) is a
“dmilarity” measure between the error patterns. A smal ASD indicates that the error
patterns may be rdativdy smilar throughout the image-blocks. As a reault, the additiond
adaptive units are expected to be able to produce a smal coding error, thus the threshold
can be st low. Findly, parameter a is a congtant which was fixed and equa to 1.2 in dl
implementations.

The advantage of the cascade technique over existing pardld NN architectures is
that the totd number of weghts is dgnificantly smdler and that the number of hidden
node outputs is variable. Furthermore, the training time requirements are low due to the
units low computationa complexity. The dgorithm converges in 4-5 iterations by

repeatedly applying the smple set of equations:

81
J J

Wi =8&; O,k Tix" /&; O, (4.8)
where Tj kisequd to P, if k = 1, and €1 otherwise.
Equation (4.7) gives the unit's optimum hidden layer outputs O;x given the unit's
weghts. This is the result of minimizing the sum of square erors c? between input and
output patterns

¢Zk=&)(Ti= Ty (Tix= Ty, (4.9
where ﬁ-,k = Wk Tj,kT, for unit k with respect to Qx. Smilarly, equation (4.8) gives the
optimum unit's weights given the hidden layer outputs Ojx. This is the result of
minmizng c? with respect to Wy. The conditions from which equations (4.7) and (4.8)

are derived are shown below:

) |[
0,

2
C.
=0, and Tk 0 (4.10)
Vi

Since only the weights emanating from the hidden layer Wy and the hidden layer outputs
O;x are needed in the decoding process, it is imperative to obtain the optimum set {Wi,
Oj«} for each unit. The agorithm based on equations (4.7) and (4.8) directly attempts to

find optimum vaues for both Wy and O .

4.3.2 Decoding process

Each block is decoded using the set {O;«, W}, conddering al units k used to
encode that block. For ingtance, the first unit produces an edimate of patterns ng =

0;1W;" and the second unit an estimate of the first unit's error patterns ef; = O W,'.

The decoded block is obtained from summing of dl those estimates and the block

82
average mg. Figure 4.2(a) and 4.2(b) presents the proposed encoding and decoding

schemes.
W, O,
Q T T Q
v : v
P €1 Forward |€il - 82

Pattern) Pattern
Selection Unit, - Sdecion [P

1

Figure 4.2(a): Encoding scheme for proposed cascade architecture.

Forward
—Pp Unit;

Forward

—p Unit

Figure 4.2(b): Decoding scheme for proposed cascade architecture.

The image compresson results for the methods described above are presented

next.

CHAPTER 5

Results

The image compresson techniques presented in chapter 4 are tested on four
different test images. This chepter presents and compares the results obtained from these
tests for the sngle-structure, parald-structure, and proposed cascade architectures. Also
these results are compared with those of JPEG compression. The comparisons are made
in terms of Peak Signd to Noise Ratio (PSNR) and computationa complexity. Graphicd

and visual comparisons are also presented.

51 Comparisonsin termsof PSNR

Table 1 presents the results obtained by compressng and decompressing four
different test images (Lena, Baboon, and Peppers) with the single-structure NN and the
proposed cascade method. The single-structure NN is both trained and tested on the same
image to avoid dependence of the results on training data. Although this is impractica for
red applications due to high traning time requirements, it is ussful for comparison
purposes. Table 2 shows that the proposed cascade architecture gives higher PSNR for dl
tested images and for three different compression ratios (4:1, 8:1, 16:1).

The pardld-structure architecture resulted in PSNR = 33.8 dB (for CR = 8:1) for
“Peppers’ when trained with “Lenad’, and 33.0 dB when trained with “Baboon’. The
PSNR for the proposed technique is 35.2 dB for the same CR. The dependence of the

pardld-sructure NN on the training data now becomes gpparent. Smilarly when image

“Lenad’” was compressed by training the pardld architecture with “Peppers’ the PSNR

was 34.2 dB while for the cascade architecture it was 35.9 dB.

