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ABSTRACT 
 

Images are forming an increasingly large part of modern communications, 

bringing the need for efficient and effective compression. Many techniques developed for 

this purpose include transform coding, vector quantization and neural networks. In this 

thesis, a new neural network method is used to achieve image compression. This work 

extends the use of 2-layer neural networks to a combination of cascaded networks with 

one node in the hidden layer. A redistribution of the gray levels in the training phase is 

implemented in a random fashion to make the minimization of the mean square error 

applicable to a broad range of images. The computational complexity of this approach is 

analyzed in terms of overall number of weights and overall convergence. Image quality is 

measured objectively, using peak signal-to-noise ratio and subjectively, using perception. 

The effects of different image contents and compression ratios are assessed. Results show 

the performance superiority of cascaded neural networks compared to that of fixed-

architecture training paradigms especially at high compression ratios. The proposed new 

method is implemented in MATLAB. The results obtained, such as compression ratio and 

computing time of the compressed images, are presented. 
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CHAPTER 1 
 

Introduction 

 

Computer images are extremely data intensive and hence require large amounts of 

memory for storage. As a result, the transmission of still images from one machine to 

another can be very time consuming. For this reason still image compression is subject of 

an intense worldwide research effort [1]-[8]. By using data compression techniques, it is 

possible to remove some of the redundant information contained in images, requiring less 

storage space and less time to transmit. The objective of digital image compression 

techniques is the minimization of the number of bits required to represent an image, 

while maintaining an acceptable image quality. Another issue in image compression and 

decompression is the processing speed, especially in real-time applications. It is often 

desirable to be able to carry out compression and decompression in real-time without 

reducing image quality.   

 Numerous lossy image compression techniques have been developed in the past 

years. The transform-based coding techniques have proved to be the most effective in 

obtaining large compression ratios while retaining good visual quality. In low noise 

environments, where the bit error rate is less than 610− , the JPEG [3]-[4] picture 

compression algorithm, which employs cosine-transforms, has been found to obtain 

excellent results in many digital image compression applications. However, an increasing 

number of applications are required for use in high noise environments [12] - [14], e.g., 
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the transmission of a compressed picture over a mobile or cordless telephone. In these 

applications, the bit error rates due to noise on the transmission channel may be as high 

as 210− [12], [14]. At these error rates, JPEG and similar compression algorithms, which 

rely on entropy coding, are not suitable [12]. 

 Recently, neural networks have proved to be useful in image compression because 

of their parallel architecture and flexibility [15]-[20]. They do not use entropy coding and 

are therefore intrinsically robust, making them an attractive choice for high noise 

environments. Of course a price must be paid for this robustness. In this case, the price is 

a reduction in decompressed image quality for the same compression efficiency. 

However, as shall be seen in chapter 4, the reduction in image quality is not excessive. 

  Although the parallel-structure neural networks are robust, they suffer from 

several drawbacks. The main drawbacks are: 

1) high computational complexity; 

2) moderate reconstructed picture quality; 

3) variable bit-rate; 

In this thesis the first two drawbacks are tackled in a proposed neural network (NN) 

method that uses a cascade of feedforward networks with one node at the hidden layer. 

The third drawback is not directly tackled to avoid increasing the computational 

complexity of the system. However, provision is made for the rare occasions when the 

compression efficiency is much lower than expected. Compared to the current parallel-

structure NNs, the proposed NN has a lower computational complexity, faster 

convergence, and higher compression efficiency. 
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The chapters of this thesis are organized as follows: Chapter 2 briefly reviews 

three of the major approaches to image compression, namely predictive coding, transform 

coding and vector quantization. In particular, the JPEG technique is described. Chapter 3 

discusses NN technology, including various architectures and algorithms. These 

architectures include Backpropagation, Radial-basis function, General Regression, 

Modular, Probabilistic, and Learning Vector Quantization. The single-structure NN 

consisting of two layers and the parallel-structure NN are embedded in the discussion. In 

Chapter 4, the single-structure NN as an image compression tool is implemented, and the 

proposed NN method using a cascade of feedforward networks is presented. A 

background on this approach is given followed by its application to image compression. 

Chapter 5 presents experimental results. The error metrics used in computing the results 

are described. Graphical and pictorial results are fully illustrated. Performance 

comparisons are made with JPEG and single-structure/parallel-structure NNs. Issues 

relating to a comprehensive evaluation of the image compression techniques presented 

herein are discussed in Chapter 6. The practicality and usefulness of the new method is 

mentioned.  

The thesis concludes by suggesting certain modifications to the new NN method 

to achieve even better results. Specific remarks on the development of the code used in 

the new NN method assists in highlighting the usefulness of the completed work. 
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CHAPTER 2 
 

Techniques for Image Compression 

 

Image compression methods are categorized as lossless and lossy. Lossless 

methods preserve all original information without changing it. Lossy methods reduce 

information to attain better compression ratio. Lossless compression has been found to be 

adequate when low compression ratios are acceptable. Significantly substantial 

compression ratios can only be achieved with lossy compression schemes, which will be 

the main focus of this thesis.  Due to the extensive breadth of this field, it is impossible to 

list all of the currently available image compression techniques. However, existing 

research fall into one of three major categories: vector quantization, predictive coding, or 

transform coding. 

 

2.1 Vector Quantization 

Quantization refers to the process of approximating a continuous set of values in 

the image data with a finite (preferably small) set of values. The input to a quantizer is 

the original data, and the output is always one among a finite number of levels. The 

quantizer is a function whose set of output values is discrete and usually finite. The 

concept of quantizing data can be extended from scalar or one-dimensional data to vector 

data of arbitrary dimension.  
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Vector Quantization (VQ) [9] – [11] uses a codebook containing pixel patterns 

with corresponding index for each of them. The main idea of VQ in image coding is then 

to represent arrays of pixels by an index in the codebook. In this way, compression is 

achieved since the size of the index is usually a small fraction of that of the block of 

pixels. The codebook is used to quantize the incoming vectors and is analogous to the 

quantization levels in a scalar quantizer. A good codebook can reduce the overall 

distortion of the reconstructed image, and is determinative to the performance of the VQ 

process.  

At the encoder, the incoming image is partitioned into blocks of sub-images. 

These blocks have the dimension equal to entries in codebook, so comparison can be 

done easily between them. An input vector Xn consisting of blocks of pixels is quantized. 

This is done by encoding Xn into a binary index in which points to an entry in the 

codebook. This in then serves as an index for the output reproduction vector or codeword. 

The standard approach to calculate the codebook is by way of the Linde, Buzo, and Gray 

(LBG) algorithm [9]. Finally, the concatenation of all in represents the compressed image. 

However, the choice of index in will be different when using different mapping rules. 

These mapping rules often depend on minimizing a predefined distortion measure 

d(Xn,Yin), where Xn and Yin are the vectors from the image and from the codebook 

respectively. A reliable assessment criterion based on the properties of the human visual 

system has not yet been defined; hence Euclidean metrics are adopted as a default 

distortion measure. Besides the LGB algorithm, other iterative approaches relate to neural 

network models and are based on Kohonen Self-Organizing Maps (SOMs) [21]. 
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The main advantages of VQ are the simplicity of its idea and the possible efficient 

implementation of the decoder. Moreover, VQ is theoretically an efficient method for 

image compression, and superior performance will be gained for large vectors. However, 

in order to use large vectors, VQ encoding becomes complex, which requires many 

computational resources (e.g., memory, computations per pixel) in order to efficiently 

construct and search a codebook. For instance, while the LGB algorithm converges to a 

local minimum, it is not guaranteed to reach the global minimum. In addition, the 

algorithm is very sensitive to the initial codebook. Furthermore, the algorithm is slow 

since it requires, on each iteration, an exhaustive search through the entire codebook. 

More research on reducing this complexity must be done in order to make VQ a practical 

image compression method with superior quality. 

 

2.2 Predictive Coding 

Predictive image coding algorithms [5] are used primarily to exploit correlation 

between adjacent pixels. They predict the value of a given pixel based on the values of 

the surrounding pixels. Due to the correlation property among adjacent pixels in an 

image, the use of predictor can reduce the amount of information bits required to 

represent the image. This can accomplished through the use of predictive coding or 

differential pulse-code modulation (DPCM). 

The predictor uses past samples ),(),...,2(),1( pnxnxnx −−− or in the case of 

images, neighboring pixels, to calculate an estimate, ),(ˆ nx  of the current sample. It the 

difference between the true value and the estimate, namely ),(ˆ)()( nxnxne −=  which is 

used for storage transmission. As the accuracy of the predictor increases, the variance of 
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the difference decreases, resulting in higher predictive gain and therefore a higher 

compression ratio. 

 

The problem of course is how to design the predictor. One approach is to use a 

statistical model of the data to derive a function which relates the values of the 

neighboring pixels to that of the current one in an optimal manner. An autoregressive 

model (AR) is one such model which has been successfully applied to images. For a 

pth order causal AR process, the nth  value )(nx  is related to the previous p values in 

the following manner: 

n

p

j
j jnxnx εω +−= ∑

=

)()(
1

,  (2.1) 

where { jω } is a set of AR coefficients, and { nε } is a set of zero-mean independent and 

identically distributed random variables. In this case, the predicted value is a linear sum 

of neighboring samples (pixels) as shown by 

)()(ˆ
1

jnxnx
p

j
j −= ∑

=

ω .       (2.2) 

Equation (2.2) is the basis of linear predictive coding. To minimize the mean squared 

error ])ˆ[( 2xxE − , the following relationship must be satisfied: 

 ,dRw =     (2.3) 

where [R] ij )]()([ jxixE=  is ijth element of the autocovariance matrix R and 

)]()(ˆ[ jxnxEd j =  is the jth  element of the cross covariance vector d. Knowing R and d, 

the unknown coefficient vector w can be computed, and the AR model (i.e., predictor) is 

thereby determined. 
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2.3 Transform Coding 

 Another approach to image compression is the use of transformations that operate 

on an image to produce a set of coefficients [5].  A subset of these coefficients is chosen 

and quantized for transmission across a channel or for storage. The goal of this technique 

is to choose a transformation for which such a subset of coefficients is adequate to 

reconstruct an image with minimum discernible distortion. 

 A simple and powerful class of transform coding techniques is linear block 

transform coding. An image is subdivided into non-overlapping blocks of nn ×  pixels 

which can be considered as N-dimensional vectors x with .nnN ×=  A linear 

transformation, which can be written as an NM × -dimensional matrix W with NM ≤ , 

is performed on each block, with the M rows of iwW ,  being the basis vectors of the 

transformation. The resulting M -dimensional coefficient vector y is calculated as 

.Wxy =     (2.4) 

If the basis vectors iw  are orthogonal, that is, 





≠
=

=
ji
ji

ww j
T
i ,0

,1
,   (2.5) 

then the inverse transformation is given by the transpose of the forward transformation 

matrix resulting in the reconstructed vector: 

yWx T=ˆ .    (2.6) 

The optimal linear transformation for minimizing the mean squared error is the 

Karhunen-Loeve transformation (KLT) [18]. The transformation matrix W consists of M 

rows of the eigenvectors corresponding to the M largest eigenvalues of the sample 

autocovariance matrix 
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][ TxxE=Σ .    (2.7) 

The KLT also produces uncorrelated coefficients and therefore results in the most 

efficient coding of the data since the redundancy due to the high degree of correlation 

between neighboring pixels is removed. The KLT is related to principal component 

analysis (PCA) [23], since the basis vectors are also the M principal components of the 

data. Because the KLT is an orthogonal transformation, its inverse is simply its transpose. 

 A number of practical difficulties exist when trying to implement the above 

approach. The calculation of the estimate of the covariance of an image may be unwieldy 

and may require a large amount of memory. In addition, the solution for the eigenvectors 

and eigenvalues is computationally intensive. Finally, the calculation of the forward and 

inverse transforms is of order )(MNO  for each image block. Due to these difficulties, 

fixed-basis transforms such as the discrete cosine transform (DCT) [22], which can be 

computed in order, ),log( NNO  are typically used when implementing block transform 

schemes. 

 

2.3.1 Discrete Cosine Transform 

The currently accepted standard for lossy still image compression was developed 

by the Joint Photographic Experts Group (JPEG) [3], [4], which adopted the linear block 

transform coding approach for its standard using the DCT as the transformation [22]. The 

JPEG specification defines a minimal subset of the standard, called baseline JPEG, which 

all JPEG-aware applications are required to support. This baseline uses an encoding 

scheme based on the DCT to achieve compression. 
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Figure 1 describes the baseline JPEG process. The compression scheme is divided 

into the following stages:  

1. Apply a DCT to blocks of pixels, thus removing redundant image data.  

2. Quantize each block of DCT coefficients using weighting functions optimized for 

the human eye.  

3. Encode the resulting coefficients (image data) using a Huffman variable word-

length algorithm to remove redundancies in the coefficients.  

The image is first subdivided into 8 x 8 blocks of pixels. As each 8 x 8 block or sub-

image is encountered, its 64 pixels are level shifted by subtracting the quantity 12 −n , 

where n2  is the maximum number of gray levels. 

 

 

 
Figure 1.0: Block diagram of JPEG compression. 

 

The 2-D discrete cosine transform of the block is then computed. The DCT helps 

separate the image into parts (or spectral sub-bands) of differing importance with respect 

to the image's visual quality. The DCT is similar to the discrete Fourier transform: it 

transforms a signal or image from the spatial domain to the spatial frequency domain. 

