
Johnson & Wales University
ScholarsArchive@JWU
Engineering Studies Faculty Publications and
Creative Works College of Engineering & Design

1996

Incorporating MATLAB's Signal Processing
Toolbox into a DSP course at an undergraduate
E.E. program
Sol Neeman Ph.D.
Johnson & Wales University - Providence, sneeman@jwu.edu

Follow this and additional works at: https://scholarsarchive.jwu.edu/engineering_fac

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
Engineering Science and Materials Commons, Mechanical Engineering Commons, Operations
Research, Systems Engineering and Industrial Engineering Commons, and the Other Engineering
Commons

This Conference Proceeding is brought to you for free and open access by the College of Engineering & Design at ScholarsArchive@JWU. It has been
accepted for inclusion in Engineering Studies Faculty Publications and Creative Works by an authorized administrator of ScholarsArchive@JWU. For
more information, please contact jcastel@jwu.edu.

Repository Citation
Neeman, Sol Ph.D., "Incorporating MATLAB's Signal Processing Toolbox into a DSP course at an undergraduate E.E. program"
(1996). Engineering Studies Faculty Publications and Creative Works. 5.
https://scholarsarchive.jwu.edu/engineering_fac/5

https://scholarsarchive.jwu.edu?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/sot?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/279?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.jwu.edu/engineering_fac/5?utm_source=scholarsarchive.jwu.edu%2Fengineering_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcastel@jwu.edu

Incorporating MATLAB's Signal Processing Toolbox
into a DSP course at an undergraduate E.E. program

Sol Neeman
School of Technology
Providence, RI 02903

Abstract

This paper provides some suggestions for
incorporating MATLAB's Signal Processing Toolbox into
a DSP course. Often, in a DSP course, students have
difficulties understanding abstract and non-intuitive
concepts and seeing their relevance to the practical part
of their curriculum. The tools offered by MATLAB's
Signal Processing Toolbox, can help to make these
concepts more tangible and provide a perspective for
students.

Some basic tools relevant to an undergraduate
DSP course will be introduced, including examples of
tool use and graphic results. The tools presented will be
applied in the areas of synthesis and analysis of signals,
FFT computation, impulse response and convolution,
frequency response, the Z-transform, filter design and
filter applications.

Introduction

One of the engineering courses that makes
extensive use of mathematical models in the E.E. program is
the course in DSP. The mathematical tools often are crucial
to providing insight into topics which are otherwise not
available. This presents difficulties for some students since
the math models require one step up in the level of
abstraction needed. Also, the "time constant" needed to
"absorb" and understand the models at a level that enables
students to use them with confidence, varies sharply.

The computational and graphic tools offered by
MATLAB Signal Processing Toolbox, can help reduce this
"time constant" and provide a hands-on tool so students can
practice their use at their own pace. These tools can be
integrated into the curriculum to cover the main topics in a
DSP course at an undergraduate level:

1.Discrete signals, DFT and aliasing.
2.Response of LTI systems in the time domain.
3.LTI systems, frequency response and geometric
evaluation of a transfer function.
4.The different forms of representing LTI systems.
5.Digital filters.

Analysis and synthesis of discrete signals,
DFT, the sampling theorem and the
phenomena of aliasing

The DSP Toolbox offers a set of commands for
synthesizing various basic discrete signals: sine, square,
triangle, unit step, impulse, exponential and sync functions.
These signals can be synthesized using a common time
index and saved for future use. More complex signals can
be synthesized by combining the basic signals.

FFT computations can be illustrated and practiced
on signals previously synthesized. In general, the length of
the sequence should be chosen to be a power of 2 so that
radix 2 FFT can be used without the need for zero padding.
Also care should be taken with the indices since
MATLAB's indices begin with 1 rather than 0. It is
convenient to use lower case letters to represent sequences
in the time domain and upper case letters to represent the
corresponding frequency components.