Lena Baboon Peppers
CR
Sngle- Sngle- Sngle-
Structure Cascade Structure Cascade Structure Cascade
161 | 28.93 31.36 21.74 21.99 28.28 30.07
81 31.87 35.88 23.04 23.42 30.57 35.21
41 35.19 38.96 25.07 25.46 33.06 37.35

Table 2: Comparison between single structure and cascade architectures in terms of PSNR (dB).

JPEG
Qudity
CR
Factor Lena Baboon Peppers
345 | 161 34.24 33.16 33.87
74.9 81 38.19 38.79 3751
92.0 41 42.89 43.02 42.47

84

Table 3: PSNR (dB) for JPEG agorithm.

Table 3 gives the PSNRs obtained using the JPEG dgorithm. The qudity factor
determines the degree of compresson and thus the compresson rate. Strictly speeking, it
is not possible to make a direct comparison between JPEG and the proposed cascade
method or, in fact, between JPEG and single/parald-structure NNs. The reason for thisis
has dready been described in section 2.3.1 but will be re-iterated here In JPEG, Al
quantized coefficients, which are tranamitted, are entropy coded using a sophisticated
differentid pulse code modulation and run-length Huffman code. Withou the entropy

coding, JPEG gives subgtantidly lower PSNRs or, equivaently, a much lower CR for the

85
same PSNR [34]. Neverthdess, it can be clearly seen that for the Lena image the

proposed method, with no entropy coding, gives PSNRs that are only between 3 and 4 dB
below the corresponding PSNRs obtained with JPEG. These results are further presented
graphicdly in the next figures.

Figure 5.1 plots the PSNR values versus the CR for the reconstructed Lena image
udng the dngle-structure NN dgorithm, the proposed cascaded method, and standard
JPEG. As is clearly seen, the proposed method outperforms the single-structure NN. It is
aways better by 3dB. It seems, however, that JPEG compression performs better than the
proposed method, which resulted in 32.8 dB, 36.7 dB, and 39.0 dB at compression ratios
16:1, 8:1, and 4:1, respectively. JPEG resulted in 34.3 dB, 39.5 dB, and 429 dB a the

same compression retios.

I I
1| == Proposed Cascade Method
| = Single-Structure NN

Compression Ratio

Figure 5.1: PSNR vaues for the reconstructed Lena image at different compression ratios.

In similar fashion Figures 5.2 and 5.3 plot the PSNR values for the reconstructed

Peppers and Baboon images, respectively.

&0

I I
1| =&~ Proposed Cascade Method
H| —#= Single-Structure MM

PSNR (dE)

25 '
4 = a8 10 12 14 15
Compression Ratio

Figure 5.2: PSNR values for the reconstructed Peppers image at different compression ratios.

The JPEG approach yields a PSNR of 5dB higher on the average than the other
two methods. However, the proposed cascaded approach does have certain advantages
over the JPEG approach. They are:

1) The decompressed NN output can be recompressed further by up to 30% with a
losdess compresson scheme with minimd loss in qudity. JPEG recompresson

rate is much smaller in comparison (less than 5%).

2) The coding/decoding time required for the cascade method is dso much smaler.

Once the off-line training is complete, the compressng and decompressing

87
process is dgnificantly faster with the cascaded method. For indance, a 16:1 CR,

it takes less than 2 seconds to compute, while a 4:1 CR the computing time is less

than 1 second.

3) The pardld processing capability of NNs makes them superior to JPEG in terms

of hardware implementation.

&0 I I ! I I
; ; ; —=- Proposed method
—4— Single-Structure MM

Bits per pixel
Figure 5.3: PSNR vaues for the reconstructed Baboon image at different compression ratios.