With an input image, A, the output image, B is:  

∑ ∑
−

=

−

=








+








+=

1

0 2

1

0 1

1 2

)12(
2

cos)12(
2

cos),()()(
4
1

),(
N

i

N

j

j
N
v

i
N
u

jiAvCuCvuB
ππ

.  (2.8) 

where C(u), C(v) = 1/√2 for u,v = 0 and 1 otherwise 

8X8 
pixel 
block 

DCT 
Quantizer 

Encoder 
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The input image is 2N  pixels wide by 1N  pixels high; ),( jiA  is the intensity of the pixel 

in row i and column j. ),( vuB is the DCT coefficient in row u  and column v  of the DCT 

matrix. The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray 

scale level; 8 bit pixels have levels from 0 to 255. The output array of DCT coefficients 

contains integers; these can range from -1024 to +1023. For most images, much of the 

signal energy lies at low frequencies; these appear in the upper left corner of the DCT. 

The lower right values represent higher frequencies, and are often small - small enough to 

be neglected with little visible distortion. A quantizer rounds off the DCT coefficients 

according to a quantization matrix. This matrix is the 8 by 8 matrix of step sizes 

(sometimes called quantums) - one element for each DCT coefficient. It is usually 

symmetric. Step sizes will be small in the upper left (low frequencies), and large in the 

lower right (high frequencies); a step size of 1 is the most precise. The quantizer divides 

the DCT coefficient by its corresponding quantum, and then rounds to the nearest integer. 

Large quantums drive small coefficients down to zero. The result: many high frequency 

coefficients become zero, and therefore easier to code. The low frequency coefficients 

undergo only minor adjustment. This step causes the lossy nature of JPEG, but allows for 

large compression ratios.  

After quantization, it is not unusual for more than half of the DCT coefficients to 

equal zero. JPEG incorporates run-length coding to take advantage of this. For each non-

zero DCT coefficient, JPEG records the number of zeros that preceded the number, the 

number of bits needed to represent the number's amplitude, and the amplitude itself. To 

consolidate the runs of zeros, JPEG processes DCT coefficients in the zigzag pattern 

shown in figure 2. 
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The number of previous zeros and the bits needed for the current number's 

amplitude form a pair. Each pair has its own code word, assigned through a variable 

length code (for example Huffman, Shannon-Fano or Arithmetic coding). JPEG outputs 

the code word of the pair, and then the codeword for the coefficient's amplitude (also 

from a variable length code). After each block, JPEG writes a unique end-of-block 

sequence to the output stream, and moves to the next block. When finished with all 

blocks, JPEG writes the end-of-file marker. At this point, the JPEG data stream is ready 

to be transmitted across a communications channel or encapsulated inside an image file 

format.  

JPEG is not always an ideal compression solution. There are several reasons: 

§ Does not fit every compression need. Images containing large areas of a single 

color do not compress very well.  

§ Can be rather slow when it is implemented only in software.  
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§ Hard to implement.  

§ Not supported by very many file formats.  

Recently, novel approaches have been introduced based on pyramidal structures [24], 

wavelet transforms [25], and fractal transforms [26]. These and some other new 

techniques [27] inspired by the representation of visual information in the brain can 

achieve high compression ratios with good visual quality but are nevertheless 

computationally intensive. 

 With this brief review of conventional image compression techniques at hand, 

various types of neural networks and their architectures will be reviewed, and their role 

as an image compression tool considered. 
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CHAPTER 3 
 

Artificial Neural Network Technology- an Overview 

 

Artificial Neural networks are software or hardware systems that try to simulate 

the human brain functionality. From the beginning of their presence in science, Neural 

Networks (NNs) are being investigated with two different scientific approaches. First, the 

biological aspect explores NNs as simplified simulations of the human brain and uses 

them to test hypotheses about human brain functioning. The second approach treats NNs 

as technological systems for complex information processing. This thesis is focused on 

the second approach by which NNs are evaluated according to their efficiency to deal 

with complex problems, especially in the areas of association, classification and 

prediction, but specifically in the area of image processing.  

The reasons why NNs often outperform classical statistical methods lie in their 

abilities to analyze incomplete, noisy data, to deal with problems that have no clear-cut 

solution and to learn on historical data. Because of those advantages, they have shown 

remarkable success in areas such as image transmission over high-noise environments. 

NNs, however, do have disadvantages. One such is the lack of tests of statistical 

significance of NN models and parameters estimated [32], [35]. Furthermore, there are no 

established paradigms for deciding which architecture is the best for certain problems and 

data types. This problem is partly investigated in this thesis. Despite those disadvantages, 

many research results show that neural networks can solve almost all problems more 
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efficiently than traditional modeling and statistical methods. It is mathematically proven 

(using the Ston-Weierstrass, Hahn-Banach and other theorems and corollaries [36]) that 

two-layer neural networks having arbitrarily squashing transfer functions are capable of 

approximating any nonlinear function. 

 

3.1  Basic Principles of Learning in Neural Networks  

NNs consist of one or more layers or groups of processing elements called 

neurons. The term neuron denotes a basic unit of a neural network model intended for 

data processing. Neurons are connected into a network in a way that the output of each 

neuron represents the input for one or more other neurons. The connection between 

neurons can be either one-directional or bi-directional, and according to its intensity the 

connection can either be excitatory or inhibitory. Neurons are grouped into layers. There 

are two main types of layers: hidden and output layers. Some authors refer to the inputs 

as another layer, but this will not be the case in this thesis. The hidden layer receives 

input data. Here, the information is processed and sent to the output layer neurons, where 

the network output is compared to the desired output and the network error is computed. 

The error information then flows backward through the network and the values of 

connection weights between the neurons are adjusted using the error term. The process is 

repeated in the network for the number of iterations necessary to achieve the output 

closest to the desired (actual) output. Finally, the network output is presented to the user. 

Neural network learning is basically the process by which the system arrives at the values 

of connection weights between neurons. The connection weight is the strength of the 

connection between two neurons. If, for example, neuron j  is connected to neuron ,i  
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jiw  denotes the connection weight from neuron j  to neuron i  ( ijw  is the weight of the 

reverse connection from neuron i  to neuron j ). If neuron i  is connected to neurons 

called ,,...,2,1 n their weights are stored in the variables .,, 21 niii www  A neuron receives as 

many inputs as there are input connections to that neuron and produces a single output to 

other neurons according to a transfer function.  

The process of neural network design consists of four phases: 

1. arranging neurons in various layers, 

2. determining the type of connections between neurons (inter-layer and intra-layer 

connections), 

3. determining the way neuron receives input and produce output, and 

4. determining the learning rule for adjusting the connection weights.  

The result of NN design is the NN architecture. According to the above design 

processes, the criteria to distinguish NN architectures are as follows: 

§ number of layers, 

§ type of connection between neurons, 

§ connection between input and output data,  

§ input and transfer functions, 

§ type of learning, 

§ certainty of firing, 

§ temporal characteristics, and 

§ learning time. 
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3.1.1 Type of Connection between Neurons  

Connections in the network can be realized between two layers (inter-layer 

connections) and between neurons in one layer (intra-layer connections) [28]. Inter-layer 

connections can be classified as: fully connected ­ each neuron in the first layer is 

connected to each neuron in the second layer; partially connected ­ each neuron in the 

first layer should not necessarily be connected to every neuron in the second layer; feed-

forward ­ connection between neurons is one-directional, neurons in the first layer send 

their output to the neurons in the second layer, but they do not receive any feedback; bi-

directional ­ there is a feedback when the neurons from the second layer send their output 

back to the neurons in the first layer; hierarchical ­ neurons in one layer are connected 

only to the neurons of the next neighbor layer; resonance ­ two-directional connection 

where neurons continue to send information between layers until a certain condition is 

satisfied.  

Examples of some well known NN architectures with inter-layer connections: 

§ Perceptron (developed by Frank Rosenblat, 1957) ­ first NN, two-layered, fully 

connected, 

§ ADALINE (developed by Bernard Widrow, Marcian E. Hoff, 1962) ­ two-

layered, fully connected, 

§ Backpropagation (developed by Paul Werbos, 1974, extended by Rumelhart, 

Hinton, Williams, 1986) ­ first NN with one or more hidden layers, connection 

between hidden layers is hierarchical, 

§ ART (Adaptive Resonance Theory) (designed by Steven Grosberg, 1976) 

­resonance connection, three-layered network, 
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§ Feedforward Counterpropagation (designed by Robert Hecht-Nielsen, 1987) 

­structure similar to Backpropagation network, three-layered, but non-

hierarchical. There is also a connection between neurons in one layer.  

Connections between neurons in one layer (intra-layer) can be:  

a) Recurrent ­ neurons in one layer are fully or partially connected. The connection is 

realized in a way that neurons communicate their outputs with each other after they 

receive their inputs from another layer. The communication continues until neurons 

reach a stable condition. When the stable condition is reached, neurons are allowed 

to send their output to the next layer. 

b) On-center/off-surround ­ in this connection a neuron in one layer has an excitatory 

connection toward itself and toward the neighbor neurons, but an inhibitory 

connection toward other neurons in the layer.  

 Some of the intra-layer networks with recurrent connection are: 

§ Hopfield's network (designed by John Hopfield, 1982) ­ two-layered, fully-

connected, neurons of output layer are mutually connected with recurrent intra-

layer connection, 

§ Recurrent Backpropagation network (designed by David Rumelhart, Geoffrey 

Hinton, Ronald Williams, 1986) ­ recurrent intra-layer connection, but one-

layered, where part of the neurons receive inputs, and the other part is fully 

connected with recurrent intra-layer connection,  

and some of the networks with on-center/off-surround connection are: 

§ ART1, ART2, ART3 (designed by Steven Grosberg, 1960) - resonance on-

center/off-surround connection, 
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§ Kohonen's self-organizing network (created by Teuvo Kohonen, 1982), 

§ Counterpropagation networks, 

§ Competitive learning networks. 

Details on the above architectures are discussed later in the text. 

 

3.1.2 Connection between Input and Output Data  

NNs can also be distinguished according to the connection between input and 

output that can be: 

1) autoassociative ­ input vector is the same as output (common in pattern recognition 

problems, where the objective is to obtain the same data in output as they are in input), 

2) heteroassociative ­ output vector differs from the input vector.  

Autoassociative networks [17], [36], [37] are used in pattern recognition, signal 

processing, noise filtering and similar problems that aim to recognize the patterns of input 

data. 

 

3.1.3 Input and Transfer Functions 

In order to understand the main types of NN architectures that will be explored   

below, the basic principles of NN functioning will be described through the equations of 

input and output of neurons, transfer functions and learning rules.  

 

Input (Summation) Functions 

When a neuron receives input from the previous layer, the value of its input is 

computed according to an input function, usually called a "summation" function. The 
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simplest summation function for the neuron i  is determined by multiplying the output 

sent by the neuron j to the neuron i  (denoted as joutput ) with the connection weight 

between neurons i  and j , then summarizing those multiplications for all j  neurons 

connected to neuron i , as given by: 

( )∑
=

⋅=
n

j
jjii outputwinput

1
,   (3.1) 

where n  is the number of neurons in the layer that sends its output received by the 

neuron i . In other words, iinput of a neuron i  is the sum of all weighted outputs that 

arrive into that neuron. Besides this standard network input, there are two additional 

specific types of inputs in a network: external input and bias. For the former, neuron i  

receives input from the external environment. For the latter, a bias value is used for 

neuron activation control in some networks. Input values can be normalized to an interval 

(usually [0,1] or [-1,1]) to avoid the extreme influence of high-valued inputs. Therefore, 

normalization is recommended in most neural networks (it is obligatory in Kohonen's 

network) [16], [21]. Details about data normalization used in this thesis will be explained 

later in the text.  

 

Output (Transfer) Functions 

After receiving the input according to the summation function presented in 

formula (3.1), the output of a neuron is computed and sent to the other neurons it is 

connected to (usually to the next layer neurons). The output of a neuron is computed 

according to a transfer function, which may be a linear or a nonlinear function of its 

input. A particular transfer function is chosen to satisfy some specification of the problem 
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that the neuron is attempting to solve. Several of the most frequently used transfer 

functions are the step function, signum function, sigmoid function, hyperbolic-tangent 

function, linear function, and threshold linear function. The output of each transfer 

function is computed according to a set formula.      

 Only two of the above-mentioned transfer functions are used in this thesis, 

namely, the hyperbolic-tangent and the linear functions. The former has the form:  

uu

uu

i ee
ee

output
−

−

+
−

=    (3.2) 

where iinputgu ⋅= . g =1/T is the gain of the function, where T  is the threshold. The 

gain determines the skewness of the function around 0. The function has continuous 

values in the interval [-1,1]. The hyperbolic-tangent function is commonly used in 

multilayer networks that are trained using the backpropagation algorithm, in part because 

this function is differentiable. The graph is shown in the following the figure below: 

 

Figure 3.1: Graph of hyperbolic tangent function  
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Because of its ability to map values into positive as well as negative regions, this function 

is used throughout Matlab implementation in this thesis.  

A linear function has the form: 

ii inputgoutput ⋅=    (3.3) 

It should be pointed out that Matlab names the hyperbolic tangent tansig, which has the 

same shape, and the linear function purelin. Figure 3.2 below depicts the overall picture 

of the input, transfer function, and output of a typical multiple-input neuron. 

Choice of the appropriate transfer function is made in the network design phase, 

still allowing the change of threshold value (T) and gain (g). The best transfer function is 

usually obtained by experimenting on a particular problem. 

 

 

Figure 3.2  Multiple-input neuron 

 

3.1.4    Type of Learning 

"Learning" is the process of calculating the weights among neurons in a network 

[29]. NNs can be designed by supervised or unsupervised learning. In supervised 

learning, the network is presented with a set of input and desired output patterns. The 

resulting (actual) outputs are compared with the desired outputs and their differences are 

used to adjust the network weights. In unsupervised learning, the network is presented 
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with only input patterns. Without desired responses, the network has no knowledge about 

whether or not its resulting outputs are correct. As a result, the network has to self-

organize (cluster) the data into similar classes by adjusting its weights so that the 

clustering improves. This type of learning is commonly used for pattern recognition 

problems and clustering. Kohonen's self-organizing network is based on unsupervised 

learning.  

