University of New Orleans

ScholarWorks@UNO

Physics Faculty Publications Department of Physics

2000

Causal implications of viscous damping in compressible fluid
flows

P. M. Jordan

Martin R. Meyer
University of New Orleans

Ashok Puri
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/phys_facpubs

b Part of the Physics Commons

Recommended Citation
Phys. Rev. E 62 7918 (2000)

This Article is brought to you for free and open access by the Department of Physics at ScholarWorks@UNO. It has
been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ScholarWorks@UNO.
For more information, please contact scholarworks@uno.edu.


https://scholarworks.uno.edu/
https://scholarworks.uno.edu/phys_facpubs
https://scholarworks.uno.edu/phys
https://scholarworks.uno.edu/phys_facpubs?utm_source=scholarworks.uno.edu%2Fphys_facpubs%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.uno.edu%2Fphys_facpubs%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Causal implications of viscous damping in compressible fluid flows

P. M. Jordart, Martin R. Meyer? and Ashok Pufi*
!Code 7181, Naval Research Laboratory, Stennis Space Center, Mississippi 39529
2Department of Physics, University of New Orleans, New Orleans, Louisiana 70148
(Received 20 December 1999; revised manuscript received April 252000

Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its
motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of
this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of
fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable
conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting
solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical
tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special
and limiting cases, are found and compared for the two models. The effects of the physical parameters on the
solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible
under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations.
In addition, discontinuities and shock waves are noted and a physical system is modeled under both formula-
tions. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem
than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic
fluids are noted. In particular, the research presented here supports the notion that linear compressible, iso-
thermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.

PACS numbds): 47.40~x, 02.30.Jr, 43.20:g, 47.10+g

[. INTRODUCTION tion have been solved and analyzed by Blackstidkand
Norwood[3]. It is of interest to note that in its onétwo-)
In the classical theory of fluids, the propagation of small-dimensional form Eq(1.4) is, with the appropriate coeffi-
amplitude longitudinal waves in a compressible, isothermalgients, the equation of motion of a striigmembrang with
viscous fluid is governed by the linearized continuity, internal dampind4] and also describes the motion of a vis-

Navier-Stokes, and state equatidsse Kinsleret al. [1]) coelastic fluid under the Kelvin-Voit body modgd].
Now, consider the case of an initially quiescent half-space
p P of fluid set to motion by an infinite, harmonically vibrating
St T PocV-v=0, (1.3) bounding plate(i.e., the compressible fluid analogy of the

transient form of Stokes’s second probld]). We ob-

ov 4u serve that for sufficiently larget>0 [more precisely
pogr =~ VPH |5 +78|V(V-v), (1.2 t>4ul(3pec?), see Sec. IO, the time dependence af
will be (approximately solely of the forme'®!, where w
R 20 1.3 >0 is the constant vibration frequency of the bounding plate.
p=cp=po), @9 This we have
wherev is the velocity vectorp is the pressurep is the )
density, the constanjs, »g,pq,c>0 are the shear viscosity, V2~ — w- u (1.53
bulk viscosity, ambient density, and sound speed, respec- c? \ 1+4iwu/(3uoc?) '

tively, and of course the flow is irrotationéle., V Xv=0).
Guided by Kinsleret al.[1], and using the well-known tools Moreover, for many fluidge.g., air, waterthe coefficient of
of vector calculus, the above system can be written as ththe mixed derivative damping term in EL.4) is a very

third-order partial differential equatiofiPDE) small quantity. Hence, following McLachld’], we can re-
gard the mixed derivative term in E¢L.4) as a sink and, so
S 9u  4u 9(V2u) B as to obtain a wave equation with an alternate form of damp-
cVeu- F*’ 3py ot =0, (14 ing while maintaining a well-posed IBVP, approximate only

its Laplacian part, whemw<3p,c?/(4u) (a condition easily
whereu is a component of and the Stokes assumptigire., ~ Satisfied in most, if not all, classical fluids over virtually the
7s=0) has been made. Initial-boundary value problemsentire frequency spectrum of acoustical applicatiohy

