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Quantitative method for measurement of the Goos-Hanchen effect based
on source divergence considerations

Jeffrey F. Gray
Department of Electrical Engineering, University of New Orleans, New Orleans, Louisiana 70148, USA

Ashok Puri*
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148, USA

�Received 13 July 2005; published 26 June 2007�

In this paper we report on a method for quantitative measurement and characterization of the Goos-Hanchen
effect based upon the real world performance of optical sources. A numerical model of a nonideal plane wave
is developed in terms of uniform divergence properties. This model is applied to the Goos-Hanchen shift
equations to determine beam shift displacement characteristics, which provides quantitative estimates of finite
shifts near critical angle. As a potential technique for carrying out a meaningful comparison with experiments,
a classical method of edge detection is discussed. To this end a line spread Green’s function is defined which
can be used to determine the effective transfer function of the near critical angle behavior of divergent plane
waves. The process yields a distributed �blurred� output with a line spread function characteristic of the inverse
square root nature of the Goos-Hanchen shift equation. A parameter of interest for measurement is given by the
edge shift function. Modern imaging and image processing methods provide suitable techniques for exploiting
the edge shift phenomena to attain refractive index sensitivities of the order of 10−6, comparable with the recent
results reported in the literature.

DOI: 10.1103/PhysRevA.75.063826 PACS number�s�: 42.25.�p, 42.25.Gy, 78.20.Bh

INTRODUCTION

In 1947 Goos and Hanchen �1� verified an earlier conjec-
ture by Newton �2� that light beams incident at an internal
reflection boundary experienced lateral shifts along the plane
of the interface before being reflected. This shift is now
known as the Goos-Hanchen shift. The standard equations
for calculating the shifts for both parallel and perpendicular
states of polarization �3� are functionally dependent on the
angle of incidence and the ratio of index of refraction be-
tween the two mediums. In the standard form the equations
describe the behavior of ideal light sources, however; the
nonideal nature of real world sources must be included for
proper interpretation of observed results.

The measured Goos-Hanchen shift near critical angle was
finite �1� but expressions for shift reported in literature di-
verged near critical angle. A detailed earlier review of theory
and experiment was given by Lotsch �4�. Researchers includ-
ing deBroglie �5�, Troup �6�, Horowitz and Tamir �7�, Puri
and Birman �8�, and Antar and Boerner �9�, among others
have proposed methods of approximating the nonideal nature
of the phenomena and have developed models for finite
Gaussian beam shift near critical angle. The general obser-
vation that maximum shift actually occurs slightly off of the
critical angle is supported by the Gaussian beam models.
Contemporary efforts in GH shift have focused on the shift
induced in the TM states of Gaussian beams under plasmon
surface resonance �10–12�.

Our purpose in this paper is to investigate a parallel quan-
titative method that provides a deeper understanding of non-
ideal plane wave interaction at internal reflection near critical

angle. First, we introduce a numerical modeling approach
and demonstrate compatibility with prior science �see Fig. 3
and explanations thereafter�. Then we evaluate the resulting
dispersion relationships �Eq. �A15� generalized to Eq. �7��
which lead to the nonmonotonic behavior of the mean shift
properties. We find that a class of measurement methods ex-
ists which exploit the edge-shift, or minimum shift, phenom-
ena exhibited along the shadow lines of step apertures. Most
prior experimental efforts have relied on detection of mean
shift of beam spots and there is near universal agreement that
maximum mean shift occurs at angles slightly offset from
critical angle.

The method laid down in this effort identifies an alternate
measurable parameter, the aperture edge shift �Eq. �A4��,
which exhibits maximum deflection at critical angle and
maximum sensitivity to angular alignment at the critical
angle �see Appendix B, Eq. �B4��. The edge shift function
�A4� is monotonic on either side of the critical angle as its
derivative �B4�. Such behavior is well suited for precise lo-
cation of critical angle leading to improved resolution in re-
fractive index measurement. This treatment leads to a math-
ematical formulation showing that control of beam diver-
gence is a principal limiting factor in enhancing Goos-Han-
chen shift near critical angle. This paper also defines criteria
for comparing observed beam shift data with theoretical re-
sults. The problem requires that we examine the definition of
beam shift and discriminate the classical method of edge
detection from the mean shift predictions of the equations.