Every NN goes through three operative phases: 

1) learning (training) phase ­ network learns on the training sample, the weights are 

being adjusted in order to minimize the objective function (for example the RMS 

or root mean square error), 

2) testing phase ­ network is tested on the testing sample while the weights are fixed, 

3) operative (recall) phase ­ NN is applied to the new cases with unknown results 

(weights are also fixed). 

 

Learning Rules 

A learning rule represents the formula that is used in NN to adjust the connection 

weights among neurons. Among various learning rules developed so far, four of them are 

most commonly used: Delta rule, Generalized Delta rule, Delta-Bar-Delta and Extended 

Delta-Bar-Delta rules, and Kohonen's rule. 

 

1) Delta rule 

Delta rule is also well known as Widrow/Hoff's rule [29], or the rule of least mean 

squares, because it aims to minimize the objective function by determining the weight 
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values. The aim is to minimize the sum of square error, where error is defined as the 

difference between the computed and the desired output of a neuron, for the given input 

data. The Delta rule equation is: 

icjji eyw ⋅⋅=∆ η ,     (3.4) 

where jiw∆  is the adjustment of the connection weight from neuron j to neuron 

i computed by: 

old
ji

new
jiji www −=∆ ,   (3.5)  

cjy  is the output value computed in the neuron j ; ie  is the raw error computed by: 

dicii yye −= ,    (3.6) 

η  is the learning coefficient, and diy  is the desired (actual) output that is used to compute 

the error.           

 The raw error in formula (3.6) is very rarely backpropagated; more often other 

error forms are used. In a classical Backpropagation NN, the error is backpropagated 

through the network using the gradient descent algorithm described in section 3.2.1. The 

gradient component of the global error E  backpropagated into a connection k  is: 

k

k
k w

E
∂
∂

=δ ,     (3.7) 

which enables localization in a sense that each particular connection in the network is 

adjusted. Since Delta rule (or its variations) is commonly used in supervised networks, it 

is necessary to mention the main problem that can occur in backpropagating the error, 

i.e., the local minima. The local minima problem occurs when the minimum error of the 

function is found only for the local area and learning is stopped without reaching the 
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global minimum. Since the problem is mainly apparent in the Backpropagation 

algorithm, it will be discussed in detail later in the text together with suggested solutions. 

2) Generalized Delta rule 

Generalized delta rule is obtained by adding a derivation of input neurons into the 

Delta rule equation such that weight adjustment is computed according to the formula: 

)( iicjji Ifeyw ′⋅⋅⋅=∆ η ,  (3.8) 

where )( iIf ′  is the derivative of the input iI  into neuron i . This rule is appropriate to be 

used with non-linear transfer functions. 

 

3) Delta-Bar-Delta and Extended Delta-Bar-Delta rules 

As can be seen from the previous section, the learning coefficient is an important 

parameter for the speed and efficiency of NN learning, and is typically determined as a 

single learning rate for all connections in the network. The Delta-Bar-Delta (DBD) 

learning rule was developed in 1988 by Jacobs [30] in order to improve the convergence 

speed of the classical Delta rule. It is a heuristic approach of localizing the learning 

coefficient in a way that each connection in the network has its own learning rate.  Those 

rates change continuously as the learning progresses. Dynamic weight adjustment in the 

DBD rule is done according to the Saridis heuristic approach. The learning rate of a 

connection in the network is increased if the sign of the weight for that connection is the 

same for a number of time steps (or over the region of relatively low curvature). On the 

other hand, when the sign of the weight is changed for a certain number of time steps, the 

rate for that connection is decreased. Thus, Delta rule equation (3.4) is modified so that 

the learning rate is different for each connection k: 
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icjkkji eyw ⋅⋅=∆ η)( .   (3.9) 

Weight increments are conducted linearly, while decrements are conducted 

geometrically. Despite its advantages over the classical Delta rule, Delta-Bar-Delta has 

some limitations, such as lack of a momentum term in the learning equation and large 

“jumps” that can skip important regions of the error surface due to the linear increments 

of the learning rates. This cannot be prevented by slow geometrical decrements. 

In order to overcome these shortcomings, Extended-Delta-Bar-Delta rule 

(EDBD), proposed by Minai and Williams [30] introduces a momentum term kα , which 

also varies with time. The momentum term is used to prevent the network weights from 

saturation (see details in section 3.2.1), and the EDBD rule enables local dynamic 

adjustment of this parameter, such that the learning equation becomes: 

1
)()(

−∆+⋅⋅=∆ t
kjikicjk

t
kji weyw αη ,   (3.10) 

where kα  is the momentum of the connection k  in the network and t  is the time point in 

which the weights of the connection k  are adjusted. Both the learning rates and the 

momentum term are adjusted exponentially, not linearly or geometrically as in DBD. The 

magnitudes of the exponential functions are the weighted gradient components 

kδ (equation 3.7), which makes a larger increase in the areas of a small error curvature, 

and a smaller one in the areas of large curvature, thereby preventing the big “jumps” 

present in the DBD rule.  

The above learning rules use the desired (real) output to compute the error, thus 

they learn supervised. If the desired output is not known, one of the unsupervised 

learning rules should be used, such as the following Kohonen's rule. 
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4) Kohonen's rule 

Since Kohonen's network does not learn on known outputs, the weights are 

adjusted using the input into the neuron i : 

jiiji wextinputw −⋅=∆ η ,   (3.11) 

where iextinput  is the input that neuron i  receives from the external environment. 

Kohonen's rule is used in Kohonen's self-organizing network. Details concerning learning 

equations are given in section 3.3.2. 

 

3.1.5   Other Parameters for NN Architecture Design 

According to the number of layers, NN architectures can be one-layered (with the 

output layer only) or multi-layered (with one or more hidden layers additionally). The 

number of necessary hidden layers should be experimentally determined. It is to be 

expected that more hidden layers should be used for approximating a very complex non-

linear function, although it is proven that two-layered NNs can approximate any non-

linear function as mentioned earlier.  

     NNs can be divided into:  

a) deterministic networks ­ when a neuron reaches a certain activation level, it sends 

impulses to other neurons (it "fires"),  

b) stochastic networks ­ firing is not certain and it is performed according to 

probabilistic distribution (for example, the Boltzman machine). 
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Characteristics 
Type of connection Learning Architecture 

Inter-layers Intra-layers Type Equation 
Two-layered     

Perceptron fully 
connected - supervised )( cidiji yyw −=∆ η  

ADALINE/ 
MADALINE 

fully 
connected - unsupervised ( )∑

=

−
n

i
cidi yy

n 1

21
 

Kohonen’s fully 
connected 

on-center/ 
off-

surround 
unsupervised jiiji wextinputw −⋅=∆ η  

Hopefield’s fully 
connected 

Recurrent 
cross-bar unsupervised ∑∑

≠ =

−=
n

ij

n

i
ijji yywE

12
1

 

Multi-layered     
Backpropagation hierarchical recurrent supervised kiik yw εη ⋅⋅=∆  

Recurrent 
Backpropagation 

fully 
connected 

recurrent 
cross-bar unsupervised ,)(2 t

ji
t
ci

t
diji ryyw −=∆  
 

Radial-Basis fully 
connected 

on-center/ 
off-

surround 

Unsupervised 
phase + 

supervised 
kiik yw εη ⋅⋅=∆  

∑ −− +′= 11 ))(( t
kiki

t
cj

t
i

t
ji rwyinputfr  

Probabilistic  

fully 
connected, 

non-
hierarchical 

on-center/ 
off-

surround 

Unsupervised 
phase + 

supervised 
kiik yw εη ⋅⋅=∆  

Learning Vector 
Quantization 

fully 
connected 

on-center/ 
off-

surround 

Unsupervised 
phase + 

supervised 
kiik yw εη ⋅⋅=∆  

Counter-
propagation 

fully 
connected, 

non-
hierarchical 

recurrent 
cross-bar supervised jiiji wextinputw −⋅=∆ η  

between 1st and 2nd layer 

ART networks 
Resonance 

fully 
connected 

on-center/ 
off-

surround 
unsupervised  

 
Table 1. Neural Network Architectures 

 

NNs can also be classified as 

a) static networks (receive inputs in one pass), 

b) dynamic networks (receive inputs in time intervals, they are also called spatio-

temporal networks). 
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 NN learning can be: 

a) batch learning ­ network learns only in the learning phase, in other phases weights 

are fixed, 

b) on-line learning ­ network also adjusts its weights in the recall phase. 

 

Table 1 [31] above shows a brief overview of well-known NN architectures according to 

the above parameters for architecture design. Further text presents detailed description of 

various NN architectures. 

 

3.2 Backpropagation Network  

Back-propagation (BP) [15], [19], [37] is a multi-layer neural network using 

sigmoidal activation functions. Originally developed by Paul Werbosin in 1974, extended 

by Rumelhart, Hinton, and Williams in 1986, this was the first network with more than 

one hidden layer. Its role was primarily to solve the "credit assignment" problem imposed 

by the Perceptron network, which is the problem of assigning the adjustments of 

parameters or connection weights. The suggested solution was to localize the error by 

computing it at the output layer and backpropagating the error to each hidden layer such 

that weights of connections are adjusted until the input layer is reached.  

The classical Backpropagation algorithm involves error optimization using a 

deterministic gradient descent algorithm, which will be described in detail. However, 

recent research includes some other deterministic (second order methods) [32], [33] for 

error optimization, such as conjugate gradient and the Levenberg-Marqardt algorithm that 

tries to overcome the main disadvantage of the steepest descent method, i.e., the danger 
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of local minima. In this thesis implementation, second order methods will not be used, 

but some parameter adjustments to avoid the main shortcomings of the classical 

Backpropagation algorithm will be implemented. 

 

Architecture of the network  

The network is made up of an input layer, at least one hidden layer, and an output 

layer.  Nodes in each layer are fully connected to those in the layers above and below. 

Each connection is associated with a synaptic weight. Typical backpropagation 

architecture is presented in Figure 3.3 (for clarity reasons only 1 hidden layer is shown): 

 

Input 

Hidden layer 

Output layer 

... 
 
 

... 
 
 

... 
 
 

 
Figure 3.3:  Architecture of Backpropagation Neural Network 

 

Data flow through the network can be briefly described in few steps: 

1) from the input to the hidden layer: the input layer loads data from input vector X, and 

sends them to the first hidden layer, 

2) in the hidden layer: units in the hidden layer receive the weighted input and transfer it 

to the next hidden or to the output layer using one of the transfer functions, 
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3) as information propagates through the network, all the summed inputs and output 

states are computed in each processing unit, 

4) in the output layer: for each processing unit, the scaled local error is computed and 

used to determine the weight increment or decrement, 

5) Backpropagation from the output back to the hidden layers: the scaled local error and 

weight increments or decrements are computed for each layer backwards, starting from 

the output layer and ending at the first hidden layer, and the weights are updated. 

 

Computation in the network 

When the input layer sends data to the first hidden layer, each hidden unit in the 

hidden layer receives weighted input from the input layer (initial weights are set 

randomly) according to the formula [15]: 

∑ −⋅=
i

s
i

s
ji

s
j xwI ]1[][][

,   (3.11) 

where ][s
jI  is the input to neuron j  in layer ,s  ][s

jiw  is the connection weight from neuron 

j  to neuron i in layer ,s  and ]1[ −s
ix  is the output of the neuron i in layer 1−s . Units in 

the hidden layer transfer those inputs according to the formula: 

( )s
j

i

s
i

s
ji

s
j Ifxwfx =








⋅= ∑ − ]1[][][  ,  (3.12) 

where ][s
jx  is the output of the neuron j  in layer ,s  and f  is the transfer function 

(sigmoid, hyperbolic tangent, or any other function). If there is more than one hidden 

layer, the above transfer function is used through all hidden layers until the output layer is 



 
 

32 

reached. At the output layer, the network output is compared to the desired (real) output, 

and the global error E  is determined as: 

  ∑ −=
k

kk xdE ,)(
2
1 2     (3.13) 

where kd  is the desired (real) output, kx  is the output of the network, and k  is the index 

for the component of the output, i.e., the number of output units. Each output unit has its 

own local error e  whose raw form is )( kk xd − , but what is backpropagated through the 

networks is the scaled error in the form of a gradient component: 

)()(/// )()(
kkkkkk

x
k

x
k IfxdIxxEIEe ′⋅−=∂∂⋅∂−∂=∂−∂=   . (3.14) 

 

The objective of the Backpropagation learning process is to minimize the above 

global error by backpropagating it into the connections through the networks backwards 

until the input layer is reached. By modifying the weights, each connection in the 

network is corrected in order to achieve a smaller global error. The process of 

incrementing or decrementing the weights (learning) is done by using a gradient descent 

rule: 

),/( ][][ s
ji

s
ji wEw ∂∂⋅−=∆ η      (3.15) 

where η  is the learning coefficient. To compute partial derivations in the above equation 

we can use (3.14), which gives: 

.)/()/(/ ]1[][][][][][ −⋅−=∂∂⋅∂∂=∂∂ s
i

s
j

s
ji

s
j

s
j

s
ji xewIIEwE   (3.16) 

When the above result is included in formula (3.15), the weight adjustment is 

,]1[][][ −⋅⋅=∆ s
i

s
j

s
ji xew η       (3.17) 
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which leads to the main problem of setting the appropriate learning rate.   