(IBVP’s) involving the one-dimensional form of this equa- 5

2 w
Veu~ — —u (1.5b
Cc
* Author to whom correspondence should be addressed. Electronic
address: apuri@uno.edu Using Eq.(1.5b, Eq. (1.4) becomes approximately
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U duw? du with velocity U, cos(t) or Ug sin(wt), whereUg is a con-
u——-— TR (1.6)  stant. Under these conditions, no flow occurs in yrend z

g= - 3poC directions and the flow velocity at a given point in the fluid
depends only on the coordinate of the point and the tinte

wherec is now identified as the phase speed. Equatiof), We m0(_1IeI the above physical system with the following one-

a hyperbolic PDE, is a special case of the telegraph equatiofmensional IBVP:

known as the damped wave equation. As is well known, this

equation describes a vast array of physical systems. For ex- s " 3

ample, the damped wave equation governs the propagation Czﬂ_ 07_“+a2 Ju —0. a>0. x.t>0

of “second sound”(i.e., thermal wavesin a thermally con- ax2 g2 oxcat Y

ducting medium where the heat flux vector is given by the

Maxwell-Cattaneo equatiof8], the propagation of electro-

magnetic waves in an electrically conducting medi(sae, Zazu 72U du

e.g., Born and Wolf[9]), the migration dynamics of fish C 55 =0 =0 xt>0, 23

schoolg 10], the random walk problerfiL1], the motion of a oxs - at

string or membrane with external dampifege, e.g., Morse

and Feshbacli12]), and it is the equation of motion of a _ _

viscoelastic fluid under the Maxwell body thedf). u@B=g(t), u(=H=0, t>0, 2.2
In this work we demonstrate, as was noted earlier by

Blackstok[ 2], that solutions of the classical equation of mo- u(x,0)=u,(x,00=0, x>0, (2.3

tion for this problem do not satisfy causalit¥3]. We also

consider solutions of the approximate hyperbolic formulation

of the problem as alternatives that do satisfy casualty. In awhere the velocity vector is given by=(u(x,t),0,0),

effort to resolve this contradiction and to provide a deepeg(t) (=0 for t<0) takes on the value otJ,cost) or

physical insight into this problem we present the following: U, sin(wt), and to simplify the notation we have saf

A comparative study of the one-dimensional form of these=4u/(3p,) andr=4uw?/(3pyc?). Applying the temporal

two models[i.e., the classical model corresponding to Eqg.Laplace transformZ[-] and solving the resulting ordinary

(1.4) and the approximate hyperbolic formulation describeddifferential equation yields the transform domain solution

by Eq.(1.6)], an examination of their special and/or limiting

cases, and a study of the roles of the various quantities of

interest(e.g., the constartt has different physical interpreta- p( X S

e

c?v?

2

tions in the two formulations In effect, we show that the s 11512 a>0
approximate hyperbolic form gives an overall more realistic ~ u(x,s)=£[g(t)]X

description of the physical problem than does the classical X —

theory. Moreover, we also point out that the hyperbolic for- exp c s(s+r)], r>0,

mulation of the problem actually suggests that classical flu- (2.9
ids described in this work are, at least in terms of causality,
better modeled as viscoelastic fluids of the Maxwell type.
To this end, we present in Sec. Il the exact solutions fowhere
both the classical and hyperbolic formulations found using
the temporal Laplace transform. In Sec. lll we present a va-

riety of analytical results: a number of special and/or limiting S g(t)=U, cog wt)

cases are considered, several associated physical quantities 2+ 2’ 0 '

are given, and dpossible new definite integral, found ser- L[g(t)]=UgX (2.5
endipitously in the course of this investigation, is presented. w g(t)=U, sin(wt)
Section IV contains numerical results for various values of P+ w2’ 0 '