In this paper uniform divergence model is used as an ap-
proximation in description of the non-ideal nature of a real
optical source. Many additional factors, e.g., irregularities in
aperture, nonuniform source distribution, alignment, and
scattering, among others, contribute toward real source
anomalies. Thus real optical source is not limited by only*Email address: apuri@uno.edu
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uniformly divergent waves. However, by establishing a stan-
dard plane-wave source based upon well controlled beam
qualities and divergences we can set a nominal baseline from
which, in principle, other source deviations can be extracted
by interpreting measured deviations from the nominal re-
sponse curves.

The present work is motivated by both fundamental and
practical considerations. Measurement of refractive index
variation has strong potential for diagnosis of efficiency in
liquid and gas mixing applications, measurement of homo-
geneity of solid materials, and noninvasive contamination
testing. In addition the resulting form also provides diagnos-
tic information that may be useful in a broad range of physi-
cal applications including optical source collimation and
alignment considerations.

APPROACH

All natural and manmade sources emanate from finite size
sources and possess some form of natural divergence. Our
goal is to model the natural divergence and derive a Green’s
function for the distributed Goos-Hanchen effect over the
cone of divergence that results from consideration of the fi-
nite dimensions of the source.

Consider a plane wave incident on an internal reflection
surface with a uniform cone of divergence as shown in Fig.
1. To define the general impulse response that occurs at each
individual point of the reflection interface, we must first de-
termine the amount and direction of light arriving at the in-
terface. This is the collimation of the wave, and we general-
ize our definition to that of a uniform circular source with
finite dimensions at some distance from the interface. With-
out loss of generalization we can reflect the incoming con-
vergent cone of light to an outgoing diverging cone. If we
define the Y-Z plane as the interface plane, we can decon-
struct the incoming beam into two vectors, one vector along
the mean direction of the wave and a second vector repre-
senting the divergence cone aligned to the z axis. This pro-
vides an elegant dot-product representation of the divergent
wave that can be applied directly to the Goos-Hanchen shift
equation.

When this model is applied to the shift equations, we find
a variation in the individual component responses of the

wave, depending on the degree to which the divergence
causes the incidence angles of the individual components to
deviate from critical angle. Only a small portion sees signifi-
cant shifts and virtually none of the beam sees the infinite
shift that occurs along the singularity line.

Uniform divergence means that wave propagation is uni-
form within a fixed theta/phi cone of divergence. At any
point in the beam, light rays propagate within a small uni-
form angular deviation from the beam propagation vector. If
we choose the z axis normal to the optical interface plane
then the divergence cone can be expressed in vector form as

d̂ and the incident plane wave can be expressed as ĉ by the
following vectors, where phi and theta are the polar angles
defining the divergence cone:

d̂ = �sin��d� sin��d�,sin��d� cos��d�,− cos��d�� ,

ĉ = �sin��i�,0,− cos��i�� . �1�

Also cos��r�= �ĉ · d̂�.
This represents the incidence angle of each component

within the divergence cone. By recasting the Goos-Hanchen
equation into a cosine form we can directly apply the dot
product and obtain a representation of the shift equation in
terms of the divergence cone angles

D� =
�

�

sin��c�
�sin2��c� − sin2��i�

becomes

D� =
�

�

sin��c�
�cos2��r� − cos2��c�

.

The incidence subscript �i� here is changed to a refraction
subscript �r� indicating we have shifted from a plane wave
model to a divergence model.

Expanding the dot product, cos��r�= �ĉ · d̂�, we obtain

cos��r� = sin��c + ��sin��d�sin��d� + cos��c + ��cos��d� .

�2�

The delta angle ��=�i−�c� in Eq. �2� allows for deviation of
the incident angle around the critical angle.

In this uniform divergence model the Goos-Hanchen
equation singularities lie along a theta-phi contour in the
divergence cone that can be found from Eq. �2� for all values
of delta less than the divergence of the beam. The resulting
contours as a function of � are concentric long radius �com-
pared to �d� circular arcs. A simplified representation is given
as follows:

sin��d� =
cos��r� − cos��c + ��cos��d�

sin��c + ��sin��d�
, �3�

where �r=�c near the critical angle.