 There are two mutually conflicting guidelines for determining η . The first 

guideline is to keep η  low because it determines the area in which the error surface is 

locally linear. If the network aims to predict high curvatures, that area should be very 

small. However, a very low learning coefficient means very slow learning. In order to 

resolve this conflict, the previous delta weights in time )1( −t  are added in equation 

(3.17), so that the current weight adjustment is: 

,][1]1[][][ st
ji

s
i

s
j

s
ji wxew −− ∆⋅+⋅⋅=∆ αη     (3.18) 

where α  is the momentum term which makes learning faster when the learning 

coefficient is low. Learning can be accelerated also if the weights are not adjusted for 

each training vector but cumulatively, where the number of training vectors after which 

the weights are adjusted is called the epoch.  An epoch that is not very large can improve 

the convergence speed, but a large epoch can make the computation of the error more 

complex and therefore decreases its benefit. Another problem that can occur in 

Backpropagation is that some processing units will stop to learn if their incoming weights 

become large. In such case the summation values become large and the weights are 

saturated (value 0 or 1) leading the derivation to zero and the scaled error to zero. Such 

saturation can be prevented by adding a small bias value (or F' offset) to the derivative of 

the sigmoid transfer function.  
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Improvements of Standard Backpropagation Network Learning Rules 

Since one of the main disadvantages of Backpropagation is its slow learning, 

much effort has been expanded in improving the learning rules and other parameters. 

Some of the achievements are [19], [38]: 

• Delta-Bar-Delta (DBD) rule ­ a learning rule that uses past values of the gradient to 

find the local curvature of the error and allocates a different learning coefficient to 

each connection in the network, 

• Extended Delta-Bar-Delta (EDBD) rule ­ besides using a different learning rate for 

each connection, it uses a different momentum term for each connection (equations 

are described in section 3.1.4), 

• QuickProp and MaxProp - learning rules that use quadratic estimation heuristics to 

determine the direction and step size for the weight changes,  

• Resilient Backpropagation (Rprop) - A local adaptive learning scheme that eliminates 

the harmful effect of having a small slope at the extreme ends of the sigmoid 

"squashing" transfer functions. 

  

 Because of its advantages in dynamic and local adjustments of learning rates to 

the topology of the error function, the Rprop is used in the implementation, and will be 

further discussed below. Backpropagation neural network allows the usage of a different 

error function, such as quadratic and cubic, but they will not be discussed here since they 

are not included in the implementation.  
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Resilient Backpropagation (Rprop) 

Multilayer networks typically use sigmoid transfer functions in the hidden layers. 

Sigmoid functions are characterized by the fact that their slope must approach zero as the 

input gets large. This causes a problem when using steepest descent to train a multilayer 

network with sigmoid functions, since the gradient can have a very small magnitude; and 

therefore, cause small changes in the weights and biases, even though the weights and 

biases are far from their optimal values. 

The purpose of the Rprop [38] training algorithm is to eliminate these harmful 

effects of the magnitudes of the partial derivatives. Only the sign of the derivative is used 

to determine the direction of the weight update; the magnitude of the derivative has no 

effect on the weight update. The size of the weight change is determined by a separate 

update value. The update value for each weight and bias is increased by a factor delt_inc 

whenever the derivative of the performance function with respect to that weight has the 

same sign for two successive iterations. The update value is decreased by a factor 

delt_dec whenever the derivative with respect that weight changes sign from the previous 

iteration. If the derivative is zero, then the update value remains the same. Whenever the 

weights are oscillating the weight change will be reduced. If the weight continues to 

change in the same direction for several iterations, then the magnitude of the weight 

change will be increased.  

 

Dealing with Local Minima and Overtraining 

Two of probably the most famous problems with Backpropagation are local 

minima and overtraining. Because of the way that error is backpropagated through the 
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network (gradient descent optimization), learning can stick in a local minimum and 

minimize the error only locally. There are a number of solutions for this problem.  Some 

of them are deterministic and use second order equations to compute the error, while 

others are stochastic, and rely on random numbers rather than on equations. One of the 

stochastic methods for avoiding local minima is simulated annealing. 

Overtraining is the universal problem for all types of NN algorithms. It occurs 

when the network learns the training sample perfectly, but is not able to generalize on the 

test sample. One of the main still unanswered questions on how long it takes to learn can 

be approached in the following ways [33]: 

• cross validation using the validation sample to determine when to stop learning. The 

training will continue as long as the error on the validation sample improves. When it 

does not improve, the training will stop. Such iterative procedure is usually called the 

"Save best" procedure, which alternatively trains and tests the network until the 

performance of the network does not improve for n number of iterations. After the 

best network is selected, it is tested on a new test sample to determine its 

generalization ability (since this method is used in our experiments, it is described in 

detail in section), 

• adding bias and random error in parameter estimates, 

• jackknifing, 

• bootstrapping, and others. 

 

Input Parameters to Build the Network 

1) number of input, hidden, and output layer units 
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The number of hidden units can be statically set to a fixed number or dynamically 

optimized during the learning phase of the NN. In this implementation, one node is used 

and another node added if the goal is not met (this is discussed in detail in section 4). 

2) learning coefficients  

Learning coefficients can be set: 

• statically and globally for the whole network in a way that coefficients do not 

change during the learning process, 

• statically and locally by setting a different learning rate for each hidden layer or 

connection, 

• dynamically and globally by changing the global learning rate while the learning 

process improves, 

• dynamically and locally by assigning a different learning rate to each connection 

in the network and changing them during the learning process. 

3) Bias (F'Offset) 

As explained in the previous section, this parameter prevents the network from saturating 

the weights. 

4) learning rule 

This is a procedure for modifying the weights and biases of the network. 

5) transfer function 

The choice of a transfer function is made according to its ability to map into positive as 

well as negative regions. This transfer function is often used in image compression. 

6) bipolar inputs 
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Input values are scaled between ­1 and 1. Because positive and negative values in the 

input variables are desired, this option is used in the thesis implementation. 

7) MinMax table 

Inputs to the network are preprocessed using the so-called Minmax table created from the 

training data. Such a table consists of minimum ),...,1( nimi =  and maximum 

),...,1( niM i =  values for each of the n  variables in the network, where n  is the sum of 

the number of input variables I  and the number of desired output variables .D  Those 

values together with the network range parameters (specified in the I/O set of parameters) 

are used to scale each input and output variable according to the formula: 
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where is  is the scaled new value for the variable ,i  iR  is the upper limit of the network 

range for inputs (or outputs), and ir  is the lower limit of the network range for inputs (or 

outputs). Such a scaling process is necessary because of the output range of transfer 

functions used in the networks. For example, the hyperbolic tangent function has the 

output range of [-1,1], and therefore the inputs to and outputs of the network need to be 

mapped into the same range. Upon completion of the learning process, output values of 

the network are rescaled, so that original real values are presented to the user.  

8) epoch 

An epoch is a presentation of a set of training (input and/or target) vectors to a network 

and the calculation of new weights and biases. Training vectors can be presented one at a 

time or all together in a batch.  
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3.3. Radial-Basis Function Network 

A Radial-Basis function network (RBFN), proposed by M.J.D. Powel [34], is a 

general-purpose network which can be used in the same situations as a Backpropagation 

network for prediction as well as for classification problems. Since it uses a radially 

symmetric and radially bounded transfer functions in its hidden layer, it is a general form 

of probabilistic and general regression networks. It overcomes some disadvantages of 

Backpropagation such as slow training time and the local minima problem, but requires 

more computation in the recall phase in order to perform function approximation or 

classification. 

 

Computation in the Network 

Any network using radially symmetric hidden units belongs to the class of Radial-

Basis Function networks. A pattern of hidden units is radially symmetric [30], if it: (a) 

has a "center", i.e. an input vector stored in the weight vector between the input and the 

hidden layer, (b) has a distance measure which determines the distance of each input 

vector from the center, (c) has a transfer function which maps the output of the distance 

function.  

Such a general definition also includes General Regression networks, Probabilistic, 

Counter-propagation, and other similar networks. The most common distance measure 

used is the Euclidean distance, while a Gaussian is the usual transfer function (or kernel) 

in the hidden layer. The output of this hidden layer is the same for all inputs within a 

fixed radial distance from the center, i.e., for the inputs that are radially symmetric. The 

performance of RBFN "depends on the number and position of the radial-basis functions, 
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their shape, and the method used for determining the associative weight matrix W [35]. 

Some existing strategies for training RBFNs can be classified as follows: 

1) RBFNs with a fixed number of centers selected randomly from the training data, 

2) RBFNs with unsupervised procedures for selecting a fixed number of Radial-Basis 

Function centers, 

3) RBFNs with supervised procedures for selecting a fixed number of Radial-Basis 

Function centers. 

 

The above strategies all have the same disadvantage: the number of centers must 

be determined in advance. To overcome this shortcoming, several authors suggested 

algorithms, such as the growing cell structure (GCS) proposed by Fritzke, distribution of 

radial-basis functions with space-filling curves proposed by Whitehead and Choate, 

dynamic decay adjustment (DDA) algorithm proposed by Berthold and Diamond, and 

merging two prototypes at each adaptation cycle. All the above algorithms involve either 

cascade or pruning principles [39]. 

The focus below will be on the RBFN algorithm proposed by Moody and Darken 

[30], which uses Euclidean distance and a Gaussian transfer function in the hidden layer. 

The input to the hidden units is computed according to the formula [37]: 
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where c  is the center.  The output is computed using a Gaussian transfer function: 
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where the center c  is determined by a clustering algorithm and by the nearest neighbor 

technique. 

 

Architecture of the Network 

The RBF learning algorithm can be briefly described as follows: 

- training starts in the hidden layer with an unsupervised learning algorithm in order to 

determine the center, 

- training continues in the output layer with a supervised learning algorithm in order to 

compute the error, 

- simultaneous application of a supervised learning algorithm to the hidden and output 

layers to fine-tune the network. 

A common RBFN architecture is shown in the figure below. 

 

Input 

Hidden layer 
(pattern units) 

Output layer 

... 
 
 

... 
 
 

Summation 

 
Figure 3.4:  Architecture of RBFN 
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Learning through the architecture can be described in the following steps: 

1) from the input to the hidden layer: Clustering phase. In this phase the incoming 

weights to the prototype layer learn to become the centers of clusters of input vectors 

using a dynamic algorithm. 

2) in the hidden layer: The radii of the Gaussian functions at the cluster centers are 

computed using a 2-nearest neighbor technique. The radius of a given Gaussian is set to 

the average distance to the two nearest cluster centers. 

3) in the output layer: Error is computed at the output layer using one of the learning 

rules. It is also possible to include one additional hidden layer to improve learning. 

 

Application of the Network 

Karayiannis and Weigun [35] give a brief overview of the previous usage of a 

Radial-Basis network that starts with Broomhead and Lowe year who first implemented 

this network and showed how it models nonlinear relationships. The ability of a RBFN 

with one hidden layer to approximate any nonlinear function is proved by Park and 

Sandberg. Then Michelli showed how this network could produce an interpolating 

surface, which passes through all the pairs of the training set.  

Advantages of a RBFN can be briefly summarized as follows: 

- fast training, 

- better decision boundaries than Backpropagation when used for classification and 

decision problems, 
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- hidden unit can be interpreted as a density function for the input vectors and thus 

measures the probability that a new vector is a member of the same distribution as 

others in the input space. 

Disadvantages: 

- despite fast learning, it can be slower than Backpropagation in the recall phase, 

- since the initial learning phase of a Radial-Basis Function network is the unsupervised 

clustering phase, some discriminatory information could be lost in this phase, 

- it is difficult to determine the optimal number of prototype units [35]. The authors who 

propose several ways to overcome this disadvantage: a Growing Radial-Basis (GRBF) 

network that starts with a small number of prototypes at each growing cycle and grows 

in the training process by splitting of the prototypes in each cycle. They also suggest 

two criteria to determine which prototype to split, and test different hybrid learning 

schemes for incorporating existing learning schemes into RBFN, such as unsupervised 

learning for clustering, learning vector quantization, and linear neural networks, with 

very satisfactory results. The authors also propose a supervised learning scheme based 

on minimization of the localized class-conditional variance. 

 

Input Parameters to Build the Network 

The RBFN uses the same input parameters as the Backpropagation network   

 

3.4 General Regression Network 

According to Specht [40], the General Regression Neural Network (GRNN) is a 

generalized form of the Probabilistic network, which is primarily designed for 
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classification problems. GRNN can be used for system modeling and prediction, with the 

special ability to deal with sparse and nonstationary data. Its disadvantages, such as 

memory intensiveness and time-intensiveness in the recall phase, are not limiting factors 

for today's fast computers. 

 

Computation in the Network 

GRNN is designed to perform a nonlinear regression analysis. If ),( zxf  is the 

probability density function of the vector random variable x (input vector) and its scalar 

random variable z (measurement), then the computation in GRNN consists of calculating 

the conditional mean )|( xzE of the output vector, given by [37]: 

.
),(

),(
)|(

∫

∫
∞

∞−

∞

∞−=
dzzxf

dzzxzf
xzE      (3.22) 

The joint probability density function (pdf) ),( zxf  is required to compute the above 

conditional mean. GRNN approximates the pdf function from the training vectors using 

Parzen window estimation, a nonparametric technique that approximates a density      

function by constructing it out of many simple parametric pdfs [40]. Parzen windows are 

Gaussian with a constant diagonal covariance matrix: 
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where P  is the number of sample points ,ix  N  is the dimension of the vector of sample 

points ,ix  σ  is a smoothing constant, and iD  is the Euclidean distance between x and 

ix computed by: 
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where N  is the number of input units to the network, σ  is the width parameter which 

satisfies the following asymptotic behavior as the number of Parzen windows P  becomes 

large: 
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where S  is the scale and, N  is the number of input units. When estimated pdfs are 

inserted into equation (3.22), the following formula for computing each component jz is 

obtained 
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Since computation of Parzen the estimation is time consuming when the sample is large, 

a clustering procedure is often incorporated in GRNN. According to this procedure, for 

any given sample ,ix  instead of computing a new Gaussian kernel 2

2

2σ
iD

e
−

at center x  for 

each point, the distance of that sample to the closest center of a previously established 
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kernel is found, and the old closest kernel is reused. Such an approach transforms the 

equation (3.27) for ,jz  into: 
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where  

jiii zkAkAA +−=≡ )1()(  and .1)1()( +−=≡ kBkBB iii  (3.29) 

  

Architecture of the Network 

The network consists of the input layer, the pattern layer and the output layer (see 

Figure 3.5). There is also an additional summation/division layer whose function will be 

explained later. The process of network learning is conducted as follows: 

1) from the input layer to the pattern layer: training vector X is distributed from the input 

layer to the pattern layer, and the connection weights from the input layer to the thk  unit 

in the pattern layer store the center iX  of the thk  Gaussian kernel. 

