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ABSTRACT 

Lipopolysaccharide (LPS) is a potent inflammagen that has been found to be 

primarily responsible for many symptoms caused by gram-negative bacterial infections. 

The LPS-initiated signal transduction pathways involve several terminal kinases, mainly 

p42/44 mitogen-activated protein kinase (MAPK), p38 MAPK and c-Jun N-terminal 

kinase (JNK), ultimately leading to increased expression of genes encoding such 

inflammatory cytokines as interleukin (IL )-1 �. IL-6 and tumor necrosis factors (TNF)-u. 

In this study, the effects of age on LPS-induced activation of MAPKs in the liver of rats 

were examined. Results show that the basal level of phosphorylated p42/44 MAPK was 

increased in postnatal day (P) 21 and P70 compared to P 1 animals treated with saline, and 

that LPS significantly increased the phosphorylation of p42/44 MAPK at P21 and P70. 

On the other hand, both basal and phosphorylated p38 MAPK did not show significant 

changes in P21 and P70 liver compared to PI. The effects of maternal exposure to LPS 

on the activation of MAPKs in P21 offspring liver were also examined. Results show 

that p42/44 MAPK activation was significantly decreased in the liver of pups born to 

LPS-treated dams as compared to those born to saline-treated dams following LPS 

stimulation. However, p38 MAPK and JNK activation was not affected by maternal 

exposure to LPS. These results indicate that MAPKs are differentially modulated by age 

and maternal exposure to LPS. 
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INTRODUCilON 

Lipopolysaccharide (LPS) is found in the outer membrane of Gram-negative 

bacteria. It is an endotoxin that can trigger sepsis and septic shock in a person ( Guha and 

Mackman, 2000). As an immune activator, LPS associates with LPS-binding protein 

(LBP) which brings it to CD-14, a glycosylphosphatidyl inositol (GPI)-anchored 

membrane receptor. LPS is then transferred by CD-14 to toll-like receptor (TLR)-4 

which initiates the intracellular signaling cascades that include adaptor proteins such as 

myeloid differentiation factor 88 (MyD88) and MyD88-adaptor-like/TlR-associated 

protein (MAUflRAP), and the phosphorylation of mitogen-activated protein kinases 

(MAPK) (Wang et al., 2006). 

The MAPKs involved in LPS signal transduction are p42/44 MAPK, also known 

as ERKI/2, p38 MAPK and c-Jun N-terminal kinase (INK). The phosphorylation of 

these kinases lead to the production of cytokines responsible for proinflammatory 

immune response namely tumor necrosis factor alpha (TNF-a), interleukin (IL)-1� and 

IL-6, as well as the expression of IL-10, an anti-inflammatory cytokine (Ning et al., 

2007). Inhibition ofp38 MAPK activation decreases the expression ofLPS-induced IL-I 

and TNF-a without affecting mRNA accumulation in monocytes (Guha and Mackman, 

2000; Lee et al., 1994). INK and p38 MAPK signaling cascades have been implicated in 

the induction of TNF-a in LPS-stimulated microglia (Uesugi et al., 2006). It has been 

shown that p42/44 MAPK can work independently of p38 MAPK and 1NK since 

inhibition of the mitogen-activated protein kinase ERK kinase (MEK) 1/2, which is 



known to phosphorylate p42/44 MAPK (ERKI/2), decreases LPS-induced expression of 

IL-I, IL-8 and TNF-a without affecting p38 MAPK and JNK in monocytes (Guha and 

Mackman, 2000; Scherle et al., 1998). All three kinases have been implicated in the 

signal transduction of LPS but each has various effects on the expression of 

proinflammatory cytokines. 

The liver is an important organ involved in LPS detoxification (Jirillo et al., 

2002). Kupffer cells are macrophages found in the liver and are the first to respond to 

the presence ofLPS. These cells express TLR-4 and produce proinflammatory cytokines 

when stimulated by LPS (Schwabe et al., 2006), and both p38 MAPK and JNK have been 

shown to be involved in LPS-stimulated TNF-a production in Kupffer cells (Shen et al., 

2005). LPS-stimulated IL-6 release has also been found to be regulated by p38 MAPK in 

rat Kupffer cells (Bode et al., 1998). Cytokines released by Kupffer cells, TNF-a for 

instance, may in turn propagate the signals to other parenchymal cells such as 

hepatocytes (Milosevic and Maier, 2000). Additionally, hepatocytes express TLR-4, 

suggesting that hepatocytes may also use the TLR-4 signaling cascade to produce 

inflammatory cytokines in response to LPS (Migita et al., 2004). Indeed LPS has been 

shown to increase the expression of IL-6 in hepatocytes, and LPS-induced IL-6 

expression is regulated by p42/44 MAPK (Jawan et al., 2008). This suggests that 

different liver cells use various MAPK pathways to produce inflammatory mediators. 