the time and solution parameters, as well as for some of the
associated physical quantities, and a physical system is con-
sidered. Finally, in Sec. V conclusions are given followed byl = (c?/a?) =3pyc? (4u), s is the complex transform pa-
a brief discussion which, in addition to presenting a simplerameter, andi=L[u]. Since ther>0 solution can be easily
mechanical analog, highlights the connection between clasxtracted from thek<<O case of Eq(2.7) of Ref.[14] [on
sical and the viscoelastic fluids. setting b=0 and F(t)=g(t)], we simply give it below.
Here, we derive only thet-domain solution for thea>0
case of Eq(2.4). To this end we note that E(R.4) possesses
simple poles as=*+iw and has a branch point at —12.
Having found the singularities, we can now employ the
Taking the positivez axis of a Cartesian coordinate sys- Laplace inversion formuldsee, e.g., Churchill15]). Thus,
tem in the upward direction, let a compressible fluid occupyon integrating along the Bromwich contolir(see Fig. 1in
the half-spacex>0 adjacent to a flat plate in thez plane.  the counterclockwise direction, taking the limi#s-0" and
Initially, both the plate and fluid are at rest. At tihe0* a  R—c0, and employing the residue theorditb] we obtain
flow is induced by the vibration of the plate along thaxis  the complete, exackt-domain solution

1. MATHEMATICAL ANALYSIS
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Re(s)

FIG. 1. Bromwich contoul” used in the inversion of the>0 case of Eq(2.4).

o —t7 gj
Uofl e S|r{xh(7;)]d77’ g(t)=Ugcogwt), a>0,

—agX _ __v
e g(t— ayX/w) p

2 772+ w2
8 wU, (*e sinNxh(y)]dy
u(x,t)=o(t) < e~ g(t— ax/w)+ f , g(t)=Upsin(wt), a>0 (2.6

G(t—x/c)(erx’(2°>g(t—x/c)+rth/ g(t—OK(x,0)dZ |, r>0,
\ X/c

where §(-) is the Heaviside unit step function, given. In addition, we derive the relevant wave parameters
that characterize the behavior of the solution for large values
of time. We also examine the curve structure and determine

h( ) U _o [F1lH 147" the amplitudes of the jump discontinuities occurringiiand
7 cn/ii?=1’ 1277 2(1+ 0?14 its first derivatives for the case of>0. Moreover, we note
(2.7 several important aspects of soluti¢h6) and we call atten-
tion to several of its special and/or limiting cases. Lastly, we
present a possible new definite integral found during the
< erm( 1.[(r/2) \/(gz—lecz)]> 28 course of this research.
A A N = A

and wherd [ ] denotes the modified Bessel function of the
first kind of ordern.

A. Small-time behavior

Expanding the transform domain solutipaqg. (2.4)] for
larges and then inverting gives us small-time expressions for

In this section we examine the behavior of E26) using  Ed. (2.6). Thus, fora>0 the small-time solutions are given
analytical techniques. Both small and large time solutions ar8Y (see also Refd2,3])

Ill. ANALYTICAL RESULTS
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P.(x)erfd x/2a\t]+ Qu(x) Vil me X480 g(t)=U, cog wt)

) ~Up6(t
u(x,t)=Uo6(t) X P.(x,t)erfd x/2avt]— Qy(x,t) Jtime /43 g(t)=U,sinwt),

(3.

where erf¢-] is the complementary error functiofil5], B. Discontinuities

2,—2 H -1 1-2
x7a “<t<Minfw"%177], and In Table | we have listed the amplitudes of the propagat-

ing jump discontinuities iru and its first derivatives, as de-
|22 termined using the methods employed by Jordan and Puri
Pd(X)=1-—, (3.13 [14]. Here §[ ], the saltus operator, denotes the jump in a
2a guantity across the plane=ct (see Ref[14]). From Table |
we see that within the solution domaiine., x,t>0), u and
122t x2 its first derivatives are continuous for the case0. Further-
P.(x,t)= w( t— + —) , (3.1b more, it can be easily shown thais infinitely differentiable
4a®>  2a’ with respect to bothx andt [i.e., ue C*(x,t>0)] for all
admissibleg anda>0 (see Ref[14]).
12 For r>0 andg(t)=Ugsin(wt), u is again a continuous
Q(x)=—, (3.10 function within its solution domain. However, both, and
a u., the first spatial and temporal derivatives wfrespec-
tively, each suffer a finite jump discontinuity across the
planex=ct. Henceu is only of classC® and thus it follows
(3.1d0  that u has a corner orx=ct. In contrast, takingg(t)
= U, cost), again forr>0, results inu itself experiencing
a jump discontinuity across= ct. Physically, of course, this
plane represents the wave front. Technically, in the hyper-
bolic case, the plang=ct is known as a shock wave, or a