2) in the pattern layer: The summation function for the thk  pattern unit computes the 

Euclidean distance kD  between the input vector and the stored center iX  and transforms  

it through the exponential function 2

2

2σ
iD

e
−

.  Then B  coefficients are set as connection 

weights from the pattern layer to the first unit in the summation/division layer, and A  

coefficients are set as the weights to the remaining units in the summation/division layer. 
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Input 
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division 
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... 
 
 

x1  x2  x3  xn  
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... 
 
 

Bi(k) A1(k) Ai(k) Am(k) 

 
z1 zj zm Output layer 

 

Figure 3.5:  Architecture of GRNN 

 

3) in the summation/division layer: the summation function of this layer (which is the 

standard weighted sum function) computes the denominator of equation (3.27) for the 

first unit ),( j  then the numerator for each next unit )1( +j . To compute the output ),(ˆ xz j  

the summation of the numerator is divided by the summation of denominator and such 

output is forwarded to the output layer (note that the first unit of the summation layer 

does not generate the output).  

4) in the output layer: output layer receives inputs from the summation/division layer, 

outputs the estimated conditional means, and computes the error on the basis of the real 

output from the environment.  
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Application of the Network 

Because of its generality, GRNN can be used in various problems such as prediction, 

plant process modeling and control, general mapping problems, or for other problems 

where nonlinear relationships exist among inputs and output [37]. One of the main 

advantages of GRNN is the ability to deal with nonstationary data (time series data whose 

statistical properties change over time). This ability is obtained by modifying the 

computation of the B  and A  coefficients in equation (3.27) such that a time constant is 

introduced in terms of number of training vectors, as an indication of how fast the time 

series changes its characteristics.  

It can be concluded from the above description of GRNN that it is especially 

adaptable to (a) nonstationary and sparse data and (b) stationary but noisy data.  

 

Input Parameters to Build the Network 

1) number of input, pattern and output layer units.  

2) summation function in the pattern unit (Euclidean, City Block, or Projection). 

3) τ  - time constant  

τ is defined in terms of training vectors, and should be adjusted according to the 

degree of nonstationarity present in the data. A smaller time constant will cause the 

network to forget the previous cases faster.  

4) θ  - reset factor 

This factor is divided by the number of pattern units, and used as the comparing value 

for resetting the B coefficients.  
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5) radius of influence 

This is a clustering mechanism for determining the limit of the Euclidean distance by 

which an input vector will be assigned to a cluster. The input vector will be assigned 

to a cluster if the cluster center is the nearest center to the input vector, or if the 

cluster center is closer than the radius of influence. If the input vector does not satisfy 

the above conditions, a new center is computed for the vector.  

6) sigma scale (S) and sigma exponent (E) 

S and E values are used in computing the Parzen window width in formula (3.26).  

 

3.5.  Modular Network 

Proposed by Jacobs, Jordan, Nowlan and Hinton (1991), this network is a system 

of many separate networks (usually Backpropagation).  Each of them learns to handle a 

subset of the complete set of training cases. It is therefore able to improve the 

performance of Backpropagation when the training set can be naturally divided into 

subsets that correspond to distinct subtasks.  

 

Computation in the Network 

This network consists of several networks called "local experts" connected by a 

gating network that allocates each case to one of the local experts. The output of the local 

expert is compared to the actual output, and the weights are changed locally only for that 

expert and for the gating network. In that way the gating network "encourages" a 

particular local expert to specialize in similar cases. Other experts specialize in other 

cases. Decisions of the gating network are made stochastically. While a previous paper 
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suggested that the final output of the whole system is a linear combination of the outputs 

of the local experts, Jacobs et al. [41] use a stochastic selector and compute the error 

according to the formula: 
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where c
io  is the output vector of expert i  in case ,c  c

ip  is the proportional contribution 

of expert i  on the combined output vector, and cd is the desired output vector in case .c  

In such a process each local expert produces the whole output, and the goal of one local 

expert is not directly affected by the weights of the other local experts. Although some 

indirect coupling can occur if the gating network alters the responsibilities from one local 

expert to another, still the sign of the local expert error remains uninfluenced. The 

number of local experts in the network is determined in advance, based on the 

assumption of the number of subsets or local regions in the input space of the sample. 

Each local expert is a feedforward network and all experts have the same number of input 

and output units. Local experts as well as the gating network receive the same input. Of 

course, their output differs. Output of the gating network is the probability [41]: 
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where jx  is the total weighted input received by output unit j  of the gating network, and 

jp  is the probability that the switch will select the output from local expert .j  This 

output is normalized to sum to 1. The output of the local experts iy  is then corrected by 

the probability (3.31), and the final output of the network is 
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Unlike Backpropagation where the objective function is to minimize a global 

error function ,E  a Modular network tries to maximize the following objective function 

J : 
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The error that is backpropagated for the thk  local expert is 
kI

J
∂
∂  and for the gating 

network ,
kG

J
∂
∂  where kI  is the input to the thk  local expert output node and kG  is the 

input to the gating network output node. According to the above learning process, if an 

expert gives a smaller less error than the weighted average of the errors of all the experts, 

its responsibility for that case will be increased, and vice versa. The error is 

backpropagated and the weights are updated according to the chosen learning rule. 

 

Architecture of the Network  

The figure below represents the architecture of the Modular neural network. For 

clarity reasons, the architecture in figure 3.6 consists of two local experts marked as 

LE1and LE2.  Each local expert has only one output neuron. The gating network and 

local experts have the same number of input neurons, but the number of output neurons in 

the gating network is the number of local experts, i.e., two in our example presented in 

the figure. 
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Figure 3.6:   Architecture of Modular Neural Network 

 

Learning is conducted as follows: 

1) from the input layer to the local experts and to the gating network: The same training 

vector X  is distributed from the input layer to each local expert and to the gating 

network. Each expert is a feedforward (usually Backpropagation) network. Output of the 

local experts depends on the feedforward architecture incorporated in the expert. Output 

of the gating network is computed as described above. 

2) in the gate layer: The gating network sends output to an intermediate layer (called a 

gate) where the probabilities sent by the gating network are used to correct the local 

expert outputs. 
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3) in the output layer: final output to the user is the output of the local expert with the 

highest probability. The error is computed according to the formula 3.30 and 

backpropagated to the local experts and to the gating network. 

 

Application of the Network 

A Modular network can be applied in most cases where Backpropagation is used, 

especially in problems with different regions in the input space. One of the illustrations of 

such problems is the absolute value function: 
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where output y  is computed by a different function for different subsets of .x  Jacobs et 

al. [41] applied a Modular network on a speaker independent, four-class vowel 

discrimination problem and compared the performance of a Modular network using 4 and 

8 local experts with three-layered Backpropagation networks. The comparison showed 

that the performance of tested networks is the same, although the Modular network 

reaches the error criterion significantly faster than Backpropagation. A Modular network 

is also a way to make competitive learning associative, in a sense that a local expert 

whose output vector specifies the mean of a multidimensional Gaussian distribution 

replaces each hidden unit in the competitive network. A Modular approach also enables 

the usage of more complex architectures when each local expert is designed as one 

Modular network. 
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Input Parameters to Build the Network 

1) number of input, hidden and output layer units for local experts (LE) 

Each local expert has the same initial structure since it is not known in advance which 

part of the input space will be allocated to each LE. 

2) number of hidden and output units in gating network 

Hidden units in the gating network can be determined heuristically or optimized in 

the learning phase. The number of output units in the gating network determines 

the number of local experts (LEs) in the network. 

3) learning coefficient 

4) learning rule 

The EDBD learning rule is used as described in the Backpropagation section. 

5) other parameters described in the Backpropagation section. 

 

3.6 Probabilistic Network 

A Probabilistic neural network (PNN), one of the stochastic-based networks, is 

built on a decades old statistical algorithm developed by Meister [36], although Donald 

Specht proposed the complete neural network algorithm in 1988. It uses nonparametric 

estimation methods for classification and therefore does not suffer from local minima 

problems, as do feedforward networks. According to Kartalopoulos [34], Probabilistic 

NN is able to approximate the optimum boundaries between categories; therefore it can 

be used as a classifier, with the assumption that the training data are a true representative 

sample. The Architecture of the Probabilistic neural network is built upon Bayes' 
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classifier using the Parzen window estimator to estimate the probability distributions of 

the class samples [37]. 

 

Computation in the Network 

In general, the classification problem can be stated as sampling the m-component 

multivariate random vector ],,...,[ mi xxX =  where the samples are indexed by 

Kkk ,...,1, =  [33]. The probability that a sample will be drawn from a population k  is 

,kh  and the cost of misclassifying the sample will be .kc  The population from which the 

training samples are taken is known, and the aim is to create an algorithm for classifying 

unknown samples with the expected misclassification cost less than or equal to any other. 

Such algorithm is Bayes optimal. If the probability density functions for all populations 

k  are known, then the Bayes optimal decision rule is: classify X into population i  if 

.,)()( ijXfchXfch jijiii ∀>    (3.35) 

Since the probability density functions are usually not known in practice, it is often 

assumed that they are members of a normal distribution. The training set is then used to 

estimate the parameters of the distribution. However, it is more appropriate to use a 

nonparametric estimation method such as Parzen windows, also used in GRNN. In order 

to classify unknown samples, most common classifiers separate the unknown from each 

known member of the training set using the Euclidean or other distance. The unknown 

member is then classified into the population of its nearest neighbor. The Parzen 

windows technique goes one step further in a way that it takes into account more distant 

neighbors. Parzen's technique estimates a "sphere-of-influence" function for separating an 

unknown point from the known training sample point. Such a function has a higher value 
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if the distance is close and converges to zero if the distance becomes large. Taking the 

sum of this function for all known training set members and classifying the unknown 

point into the population with the largest sum is the main idea of the probabilistic 

algorithm. Parzen's estimated density function is  
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where n  is the sample size, σ  is the scaling parameter that controls the width of the area 

of influence of the distance, and W is the weighting function. Since a Gaussian is usually 

used for weighting, the probability density function takes the form: 
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Although the value of σ  is an important smoothing parameter in the Probabilistic 

network since it affects the estimation error, there is no mathematical way of determining 

it. A too small value of σ  gives the same effect as the nearest neighbor technique, and 

too large does not give clear separation of classes so classification cannot be made. A 

large value gives a flat curved surface, while a small value results in narrow peaks.  

 

Architecture of the Network 

The Probabilistic neural network consists of the input layer, the pattern layer, the 

summation layer, and the output layer. A simplified architecture is shown in the figure 

below. 
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Figure 3.7:  Architecture of Probabilistic Neural Network 

 

Learning in PNN is not an iterative process. Only one pass through the training 

sample is needed for the network to learn. The flow of information through the layers is 

the following: 

1) from the input layer to the pattern layer: Training vector X is distributed from the 

input layer to the pattern layer, 

2) in the pattern layer: The pattern layer consists of K  units, one for each training vector 

.X  Input in the pattern layer unit j  is computed according to the formula: 

).()( i
T
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The pattern layer units are not fully but selectively connected to the summation units, 

depending on the classes they represent. Output from the pattern unit j  is performed 

according to the activation function: 
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3) in the summation layer: The number of units in the summation layer is equal to the 

number of classes. Each summation unit receives input from the pattern unit of the same 

class. Output of the summation units is the estimation of the class probability density 

function according to formula (3.39). 

4) in the output layer: Each unit in the output layer receives inputs from each summation 

unit and produces a binary output signal, which is a product of the summation unit’s 

output and the weight coefficient.  

 

Application of the Network 

The probabilistic network is exclusively designed for classification problems. 

Although in some cases it can be adjusted for autoassociation, it is primarily a classifier. 

Successful usage of this algorithm is observed in vector cardiogram interpretation, 

radar/target identification, hull-to-emitter correlation on radar hits, for example. It is also 

a very fast training algorithm compared to feedforward algorithms, especially in the case 

when it is optimized in an extensive jackknifing process. Another advantage of this 

network is that its results can be interpreted as Bayesian posterior probabilities, thus 

suitable for confidence estimates. Disadvantages of Probabilistic network are in the 

necessity of having a representative training set and in memory requirements, since the 

whole training set is processed while classifying each unknown case.  
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Since it takes the sum of the density function, the Probabilistic network is 

especially suitable for problems with sparse data and data outliers, since outliers will 

have no strong effect on decisions.  

 

Input Parameters to Build the Network 

In order to build a PNN, the following parameters should be determined: 

1) number of input, pattern, and output units 

Pattern units are set to the number of training vectors according to the computation 

procedure described before. If the training sample is very large, it is recommended to 

use a smaller number of pattern units, and then to set the radius of influence to a 

positive value. The number of output units is set to the number of classes. 

2) summation function in the pattern unit: Euclidean, City Block, or Projection 

3) radius of influence 

This parameter is used for a clustering procedure in the same way as in a GRNN with 

the aim to make learning faster by finding the closest already computed Parzen 

window for a new training vector.  