There is increasing evidence that the activity of MAPKs may vary at different 

periods of the development. It has been characterized that 25-month old mice liver has 

increased JNK activity compared to 4-month old mice liver in response to oxidative 
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stress (Hsieh et al., 2003). The basal level ofp38 MAPK is higher in 25-month old mice 

liver compared to 4-month old liver. In addition, the activation of p38 MAPK by 

oxidative stress present in the young liver was not observed in the aged liver (Hsieh and 

Papaconstantinou, 2002). In skeletal muscles of 36-month old rats, stretching stimulates 

p42/44 MAPK phosphorylation but not JNK and p38 MAPK when compared to 6- and 

30-month old rat skeletal muscle (Mylabathula et al., 2005). A study done on the 

developing rat visual system showed that p38 MAPK activation in the retina increases at 

postnatal day (P) 4, and then goes back to its basal level at P9. While from Pl5 to P45, 

p42/44 MAPK phosphorylation increases along with p38 MAPK. These studies suggest 

that p38 MAPK and p42/44 MAPK are differentially regulated during postnatal 

development (Oliveira et al., 2007). However, it is not known how LPS-induced 

activation ofMAPKs in the liver is affected at different stages oflife. 

Maternal exposure to LPS has a number of deleterious effect on the offspring, 

including intrauterine fetal death (IUFD), intrauterine growth retardation (IUGR), 

preterm labor, spontaneous abortion and embryonic resorption (Xu et al., 2007; Ning et 

al., 2007; Xu et al., 2005). Maternal LPS has been shown to increase the level of TNF-a 

in the fetal liver and fetal brain (Ning et al., 2008), slow skeletal development (Xu et al. 

2006), and delay the development of the innate immune response of the offspring to LPS 

(Hodyl et al., 2007) in mice. Postnatal exposure to LPS of pups born to LPS-treated 

dams has also shown decreased levels of various cytokines including TNF-a, IL-IP and 

IL-6 in the blood and inhibited mRN A levels of the same cytokines as well as the 

chemokines, macrophage inflammatory protein (MIP)-IP, MIP-2 and keratinocyte- 
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derived chemokine (KC) in the brain, as compared to pups born to saline-treated darns 

(LaSala and Zhou, 2007). It remains to be seen how maternal exposure to LPS affects the 

activation ofMAPKs in the liver of the offspring. 

This study focused on the effects of age and maternal exposure to LPS on LPS 

induced hepatic MAPK activation. Phosphorylation of the three terminal kinases, namely 

p42/44 MAPK, p38 MAPK and JNK, was examined in saline or LPS treated rats at 

postnatal (P) I, P21 and P70. Activation of these kinases was also examined in pups born 

to dams treated with saline or LPS at day 18 of pregnancy and subsequently stimulated 

with saline or LPS for 2 hours at P2 l. 
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METHODS AND MATERIALS 

Animals 

Adult male and female Sprague-Dawley rats were purchased from Harlan Inc. 

(Indianapolis, IN). The rats were acclimated for at least one week at a temperature- and 

humidity-controlled animal facility with a 12-hour light/dark cycle and fed a standard rat 

diet and water ad libitum. Animal studies were conducted with the approval of the 

Institutional Animal Care and Use Committee (IACUC) at Seton Hall University. Each 

male rat (250-300g) was placed in the same cage with 1-3 female rats (200-230g) at 

night for mating. To confirm copulation, each female rat was visually inspected for the 

presence of the vaginal plug. This day was noted as day O of pregnancy and the female 

rat was moved to a separate cage in the above-mentioned conditions. 