X 212xt

a 3a

Qs(x,t)=w

For r>0 the small-time solutions afé 4]

u(x,t)=Uge” ™29 g(t—x/c) singular surface of order zero, fgft) = U, cos(t) while for
g(t) =Ug sin(wt) it is referred to as an acceleration wave, or
1+r2x(t=x/c)/(8c), g(t)=Uqcog wt) a singular surface order ortsee, e.g., Truesdell and Toupin
w(t—x/c), g(t)=Ugysin(wt), [16]). Moreover, we see that the amplitude of every finite,

nonzero jump given in Table | decays exponentially over
(3.2  time (sincex=ct at the wave front

In Fig. 2 we have plotted the>0 case of Eq(2.6) for
where forxc™'<t<Min[w~*,r~]. The advantage of Egs. g(t)=U,cos@t) (solid line and g(t)=U,sin(wt) (bold
(3.1) and (3.2) over Eq.(2.6) is that they can be obtained line). The values of the physical parameters used correspond
without the need of contour integration and they are mucho air at 0°C and were taken from Réfl] [Table (b), p.
easier to implement numerically. In addition, they give us462]. Observe that ahead of the wave frdne., the half-
insight into the behavior of the transient terms. From Eq.spacex>ct), u=0 (since the fluid was initially in an undis-
(3.1) we see that the small-time behavior will always be of aturbed statg behind it(i.e., the slab &x<ct) lies the re-
diffusive character foa>0. In addition we see that for every gion of the solution domain where the effects of the ingut
t>0, the Heaviside function on the right-hand side of Eq.have already been felt. In addition, the jump associated with

(3.1) is always unity, indicating that the vibrations occurring the shock wave resulting from thé, cost) boundary data
at the x=0 boundary are felt instantly, but not equally,

throughout the entire half space. In contrast, 8 shows
that forr>0 we have an exponentially damped disturbance
propagating in the positive direction (i.e., away from the
plate with speecc. Finally, we see from Eq$3.1) and(3.2)
that for g(t)=Ugcoswt), u is independent ofw under
smallt conditions.

u (m/sec)

TABLE I. Propagating discontinuities in, u;, andu,. 5 10 15 20 25

Case a>0 r>0
Wave front X=ct x=ct

g(t) Ugcost) Ugsin(wt) Ugcos(t) Ug sin(wt)
Su] 0 0 Uge ™2 0

S u] 0 0 © wUye™™7? FIG. 2. u vs x for air at 0°C with =100.0 Hz (giving r
Su,] 0 0 o —cwUge ™2  =159<10 °sec?) and t=0.06sec. Bold line:g(t)=sin(wt);
solid line: g(t) = cos(t).
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is clearly visible as well as the corner associated with thestreamline in the outer flow is displaced by the presence of
Ug sin(wt) input. viscosity and is defined as

ﬁ(t)zuglf u(x,t)dx. (3.3
C. Displacement thickness 0

In this work, however, the phrase displacement thickness
In classical incompressible fluid theory the displacemensimply refers to the area under thevs x for some fixed
thicknesss* refers to the distance from a flat plate that at>0. Hence, from Eqgs(2.6) and(3.3) we find

a{ M (t)+(1%/2) fte*'ZWM (t—O{1o(12212)+1,(1%¢12)YdZ|, a>0
0

& (1)=Uq 1 0(t) x . (3.9
c f e‘“/zg(t—{)lo(r§/2)d4, r>0,
0
where
M U \/E C(V2wt/m)coq wt) +S(V2wt/m)sin(wt), g=Ujcoqwt) 3
t)= —X .
(1=o C(\2ot/7)sin(wt)—S(y2wt/m)cogwt), g=Ugsinwt), 39
|
and whereC() and$S() are the Fresnel integrals of the co- Expandinga; , for small frequency we find
sine and sine types, respectively. Observe thagfef, 5*
is proportional toa for any fixed positivet while for r>0, _d%w? o )
5* is proportional toc, again for any fixed positive EEREP YR w<I% (3.8
D. Special and limiting cases Thus whenw is very much larger than?, u., (approxi-

mately satisfies the classic diffusion equation. For<|?,
we find that u,~e ™(g(t—x/c), where again
r=4uw?(3pyc?) (i.e., for o sufficiently small,u., is ap-
proximately equal to the nonintegral part of thee0 solu-
tion). Thus we see, as illustrated here in the one-dimensional
case, that solutions of Eq1.4) for the present IBVP are
approximately equal to those of Efl.6) when w<I1? and
(xc~Y)y<t>|"2. Furthermore, whem is so small thatw?
can be neglected in comparison d9 u,, approximates the
solution to the well-known wave equatiofClearly so does
ther>0 case of Eq(2.6).] Moreover, in terms of the phase