4) output mode for the output layer 

Possible output modes are probabilistic, competitive, and normalized. The 

probabilistic mode directly outputs the values produced by the density function.  The 

competitive output produces 1 for the winning unit and 0 for the others.  The output 

values in the normalized mode are all positive and normalized such that they sum to 

1. 
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5) sigma scale (S) and sigma exponent (E) 

In order to find the correct asymptotic behavior for the Parzen window width when 

the pattern units become very large, NeuralWare [30] implements an exponential 

decay of. Parameters S and E are used to compute according to the formula (3.26).  

 

3.7 Learning Vector Quantization Network 

Vector quantization (VQ) is one of the compression methods usually used when 

large quantities of data must be divided into a number of classes in order to increase the 

processing efficiency. As was previously discussed in section 2.1, it is the process of 

mapping input vectors ix  of dimension n  into a finite number of classes, represented by 

a codeword or a prototype vector ),,...,1( mjw j =  where .nm <  Mapping is performed 

using one of the nearest neighbor techniques such as Euclidean distance or a cost function 

[37]. VQ is a method of unsupervised learning, but has a special supervised form called 

Learning Vector Quantization (LVQ), originally proposed by Teuvo Kohonen. Such 

supervised versions of VQ will be discussed below. 

 

Computation in the Network 

Learning in LVQ a takes place in the hidden Kohonen layer. This network differs 

from a VQ in its usage of known (desired, true) output classifications t  for each input 

vector .x  If )(xC  is a class of x  computed by the network and t  is the true class, then 

the learning in LVQ is performed as follows [37]: 

1) After receiving an input vector, a Kohonen layer finds the appropriate class in an 

unsupervised way, finding the distance id : 
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xwxwd iici −=−= min .    (3.40) 

2) Computed class )(xC  is compared to the true class t  and the weights are adjusted in 

the following way: 

.0
)()(
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ciw
txCifwxw

txCifwxw
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≠−−=∆

=−=∆
γ

α
  (3.41) 

In other words, if the computed class is equal to the true class, then the weight vector is 

shifted toward the input vector. It is shifted away from the input vector if the computed 

and true classes do not match. Basic LVQ suffers from one important shortcoming: it can 

happen that the initial unit for learning is chosen far from the true class. Then this unit 

will be shifted toward the true class, while the others will do nothing. To avoid such 

situation, a penalizing factor is introduced in the form of a distance bias proportional to 

the difference between the winning frequency of a unit and the average unit winning 

frequency (proposed by DeSieno, 1998). This version of LVQ is called LVQ1 (with 

conscience). In order to improve learning in LVQ, other variants are developed by Teuvo 

Kohonen [21], called LVQ2, LVQ2.1, LVQ3, Extended LVQ and others. 

Learning starts with the basic LVQ where Kohonen units compute the Euclidean 

distance according to the formula (3.40). The weights of the winning unit are adjusted 

according to (3.41). Then LVQ1 takes control by adding a bias ib  to the distance id  of 

the units in the correct class:  

.iii bdd +=′       (3.42) 
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Using biased distances, LVQ1 computes the in-class winner, but also finds the global 

winner using unbiased distances. Weights are adjusted such that the in-class winner is 

moved toward the training vector (correct class) according to the equations: 

.)(
,)(

winnerglobalthetoequalnotiswinnerclassintheifwxw
winnerglobalthetoequaliswinnerclassintheifwxw

cc

cc

−−=∆
−−=∆

β
α

 (3.43) 

If the global winner is not in the correct class, it is shifted away from it according to the 

formula: 

)( cc wxw −−=∆ γ .  (3.44) 

Then the new biased distance is computed such that the estimated maximum distance 

maxid is corrected using the winning frequency ip  for that unit and a constant 

η (conscience factor), which increases with learning: 

),1(max iii Npdb −⋅⋅= η  (3.45) 

where N is the number of units in the Kohonen layer per class.  The initial value for ip  is 

1/N.  It is updated according to: 
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  (3.46) 

Control is then taken by LVQ2 in order to refine that is solution is found by 

LVQ1. It is focused on the cases where the winning unit is in the wrong class, but the 

second best unit is in the correct class. Thus, the weights in LVQ2 are adjusted if one of 

the following occurs: if computed and true classes do not match, or the closest prototype 

weight vector is the correct class, or if the input vector is close to the binding hyperplane 

separating the two closest prototype weight vectors [37]. If one of these three situations 

occurs when LVQ2 takes control, then the winning unit (which is in the wrong class) is 
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moved away from the correct class, while the second best unit is moved closer to the 

input vector according to formulas: 

)(
)(

222

111

wxww
wxww

−−=′
−−=′

α
α

.
2

)( 21 ww
tonearisxif

+
 (3.47) 

 

Architecture of the Network 

The network consists of three layers: the input, the Kohonen and the output layer. The 

summarized learning process through the layers is: 

1) from the input layer to the Kohonen layer: inputs are transmitted from the input layer 

to the Kohonen layer through full connection. 

2) in the Kohonen layer: the Kohonen layer learns using LVQ technique to compute 

distances, then LVQ1 to adjust winning distances by a penalizing factor, and last LVQ2 

to improve learning in finding the second best units that are in correct classes. 

3) in the output layer: the computed class )(xC  is compared to the correct class ,t  and 

weights in the Kohonen layer are adjusted according to the LVQ1 and LVQ2 equations.  

 

Application of the Network 

LVQ is applicable to any type of classification problem where the output classes 

are known. Its wide usage is noted in speech recognition, image processing, or other 

problems where data compression is needed and the probability distribution of the pattern 

sample is not known [37]. In cases where correct classes are not known, unsupervised 

networks such as Kohonen's Self-organizing maps (SOM) or regularization clustering 

techniques are recommended.  
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Input Parameters to Build the Network 

The following input parameters must be set in order to build the LVQ network: 

1) number of input, Kohonen, and output units: 

There are no strict rules for choosing the number of Kohonen units. The number 

should be divisible by the number of output, units i.e., classes. It can also be set as a 

percentage of the number of training vectors. 

2) number of learning iterations in the LVQ1 and LVQ2 phases: 

The number of iterations in the LVQ1 phase is obligatory, while the LVQ2 phase is 

optional. The number of iterations can be determined heuristically or it can be set 

from the training file. 

3) initial learning rate for LVQ1 and LVQ2 

This parameter is used for initializing rates that are reduced over each learning phase.  

4) LVQ2 width parameter 

This is the parameter which determines the width of the hyperplane corridor in LVQ2 

learning. 

5) In-class winner always learns 

This option enables LVQ1 learning with conscience. 

6) conscience factor 

This is the constant that is used to compute the bias in the LVQ1 learning. 

7) frequency estimation 
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This is the ip  parameter that is also used to compute bias for penalizing winning 

units. It can also be set from the training sample as the inverse of the number of 

training vectors. 

 

3.8 The Cascade Architecture Neural Network 

To solve real-world problems with neural networks, the use of highly structured 

networks of a rather large size is usually required. A practical issue that arises in this 

context is that of minimizing the size of the network and yet maintaining good 

performance. A neural network with minimum size is less likely to learn the 

idiosyncrasies or noise in the training data, and may thus generalize better to new data. 

This design objective may be achieved in one of the two ways: 

§ Network growing, which starts off with a small multiplayer perceptron, small for 

accomplishing the task at hand, and then add a new layer of hidden neurons only 

when the design specification is not met. 

§ Network pruning, which starts of with a large multiplayer perceptron with an 

adequate performance for the problem at hand, and then prune it by weakening or 

eliminating certain synaptic weights in a selective and orderly fashion. 

The cascade-correlation learning architecture [39] is an example of the network-

growing approach. The rest of this section presents a detailed description of the cascade-

correlation architecture, its algorithm and mathematical background, and its application 

to image processing.  

 



 
 

66 

Cascade-Correlation 

Cascade-Correlation (CC) is an algorithm developed by Scott Fahlman [39].  

There are two types of CC- Pruned CC and Recurrent CC. Both will be briefly discussed 

but the results obtained in the implementation are from using the standard algorithm, 

albeit with a few modifications.  Strictly speaking, CC is a kind of meta-algorithm, in 

which other algorithms such as back propagation (BP) are embedded. The procedure 

begins with a minimal network that has some inputs and one or more output nodes as 

indicated by input/output considerations, but no hidden nodes. The LMS algorithm, for 

example, may be used to train the network. The hidden neurons are added to the network 

one by one, thereby obtaining a multilayer structure. Each new hidden neuron receives a 

synaptic connection from each of the input nodes and also from each preexisting hidden 

neuron. When a new hidden neuron is added, the synaptic weights on the input side of 

that neuron are frozen; only the synaptic weights on the output side are trained 

repeatedly.  

Expanding on the above description, learning in CC takes place as repeating two- 

phase steps. The first involves the embedded standard learning algorithm, which in our 

case is Backpropagation (BP). During this phase the ideal activity as specified in the 

training pattern is compared with the actual activity and the weights of all trainable 

connections adjusted to bring these into correspondence. This is repeated until learning 

ceases or a predefined number of cycles have been exceeded. 

The second phase involves the creation of a pool of 'candidate' units. Each 

candidate unit is connected with all input units and all existing hidden units. It is this 

which leads to the cascading architecture, as each new unit is connected to all preceding 
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units. There are no connections from these candidate units to the output units. The links 

leading to each candidate unit are trained with the selected standard learning algorithm 

(BP) to maximize the correlation between the residual error of the network and the 

activation of the candidate units. Training is stopped if the correlation ceases to improve 

or a predefined number of cycles is exceeded. The final step of the second phase is the 

inclusion, as a hidden unit, of the candidate unit whose correlation was highest. This 

involves freezing all incoming weights (no further modifications will be made) and 

creating randomly initialized connections from the selected unit to the output units. This 

new hidden unit represents, as a consequence of its frozen input connections, a permanent 

feature detector. The weights from this new unit and the output units will undergo 

training. Because the outgoing connections of this new unit are subject to modification its 

relevance to the final behavior of the trained network is not fixed. These two phases are 

repeated until either the training pattern has been learned to a predefined level of 

acceptance or a preset maximum number of hidden units has been added, whichever 

occurs first. Figure 3.8 illustrates the inclusion of the first two hidden units into a network 

undergoing training. The same steps are taken no matter how many hidden units are 

already included in a given network. 

 

Mathematical Background 
 
The training of the output units tries to minimize the sum-squared error E :  

∑ ∑ −=
p k

kpkp ydE ,)(
2
1 2

,,   (3.48) 
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where kpd ,  is the desired (real) output and kpy ,  is the observed output of the output unit 

k  for a pattern .p  The error E  is minimized by gradient decent using  

),()( ,,, kpkpkpkp netfyde ′⋅−=   (3.49) 

∑=∂∂
p

pikpki IewE ,/ ,,,    (3.50) 

 where pf ′  is the derivative of an activation function of the output unit k  and piI ,  is the 

value of an input unit or a hidden unit i  for a pattern .p  kiw , denominates the connection 

between an input or hidden unit i  and an output unit k .  

 

Figure 3.8: A neural net trained with cascade-correlation after 2 hidden units have been added. 
The vertical lines show unit inputs and horizontal lines show unit output. Square connections 
indicate frozen links. Cross connections indicate trainable links. 
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After the training phase the candidate units are adapted, so that the correlation C  

between the value kpy , of a candidate unit and the residual error kpe ,  of an output unit 

becomes maximal. Fahlman with gives the correlation:  
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where ky is the average activation of a candidate unit and ke is the average error of an 

output unit over all patterns .p  The maximization of C proceeds by gradient ascent using  
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where kσ is the sign of the correlation between the candidate unit's output and the 

residual error at output .k   

 

In summary the standard CC algorithm is realized in the following way:  

1. Start with a minimal network consisting only of an input and an output layer, both 

fully connected.  

2. Train all the connections ending at an output unit with a usual learning algorithm 

until the error of the net no longer decreases.  
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3. Generate the so-called candidate units. Every candidate unit is connected with all 

input units and with all existing hidden units. Between the pool of candidate units 

and the output units there are no weights.  

4. Try to maximize the correlation between the activation of the candidate units and 

the residual error of the net by training all the links leading to a candidate unit. 

Learning takes place with an ordinary learning algorithm. The training is stopped 

when the correlation scores no longer improves.  

5. Choose the candidate unit with the maximum correlation; freeze its incoming 

weights and add it to the net. To change the candidate unit into a hidden unit, 

generate links between the selected unit and all the output units. Since the weights 

leading to the new hidden unit are frozen, a new permanent feature detector is 

obtained. Loop back to step 2.  

The above five steps are repeated until the overall error of the net falls below the given 

tolerance value. The two variants of the standard CC are briefly discussed below: 

Pruned Cascade Correlation  

In the standard Cascade Correlation the Network is fully connected.  

Pruned Cascade Correlation [39] is a variant of the standard algorithm, which removes 

unnecessary links by applying selection criteria or a holdout set. This in turn decreases 

the training time required by the network.  

Examples of the selection criteria are: 

§ Schwarz's Bayesian criterion (SBC)   

§ Akaikes information criterion (AIC) 
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§  Conservative mean square error of prediction (CMSEP) 

The SBC, the default criterion, is more conservative compared to the AIC. Thus, pruning 

via the SBC will produce smaller networks than pruning via the AIC. Both SBC and AIC 

are selection criteria for linear models, whereas the CMSEP does not rely on any 

statistical theory, but happens to work pretty well in an application. These selection 

criteria for linear model can sometimes directly be applied to nonlinear models, if the 

sample size is large. 