LPS Treatments 

For time-course studies, the pups were allowed to mature in above-mentioned 

conditions until postnatal day (P) 21 after birth. At P21, rat pups were treated with 250 

µg/kg LPS (Salmonella enteric serovar Typhimuriuml Sigma, St, Louis, MO), dissolved 

in sterile pyrogen-free saline, for 0, 0.5 h, I h, 2h, and 6 h (four pups per group) via i.p. 

injection. At the end of each treatment, the pups were then sacrificed and their liver 

tissues harvested and stored at -80°C for total protein extraction. 

For age-dependency studies, the pups were maintained in the above-mentioned 

conditions and randomly assigned to receive saline or 250 µg/kg LPS at Pl, P21 and P70 
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via i.p. injection. Two hours after stimulation, the pups were sacrificed and their liver 

tissues were collected and stored at -80°C for total protein extraction. 

To study the effects of maternal exposure to LPS on the phosphorylation of 

MAPKs in the liver of the offspring, the pregnant dams were randomly assigned to a 

saline control group and an LPS group. Dams exposed to LPS have a high rate of fetal 

resorption so the LPS group had twice as many animals as the saline group. One 

intraperitoneal (i.p.) injection of 500 µglk:g LPS was given to the dams in the LPS group 

while the dams in the saline group received one i.p. injection of saline on day 18 of 

pregnancy. The dams were then housed in above-mentioned condition and allowed to 

mature until P21. An i.p. injection of250 µglk:g LPS or saline was randomly given to the 

pups. Five pups from each group were then sacrificed 2 hours after saline or LPS 

treatment and their liver tissues harvested for total protein extraction. Another five pups 

from each group were anesthetized with euthasol and perfused transcardially with 

phosphate-buffered saline (PBS) followed by 4% paraformaldehyde. After perfusion, the 

Ii ver tissues were harvested and postfixed overnight at 4 °C. They were then rinsed with 

PBS and dehydrated through a series of washes starting with 50% ethanol (30 min, twice 

at room temperature), 70"/o ethanol (30 min, at room temperature), 85% ethanol (30 min, 

at room temperature), 95% ethanol (30 min, twice at room temperature), I 00% ethanol 

(30 min, twice at room temperature), xylenes (30 min, twice at room temperature), 

xylenes/wax (I: I v/v, 30 minutes at 60°C), and wax (30 min, at 60°C). Finally, the liver 

tissues were embedded in wax. 
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Total Protein Extraction 

The liver tissues were finely ground and 150 µI oflysis buffer containing 50 mM 

HEPES (pH 7 .5), 5 mM EDT A, 50 mM NaC� IO mM NaPPi, 50 mM NaF, I% IGEP AL, 

2 mM Na, VO.., and IX protease inhibitor cocktail (Roche, Indianapolis, IN) was added to 

every I 00 µg of tissue. The liver tissues were then homogenized with an Eppendorf (EP) 

tube pestle and sonicated 3 times with a Branson Sonifier 250 for 15 pulses and IO 

seconds on ice between each time. A 30-minute incubation on ice and a IS-minute 

centrifugation at 14,000g in 4°C followed. The supernatants were collected for protein 

concentration determination and western blotting. 

Protein Concentration Determination 

Protein concentration was determined using the bicinchoninic acid (BCA) Protein 

Assay Reagent from Pierce biotechnology Inc. (Rockford, IL) following the 

manufacturer's instructions. 

Western Blot 

Liver samples from the rats were prepared using a volume having I 00 µg of 

proteins mixed with an equal volume of 2X sample loading buffer, boiled for 5 minutes, 

centrifuged at 14,000g for 5 minutes at 4°C. The samples were resolved using a 12% (w/ 

v) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SOS-PAGE) gel and then 

transferred onto nitrocellulose membranes. The membranes were blocked with 5% (w/v) 

nonfat milk for 2 hours and incubated overnight at 4 °C with primary antibodies that 

recognize phosphorylated forms of p38 MAPK, JNK (Santa Cruz Biotechnology, Santa 

Cruz, CA) or p42/44 MAPK (Cell Signaling Technology, Boston, MA). Following four 
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JO-minute rinses with tris-buffered saline containing 0.1 % Tween-20 (TBST), the 

membranes were incubated in horseradish peroxidase (HRP)-conjugated rabbit IgG 

antibody (Vector Laboratories, Burlingame, CA) for I hour at room temperature. The 

membranes were washed 4 times with TBST before development with ECLP'"' 

chemiluminescence detection kit (GE Healthcare bio-Sciences Corp., Piscataway, NJ) 

applied directly. Scanning was done using Storm 860 molecular Imager (Molecular 

Dynamics), after which, membranes were stripped and reprobed with antibodies for total 

p38 and p42/44 (Cell Signaling, Boston, MA) as well as an antibody immunoreactive to 

�-actin (Sigma, St. Louis, MO). The scanned images were digitized using Molecular 

Dynamics lmageQuant software. 