ANALYTICAL/NUMERICAL RESULTS

The shift function plotted as height over the circle of the
divergence cone is shown in Fig. 2 with a delta angle of 1 /2

�i

�cone

�d
�d

X

YZ

Incident

Divergent

Plane Wave

C

d

FIG. 1. Divergence geometry.
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of the divergence angle of the beam. The singularity contour
is truncated for clarity and overlaid for labeling.

Mean beam offset can now be calculated from standard
centroid techniques in a theta, phi polar representation over
the cone of divergence:

Dmean =
� � D���d,�d��dd�dd�d

� � �dd�dd�d

. �4�

The integral is further divided into two separate components,
the portions of the beam incident above and below the criti-
cal angle. Above the critical angle totally reflection occurs,
but below the critical angle the Fresnel reflectance coeffi-
cients that drop off rapidly must be applied. The observed
shift will be a combination of the intensity contributions
from the two components. The reflection coefficient drop-off
in the region below critical angle is observed to cause asym-
metry in the mean displacement versus delta angle curves.

Figure 3 shows the relationships between the delta angle,
the beam divergence and the predicted mean shifts of the
beam by the model. The shift curve is nearly flat at critical
angle and does not substantially decline until delta ap-
proaches the divergence angle. At small divergences, the
shift rolls off slowly below critical angle and drops exponen-
tially when delta exceeds the divergence angle. At larger di-

vergences the shift will rise slowly and reach maximum near
the divergence angle before dropping exponentially. This
case is for the perpendicular polarization at incidence angles
below critical. For delta angles larger than the divergence
angle, the mean shift response asymptotically approaches the
classical equation of Artmann’s ideal response curves.

It is worth noting that similar finite beam shifts at critical
angle have been reported in paraxial, or angular spectrum,
approximation �7,8�. The conjecture of Horowitz and Tamir
�7� that nongaussian wave behavior for mean shift will be
similar but not identical to Gaussian beam behavior is sup-
ported by our numerical models

The equation for mean beam shift �4� can be misleading
when used in interpretation of experimental results. Due to
the microscopic size and asymmetric shape of the dominant
shift effect, mean displacement is difficult to measure accu-
rately with imaging methods. Traditional edge detection
methods typically locate the maximum slope of the image
intensity profile at the edge. In the divergence model the
maximum slope occurs at the leading edge of the shifted
image, permitting a direct calculation of the minimum shift
the divergence cone sees as follows:

D�edge =
�

�

sin��c�
��sin2��max� − sin2��c��

. �5�

�max−�c is the maximum deviation of the divergence cone
from the critical angle and establishes the minimum shift.

The impulse response shift is found by numerical methods
as a histogram of the Goos-Hanchen shift over the cone of
divergence at a single point. This will define the light wave
behavior for a single point input. Typically we would de-
scribe this in terms of a point-spread function. But since the
shift is most readily seen near linear edges, the logical ex-
tension to a line spread function is more appropriate for our
purposes.

This is because in real applications the off-axis or longi-
tudinal shifts for small divergences relative to the angle of
incidence are negligible in comparison to the lateral shift.
Exceptions to this rule must be considered when the diver-
gence angle becomes a significant percentage ��5% � of the
angle of incidence.

The resulting Green’s function can then be convolved
over the plane wave incidence region �i.e., over slit width� to
provide an estimate of the output intensity profile for total
beam behavior near lateral edges. Figure 4 shows a typical
line spread function for a .01 radian divergence beam. The
sharp leading edge of the curve that is the most recognizable
feature of the graph from an image processing perspective,
locates the minimum displacement given in Eq. �5�.

A nearly exact expression for the line spread function is
derived in Appendix A �Eq. �A6�� of this paper

I�D�� =
2I0

��d
2
��d

2 − d2�cot��i���� − d�3, �6�

where d=�−�2 /�2D�
2 2 cot��i�. Equation �6� is valid for �i

�� and �	1. When �
�d a simpler expression for the line

FIG. 2. Goos-Hanchen shift distributions over the cone of
divergence.
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FIG. 3. Mean shift vs delta angle and divergence below critical
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spread function seen in Fig. 4 is given by a closed form
approximation �see Eq. �A13��.