An example that presents a visua comparison of the compresson results is shown
in Figure 54. Figure 5.4(a) presents the origind Lena image. Figures 5.4(b), 5.4(c), and
5.4(d) present the compressed image using, respectively, the single NN architecture, the

proposed dgorithm, and JPEG a CR 8:1. Although compresson has apparently affected

al compressed images, the proposed agorithm presents the best visud result, especialy

83
around lines and edges. Notice that dthough the JPEG dgorithm is better in terms of the

PSNR, its performance is poor visudly especidly a high CRs, as is dealy seen when

Figures 5.4(c) and 5.4(d) are compared.

Figure 5.4: (&) Origina Lena image and Reconstructed Lena image at 8:1 compression ratio
using the (b) Single-structure NN, (¢) Proposed cascaded method, and (d) JPEG agorithms.

5.2 Comparisonsin termsof Computational Complexity

Generdly, NN techniques exclude traning from the encoding process.
Network(s) are trained with images other than the ones to be encoded. This subsection
compares the paralle-structure and the proposed method in terms of required operations.
As mentioned previoudy, the proposed method includes training in the encoding process.
The totad number of hidden nodes in the pardld architecture is 40. In the assgnment
process, al patterns have to be presented to al four networks. This requires a total of 40
(nodes) ~ 64 (pattern size) ~ 4096 (blocks) ~ 2 (3 layer NNs) » 21~ 10° multiplications
and 40 © 64 ~ 4096 = 10.5 ~ 10° additions for a512 ~ 512 image. Additiondly, there are
3740 ~ 64 ~ 4096 = 315 ~ 10° operations required for the caculaion of the error
patterns. Hence, a total of 63 ~ 10° operations are required for encoding. This number
does not include the iteraive optimization dgorithm which is dso pat of encoding. On
the other hand, the number of operations for the cascade architecture is variable due to
the adaptive nature of the technique. The number of iterations per unit is set to 4. It was
found that for “Lena’ (sze 512 ~ 512), and for CR of 8:1 the number of multiplications
and additions were 13 ~ 10° and 13 *~ 10° respectively, for presenting the patterns to the
architecture. Furthermore, there were 195 ~ 10° operations required for the error pattern
calculation. Hence, a total of 455 ~ 10° operations were required for encoding. Similarly
for “Baboon’ (size 512 ~ 512), a tota of 532 ~ 10° operations were required for
encoding. Therefore, dthough the proposed dgorithm includes training in the encoding

process, it requires fewer operations than the parallel NN technique.

CHAPTER 6

Discussion and Conclusions

Sdected 4ill images were compressed with various compresson techniques. This
thes's proposed a new cascade adaptive adgorithm for image compresson. The agorithm
is based on the idea of neurd network (NN)-based image compresson. The maor
advantage of this dgorithm is that it requires a smal number of training parameters and
has a fast traning phase. Therefore, training can be incorporated into the encoding
process. The proposed architecture exhibits smaler coding error than previous singe
dructure and paralel structure NN architectures. Although the training phase is included
in the encoding process, it exhibits faster encoding than pardld-gructure and single-
gructure NN techniques. The new dgorithm does not use any entropy coding. This
makes it Idmple to implement and very robust agang transmisson erors usudly
encountered in high-noise environments, but it does limit the compresson performance.
The proposed technique has overdl demondrated the ability to compress ill images a
compresson raios of up to 16:1, and in fact can go higher than 32:1, while 4ill
mantaning a reaivdy high-quality output. It has dso been shown that this output can
be further recompressed with minima loss in image qudity, and compared to JPEG
compression this is a mgor advantage. It is, however far to mention that a mgor change

from the JPEG dgorithm used here is that waveets replace the Discrete Cosine

a1
Trandorm as the means of transform coding. Wavee trandforms are currently being

employed in JPEG 2000. Among many thingsit will address are:
= Low hit-rate compression performance,
» Losdessand lossy compression in asingle codestream, and
= Trangmisson in noisy environment where bit-error is high.
Many further improvements of the proposed cascade method can be thought of
and some ae cetanly worth further work. In particular the following observations can

be used to design networks with enhanced compression capabilities:

The quantized hidden layer weights could be encoded by goplying some form of

lossless compression e.g., run-length Huffman code.