Immunohistochemistry 

The embedded liver tissues were cut into I 0-µm sections on a microtome (Leitz) 

and transferred onto slides. The liver sections were then dewaxed and rehydrated through 

xylenes (5 min, three times), I 00% ethanol (5 min, twice), 95% ethanol (5 min), 70% 

ethanol (5 min), 25% ethanol (5 min), and TBS (5 min). After rehydration, the liver 

sections were heated for 3 min in 10 mM sodium citrate (pH 6.0) in a microwave and 

cooled down for 20 min at room temperature. The liver sections were subsequently 

rinsed with TBS and incubated with 0.3% H202 in methanol for 30 min at room 

temperature. The sections were then blocked with 5% normal host serum in TBS 

containing 0.2% Triton X-100, incubated with antibodies for phosphorylated p38 MAPK, 

phosphorylated JNK (Santa Cruz Biotechnologies, Santa Cruz, CA) or phosphorylated 

p42/44 MAPK (Cell Signaling Technologies) overnight at 4°C, and detected with the 
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VECT AST AlN Elite ABC Kit (Vector Laboratories, Burlingame, CA) following 

manufacturer's instructions. 

Statistical Analysis 

All data were presented as means ± SE and analyzed by two-way analysis of 

variance (ANOVA) followed by Bonferroni post-tests. Results with p<0.05 were 

considered statistically significant. 
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RESULTS 

Time-course ofMAPKphosphorylation in P2/ rat liver 

Rat pups were treated at postnatal day (P) 21 with one i.p. injection of250 µglkg 

of LPS for 0, 0.5 h, I h, 2 h, or 6 h. They were then sacrificed, their liver tissues 

harvested, and total proteins extracted for western blot analysis of MAPK activation. 

Antibodies reactive to phosphorylated p42/44 MAPK, phosphorylated p38 MAPK and P 

actin were used to evaluate the levels of phosphorylated p42/44 and p38 MAPKs. 

Western blot analysis showed a significant increase in p-p42/actin and p-p44/actin 

ratios at I h. The levels remained elevated at 2 h and finally returned to basal levels at 6 

h after LPS stimulation (Figs. IA and IB). In contrast, the p-p38/actin ratio was slightly 

decreased at I h and 2 h. This decrease, however, was not significant (Fig. 2A and 28). 

These data indicate that LPS stimulation in the offspring increased phosphorylated 

p42/44 MAPK level but not phosphorylated p38 MAPK in rat liver. In addition, p42/44 

MAPK activation reaches peak levels 2 h after exposure to LPS (Surriga et al., 2009). 
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Fil!Ure I. Time-course ofp42/44 MAPK in the liver ofP21 pups following LPS 
stimulation. Pups were treated with one dose of250 µglkg LPS for O h,  0.5 h, I h, 2 h 
and 6 hand levels ofphosphorylated p42/44 MAPK were determined using Western 
Blot. (A) Representative Western Blot image ofp-p42/44 MAPK with its respective B« 

actin two samples for each time period. (B) Quantitation of p-p42 and p-p44 MAPK 
normalized to �-actin. Values are means± SE, n=4. 
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Figure 2. Time-course ofp38 MAPK in the liver ofP2l pups following LPS stimulation. 
Pups were treated with one dose of250 µg/kg LPS for O h,  0.5 h, I h, 2 hand 6 hand 
levels ofphosphorylated p38 MAPK were determined using Western Blot. (A) 
Representative Western Blot image ofp-p38 MAPK with its respective 13-actin, two 
samples for each time period. (B) Quantitation ofp-p38 MAPK normalized to j3-actin. 
Values are means± SE, n=4. 
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LPS-induced activation of MAPKs in P 1, P2 l and P70 rat liver 

To examine how age affects the LPS-induced activation of MAPKs, pups were 

treated with 250 µglkg ofLPS or saline at postnatal day (P) I, P21 and P70. Two hours 

after stimulation, the pups were sacrificed and their liver harvested for total protein 

extraction. Western blot was used to analyze the level ofphosphorylated MAPKs probed 

with antibodies reactive specifically to either phosphorylated p42/44 MAPK or 

phosphorylated p38 MAPK. 