 

Recurrent Cascade Correlation  

Recurrent Cascade-Correlation (RCC) is a recurrent version of Cascade-

Correlation and can be used to train recurrent neural networks (RNN) [40]. Recurrent 

Networks are used to represent time implicitly rather than explicitly. One of the most 

commonly known architectures of RNNs is the Elman model [42], which assumes that 

the network operates in discrete time steps. In the Elman model the outputs of the 

network's hidden units at a time t are fed back for use as additional network inputs at time 

t+1. Context units are used in the Elman model to store the output of the hidden units.  

 To use the standard CC with the Elman model (and recurrent models in general), 

only one change is needed to the algorithm. The hidden units' values are no longer fed 

back to all other hidden units. Instead, every hidden unit has links to all input units and 

also has one self-recurrent link. This self-recurrent link is trained along with 

the candidate units other input weights to maximize the correlation when the candidate 

unit is added to the active network as a hidden unit. The recurrent link is frozen along 

with all other links. 
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CHAPTER 4 
 

Image Compression Using Neural Networks 
 
 

 
After discussion of some of the various types of neural networks and their 

architectures, this chapter considers their role as an image compression tool. First the 

image compression problem is described, then the implementation of the single and 

parallel structure NNs with regard to image compression is presented, after which the 

new NN method is presented in detail. Its implementation is fully presented and its 

performance evaluated. Evaluation metrics for comparing the compression schemes are 

also described. 

 

The Image Compression Problem 

A still image I is described by a function { }12,...,1,0: −→× kZZf , where Z is 

the set of natural numbers, and k is the maximum number of bits to be used to represent 

the gray level of each pixel. In other words, f is a mapping from discrete spatial 

coordinates (x,y) to gray level values. Thus, kNM ××  bits are required to store an 

NM × digital image. As was mentioned in Chapter 1, the aim of lossy image 

compression is to develop a scheme to encode the original image I into the fewest 

number of bits such that the image I ′  reconstructed from this reduced representation 

through the decoding process is as similar to the original image as possible, i.e., the 
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problem is to design a compress and a decompress block so that II ′≈ and II c <<  

where  denotes the size in bits. The above scenario is depicted in Figure 4.0. 

I 

Original 
Image 

Ic 

Compressed 
Image 

Reconstructed 
Image 

I’ 

COMPRESS DECOMPRESS 

 

Figure 4.0:  Image Compression Block Diagram 

 

Evaluation metrics 

In order to compare the quality achieved by lossy compression schemes, a metric 

is needed to quantify the quality of the reconstruction. The metric used to compare the 

neural network and JPEG image compression schemes is the peak signal-to-noise ratio 

(PSNR). Assuming that the original and reconstructed images are represented by 

functions f(x,y) and g(x,y) of the pixel plane position (x,y), respectively, the PSNR is 

defined by:  

MSE
PSNR

k 2
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=     (4.1) 

where k is the number of bits representing a pixel, and the mean square error (MSE) is: 
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MSE is the cumulative squared error between the compressed and the original image, 

whereas the PSNR is a measure of the peak error. This metric does not adequately 

evaluate the visual quality of the decompressed image, but it is very simple to compute 

and relates to usual signal metrics when the original image I is viewed as the signal and 
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Î  is viewed as the same signal corrupted by some “noise” representing the deformation 

due to lossy compression. 

 

4.1 Single-structure NN image compression implementation 

Different approaches have been implemented for the single-structure NN. In this 

implementation, the backpropagation algorithm is employed and Rprop is used to speed 

the training process. All the algorithms described in this chapter are implemented in 

MATLAB. 

 

4.1.1 Pre-processing 

The image is split into J blocks {Bj, j = 1, 2,…, J} of size M x M pixels. The pixel 

values in each block are rearranged to form a M2 length pattern Cj = {C1,j, C2,j, . . ., CM2,j}, 

where j = 1, 2, …, J (Ci,j is the ith element of the jth pattern). It is common practice to 

normalize the input patterns using the transformation Pj =  f(Cj) = (Cj – mCj)/σCj where 

mCj and σCj are, respectively, the average and standard deviation of Cj. The reason for 

using normalized pixel values is because NNs operate more efficiently when the input is 

limited to a range of [0,1]. Patterns Pj are used in the training phase of the NN as both 

inputs and outputs.   

 

4.1.2 Training 

The network is trained to minimize the mean square error between output and 

input values, thus maximizing the peak signal-to-noise ratio (PSNR), with the proviso 
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that the image PSNR is measured for quantized values in [0,255] while the NN learning 

uses the corresponding real-valued network parameters.   

The NN consists of the input and two layers: the hidden and output layers with 

number of nodes M2, H, and M2, respectively. Refer to Section 3.1.5 for a complete 

description of NN architectures. The NN acts as a coder/decoder. The coder consists of 

the input-to-hidden layer weights vi,k {i = 1,…,M2 and k = 1,…,H}, and the decoder 

consists of the hidden-to-output layer weights wk,m, {k = 1…H and m = 1,…, M2}. In the 

definitions above, vi,k represents the weight from the ith input node to the kth hidden node, 

and wk,m represents the weight from the kth hidden node to the mth output node. 

Compression is achieved due to the transformation of patterns Pj, through the vi,k weights, 

by setting the number of hidden nodes H smaller than the input pattern length M2 

(H<M2). Actually, even though H<M2, no real compression has occurred because unlike 

the M2 original inputs which are 8-bit pixel values, the outputs of the hidden layer are 

real-valued (between –1 and 1), which requires an astronomic number of bits to transmit. 

True image compression occurs when the hidden layer outputs are quantized before 

transmission. Thus the hidden layer neuron values are quantized to 8 bits to obtain an 

image that truly corresponds to a given compression ratio. The encoding/decoding 

processes are shown in Figure 4.1 below: 

The network is trained with the resilient backpropagation algorithm (Rprop). As 

was mentioned in section 3.2, this allows for faster training. The training parameters, 

namely, the learning rate, epochs, and minimum gradient are set at 0.001, 1000, and 

1×10-6 respectively. The hyperbolic tangent and liner transfer functions are used for the 

hidden and output layers respectively. The bias and layer weights are initialized. 
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Figure 4.1:  Single-structure neural network image compression/decompression scheme. 

 

4.1.3 Simulation 

After training, the network is simulated with the input and target matrices. This is 

done by multiplying the hidden layer weight matrix wk,m by the output of the pre-

processor, adding the bias, and then applying the output layer transfer function to the 

result (Equation 3.1.2). This result becomes the output from the hidden layer, which 

otherwise could not have been directly obtained by using the Matlab “sim” function. The 

same process is repeated to obtain the output from the output layer, with the input to it 

being the output from the hidden layer. It must be pointed out that the weights and biases 

being referred to are the initial choices. 

 

4.1.4 Post-processing 

The next step is to reconstruct the simulated image. The coding product 

associated to the jth pattern Pj is the hidden layer output Oj ={O1,j, O2,j, . . ., OH,j}. The set 

{Oj,mCj,σCj} together with weights wk,m is sufficient for reconstructing an approximation 

C
^
j of the original pattern Cj in the decoding phase. Considering the overhead {mCj,σCj} 

due to the normalization function f, the compression ratio (CR) achieved is M2:(H+2).   
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4.2 Parallel-structure NN image compression implementation 
 

The parallel-structure NN can be viewed as a single-structure NN but with 

multiple hidden layers. In that light, it is implemented in much the same way as the 

single-structure NN. The details presented in the previous section will thus apply here as 

well, albeit with a different mode of presentation.  

Four networks {NETk, k = 1,2,3,4} with different number of hidden nodes (4, 8, 

12, and 16) are used. Each NN is trained similarly to the NN in section 4.1. The goal is to 

achieve CR = 8:1. The coding procedure consists of two phases. In the first phase, each 

pattern is associated with a NETk. As with all NNs, the larger the number of hidden nodes 

to which a pattern is assigned, the smaller the associated error ej
2 = (P

^
j - Pj) (P

^
j - Pj)T  

between the original Pj and estimated patterns P
^
j. On the other hand, a large number of 

hidden nodes results in low CR. Initially, patterns are assigned to NNs so that the CR is 

as close as possible to the predefined value 8:1.  

The second phase is an iterative procedure. At each successive iteration, the goal 

is to reduce the total error E2 = ∑ej
2 without changing the CR. Let dej

2
,k be the error 

reduction caused due to reassigning pattern Pj from NETk. to NETk+1. Then the goal is 

achieved by reassigning a pair of patterns. Pattern Pj1 is reassigned from NETk1 to 

NETk1+1 if the reassignment causes a maximum error decrease de2
j1,k1 = mjakx(dej

2
,k), and 

pattern Pj2 is reassigned from NETk2  to NETk2-1 if this results in a minimum error 

increase de2
j2,k2 = mjikn(dej

2
,k-1). Iterations continue as long as the error E2 decreases. 

This parallel architecture has the advantage of providing better image quality for a 

given CR than the methods described in chapter 3 in terms of error E2, including both 

single and parallel structures presented in Carrato et al. [43]. Furthermore, coding is 
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faster than previous parallel architectures. Nevertheless, training is still significantly slow 

due to the use of multiple networks. Moreover, the total number of weights is large. Thus, 

training cannot be part of the coding process; otherwise, it cannot be performed in real-

time. Thus, the compression quality depends on the training data and their similarity to 

the test images.  

 

4.3 Proposed Cascade Architecture  

This section introduces an image compression method based on a cascade of 

adaptive units that provides better image quality than previous NN-based techniques. It 

borrows some of the idea of Cascade Correlation in that hidden units are added to the 

network one at a time. Each unit is equivalent to a feed-forward NN with a single node at 

the hidden layer. The proposed method exhibits a fast training phase that is included in 

the encoding process. Thus, it achieves independence of the training data, which makes it 

appropriate for general image compression applications. The implementation of the new 

architecture is described next. 

 

4.3.1 Encoding process 
 

The inputs Cj = [C1,j, C2,j, … CM2,j] are defined as in section 4.1.1. The 

normalization function is  

Pj = f(Cj) = (Cj – mCj)    (4.3) 

Patterns Pj are used as inputs/outputs to train the first unit. The output of the first unit’s 

hidden node corresponding to the jth pattern is denoted as Oj,k, k = 1. The first unit’s 

estimated weight vector is denoted as  
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Wk = [W1,k, W2,k, … WM2,k], k = 1,   (4.4) 

and is equivalent to the weight vector connecting the hidden node to the output layer. 

Element Wi,k is the ith weight associated to the kth unit. It is shown below that the weight 

vector connecting the input to the hidden node is not required in the implementation. The 

output Oj,1 and the weight vector W1 are required in the decoding process.  

The first unit’s error patterns are denoted as  

ej,1 = [e1,j,1, e2,j,1, … eM2,j,1],   (4.5) 

They are defined as the difference between the original Pj and estimated patterns P
^

j at the 

output of the first unit, after training is complete. The element ei,j,k is the ith element of the 

jth error pattern at unit k. If the set of error patterns at the output of unit k is defined as ℜk 

then only a subset of these error patterns is used as input/output to train the next unit. It 

should be pointed out that this is where this new method differs from most NN-based 

image compression methods. Instead of training with the entire patterns it makes sense to 

train with only patterns that do not meet a threshold. This enables faster training time and 

convergence. The subset ℜk
s
 consists of S error patterns es

j,k,  j = 1, …, S, whose square 

sum is larger than a specified threshold Q: ℜk
s
 =  {es

j,k ∈ ℜk, es
j,k es

j,k
T > Q}. Again, the 

second unit’s hidden node outputs, denoted as Oj,2, and the weight vector W2 are stored to 

be used in the decoding process.  

Similarly, the second unit’s error patterns, e2,j, are defined as the difference 

between es
j,1 and the estimated error patterns e

^s
j,1 at the second unit’s output. Again, only a 

subset of the new error patterns ej,2 is used as input/output to train the third unit. The 

procedure of adding/training units is repeated for as long as the CR does not exceed a 

specific target. There is an additional overhead per block indicating how many units 
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encode that block. It is important to note that since only a subset of error patterns trains 

each unit, the number of outputs Oj,k per unit k is variable. This allows assignment of 

image-blocks with larger estimation error to more units, while keeping the same CR. 

The threshold Q is based on the first unit’s error patterns ej,1 and the CR. More 

specifically,  

.)(
1

Q

2

1
1,,2 CRestd

M
a

M

i
jij 











∑

=

=                                   (4.6) 

 
The justification for the threshold definition in equation (4.6) is as follows. A small 

threshold indicates an expectation for a small coding error. First, the threshold Q is 

proportional to the desired CR. A small CR promises a small coding error; therefore, the 

threshold can be set low. Second, the threshold is proportional to average standard 

deviation (ASD) of the error patterns between the original and the encoded images (using 

only the first unit). The ASD (content of the square bracket in equation (4.6)) is a 

“similarity” measure between the error patterns. A small ASD indicates that the error 

patterns may be relatively similar throughout the image-blocks. As a result, the additional 

adaptive units are expected to be able to produce a small coding error, thus the threshold 

can be set low. Finally, parameter a is a constant which was fixed and equal to 1.2 in all 

implementations.  

The advantage of the cascade technique over existing parallel NN architectures is 

that the total number of weights is significantly smaller and that the number of hidden 

node outputs is variable. Furthermore, the training time requirements are low due to the 

units’ low computational complexity. The algorithm converges in 4-5 iterations by 

repeatedly applying the simple set of equations:  
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Oj,k = Wk Tj,k
T  / WkWk

T
,                (4.7) 

Wk = ∑j Oj,k Tj,k
T  / ∑j O

2
j,k ,               (4.8) 

where Tj,k is equal to Pj if k = 1, and es
j,k-1 otherwise. 