» An adgptive quantization scheme could be employed to minimize quantization
errors and enhance image qudity.

= The threshold detection parameter is a very important factor that can dter the

results if not carefully controlled or consdered. It is possble to obtain better

resultsif this parameter was further optimized.

Employ genetic dgorithms [44] to:
- configure the problem (image compression) for the network,
- configure the network architecture, and

- train the network.

All the work described in this thesis needs to be extended to colour images.

Currently, learning of the weghts of eech W,0, par is obtaned usng lesst

mean squares and the PSNR used as a peformance criterion is essentidly

)
equivdent to a quadratic cost function. Other cost metrics (such as LAB-type

measures) could be used to carry out learning for colour images.

In addition to the genera scheme described above, some other enhancements
rddlated to the nonlinearity of the input-output amplitude mapping of the
compression/decompression scheme could be examined. It is expected to obtain further
quaity improvement with gppropriate compensation of non-linearity. This compensation
can dso be pat of the learning scheme. Moreover, the adaptive sdection of the level of
compression to be used at the transmitter sde can be improved by making use of the date
of the trangmisson medium - specificaly of the network being used. This would be
paticulaly rdevant if we ae deding with an ATM (Asynchronous Transfer Mode)
network. The adaptive decison can be based on feedback about network state - such as
current load on the network - as wel as PSNR and/or visud quality metrics. For example,
in caxe of little load on the network, smal compression ratios can be favored, thus
increesing visud qudity. Smilaly, in case of a heavily loaded network, visud qudity
can be sacrificed while trangmiting with maxima compression. This adgptive decison
can aso be learned.

With some of the improvements described above, it is expected that compresson
ratios as high as 250:1 can be achieved for gray-scde images, and Hill higher leves for
colour, with qudity levels of the order of SNR = 40 dB for gray-scde images, and
acceptable LAB-type measures and PSNR levels for colour images. With the wide variety
of gpproaches to image compresson, and in particular neural networks, there is a

compelling need for a comprehensve evaduation of the proposed technique. Such an

93
evaduation would require training and testing on a common st of images. The results and

derivations obtained, while comparetively excdlent, conditute the bass for developing

additiona results or equations for image compression.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

S. Carao, “Neura Networks for Image Compresson,” in Neural Networks:
Advances and Applications, E. Gdembe, Ed. Amderdam, The Netherlands.
North-Holland, 1992.

J. Jang, “Neura-Networks Image Compresson- A Survey,” Signal Processing:
Image Compression, to be published.

W. B. Pemnebaker and J. L. Mitchdl, “JPEG Still Image Daa Compresson
Standard. New York”: Van Nostrand Reinhold, 1993.

G. K. Wadlace, “Overview of the JPEG (ISO/CCITT) ill image compression
standard,” in Proc. SPIE, vol. 1244, PP. 220-233, Feb. 1990.

M. Rabbani and P. W. Jones, “Digitd Image Compresson Techniques’, vol. TT7
of Tutorid Texts Series. Bdlingham, WA, SPIE Optica Eng. Press, 1991.

R. C. Gonzdez and R. E. Woods, “Digitd Image Processing’, Reading, MA:
Addison-Wedey, 1992.

H. B. Mitchdl, N. Zilverberg, and M. Avraham, “A Comparison of Different
Block Truncation Coding Algorithms for Image Compresson,” Sgnal
Processing: Image Commun., vol. 6, pp. 77-82, 1994.

N. Efrai, H. Liciztin, and H. B. Mitchdl, “Classfied Block Truncation Coding-
Vector Quantization: An Edge Sendtive Image Compression Algorithm,” Sgnal
Processing: Image Commun., vol. 3, pp. 275-283, 1991.

Y. Linde A. Buzo, and R. M. Gray, “An dgorithm for vector quantizer design,”
|[EEE Trans. Commun., vol. C-28, pp. 84-95, Jan. 1980.