The ratios of p-p42 MAPK (p42/actin) and p-p44 MAPK (p44/actin) to their 

respective fl-actin were significantly increased in LPS-treated rats compared to saline 

treated rats at P2 I and P70 while in Pl rats, the LPS-induced increase in p-p42 MAPK 

and p-p44 MAPK was only marginal (Figs. 3A and 3B). The basal levels of the ratios of 

p-p42 MAPK and p-p44 MAPK were also noticeably elevated in saline-treated P21 and 

P70 rats compared to saline-treated Pl rats (Figs JA and JB). However, p-p38 MAPK to 

fl-actin ratio did not show significant increases in basal levels of saline-treated rats nor in 

LPS-treated rats compared to saline-treated rats at Pl, P21 and P70 (Figs. 4A and 4B). 
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Figure 3. Western blot analysis of the age-dependent activation ofp42/44 MAPK in LPS 
treated pups. Pups were treated for 2 h with either 250 µg/kg ofLPS or saline at Pl, P21 
and P70. (A) Representative Western blot ofp-p42/44 MAPK with its respective total 
p42/44 MAPK and f3-actin, two samples for each treatment of all postnatal days. (B) 
Quantitation of Western blots ofp-p42 and p-p44 MAPK normalize to �-actin. Values are 
means± SE, n=4. + represents significant difference between Pl saline and P21 and P70 
saline at p<0.05. * represents significant difference between P2 I saline and P2 I LPS as 

well as P70 saline and P70 LPS at p<0.05. # represents significant different between Pl 
LPS and P2 l and P70 LPS, p<0.05. 
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Figure 4. Western blot analysis of the age-dependent activation ofp38 MAPK in LPS 
treated pups. Pups were treated for 2 h with either 250 µg/kg ofLPS or saline at PI, P2 l 
and P70. (A) Representative Western blot of p-p38 MAPK with its respective total p38 
MAPK and �-actin, two samples for each treatment of all postnatal days. (B) 
Quantitation of Western blots of p-p38 MAPK normalized to �-actin. Values are means 
± SE,n=4. 
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Effects of maternal exposure to LPS on MAPK phosphorylation in offspring liver 

Pregnant dams were injected with 500 µg/kg of LPS or saline on day 18 of 

pregnancy. The offspring were then stimulated with 250 µg/kg ofLPS or saline at P21. 

To evaluate effects of maternal exposure to LPS on the activation of MAPKs in the 

offspring liver, phosphorylated MAPK, total MAPK levels, as well as, �-actin levels 

were measured using Western blot assay with antibodies immunoreactive to 

phosphorylated MAPKs, total MAPKs and IJ--actin respectively. (Surriga et al., 2009) 

Western blot analysis showed significant increase in the ratios of p-p42/actin and 

p-p44/actin born to saline-treated dams and subsequently stimulated with LPS (S+L) 

compared with animals born to saline-treated dams and subsequently stimulated with 

saline (S+S) at P21 (Figs. SA and SB). Animals born to LPS-treated dams and 

subsequently stimulated with LPS (L+L) showed some increase in p-p42/actin and p-p44/ 

actin ratios compared to animals born to LPS-treated dams and subsequently stimulated 

with saline (L+S) (Figs. SA and SB). Furthermore, p-p42/actin and p-p44/actin ratios in 

L+L showed a substantial decrease compared to those in S+L (Figs. SA and SB). In 

contrast, p-p38/actin (Figs. 6A and 6B) and p-JNK/actin (Figs. 7 A and 7B) ratios were 

not significantly affected by LPS exposure (Surriga et al., 2009). 