Returning to Eq(2.6) we note that as— 0", the (fixed)
a>0 case of Eq(2.6) approaches the solution of the heat
equation for the corresponding IBVP and, ms:0", the
r>0 case of Eq(2.6) approache®(t—x/c)g(t—x/c), the
solution of the undampe(br classi¢ wave equation for the
present IBVP. Moreover, we see that for fixedl —« as
a—07". Consequently, the transierit.e., integral terms
found in thea>0 cases of Eq(2.6) approach zerdsince
both limits of integration are approaching infinitya; ,
—{0, w/c}, andA(t)— O(t—x/c) [since the branch point at

s=—12 is tending to—o andu(x,s) is analytic in the half- velocity v, we have
plane Re$)>vy|. Thus, as one would expecti— 6(t P
—x/c)g(t—x/c) asa—0". vp~av2o (0>1?), vy~c (0<I?). (3.9

Clearly ast—oo,u(x,t) —U,(X,t), where
From the first of Egs(3.9) we find that the propagation
U.(x,t) =e”“g(t—ax/w), a>0. (3.6 medium exhibits anomalous dispersid8] whenw is large
compared tol? (i.e., vp IS an increasing function of fre-
In a strict sensay..(x,t) is not the steady-state solution since quency. However, from the second of E¢8.9) we find that
it containst explicitly. It is, however, known as the sustained

or quasi-steady-state solution. In Table Il we list the relevant TABLE Il. Propagation parameters.
propagation parameters associated with (see also Refs.
[2,3]). Here penetration depth refers to the valuexadfor Name Parameter
; i -1
which the amplitude ofuij has decreased tbye an_d Attenuation coefficient al
wavelength denotes the distance between two successive lay- .
4 . . . Penetration depth &
ers of fluid which vibrate in phadd.7].
Expandinga; , for large frequency we find Wave number “2
' Phase velocity wlay
1 Wavelength Xl a,
S \/g’ w>12. (3.7) Phase lag asX
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|Us | (m/seC) (a)

0.2

FIG. 3. u vs x in nondimensiona(ND) units fort=c=r=1.0 )
and »=10.0. Bold line: hyperbolic; solid line: classical. u (b)

the propagation medium tends to be nondispersive vehisn
much smaller that? (i.e., vp is a constant, independent of
frequency; the medium behaves as does free space with reo-+
spect to electromagnetic wavgs]). Furthermore, it should .. |
be clear that when<2c/x, then the propagation medium is
essentially of a nondispersive natimplying that far away
from the plate, the >0 solution behaves very much like that ~
of the classic wave equatipn 0.4

Taking g(t)=Uqe'“" makes u a complex quantity. o
McLachlan[7] has given the complex-valued solution for the
caser>0. Fora>0, the complex-valued quasi-steady-state
solution is

0.6

-0.8

FIG. 5. (a) |U.,| vs x for dry air with u=1.7X10"° Pasec,pq

U.(X,1)=Upe” “exdi(wt—ayX)]. (3.10  =1.293kg/n}, and w=5.0kHz. Bold line:c=361.0 m/sec; solid
line: c=331.0 m/sec; and broken line=301.0 m/sec. (b) uvsx
The modulus of Eq(3.10 is easily found to be (ND) for t=0.1 and w=10.0. Bold line:c=10.0; solid line:c

=5.0; and broken linec=0.05.
| (x, 1) | =Uge™ 21X, (3.11
Last, from thea>0, g(t)=U,sin(wt) case of Eq.(2.6)
Using the large and small frequency expressions giveRye obtain, based on the initial conditiorix,0)=0, the inte-

[U.(x,1)| ~Ugexd — (x/a)Vwl2], w>1?, (3.12 w Jw sinx(n+12)/\na?]dy
mJo (n+12)2+ w?

