
Johnson & Wales University
ScholarsArchive@JWU
Engineering Studies Faculty Publications and
Creative Works College of Engineering & Design

1995

Using MATLAB to Illustrate the 'Phenomenon of
Aliasing'
Sol Neeman, Ph.D.
Johnson & Wales University - Providence, sneeman@jwu.edu

Follow this and additional works at: https://scholarsarchive.jwu.edu/engineering_fac

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
Engineering Science and Materials Commons, Mechanical Engineering Commons, Operations
Research, Systems Engineering and Industrial Engineering Commons, and the Other Engineering
Commons

This Conference Proceeding is brought to you for free and open access by the College of Engineering & Design at ScholarsArchive@JWU. It has been
accepted for inclusion in Engineering Studies Faculty Publications and Creative Works by an authorized administrator of ScholarsArchive@JWU. For
more information, please contact jcastel@jwu.edu.

Repository Citation
Neeman,, Sol Ph.D., "Using MATLAB to Illustrate the 'Phenomenon of Aliasing'" (1995). Engineering Studies Faculty Publications and
Creative Works. 8.
https://scholarsarchive.jwu.edu/engineering_fac/8

https://scholarsarchive.jwu.edu?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/sot?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/279?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac/8?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcastel@jwu.edu


Session 1620 

USING MATLAB TO ILLUSTRATE 
THE' PHENOMENON OF ALIASING 

Sol Neeman 
Johnson and Wales University 

Abstract 

The phenomenon of aliasing is important when sam
pling analog signals. In cases where the signal is ban
dlimited, one can avoid aliasing by ensuring that the 
sampling rate is higher than the Nyquist rate . But in 
cases where the signal is not bandlimited , aliasing is un
avoidable if the signal is not filtered before it is sampled. 
It is then crucial to understand the phenomenon in order 
to estimate the distortion generated when the signal is 
reconstructed from its samples. Using the software pack
age MATLAB by MathWorks, Inc ., two examples are 
presented. The first is a pure sinusoid which is sampled 
at both higher and lower than the Nyquist rate , and the 
frequency spectrum of both sampled sinusoids are com
pared to illustrate the effect of aliasing. The second and 
more interesting case is a square wave which has an un
limited bandwidth. The square wave is a periodic wave 
that has Fourier expansion with odd harmonics only, 
the amplitudes of which drop as lin. A square wave is 
synthesized using MATLAB and its Fourier transform 
is presented graphically (The synthesized square wave 
inherently produces aliased components) . The odd har
monics and the aliased components seen on the graph 
are analyzed and compared to the predicted theoretical 
results . Graphs generated by MATLAB accompany the 
analysis for both signals. 

Introduction 

Physical signals in nature are continuous, both in time 
and in amplitude . On digital computers , they can be 
represented by finite sequences with finite precision. To 
do this , the signal has to be sampled and the ampli
tude of the samples be approximated by a finite number 
of bits (quantization of the signal) . Nyquist theorem 
states that the analog signal can be reconstructed from 
its samples, provided the sampling rate is greater than 
twice the highest frequency component in the analog 
signal. Thus if the highest frequency component is nn 
(called the Nyquist frequency), the sampling frequency, 
n., has to satisfy: 

n. > 2 · nn 
(the frequency 2 . nn is called the Nyquist sampling 

rate) 
If this condition is not satisfied, aliasing will occur , re

sulting in distortion in the reconstructed signal from its 
samples. When signals are not bandlimited, anti aliasing 
filters can be used to minimize the effect by attenuating 
the undesired high frequency components. In addition, 
wideband additive noise may fill in the high frequency 
range and then be aliased into the lower frequency range. 
In order to evaluate quantitatively the distortion in the 
reconstructed signal , it is necessary to understand why 
the high frequency components are aliased into the lower 
range . 

Why and how Aliasiug Occurs 

To get an insight into this phenomenon, we analyze 
the Fourier transform of the sampled signal and compare 
it to the Fourier transform of the analog (continuous) 
signal[lj : 

Let xa(t) represent an analog signal with the highest 
frequency component at nn, and set) represent a peri
odic impulse train , with a period T , that is: 

set) = L 8(t - nT) 
n 

where 8(t) is the unit impulse function. If Xa(t) is 
sampled at a period T , the sampled signal, xs (t) , can be 
represented as the product of the two, that is : 

Xs(t) = xa(t) . set) = xa(t) . L 8(t - nT) 
n 

Since multiplication in the time domain translates 
into convolution in the frequency domain , the relation
ship between the Fourier transforms of the three func
tions is given by: 

x.un) = 2l7l'XaUn) * Sun) 
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where n represents analog frequency. The Fourier 
transform of s(t), the periodic impulse train, is a pe
riodic impulse train in the frequency domain, that is: 

sun) = :; L 8(n - k ;7r) = :; L 8(n - kn.) 
k k 

Carrying out the convolution in the previous equation, 
results in: 

This equation states that the Fourier transform of 
the sampled signal is a superposition of infinitely many 
shifted copies of Xaun), resulting in repeated copies 
of Xa un) in integer multiples of n., in both direc
tion of the frequency axis. If the sampling rate is not 
greater than twice the Nyquist frequency, the copies, 
when superimposed , will overlap and higher frequ~ncies 
will be aliased into the lower frequency range; therefore 
we would not be able to reconstruct the original signal 
from its samples by the use of a filter. On the other 
hand if the sampling rate is satisfied, no overlapping of 
the copies will happen and with the appropriate filter 
it is possible to reconstruct the original signal from its 
samples . 