To verify these results, immunohistochemistry was used to detect LPS-induced 

phosphorylated MAPKs in the liver. Consistent with the western blot findings, the 

number of cells immunoreactive to p-p42/44 in the S+L group was significantly increased 

compared to those in the S+S group (Figs. SA and SC). The number of p-p42/44-positive 

cells in L+L was also notably increased compared to L+S (Figs. SB and SD). Results 
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also show that number of p-p42/44-immunoreactive cells in the L+L group was 

considerably lower than that in the S+L group (Figs. SC and SD). Furthermore, the 

decrease in p-p42/44 immunoreactive cells in the L+L group the S+L group was more 

region-dependent than cell-type dependent (Figs. SC and SD). For p-p3S MAPK and p 

JNK, prenatal or postnatal LPS treatment did not affect the immunoreactivity in the 

offspring liver (Figs. 9A-9D and Figs. IOA-IOD). 
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Figure 5. p-p42/44 MAPK Western blot analysis of P2l rat liver tissue. Pregnant dams 

were treated with either 500 µglkg ofLPS or saline on day 18 of pregnancy, pups were 
then treated with either 250 µgfkg ofLPS or saline at P2l for 2 hours. (A) 
Representative Western blot ofp-p42/44 MAPK with its respective f3-actin, two samples 
for each treatment. (B) Quantitation of Western blots ofp-p42 and p-p44 MAPK 
normalize to f3-actin. Values are means± SE: TF5. * represents significant difference 
from the S+S group at p < 0.05; # represents significant difference from the S+L group at 
p < 0.05. 
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Figure 6. p-p38 MAPK Western blot analysis ofP21 rat liver tissue. Pregnant dams were 
treated with either 500 µg/kg ofLPS or saline on day 18 of pregnancy, pups were then 
treated with either 250 µg/kg ofLPS or saline at P21 for 2 hours. (A) Representative 
Western blot of p-p38 MAPK with its respective 13-actin, two samples for each treatment. 
(B) Quantitation of Western blots ofp-p38 MAPK normalize to 13-actin. Values are 
means ± SE: n=5. 

19 



A. 
S•S S+L L+S L+L 

� � ,-----.-... ......----,. 

p-JNK 

actin 

B. 

2 

ai 
> 0 

"' · ....I "lii 
c � 

·- c 

"'·- 15 o 1  
� .. 

D.  S2 

"' z � 7  
..  D.  
.;  
et:  

0  

S+S S+l l+S l+l 

Figure 7. p-JNK Western blot analysis ofP21 rat liver tissue. Pregnant dams were 
treated with either 500 µg/kg ofLPS or saline on day 18 of pregnancy, pups were then 
treated with either 250 µg/kg of LPS or saline at P2 l for 2 hours. ( A) Representative 
Western blot of p-JNK with its respective P-actin, two samples for each treatment. (B) 
Quantitation ofWestern blots ofp-JNK normalize to P-actin. Values are means± SE: 
TFS. 
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Figure 8. Representative images ofp-p42/44 MAPK immunohistochemistry. Pregnant 
darns were treated with either 500 µg/kg ofLPS or saline on day 18 of pregnancy, pups 
were then treated with either 250 µg/kg ofLPS or saline at P21 for 2 hours. (A) saline+ 
saline: (B) LPS + saline: (C) saline+ LPS: (D) LPS + LPS. Scale bar= 50µm. 
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Figure 9. Representative images ofp-p38 MAPK immunohistochemistry. Pregnant dams 
were treated with either 500 µg/kg ofLPS or saline on day 18 of pregnancy, pups were 
then treated with either 250 µg/kg ofLPS or saline at P21 for 2 hours. (A) saline + saline: 
(B) LPS + saline: (C) saline + LPS: (D) LPS + LPS. Scale bar= 50 µm. 
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Figure I 0. Representative images of p-JNK MAPK immunohistochemistry. Pregnant 
dams were treated with either 500 µg/kg ofLPS or saline on day 18 of pregnancy, pups 
were then treated with either 250 µg/kg ofLPS or saline at P21 for 2 hours. (A) saline+ 
saline: (B) LPS + saline: (C) saline+ LPS: (D) LPS + LPS. Scale bar= 25µm. 
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DISCUSSION 

This study investigated how MAPKs were modulated in the liver by postnatal 

development as well as maternal immune activation. First, LPS-induced time course 

activation of MAPKs were performed on the liver of pups. P-p42/44 MAPK showed 

significant increase in the liver of LPS-treated pups at I h and 2 h. On the other hand, p 

p38 MAPK levels decreased at I h and 2 h, although this was not significant. Previous 

studies have also shown that MAPKs are activated differently at various points in 

development. The pattern shows an increase in phosphorylation of MAPKs as 

development progresses. The activation of p42/44 MAPK exhibited age-dependency in 

pups treated with LPS at postnatal (P) day I, P21 and P70. However, p38 MAPK 

activation was not affected by postnatal LPS treatments since no significant increase in 

phosphorylation were observed. Western blot results also showed that LPS-induced 

activation ofp42/44 MAPK in the liver of P21 pups is attenuated by maternal exposure to 

LPS. Images from immunohistochemistry verified these results but show that the 

attenuation is region-dependent rather than cell-specific. This suggests that liver cells use 

p42/44 MAPK as a mediator for LPS intracellular signaling during postnatal 

development. 