ILSF =
I0

��d

��sin��d + ���3�2 cot��i�

���D�edge

x
	a

− �D�edge

x
	b

x � D�edge. �7�

The coefficients a and b are empirically derived, x is the
lateral shift value, and D�edge is found from Eq. �5�. At criti-
cal angle the values of a and b are 
6 and 
10, respectively,
for the leading components of waves with divergences less
than 0.01 radians. This derives directly from Eq. �A12�. As
delta increases from zero to the divergence angle, the values
of a and b tend to converge toward 8 in the approximate
form. The analytical form with the harmonic oscillator terms
is given in Eq. �A15a�. For ease in numerical calculations the
approximate form of Eq. �7� gives results within 1% for ap-
propriate values of a and b as verified by numerical model-
ing.

The line-spread function given in Eqs. �6� and �7� and
shown in Fig. 4 represents one of the two portions of the
complete line spread function. If the beam is incident at the
critical angle and the divergence is small enough to minimize
the reflectance losses, the leading and trailing shift functions
will be nearly identical and the total shift will normalize to
the given results. When the incidence angle of beam varies
between the critical angle and the divergence angle, the lead-
ing and trailing components will be different and the total
line spread function will be a sum of the two contributions.
For divergences of 0.01 radians and greater, the reflectance
factors in the trailing components become significant and the
trailing component graph will be shortened and reduced in
overall magnitude. Equation �7� is modified to reflect the
distinction between the leading and trailing components re-
sulting in Eq. �8� that is the line spread Green’s function for
the divergence model when � is less than or equal to the
divergence angle. The square root of the negative quantity in
the trailing component accounts for the phase difference be-
tween leading and trailing spots. Figure 5 shows a typical
plot of split components of Eq. �8� for a divergence of
0.001 radians and a delta of 0.0001 radians:

ILSF =
I0

��d

��sin��d + ���3�2 cot��i�

���D�edge

x
	aL

− �D�edge

x
	bL

+
I0

��d

��sin�� − �d��3�2 cot��i�

���D�edge

x
	aT

− �D�edge

x
	bT

. �8�

If we combine the findings from Eqs. �5�–�7� and the
graphical results seen in Figs. 3–5 it is possible to extend our
observations towards practical applications of the Goos-
Hanchen shift. Additionally, a strong dependence of the shift
on the ratio of refractive indices completes a design criterion
for a potential white light imaging interferometer based on
Goos-Hanchen shift.

Figure 6 shows that large shifts are obtainable by careful
control of the divergence angle. Note that the divergence is a
limiting factor for observable shifts. Figure 6 also shows that
the shifts can be amplified by reducing the ratio of refractive
indices at the internal reflection boundary. The graph sug-
gests that large single reflection shifts can be obtained by

FIG. 6. Mean shift sensitivities as a function of divergence and
refractive index ratios. Refractive index scale changes at 2 from 0.1
per division to 0.5 per division.
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controlling these two parameters. This method can also in-
crease the reliability of devices that depend on the shift ef-
fect.

Furthermore, the functional form of the line-spread func-
tion appears to be well suited to interferometric purposes and
may well lend itself to extensions of the phase shifting meth-
ods that have dramatically improved sensitivity of interfer-
ometry. Efficient design methods might be able to produce
spatially distributed interferograms where localized varia-
tions in index of refraction appear as fringe line contours.

MEASUREMENT DESIGN CONSIDERATIONS

In traditional photographic experiments, a single shift
value is extracted for a single rectilinear mask aperture. This
method of single edge detection can be directly extended to
simultaneous measurement of multiple adjacent edges when
digital image capture and analysis is employed. Additionally,
multiple adjacent apertures can then be added, creating an
array of sampling points. The individual apertures can be
measured and analyzed independently to provide a means for
measuring localized variations in refractive index or they can
be combined for obtaining higher sensitivity to a nonlocal-
ized mean refractive index. This allows for two measure-
ments regimes to be performed over a sensing area rather
than a single sensing line.

Prior method of implementing rectilinear masks require
improvement and we suggest the use of stripped single mode
optical fibers or the use of etched chrome-on-glass Ronchi
rulings. The former possess very sharp edges but are difficult
to position in uniform arrays. The latter can be fabricated in
precise two-dimensional arrays but possess diffraction lim-
ited edge roughness. Ronchi rulings are also suited for
mounting onto piezoelectric positioning devices for posi-
tional stepping similar to the “jitter” camera used in super-
resolution sampling �12�.