U (x,t)|~Upexd —x(aw)¥(2¢®)], w<I?,  (3.13
o ) ) _ =e “"sin(ayX) (a,c>0;X,w=0).
Thus, it is clear thafl/.| is a decreasing function of fre-
guency and that for a fixed value vfand small values o, (3.14

it is of a Gaussian nature with respect to frequency. This definite integral does not appear in any reference that

we are aware df19,20. Thus, to the best of our knowledge,
the relation given in Eq(3.14) is a new result.

IV. NUMERICAL RESULTS

Here we giveMathematica[20]-generated plots for vari-
ous values of time and the solution parameters. So as to
x simplify their presentation and comparison, we have, in Figs.
3, 4, 5b), and 8, employed the following nondimensional
(ND) transformations:

x'—xI2Uyt, t'—=tl?, u'—uUgt, o' —wl?

!

c'—cUyt, a'—c', r'—rl72 (4.2

FIG. 4. u vs x (ND) for t=c=1.0 andw=10.0. Bold line:r where in referring to these quantities the primes will be un-
=10.0; solid line:xr=1.0; and broken liner =0.1. derstood. Moreover, with the exception of Figah the val-
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|Us | {m/sEC) w
10

x(10%m)

2 4 6 8 10

‘ s
FIG. 6. |U.| vs x for air at 0 °C. Bold line:w=20.0 kHz; solid ! 2

line: w=10.0 kHz; and broken linew=5.0 kHz. FIG. 8. w Vs a, (ND) for c=1.0.

ues employed for all physical parameters were obtained froraf the diffusive curvg This behavior is clearly seen in the
Ref.[1] [Table(b), p. 463. (In particular, for air at 0°C we |Us| vs thex graph shown in Fig. &) which was plotted for
have u=1.7x10 ®°Pasec, po=1.293kg/i, and c  dry air at 50.0 °Qbold line), 0 °C (solid line), and —50.0 °C
=331.6m/ser Lastly, in all dimensional figures we have (broken ling (see Pierc¢21] [Eq.(1-9.4]), andt large; and
takenU,=1 m/sec and, with the exceptions of Figéa)56, in theu vs x (ND) graph of Fig. §b) which was plotted for
and 8, all graphs given in this section were plottedd¢r)  t=0.1. Furthermore, we note that the broken curve shown in

=sin(wt). Fig. 50b), plotted for c=0.05, approximates the solution
curve of the ND heat equatiofi.e., lettingc—0" in Eq.
A. Effects of damping coefficients (1.4)] for the corresponding IBVP.

. . In Fig. 6 we have plotted, again for air at 0°@/,
In Fig. 3 we have plotted both the hyperbollzold line) =e‘xalgvs < for w=2o% kHz(boI% line), 10.0 kHz(iuoIk'j

and classica(solid line) solution curves foc=r=1.0 using .
ND units. Clearly, the damping effects of the mixed deriva-lme)’ and 5.0 kHzbroken ling. As supported by Eqs3.11

tive term are more pronounced than those of the usual firsta-md (3.1, |U.| is obviously a decreasing function of fre-
. L . o quency.

order time derivative damping term occurring in the hyper-

bolic equation. In Fig. 4 we show the effects of varying

(>0) in Eq.(2.6), again using ND units. As would be ex-

pected, increasing drives down the curve’s amplitude and  Figure 7 depictss* vs t under the classicalsolid line)

suppresses its oscillatory behavior. and hyperbolic(bold broken ling cases. Observe that both

curves appear to be in phase, non-negative, and nearly iden-

tical in amplitude.

As is well known in the hyperbolic formulation the con-  The ND plot shown in Fig. 8 is a Brillioun diagrafi8].
stantc is the phase spedile., the speed at which the wave The mapping of the wave number éoit depicts is known as
front propagates However, in the classical formulation  a dispersion relation. Geometrically, the slope of the vector
takes on a totally different physical meaniriifinsler et al. ~ from the origin to a particular point on the curve represents
[1] also note this point and refer as the thermodynamic the phase velocity,. From Fig. 8 we see that, sinas,
speed of sound in the classical cagerom Figs. 5 we see >0, U, is a disturbance that always propagates away from
that in the classical caseacts like an inverse decay param- the plate into the fluid medium. Furthermore, it is also clear
eter(i.e., increasing beyond unity decreases the decay ratethatv , is an increasing function ab. Hence the propagation

medium considered here is one of anomalous dispersion.