Fig. 1 represents the Fourier transform of xa(t) and 
x s (t) and the two cases described above. 
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Fig.1 Fourier Transform of an analog signal, xa(t) 
and its sampled form, x.(t). 

Aliasing can also be demonstrated in a simpler way, 
when we analyze the relationship between the sampled 

versions of a group of pure sinusoids[21. Consider the 
continuous sinusoid of frequency Wo : 

x(t) = sin(wo' t) 

When sampled at a sampling period T, the resulting 
sampled sequence is: 

x(n) = sin(wo . n· T) for n=0,±1,±2, ... 

Now consider the group of sinusoids of frequency w, 
where: 

27rk 
w=wo+ T for k = 0, ±l, ±2, ... 

When sampled at a sampling period T, any sinusoid: 

y(t) = sin[(wo + 2;k) . tj 

from this group , will result in a sequence which is 
identical to the sampled sequence of frequency woo To 
see that, we observe: 

y(n) = sin[(wo + 2;k) . nT] 
= sin[(wo . nT + 27rkn)] 

= sin[wo . nT] 

Thus x(t) and any ofthe sinusoids represented by y(t) , 
cannot be distinguished when sampled at a sampling 
period T. Note that Wo is considered in tandem with 
-wo° 

Bin# and Actual Frequency 
Relationship in FFT Computation 

When a sampled signal, x$(t) is represented by a 
. sequence x(n), the Fourier transform of the sequence, 
X(eiw ), is a frequency scaled version of x.(jn) with 
the scaling w = nT. Thus the analog frequency n = n. 
(where n .. = 27r/T ), is normalized to w = 27r. The 
FFT of a sequence of length N, produces N points (re
ferred to as bin # 's). In MATLAB, the first N/2 + 1 
points correspond to the frequency range DC to 1./2 
(Nyquist frequency) . The rest of the points correspond 
to negative frequencies (which will be truncated in . the 
following examples). 

Thus, to translate the values of the bin #'s to the 
actual frequency f , we use the equation: 
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f = (bin# -1)· fs/N 

Graphing FFT Values Versus the 
Actual Frequency , in Hz[3,41 

To graph the FFT values Of a signal versus the actual 
frequency in Hz rather than versus the bin #, we have 
to generate a frequency vector of length N /2 + 1, evenly 
spaced, which represents the frequency range: DC to 
fs/2 . For example , let X(n) represent N points FFT 
with N even and a sampling frequency fs ; In MATLAB, 
we can produce a frequency vector Hz via: 

Hz = Us/2) * (0: N/2)/(N/2); 

Since X (n) is of length N and we need only the first 
N /2 + 1 elements, we have to truncate the portion that 
corresponds to negative frequencies. This is done via: 

X(N/2 +2 : N) = []; 

Then we can plot IX (n) I versus Hz. 

Aliasing When Undel'sampling a pure sinusoid 

To illustrate aliasing when a pure sinusoid is undersam
pled , we use MATLAB to synthesize a sinusoid of fre
quency 550Hz, then represent it by two sequences: 

l)A sequence corresponding to a sampling frequency 
of f s = 2, OOOH::, thus satisfying the sampling rate in 
Nyquist. theorem. 

2)A sequence corresponding to a sampling frequency 
of Is = 1, OOOH z, a sampling rate lower than the Nyquist 
rate. 

Then we compute the FFT ofthese sequences and plot 
the results. Clearly, in the second case the frequency of 
550H z will be aliased into the range 0 - 500Hz (Note 
that when sampling at a rate of fs , the FFT values will 
correspond to the range of frequencies: DC to fs/2). 
Thus the FFT values for the sequence representing a 
sampling rate of 1000Hz will correspond to the fre
quency range DC to 500 Hz and the FFT values for 
the sequence representing a sampling rate of 2000Hz 
will correspond to the frequency range DC to 1000Hz. 

We will define two time indices, t1 and t2, of 1024 
points each and two frequency vectors H zl and H z2: 

tl runs from 0.00 to 0.5115 seconds, in steps of .5ms, 
equivalent to a sampling rate of 2, OOOH z. 

t2 runs from 0.00 to 1.023 seconds, in steps of Ims, 
equivalent to a sampling rate of l, OOOH z . 