In a design consideration for adjacent apertures, it must be
noted that slit width and separation dimensions are affected
by crosstalk. To minimize the crosstalk, Fig. 4 can be used as
a design guide for slit spacing and slit width. A recom-
mended starting point would be to have both the slit width
and slit spacing close to the mean shift shown in Fig. 4. The
limiting values of slit width could be comparable to edge
shift, and slit separation could be as much as twice the mean
shift. Design trade-off must be considered relating to work-
ing source divergences, e.g., low source divergences will
lead to higher slit width and spacing. This will reduce dif-
fraction effects. However, higher divergence will lead to �
size shifts, which will increase diffraction effects. Thus slit
widths of the order of wavelength will increase diffraction
effects which are not desirable, however slit widths of the
order 10 � will reduce diffraction effects and are desirable.

In addition, design trade-offs must be considered relating
the working source divergence and desired sampling densi-
ties when the method is used for area coverage. Larger
source divergences allow for denser sampling of an area but
with a resultant reduction in overall sensitivity. Achieving
higher sensitivity requires greater spread between sampling
points in a gridded aperture configuration to account for the

increases in lateral displacement near critical angle. Sources
of one milliradian divergence for example will produce shifts
nearly equivalent to single pixel widths of conventional
CCD-imaging chips.

Multiple aperture methods are well suited for measuring
distributions of refractive index variation over a sensing area.
Very precise measurements of localized variations can be
combined with distributed analysis methods for more accu-
rate determination of mean refractive index.

COMPARISON OF DIVERGENT METHOD
WITH CURRENT RESEARCH

Researchers have reported attaining sensitivities of 10−6

index variation measurement �13�. For comparison purposes
we can project the theoretical operating parameters for a di-
vergent measurement system including source divergence,
refractive index ratio, single vs multiple reflections, diffrac-
tion limited imaging, subpixel feature extraction, over sam-
pling, and super-resolution.

First, the single reflection, shift for a 0.001 radian beam is
near 6� at an operating refractive index ratio of 1.5. For a
1/3 in. CCD imager with a pixel size of 4 m and an optical
magnification of 4:1, a single pixel size is on the order of
magnitude of 2� in the green. To detect a change of 10−4 in
refractive index of the air would require resolving Dedge to
0.15 pixels. This level of detection has been achieved �14�.
Details of sensitivity of refractive index derivation are given
in Appendix B. To detect changes of 10−5 in n would simi-
larly require 0.015 pixels discrimination, which has also
been attained with edge detection methods. In a CCD array
with the axis of the aperture aligned to the axis of the pixel
through the imaging system, multiple parallel rows will see a
stable sampling population allowing the use of 100 parallel
sample rows in both the shifted and unshifted portions of the
wavefront to provide the additional resolving power to attain
10−6 resolution on n. Furthermore, sampling of parallel rows
of apertures, improving the divergence of the source, and
multiple reflections are all possible techniques to further ex-
tend the method.

CONCLUSIONS

The effect of source divergence on Goos-Hanchen shift
has been studied and numerically evaluated to predict the
real world performance of observable sources. A line spread
function has been found in graphical form, derived in ana-
lytical form, and reduced to a simplified closed form ap-
proximation. The model results support prior observations
�finite shifts at critical angle �7,8�� and should provide tech-
niques for adequate interpretation of experimental shift mea-
surements. The paper addresses the possible sources of con-
tradictions that may arise in the experimental observations.
First, variations in beam quality, i.e., divergence, can pro-
duce differing results. Second, interpretation of beam shift is
highly dependent on the measured beam shift features. Mean
shift predicted by the equations is significantly different from
edge shift observation. As shown in Fig. 4, edge shift is
nearly 60% of the mean shift. Maximum shift location de-
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pends on magnitude of divergence and which side of the
critical angle that the incidence angle lays.

Our findings are summarized as follows. �1� The diver-
gence model is compatible with prior results from Gaussian
beam analysis. �2� Source divergence for plane waves is
similar, but not identical to beam waist parameter for Gauss-
ian beam. �3� Introduction of beam divergence leads to sim-
plified expression for spatial dispersion. �4� Divergence is
the primary limiting parameter for enhancing shift magni-
tudes. �5� A measurement parameter based upon edge shift
behavior has been defined and is shown to be well behaved
and highly sensitive to angular shift and refractive index
variation. The edge parameter shows monotonic behavior on
either side of critical angle, is independent of spot splitting,
and has a monotonic slope which is discontinuous at critical
angle. �6� Current technological capabilities exist to support
precise imaging and edge localization.