Equation (4.7) gives the unit’s optimum hidden layer outputs Oj,k given the unit’s 

weights. This is the result of minimizing the sum of square errors χ2 between input and 

output patterns  

χ2
j,k = ∑j(Tj,k – T

^
j,k) (Tj,k – T

^
j,k)T ,               (4.9) 

where T
^
j,k = Wk Tj,k

T , for unit k with respect to Oj,k. Similarly, equation (4.8) gives the 

optimum unit’s weights given the hidden layer outputs Oj,k. This is the result of 

minimizing χ2 with respect to Wk. The conditions from which equations (4.7) and (4.8) 

are derived are shown below: 

kj

kj

,

2
,

O∂

∂χ
= 0, and 

k

kj

W∂
∂ 2

,χ
= 0                                           (4.10) 

Since only the weights emanating from the hidden layer Wk and the hidden layer outputs 

Oj,k are needed in the decoding process, it is imperative to obtain the optimum set {Wk, 

Oj,k} for each unit. The algorithm based on equations (4.7) and (4.8) directly attempts to 

find optimum values for both Wk and Oj,k.  

 

4.3.2    Decoding process 

Each block is decoded using the set {Oj,k, Wk}, considering all units k used to 

encode that block. For instance, the first unit produces an estimate of patterns P
^

j = 

Oj,1W1
T  and the second unit an estimate of the first unit’s error patterns e

^s
j,1 = Oj,2W2

T . 

The decoded block is obtained from summing of all those estimates and the block 
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average mCj. Figure 4.2(a) and 4.2(b) presents the proposed encoding and decoding 

schemes. 

 

 
 

 
 
 
 
 
 
 
 
 
  

Figure 4.2(a): Encoding scheme for proposed cascade architecture. 

 

 

 

 

 

 

 

 

Figure 4.2(b): Decoding scheme for proposed cascade architecture. 

 

 
The image compression results for the methods described above are presented 

next. 
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CHAPTER 5 
 

Results 

 The image compression techniques presented in chapter 4 are tested on four 

different test images. This chapter presents and compares the results obtained from these 

tests for the single-structure, parallel-structure, and proposed cascade architectures. Also 

these results are compared with those of JPEG compression. The comparisons are made 

in terms of Peak Signal to Noise Ratio (PSNR) and computational complexity. Graphical 

and visual comparisons are also presented. 

 

5.1 Comparisons in terms of PSNR 

Table 1 presents the results obtained by compressing and decompressing four 

different test images (Lena, Baboon, and Peppers) with the single-structure NN and the 

proposed cascade method. The single-structure NN is both trained and tested on the same 

image to avoid dependence of the results on training data. Although this is impractical for 

real applications due to high training time requirements, it is useful for comparison 

purposes. Table 2 shows that the proposed cascade architecture gives higher PSNR for all 

tested images and for three different compression ratios (4:1, 8:1, 16:1). 

The parallel-structure architecture resulted in PSNR = 33.8 dB (for CR = 8:1) for 

“Peppers” when trained with “Lena”, and 33.0 dB when trained with “Baboon”. The 

PSNR for the proposed technique is 35.2 dB for the same CR. The dependence of the 

parallel-structure NN on the training data now becomes apparent. Similarly when image 
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“Lena” was compressed by training the parallel architecture with “Peppers” the PSNR 

was 34.2 dB while for the cascade architecture it was 35.9 dB. 

 

Lena Baboon Peppers  
CR 

 
Single- 

Structure Cascade Single- 
Structure Cascade 

Single- 
Structure Cascade 

16:1 28.93 31.36 21.74 21.99 28.28 30.07 

8:1 31.87 35.88 23.04 23.42 30.57 35.21 

4:1 35.19 38.96 25.07 25.46 33.06 37.35 
 

Table 2: Comparison between single structure and cascade architectures in terms of PSNR (dB). 

   
JPEG  

Quality 
Factor 

 

CR 
Lena Baboon Peppers 

34.5 16:1 34.24 33.16 33.87 
74.9 8:1 38.19 38.79 37.51 
92.0 4:1 42.89 43.02 42.47 

 
Table 3: PSNR (dB) for JPEG algorithm. 

 

 Table 3 gives the PSNRs obtained using the JPEG algorithm. The quality factor 

determines the degree of compression and thus the compression rate. Strictly speaking, it 

is not possible to make a direct comparison between JPEG and the proposed cascade 

method or, in fact, between JPEG and single/parallel-structure NNs. The reason for this is 

has already been described in section 2.3.1 but will be re-iterated here: In JPEG, all 

quantized coefficients, which are transmitted, are entropy coded using a sophisticated 

differential pulse code modulation and run-length Huffman code. Without the entropy 

coding, JPEG gives substantially lower PSNRs or, equivalently, a much lower CR for the 
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same PSNR [34]. Nevertheless, it can be clearly seen that for the Lena image the 

proposed method, with no entropy coding, gives PSNRs that are only between 3 and 4 dB 

below the corresponding PSNRs obtained with JPEG. These results are further presented 

graphically in the next figures. 

Figure 5.1 plots the PSNR values versus the CR for the reconstructed Lena image 

using the single-structure NN algorithm, the proposed cascaded method, and standard 

JPEG. As is clearly seen, the proposed method outperforms the single-structure NN. It is 

always better by 3dB. It seems, however, that JPEG compression performs better than the 

proposed method, which resulted in 32.8 dB, 36.7 dB, and 39.0 dB at compression ratios 

16:1, 8:1, and 4:1, respectively. JPEG resulted in 34.3 dB, 39.5 dB, and 42.9 dB at the 

same compression ratios.  

 
Figure 5.1: PSNR values for the reconstructed Lena image at different compression ratios. 
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In similar fashion Figures 5.2 and 5.3 plot the PSNR values for the reconstructed 

Peppers and Baboon images, respectively.  

 
Figure 5.2: PSNR values for the reconstructed Peppers image at different compression ratios. 

 
 
The JPEG approach yields a PSNR of 5dB higher on the average than the other 

two methods. However, the proposed cascaded approach does have certain advantages 

over the JPEG approach. They are: 

1) The decompressed NN output can be recompressed further by up to 30% with a 

lossless compression scheme with minimal loss in quality. JPEG recompression 

rate is much smaller in comparison (less than 5%). 

2) The coding/decoding time required for the cascade method is also much smaller. 

Once the off-line training is complete, the compressing and decompressing 
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process is significantly faster with the cascaded method. For instance, at 16:1 CR, 

it takes less than 2 seconds to compute, while at 4:1 CR the computing time is less 

than 1 second. 

3) The parallel processing capability of NNs makes them superior to JPEG in terms 

of hardware implementation. 

 

 
Figure 5.3: PSNR values for the reconstructed Baboon image at different compression ratios. 

 
 
 An example that presents a visual comparison of the compression results is shown 

in Figure 5.4. Figure 5.4(a) presents the original Lena image. Figures 5.4(b), 5.4(c), and 

5.4(d) present the compressed image using, respectively, the single NN architecture, the 

proposed algorithm, and JPEG at CR 8:1. Although compression has apparently affected 

all compressed images, the proposed algorithm presents the best visual result, especially 
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around lines and edges. Notice that although the JPEG algorithm is better in terms of the 

PSNR, its performance is poor visually especially at high CRs, as is clearly seen when 

Figures 5.4(c) and 5.4(d) are compared. 

 

 

Figure 5.4:  (a) Original Lena image and Reconstructed Lena image at 8:1 compression ratio 
using the (b) Single-structure NN, (c) Proposed cascaded method, and (d) JPEG algorithms. 
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5.2 Comparisons in terms of Computational Complexity 

 Generally, NN techniques exclude training from the encoding process. 

Network(s) are trained with images other than the ones to be encoded. This subsection 

compares the parallel-structure and the proposed method in terms of required operations. 

As mentioned previously, the proposed method includes training in the encoding process.   

The total number of hidden nodes in the parallel architecture is 40. In the assignment 

process, all patterns have to be presented to all four networks. This requires a total of 40 

(nodes) × 64 (pattern size) × 4096 (blocks) × 2 (3 layer NNs) ≈ 21 × 106 multiplications 

and 40 × 64 × 4096 = 10.5 × 106 additions for a 512 × 512 image. Additionally, there are 

3 × 40 × 64 × 4096 = 31.5 × 106 operations required for the calculation of the error 

patterns. Hence, a total of 63 × 106 operations are required for encoding. This number 

does not include the iterative optimization algorithm which is also part of encoding.  On 

the other hand, the number of operations for the cascade architecture is variable due to 

the adaptive nature of the technique. The number of iterations per unit is set to 4. It was 

found that for “Lena” (size 512 × 512), and for CR of 8:1 the number of multiplications 

and additions were 13 × 106 and 13 × 106 respectively, for presenting the patterns to the 

architecture. Furthermore, there were 19.5 × 106 operations required for the error pattern 

calculation. Hence, a total of 45.5 × 106 operations were required for encoding. Similarly 

for “Baboon” (size 512 × 512), a total of 53.2 × 106 operations were required for 

encoding. Therefore, although the proposed algorithm includes training in the encoding 

process, it requires fewer operations than the parallel NN technique. 
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CHAPTER 6 
 

Discussion and Conclusions 
 
 

 Selected still images were compressed with various compression techniques. This 

thesis proposed a new cascade adaptive algorithm for image compression. The algorithm 

is based on the idea of neural network (NN)-based image compression. The major 

advantage of this algorithm is that it requires a small number of training parameters and 

has a fast training phase. Therefore, training can be incorporated into the encoding 

process. The proposed architecture exhibits smaller coding error than previous single 

structure and parallel structure NN architectures. Although the training phase is included 

in the encoding process, it exhibits faster encoding than parallel-structure and single-

structure NN techniques. The new algorithm does not use any entropy coding. This 

makes it simple to implement and very robust against transmission errors usually 

encountered in high-noise environments, but it does limit the compression performance. 

The proposed technique has overall demonstrated the ability to compress still images at 

compression ratios of up to 16:1, and in fact can go higher than 32:1, while still 

maintaining a relatively high-quality output. It has also been shown that this output can 

be further recompressed with minimal loss in image quality, and compared to JPEG 

compression this is a major advantage. It is, however fair to mention that a major change 

from the JPEG algorithm used here is that wavelets replace the Discrete Cosine 
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Transform as the means of transform coding. Wavelet transforms are currently being 

employed in JPEG 2000. Among many things it will address are:  

§ Low bit-rate compression performance,  

§ Lossless and lossy compression in a single codestream, and 

§ Transmission in noisy environment where bit-error is high. 

 Many further improvements of the proposed cascade method can be thought of 

and some are certainly worth further work. In particular the following observations can 

be used to design networks with enhanced compression capabilities:  

§ The quantized hidden layer weights could be encoded by applying some form of 

lossless compression e.g., run-length Huffman code. 

§ An adaptive quantization scheme could be employed to minimize quantization 

errors and enhance image quality. 

§ The threshold detection parameter is a very important factor that can alter the 

results if not carefully controlled or considered. It is possible to obtain better 

results if this parameter was further optimized. 

§ Employ genetic algorithms [44] to:  

- configure the problem (image compression) for the network,  

- configure the network architecture, and 

- train the network. 

§ All the work described in this thesis needs to be extended to colour images. 

§ Currently, learning of the weights of each ii OW ,  pair is obtained using least 

mean squares and the PSNR used as a performance criterion is essentially 
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equivalent to a quadratic cost function. Other cost metrics (such as LAB-type 

measures) could be used to carry out learning for colour images.  

 

In addition to the general scheme described above, some other enhancements 

related to the non-linearity of the input-output amplitude mapping of the 

compression/decompression scheme could be examined. It is expected to obtain further 

quality improvement with appropriate compensation of non-linearity. This compensation 

can also be part of the learning scheme. Moreover, the adaptive selection of the level of 

compression to be used at the transmitter side can be improved by making use of the state 

of the transmission medium - specifically of the network being used. This would be 

particularly relevant if we are dealing with an ATM (Asynchronous Transfer Mode) 

network. The adaptive decision can be based on feedback about network state - such as 

current load on the network - as well as PSNR and/or visual quality metrics. For example, 

in case of little load on the network, small compression ratios can be favored, thus 

increasing visual quality. Similarly, in case of a heavily loaded network, visual quality 

can be sacrificed while transmiting with maximal compression. This adaptive decision 

can also be learned.  

With some of the improvements described above, it is expected that compression 

ratios as high as 250:1 can be achieved for gray-scale images, and still higher levels for 

colour, with quality levels of the order of SNR = 40 dB for gray-scale images, and 

acceptable LAB-type measures and PSNR levels for colour images. With the wide variety 

of approaches to image compression, and in particular neural networks, there is a 

compelling need for a comprehensive evaluation of the proposed technique. Such an 
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evaluation would require training and testing on a common set of images. The results and 

derivations obtained, while comparatively excellent, constitute the basis for developing 

additional results or equations for image compression. 
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APPENDIX 

MATLAB Codes 

 

Functions used for Single-structure NN compression: 
 
§ singlestruct - compresses test image using single-structure algorithm. 
§ mynewff - creates a feedforward NN. 
§ mysim - simulates the network and returns the output. 
 
 

Functions used for Proposed cascade architecture compression: 
 
§ cascade - compresses test image using cascaded architecture algorithm. 
§ estimate - creates and trains the network. 
 
 

Functions common to both Single-structure and Cascade architecture algorithms: 
 
§ image_to_blocks - breaks up the image into z × z blocks and changes its     

dimensionality. 
§ reconstruct - performs inverse of “image_to_blocks” operation. 
 
 

Function used for JPEG compression: 
§ jpeg - compresses test image using JPEG algorithm. 
 
 

Script which executes all three compression techniques: 
§ run_all. 

 

Test Images 
 
Image1.gif, Image2.gif, and Image3.gif contain the test images Lena, Baboon, and 
Peppers, respectively.  
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