N. M. Nasrabadi and R. A. King, “Image coding using vector quantization: A
review,” |EEE Trans. Commun., vol. 36, pp. 957-971, Aug. 1988.

R. M. Gray, “V ector quantization,” |EEE ASSP Magazine, vol. 1, pp. 4-29, 1984.

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

95

P. P. Gandhi, W. E. Darlington, and H. L. Dyckman, “Error-reslient image
compresson based on JPEG,” in Proc. SPIE, Sill-Image Compression 1I, San
Jose, CA, Jan. 29-30, 1996, val. 2669, pp. 106-123.

S. Lin and D. J Cogdlo J., “Error Control Coding’. Englewood Cliffs, NJ:
Prentice-Hall, 1983.

M. Morimoto, M. Okada, and S. Komaki, “Robust mobile transmisson using
hierarchicd QAM,” Sgnal Processing: Image Commun., vol. 12, pp. 127-134,
1998.

G. W. Caottrdl, P. Munro, and D. Zipser, “Image compresson by
backpropagation: An example of extensond programming,” in Models of
Cognition: A Review of Cognition Science, N. E. Sharkey, Ed. Exeter, UK.:
Intellect Books, 1989, pp. 208-240.

Y. Benbenidsti, D. Kornreich, H. B. Mitchdl, and P. Schagfer, “Normdization
techniques in neura network image compresson,” Signal Processing: Image
Commun., vol. 10, pp. 269-278, 1997.

A. Basso and M. Kunt, “Autoassociative neurd networks for image
compression,” European Trans. Telecommun., vol. 3, pp. 593-598, 1992.

H. M. Abbas and M. M. Fahmy, “Neurd modd for Karhunen-Loeve transform
with agpplication to adaptive image compresson,” Proc. Inst. Elect. Eng., vol. 140,
pt. I, pp. 135-143, 1993.

S. K. Kenue, “Modified backpropagation neura-network applications to image
compression,” in Proc. SPIE, Applicat. Artificial Neural Networks I11, Orlando,
FL, Apr. 21-24, 1992, vol. 1709, pp. 394-407.

S. Carrato, S. Marg, “Parallel Structure Based on Neura Networks for Image
Compression,” Electronics Letters, Vol.28, No.12, pp. 1152-1153, June 1992.

T. Kohonen, “Sdf-organization and Associative Memory”. Springer Verlag: 3™
Ed., 1989.

K. R. Rao and P. Yip, “Discrete Cogne Transform: Algorithms, Advantages, and
Applications’. New Y ork: Academic, 1990.

E. Oja “Principad components, minor components, and linear neurd networks’,
Neural Networks Vol.5, pp. 927-935, 1992.

E. H. Addson, E. Simoncdli, “Orthogona pyramid transforms for image coding’”,
Visual Communications and Image Processing |1, Proc. SPIE, Vol.845, pp.50-58,
1987.

[29]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[39]

[36]

[37]
[38]

W. Zettler, J. Huffman, D. C. P. Linden, “ Application of Compactly Supported
Waveets to Image Compresson”, Image Processing Algorithms and Techniques,
Proc. SPIE, Vol.1244, pp.150-160, 1990.

A. E. Jacquin, “Image Coding Based on a Fractd Theory of Iterated Contractive
Image Transformations’, Vol.1, No.1, p.18-30, January 1992.

M. Kunt, M. Benard, R. Leonardi, “Recent Results in High-Compression Image
Coding’, |EEE Transactions on Circuits and Systems Vol.CAS-34, No.1, pp.
1306-1336, 1987.

F. Zahedi, “Intdligent Systems for Business, Expert Systems With Neurd
Networks’. Wodsworth Publishing Inc., 1993.

B. Widrow and S. D. Sterns, “ Adaptive Signal Processing”, New Y ork: Prentice-
Hall, 1985.

NeuralWare, Neura Computing: A Technology Handbook for NeuraWorks
Professiond 11/Plus and NeuraWorks Explorer, NeuradWare, Aspen Technology,
Inc., 1998.