It has been reported that IL-6 expression is also diminished in the liver LPS 

treated pups born to dams immunologically challenged by LPS without affecting IL- I f3 

and TNF-a expression (Surriga et al., 2009). One study has shown that LPS-induced 

chemokine secretion in synctiotrophoblast (ST) cells, which are found in human placenta 
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and are in direct contact with maternal blood, is partly dependent on p42/44 MAPK 

(ERKI/2) activation but not p38 MAPK and JNK (Lucchi and Moore, 2006). Moreover, 

activation of p42/44 MAPK has been implicated in the sphingosylphosphorylcholine 

induced production of IL-6 in human dermal fibroblast cells (Kwon et al., 2007) and the 

increased expression of IL-6 by Leptin in blood monocytes (Najib and Sanchez-Marga.let, 

2002). It also has been shown that IL-6 attenuation due to maternal exposure to LPS 

corresponds to p42/44 MAPK reduction liver tissue (Surriga et al., 2009). Furthermore, 

previous studies have shown that p38 MAPK is more involved in TNF-a and IL-I� 

expression in monocytes and macrophages (Chung et al., 2003: Jiang and Ulevitch, 1999: 

Kitazawa et al., 2007). This suggests that the attenuation due to maternal exposure to LPS 

of the inflammatory response in the offspring, through IL-6 production, depends, at least 

in part, on p42/44 MAPK activity, not p38 MAPK and JNK. 

In the future, it will be worthwhile to see which transcription factors that p38 

MAPK, p42/44 MAPK and JNK act on are also attenuated by maternal exposure to LPS. 

These transcription factors include SRE? AP-I, CRE and NF-KB (Guha and Mackman, 

2000: Schwabe et al., 2006). It will also be interesting to see whether the activation of 

phosphatases that regulate kinase activity is increased in LPS-treated pups born to 

maternally challenged dams. MAP kinase phosphatase MKP-1 has been shown to inhibit 

p38 MAPK phosphorylation in macrophages (Bhattacharyya et al., 2007) and Hela cells 

(Lasa et al., 2002) though MKP-1 has been shown to more effectively inactivate JNK and 

p38 MAPK in vitro than p42/44 MAPK, PAC-I specifically desphophorylates p42/44 

MAPK and p38 MAPK, while MKP-2 regulates p42/44 MAPK and JNK (Kondoh and 
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Nishida, 2006). Future studies may show that these phosphatases can be implicated in 

the attenuation of p42/44 MAPK due to maternal exposure to LPS if there is an increase 

in their activity. 

It has been shown that Kupffer cells and hepatocytes use different mechanisms in 

activating proinflammatory cytokines in response to LPS. On one hand, LPS-induced 

cytokine production in Kupffer cells was shown to be mediated by p38 MAPK and JNK 

(Shen et al., 2005 and Bode et al., 1998), on the other, hepatocytes used p42/44 MAPK as 

mediators (Jawan et al., 2008). However, our immunohistochemical results have 

indicated that phosphorylation of p42/44 MAPK is more region-dependent than cell 

specific. It has yet to be determined what contributes to the region-dependent activation 

of p42/44 MAPK. It will also be interesting to compare the activation of p42/44 MAPK 

in Kupffer cells and hepatocyte, determining which type is more affected by LPS. 

In summary, LPS-induced phosphorylation of p42/44 MAPK in the liver is age 

dependent with p42/44 MAPK being significantly activated at P21 and P70 but not at Pl 

compared to their saline controls. Also, LPS-induced p42/44 MAPK activation was 

attenuated by maternal treatment with LPS in the liver of P21 rats. On other hand, p38 

MAPK and JNK activation in the liver was not affected by age or maternal exposure to 

LPS. This suggests that p42/44 MAPK plays a key role in hepatic inflammatory 

function modulated by age and maternal LPS exposure. 
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