First the relation between Bin # and the actual
frequency should be explained in the FFT computation; this
relation is given by:

f=(bin # - 1)* fs/N For bin #= 1 to N/2 + 1

where fs is the sampling frequency, N is the number of
points in the sequence(N chosen to be even) and f the actual
frequency.
Thus bin # 1 through bin # (N/2 +1) correspond to the
frequency range dc to fs/2.

As an example, consider the following real
sequence and its fft computed by MATLAB:
x=[4 3 7 -9 1 0 0 0] % define a sequence of length
8
X=fft(x) % compute and display its fft

which results in:
X=

6.0
11.48 -2.75i
-2.0 -12.00i
-5.48 +11.24i
18.00
-5.48 -11.24i

-2.0 +12.00i
11.48 +2.75i

For fs=1000Hz, the first value, 6.0, corresponds
to dc and the Th value, 18.00, corresponds to 500Hz, the
Nyquist frequency. The last three values correspond to
negative frequencies and for real sequences they are
complex conjugates of the first half.

When graphing FFT values versus frequency in
Hz, a frequency vector should be defined and the negative
portion of the computed FFT values should be truncated:

Hz=(fs/2)*(0:N/2)/(N/2) % freq. vector dc to fs/2
% of N/2 +1 points

X(N/2 +2: N)=[]; % truncate negative portion

Then both the magnitude and the phase of the frequency
spectrum can be graphed vs the vector Hz.

Illustrating the phenomenon of aliasing
Often students have difficulties seeing the

importance and implications of the sampling theorem. The
square wave can provide an interesting illustration of the
phenomenon of aliasing. Since it is not bandlimited, any
discrete representation of a square wave will result in
aliasing[3]. Students can compare the predicted aliased
components to those viewed in the spectrum of a square
wave to get an insight into this phenomenon (see fig. 1.)

Synthesized noisy signals can demonstrate to
students how powerful the Fourier transform is in detecting
a signal buried in noise. As an example, generate a noisy
50Hz sine wave:
t=0:0.001 : 1.023; % Define a time index

% of 1024 points w/
fs=1000Hz
xn=sine(2*pi*50*t) + 5*rand(1,length(t))

% add noise
the fft of the noisy signal can now be computed and
presented graphically. The 50Hz component is clearly
distinguishable in the frequency spectrum of the signal (see
fig. 2)

2.Convolution and the response of LTI
systems in the time domain

The output of an LTI system to an input is given
in the time domain by the convolution of the input and its
impulse response. The commands "conv" and "deconv",
convolute and deconvolute two signals; the latter can be
used to compute the impulse response of a system from a set
of input/output.

First, students can compute the convolution of
short sequences without the help of the computer and verify
the results using MATLAB. Next, synthesized signals can

be used to represent inputs and the impulse response of a
system and the output can be computed using convolution.
Similarly, synthesized signals can be used to represent
input/output sequences and the impulse response can be
computed by MATLAB.

3.The transfer function of an LTI system, its
frequency response, poles and zeros and
geometric evaluation of a transfer function

The frequency response of an LTI system can be
computed and graphed using the coefficients of the
polynomials of the transfer function. In MATLAB, the
frequency response can be evaluated at n point (preferably n
chosen to be power of 2) equally spaced at the upper half of
the unit circle, 0 to PI(which correspond to the frequency
range 0 to fs/2).

If vectors b and a contain the coefficients of the
polynomials in the numerator and the denominator, the
following commands would compute and display both the
magnitude and the phase of the frequency response
evaluated at 128 points and displayed versus the actual
frequency:
[h,w]=frequency(b,a,128);
Hz=w*fs/2*pi;
subplot(2,1,1), plot(Hz,abs(h))
subplot(2,1,2),plot(Hz,angle(h)

Geometric evaluation of a transfer function
The geometric location of the poles and zeros of a

transfer function can provide qualitative and quantitative
information about the characteristics of the frequency
response of a filter[4].