M. Zekic, “Neura Networks for Time Series Prediction in Finance and
Investing”, in Proceedings of the 6th International Conference on Operational
Research Society, Zagreb, pp. 215-220, 1996.

A. J. Shepherd, “ Second-Order Methods for Neurd Networks’, Springer-Verlag,
1997.

T. Magters, “Advanced Algorithms for Neural Networks, A C++ Sourcebook”.
John Wiley & Sons, 1995.

S. V. Kartaopoulos, “ Understanding Neural Networks and Fuzzy Logic, Basic
Concepts and Application”, |EEE Press, 1996.

N. B. Karayiannis, G. M. Weigun, “Growing Radial Basis Neural Networks:
Merging Supervised and Unsupervised Learning with Network Growth
Techniques’, |EEE Transactions on Neural Networks Vol. 8, No. 6, pp. 1492-
1505, 1997.

T. Masters, “Practical Neurd Network Recipesin C++”, Academic Press, 1993.
D. W. Patterson, “Artificial Neurd Networks’, Prentice Hall, 1995.
M. Riedmiller, and H. Braun, “A direct adaptive method for faster

backpropagation learning: The RPROP dgorithm,” Proceedings of the IEEE
International Conference on Neural Networks, 1993.

[39]

[40]

[41]

[42]

[43]

[44]

97

S.E. Fahiman, and C. Lebiere, “The cascade-correlation learning architecture’, in
Advancesin Neural Information Processing Systems 2 (D.D. Touretzky, ed.), pp.
524-532, San Mateo, CA: Morgan Kaufmann, 1990.

D. F. Specht, “A General Regression Neura Network”, IEEE Transactions on
Neural Networks, Vol. 2, No. 6, pp. 568-576, 1991.

R. A. Jacobs, M. . Jordan, S. Nowlan, G. E. Hinton, “ Adaptive Mixtures of Locd
Experts, Neura Computation”, No. 3, pp. 79-87, 1991.

J. L. Elman, “Finding sructure in time”. Cognitive Science, 14: 179-211, 1990.

S. Carrato, S. Marg, “Parallel Structure Based on Neural Networks for Image
Compression,” Electronics Letters, Vol.28, No.12, pp. 1152-1153, June 1992.

D. Goldberg, “Genetic Algorithms in Search, Optimization and Machine
Learning”, Addison Wedey, 1988.

APPENDI X

MATLAB Codes

Functions used for Single-structure NN compression:
» ginglestruct - compresses test image using Ingle-ructure agorithm.
= mynewff - creates afeedforward NN.
» mysim- smulates the network and returns the output.
Functions used for Proposed cascade architecture compression:
= cascade - compressestest image using cascaded architecture dgorithm.
= estimate - crestes and trains the network.
Functions common to both Single-structure and Cascade architecture agorithms:
= image to blocks - bresks up the image into z ~ z blocks and changes its

dimensondity.
= reconstruct - paformsinverse of “image to_blocks’ operation.

Function used for JPEG compression:
" jpeg - compresses test image using JPEG dgorithm.

Script which executes dl three compression techniques:
= run_all.
Test Images

Imagel.gif, Image2.gif, and Imeged.gif contan the tet images Lena, Baboon, and
Peppers, respectively.

VITA

Chigozie Obiegbu was born in 1973 in PortHarcourt, Nigeria He graduated from
Marig Brothers Juniorate in 1990. In the fdl of the following year he began dudies in
eectrica/dectronic enginegring a the Federd Universty of Technology, Owerri, and
graduated with a Bachelor of Engineering degree in August 1997. During the next three
years he worked as a full time employee with two different companies. In the spring of
2001 he came to the Universty of New Orleans to pursue graduate studies in eectrica
engineering and physics. He worked as a teaching assstant in the department of eectrica

engineering and is currently working as a teaching assistant in the department of Physics.

	Image Compression Using Cascaded Neural Networks
	Recommended Citation

	thesis_front.PDF