Hz 1, the first frequency vector, runs from DC to 
1, OOOH z. 

H z2, the second frequency vector, runs from DC to 
500Hz. 

The next lines are the commands in MA TLAB needed 
to produce both sequences, compute their FFT and plot 
the results [31: 

t1=0:.0005:.5115; 
Hz 1 =(2000/2)*(0: 1024/2) / (lO24/2); 
xl=sin(2*pi*550*tl ); 
Xl=abs(fft(xl »; 
Xl(514:1024)=[ ]; 
subplot(211) ; 
plot( tl( 1 :64),xl(1 :64)); 
subplot(212); 
plot(Hz 1 ,Xl); 
(Fig. 2 shows MATLAB plots for xl and Xl) 

t2=0:.00l:1.023; 
Hz2=( 1 000/2)*(0: 1024/2) / (lO24/2); 
x2=sin( 2*pi * 550*t2); 
X2=abs(fft(x2)); 
X2(514:1024)=[ ]; 
subplot(21l); 
plot( t2(1 :256),x2( 1 :256)); 
subplot(212); 
plot(Hz2,X2); 
(Fig . 3 shows MATLAB plots for x2 and X2) 
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Fig.2 550Hz sine wave sampled at fs = 2, OOOH z 
and its FFT. 
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Fig.3 550Hz sine wave sampled at i. 
and its FFT. 

1, OOOH z 

Notice that Xl in the upper graph of Fig. 2 correctly 
represents the frequency component of 550H z. The plot 
of X2, on the other hand , shows that the frequency of 
550H:: is aliased into the frequency 450H z. This is in ac
cordance with the previous analysis we have since when 
the spectrum of x(t), the continuous signal, is copied (in 
integer multiples of 1000Hz, on both sides of the fre
quency axis), the frequency 550H z will be aliased into 
the frequency 450Hz. 

Aliasing When Representing a Square 
Wave By a Discrete Sequence 

As was mentioned before, when an analog signal con
tains frequency components higher than 0,s /2, these 
components will be aliased into the range DC to 0,./2. 
A square wave is an interesting example to illustrate 
this effect . Consider a periodic square wave with period 
T = 211" /wo whose Fourier series is given by: 

X(t) = ± f sin(2k + l)wot 
11" k=O (2k + 1) 

The Fourier expansion contains only odd harmonics, 
the amplitude of which drop as l/n (where n=harmonic 
#) and is infinite. This means that inherently any rep
resentation of a square wave by a discrete sequence will 
result in aliasing. 

To illustrate this using MATLAB, we synthesize a 
square wave, compute and plot the magnitude of its 
FFT and compare the results to the predicted aliased 
components. We will synthesize a 30Hz square wave 

with 50% duty cycle, consisting of 1024 points, sampled 
at a frequency of 1000Hz. The following are the com
mands inMATLAB needed to synthesize a square wave, 
compute its FFT and plot the results: 

x=square(2*pi*30*t2,50); 
X=abs(fft(x)); 
X(514:1024)=[ ]; 
plot(Hz2,X); 
where t2 and Hz2 are those generated in the previous 

example and "square" is a command from the Signal 
Processing Toolbox . 

Fig 4 shows the graphs generated by MATLAB . 
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Fig. 4 FFT of a 30H z square wave . 

First we will analyze the predicted aliasing effect. 
The first harmonic of the square wave is 30Hz , the 

2nd is 90Hz, the 3rd 150Hz, etc. Since the sampling 
rate is is = 1000Hz, we should expect that all the har
monics above i./2 = 500Hz will be aliased into the 
range DC to 500H z. 

The following is a list of the odd harmonics up to the 
35th, the corresponding frequencies and for the frequen
cies above 500H z , the aliased frequency : 
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Harmonic # frequency Expected to be aliased 
into the frequency 

1 30 
3 90 
5 150 
7 210 
9 270 
11 330 
13 390 
15 450 
17 5lO 490 
19 570 430 
21 630 370 
23 690 3lO 
25 750 250 
27 810 190 
29 870 130 
:31 930 70 
33 990 10 
;~5 1050 50 

The aliased components are indicated in Fig 4 and 
they are compatible with the values in the predicted 
list. Of course there are infinitely many odd harmonics 
aliased into the range DC to 500Hz. In this example, 
since their amplitude drops as lin , we can have an esti
mate of the distortion produced by each component in 
the reconstructed signal. 

Summary 

When sampling analog signals below the Nyquist 
rate, the frequency components above fs/2, where fs 
is the sampling frequency, are aliased into the range 
DC to f./2 . Illustrating the aliasing effect using syn
thesized signals can provide better insight and under
standing into this phenomenon which can in turn help 
to estimate or find bounds to the distortion in the re
constructed signal. 
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