FOLLOW-UP EFFORTS

Follow-up efforts are underway to experimentally verify
the models presented in this paper. Our next paper will
present a simple experimental setup identifying the major
components for performing baseline measurements. The goal
is both to obtain a high precision shift measurement and to
measure the edge rise profile predicted by the line spread
function. We will also show that the imaged quantity is con-
volution of the line spread function with the aperture. The
spatial nature of the divergence model and the apertures
make the overall process more meaningful when performed
and interpreted in the spatial domain. Ultimately, we hope to
experimentally show that the spatial domain approach for
planes waves produces similar but not identical results to the
FT approach for Gaussian beams.

APPENDIX A: MATHEMATICAL DERIVATION
OF LINE SPREAD FUNCTION

Starting with Artman’s shift equation we seek to separate
the effects of alignment error from the effects of refractive
index that determine the critical angle:

D� =
�

�

sin��i�
�sin2��i� − sin2��c�

,

D� =
�

�

sin��i�
�sin��i� + sin��c��sin��i� − sin��c�

. �A1�

We separate, regroup, and recollect terms to produce Eq.
�A2�:

D� =
�

�

sin��i�

�2 sin��i +
�

2
	cos��i +

�

2
	�sin���

. �A2�

If �i�� and �	1 then Eq. �A2� can be approximated by

D� =
�

�

1
�2 cot��i���

. �A3�

In the limit as �→0, D�→�. The dependence of shift on �
is now partially separated.

For a distributed source divergence represented by the
circle above, the output shift becomes a function of position
�d� in the cone of divergence. The Jacobian which relates the
input d-space to the output D� space becomes the derivative
of the shift function:

D� =
�

�

1
�2 cot��i��sin�� − d�

,

�D�

�d
=

�

�

cos�� − d�
�2 cot��i���sin�� − d��3

�m/rad� , �A4�

where −�d
d
�d.
The contours of constant angle of incidence can be

graphically represented in the space of the divergence cone.
Although they are in general circular arcs, they can be ap-
proximated as vertical line segments for all divergences of
practical interest. This is because the actual arc length varies
from the chordal length by the approximation sin�x��x,
where x is the divergence of the beam. Practical apparatus
for exploiting this effect will use divergences of less than
.01 radians and the errors will be on the order of 10−6. With
this approximation in mind we construct a graphical repre-
sentation of the segments of uniform shift that allows us to
cast an intensity shift equation in the d or divergence space
�see Fig. 7�.

The total energy in a vertical section of the divergence
cone is simply the integral of the intensity in the vertical
direction. We divide by the Jacobian �from Eq. �A4�� to ob-
tain the intensity distribution as a function of shift position.
For a uniform circular spot this becomes

I�D�� =
2I0

��d
2
��d

2 − d2�d/�D�, �A5�

I�D�� =
2I0

��d
2
��d

2 − d2�2 cot��i�
��sin�� − d��3

cos�� − d�
. �A6�

This equation is now the shift distribution in the input d
space. To describe the intensity distribution in output or
shifted space we must convert the d variable to a D� varia-
ble. First we recast Artman’s equation for direct substitution:

d = � − �2/�2D�
2 2 cot��i�

ΘcΘi

δ

Θd

d

22 dd −θ

FIG. 7. Divergence cone geometry.
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��d
2 − d2 = ��d

2 − �� − �2/�2D�
2 2cot��i��2

=��d
2 − �2 +

��2

�2D�
2 cot��i�

−
�4

�4D�
4 4 cot2��i�

,

�A7�

�d
2 − d2 = �d

2 − �2 +
2��� + �d�D�edge

2

D�
2 −

D�edge
4�� + �d�2

D�
4 ,

�A8�

where

D�edge =
�

�

1
�2 cot��i��sin��d + ��

. �A9�

From Eqs. �A4� and �A9�

D�edge

D�

=
�sin�� − d�
�sin��d + ��

,

�D�edge

D�

	3
�sin��d + ��3 = �sin�� − d�3. �A10�

In the limit as �→0 Eq. �A8� reduces to

��d
2 − d2 = �d��1 −

D�edge
4

D�
4 	 . �A11�

Combining this result with Eq. �A10� and letting �→0 yields

Lim
�→0

�I�D��� =
I0

�
��d

D�edge
3

D�
3 �1 −

D�edge
4

D�
4 . �A12�

Corrections to this approximation for ��0 due to the qua-
dratic term in Eq. �A8� can be obtained by altering the pow-
ers under the radical to noninteger values. This technique
accounts well for the erratic behavior of the function when
the alignment angle approaches the divergence angle. This
produces the Green’s function for shift distributions below
divergence angle:

ILSF =
I0

��d

�2 cot��i���sin��d + ���3

���D�edge

x
	a

− �D�edge

x
	b

,

x � D�edge. �A13�

To split the leading and trailing components of the shifted
wave fronts in the region below divergence the sign of the
shift angle � must be taken into account. This minor adjust-
ment is given in Eq. �8� of the text.

In the region where the magnitude of the alignment angle
is greater than the magnitude of the divergence angle, Eqs.
�A15a� and �A15b� give complete expressions for the shift
distribution. For numerical calculations the form of Eq. �A6�
combined with the positional conversion of Eq. �A4� is best
suited for describing the shift distributions. When the shift

angle is greater than the divergence angle the impulse re-
sponse is bounded and the upper limit of D� is given by
D�edge2

given in Eq. �A14�:

D�edge2 =
�

�

1
�2 cot��i��sin�� − �d�

. �A14�

It should be noted for consistency that many of these equa-
tions are approximations based upon representing sin�x� as x.
This approximation is very accurate when x�0.01 radians.
The expression for cot��i� is valid when � is much smaller
than �i. This approximation breaks down when the source
divergence is very large or when the angle of incidence be-
comes very small. The former case occurs when poorly col-
limated sources are used. The latter case occurs for large
ratios of refractive index. A final condition occurs near graz-
ing incidence where we must require that �i+��� /2:

I�D�� =
2I0

��d
2��d

2 − �2 +
��2

�2D�
2 cot��i�

−
�4

�4D�
4 4 cot2��i�

��2 cot��i��D�edge

D�

	3
��sin��d + ���3 ∀ �

�A15a�

or, alternately,

I�D�� = I0
�2

�3�d
2

1

2 cot��i�
1

D�
3

���d
2 − �2 +

��2

�2D�
2 cot��i�

−
�4

�4D�
4 4 cot2��i�

∀ � .

�A15b�

Equations �A15a� and �A15b� are both valid for D�edge

D�
D�edge2 and the cos��−d��1 term has been sup-
pressed for notational simplicity.

APPENDIX B: DETECTABILITY LIMITS
OF DIVERGENT MODEL

D�edge � S =
�

�

1
�2 cot��i�

1
�sin��d + ����

,

dS

dn
=

dS

d�c

d�c

dn
=

dS

d�

d�

dn
,

�i = �c + � or � = �i − �c, �B1�

sin��c� =
n0

n1
, cos��c�d�c =

− n0

n1
2 dn . �B2�

If a change in � results from a shift in refractive index the
incidence angle remains constant:

dS

d�


�i=const
=

− �

�

1
�2cot��i�

cos��d + ����
�sin3��d + ����

. �B3�

For �d+��0.01 we can approximate the expression to
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dS

d�


�i=const
�

− �

�

1
�2 cot��i�

1
���d + ����3

, �B4�

dS

dn


�i=const
�

�

�

1
�2 cot��i�

1
���d + ����3

n0

cos��c�n1
2 .

�B5�

For practical estimation, consider a fused silica to air inter-
face at critical angle. n1�1.4, �c� �

4 , and �=0:

dS

dn


�i=�c
+

�
�

�
�d

−3/2 �fused silica approximation� .

If we define the detectability threshold for shift measurement
as Ts and the detectability threshold for refractive index
variation as Tn then, Tn=

Ts

dS/dn , roughly proportional to �d
3/2,

i.e., a 10-fold improvement in divergent angle yields more
than a 30-fold improvement in shift detection. To detect a
change of 10−5 in refractive index of the air for �d=0.001
would require resolving Dedge to 0.015 pixels, i.e., Ts=0.1�,
which is common practice today.
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