C. Displacement thickness and dispersion relation

B. Effects of the phase speed parameter and frequency

& (m)
80 D. Physical scenario

Consider a very deep, initially queasiest, volume of ocean
) filling the half-spacex>0 of a Cartesian coordinate system.
As a result of an undersea seismic event, a very large flat
section of the ocean floofi.e., assumed to be of infinite
40 exten}, which occupies thgz plane, begins to suddenly ex-
ecute small-amplitude vibrations of the form sit) in the
vertical direction(i.e., along thex axis) at t=0". These
vibrations of the ocean floor sets the water above into mo-
tion. We wish to describe, for arty>0 and neglecting gravi-
t(sec) tational effects, the resulting velocity field of the water given
that flow parallel to theyz plane(i.e., flow emanating from
FIG. 7. 6* vst for air at 0°C withw=10.0 Hz. Bold broken the edgepswill be negligibly small compared to that parallel
line: hyperbolic; solid line: classical. to thex axis, thus allowing us to take= (u(x,t),0,0).
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Figures 9 were generated for?=4u/(3p,) and u (10" m/sec) (a)
r=4uw?/(3poc?), where the values gf,, ¢, and u corre- 10
sponding to seawater at 13 °C were u$g&fl The sequence
shown compares the time evolution of the hyperbolic solu-
tion of the above scenario to that of the classical case for a ¢
vibration frequency ofw=10Hz. Clearly, the wave front
associated with the hyperbolic formulation is propagating
with finite speed and is attempting to “catch up” to the
diffusive curve. For its part, the diffusive “wave front” has

o]

~12
instantly propagated over the entire positixeaxis. It is 1 5 3 4 x(107m)
therefore apparent that the approximate hyperbolic formula- _,
tion suggested by McLachldi@] is a more realistic model of
the above physical problem, in terms of causality, than is the
classical formulation. 4 (10-Ym/sec) (b)
10
V. CLOSURE
A. Conclusions 8
Based on the analysis given here and the values of the ¢
parameters considered, we give the following conclusions.
(1) Under the classical form of the problera>*0),u is
always of a diffusive nature. Hence, a boundary input will 2
instantly, but unequally, be felt throughout the entire half- x (107 im)
spacex>0. 1 2 3 4 5
(2) Under the hyperbolic approximation of the problem -2

(r>0), uis always of a wavelike nature; a boundary input
will propagate into the half-space at the finite speeeD.

(3) The physical meaning of the constanis different in u(10™*2m/sec) (c)
the two formulations. In the diffusive case it acts as an in- 4,
verse decay parameter while for the hyperbolic case it is the
speed at which a boundary input is propagated into the solu- 8
tion domain(i.e., the phase spegd

(4) Under the hyperbolic formulation, forg(t)
=Uj sin(wt), u is continuous, while possessing a corner, but 4
u, andu; both suffer finite jumps across the plaxe ct. In
contrast, takingg(t) =Ugcost) results inu itself experi-
encing a finite jump across=ct. (See Table | and also Fig. x(2107°m)
2.) Thus, forg(t)=U,cost) the planex=ct is a shock ! \ 2 3 4 >
wave while forg(t)=Ugsin(wt) it is an acceleration wave
[16]. FIG. 9. u vs x for po=1026.0 kg/m, c=1500.0 m/secu=0.001

(5) For a given value of time, the displacement thicknesspa sec, andw=10.0 Hz. Bold, hyperbolidr =4 w?/(3poCc?)];

6* is proportional to the coefficierd for the a>0 case of  solid, classicala?=4u/(3po)]. (a) t=10"1° sec, (b) t=10"14
Eqg. (2.6) while for ther>0 case,s* is proportional to the sec, ant) t=10"12 sec.
phase speed.

(6) For w>12, the diffusive sustained solutiom, takes (9) The modulus of the complex diffusive sustained solu-

on the character of the solution to the heat or equationtion, |I4,|, is a decreasing function af (see Figs. b For x
For w<I2, u., approximates the sustained péie., non- fixed andw<I2, || is of a Gaussian nature with respect to
integral term of the r>0 case of Eq.(2.6) where o while for w>1? it approximates the corresponding solution
r=4uw?(3poc?), thus validating the derivation of Eq. of the classic diffusion equation.
(1.6). Whenw is so small so thai? can be neglected com-
pared tow, we find that bothu,, and the sustained part of the
r>0 case of Eq(2.6) behave likeg(t—x/c), a solution of The analysis presented here clearly indicates that the ap-
the classic wave equation. proximate, hyperbolic formulation of this problem clearly

(7) For g(t)=Ugcost), both the diffusive and hyper- results in a more realistic model of this physical system than
bolic solutions are independent af under small-time con- does the classical formulation based on the linearized conti-
ditions. This is not the case fg(t) = U, sin(wt). nuity, Navier-Stokes, and state equations. In particular, solu-

(8) For a>0, the propagation medium considered here igtions of the hyperbolic equation of motion clearly satisfy
one of anomalous dispersidsee Fig. 8 However, when causality; the smooth, diffusive solutions of the classical
w<I|? or 0<r<2c/x, the propagation medium behaves in theory do not. Also, the positive constanis correctly asso-
essentially a nondispersive manriee., as if botha andr ciated with the phase speed in the hyperbolic case whereas in
were negligibly smajl the classical case it acts as an inverse decay parameter.

6

B. Discussion
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Moreover, the hyperbolic equation used here is also emids, the former being associated with the Kelvin-Voigt body
ployed in place of the well-known heat equation, which alsotheory while the latter results from the Maxwell body model
suffers from an infinite propagation speed defect, in heaf5,22]. In particular, we call attention to the fact that a
transfer problems involving very low temperatures and/ordamped wave equation is the exact equation of motion for a
high heat flux condition§8]. It is of interest to note that the |inear Maxwellian fluid[5,22,23 (implying that all causal
problem considered here has a simple mechanical analogy. déquirements are automatically satisfied in well-posed 1B-
consists of a_semi—infinite, ong—dimgnsio_nal s.tring,.initially atyp’s). Therefore, based on the analysis presented here, one
rest and laying on the positive axis, with either internal  ca conclude that linear isothermal, compressible viscous
(a>0) or external (>0) damping[4]. At t=0" the {uigs [ie., those described by E¢L.4) under the classic
string’s end point ak=0 begins to execute transverse oscil- theory], may be better characterized, at least in terms of cau-
lations of the formg(t). From the analysis presented here, sjity, as linear viscoelastic fluids of the Maxwell type
we would be forced to conclude that the oscillations inducec[5,22_25_ Furthermore, we call attention to both the theo-
atx=0 would be felt instantly, but unequally, at all points of retical and experimental results suggesting that air does in
an internally damped string. In contrast, for a string withact possess the general characteristics of such a viscoelastic

only external damping, the oscillations induced at the boundfig (see Ref[23], Chap. 6 and the references thejein
ary would propagate along the positixaxis, away from the

planex=0, at the constan(finite) speedc.

Lastly, we call attention to the following. The classical
equation of motion studied here arises from the assumption P.M.J. was partially supported by NASA’'s GSRBrant
that the fluid medium(e.g., air, water it is describing is, No. NGT-13-52706 and by CORE/ONR/NRL(Grant No.
mathematically, a continuum. In contrast, the hyperbolicPE 602435N funding. In addition, this author acknowledges
equation is, in its many applications, derivable from discreteseveral helpful discussions with Professor Louis Fishman.
consideration(e.g., phonons in a thermally conducting me- The authors are grateful to Professor Joseph E. Murphy for
dium [8], schools of fish10], and random walk problems generous support and instructive comments. Last, the authors
[11]). Note, however, as pointed out in Sec. |, that with thethank Professor Pratap Puri and Dr. William St. Cyr for pro-
appropriate coefficients both Eq&l.4) and (1.6) also de- viding some of the mathematical and computational re-
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