The commands "roots" and "zplane" can be used to
graphically represent the poles and zeros on the unit circle
in the Z plane.

Students can compare their prediction of the
frequency response of a filter (using the geometry of the
poles/zeroes) to that generated by MATLAB. This can help
develop an insight into the relation between the two (see fig.
3 for the frequency response and the geometry of the poles
and zeros in a butterworth HPF)

4.Various forms of LTI system
representations

MATLAB provides various mathematical models
to represent discrete LTI systems: polynomial transfer
function form, factored form, partial fraction expansion
form and state space form. MATLAB also provides the
commands needed to convert one form to another.

The polynomial transfer function form is the z
transform of the difference equation which describes the
system in the time domain:

H(Z)=Y(Z)/X(Z)=
=b0 +b1 z(-1)+ ..+b M z(-M)/a0 +a1 z(-1)+ ..+ aN

z(-N)

In MATLAB, the transfer function is represented
by two row vectors which contain the coefficients of the two
polynomials.

Thus the transfer function:

H(Z)=3 +2z(-1)+4z(-2) / 1 +2z(-1)+ 3z(-2) +4z(-3)

is represented in MATLAB by:
b=[3 2 4];
a=[1 2 3 4];

This representation is convenient for
deriving the frequency response of the system as
well as the poles and zeros and their geometric
location.

The factored form of the transfer function is
given by:

H(Z)=k (z-z0)(z-z1)...(z-zM) / (p-p0)..(p-pN)

where z0, z1,..,p0, p1,... are the zeros and poles of the
transfer function. This form is convenient for implementing
the system in the cascade form and directly provides the
values of the zeros/poles which are useful for stability
evaluation.

The conversion from the polynomial form to the
factored form can be done using the command "root". For
the above example, the following will provide the zeros and
poles in two column vectors and the constant k as a scalar,
respectively:
q=roots(b)
q=

-0.3333 + 1.1055i
-0.3333 - 1.1055i

p=roots(a)
p=

-1.6506
-0.1747 + 1.5469i
-0.1747 - 1.5469i

k=b(1)/a(1)
k=

3

The reverse derivation, that of the polynomials'
coefficients from the zeros and poles of the transfer
function, can be done using the command "poly":

k*poly(q)
3 2 4

poly(p)
1 2 3 4

Similarly, conversion between polynomial form
and partial fraction form can be done using the "residue"
command, conversion from transfer function form to state
space form can be done using the command "tf2ss" and
conversion from factored form to state space form via the
command "zp2ss".

5.Digital Filters

MATLAB provides both a set of built in classical
filters as well as the tools to design both FIR and IIR filters.
Once the relation between the frequency response and the
geometry of the poles and zeros of a transfer function are
understood, students can construct various filters (low pass,
high pass, etc. with various roll off) then use synthesized
data to verify the action of the filter.

As an example, consider the following comb filter:

H(z)=1-z(-k) / 1-(1/k) z(-k) k=positive integer

This filter will reject the frequency fs/k and all its
harmonics(as well as the dc component)[4].

Suppose we need to remove the dc component, the
50Hz component and its harmonics from a signal sampled
at a frequency of 1000Hz. Since fs=1000Hz, we need to
choose k=20, so that fs/k=50Hz.

Then we can synthesize a signal, say a sine wave
of 125Hz, to which we add the following undesired
components: dc, 50Hz, 100Hz and 150Hz(since the
sampling frequency is 1000Hz, we should make sure all the
components we add have frequency components less than
fs/2=500Hz). The signal then is filtered using the above
mentioned comb filter, using both the commands "filter" and
"filtfilt", the latter of which minimizes the startup transient
effect.

b=[1 zeros(1,19) -1]; % num. coef. of comb filter
a=[1 zeros(1,19) -1/20]; % den. coef.. of comb filter
[H,w]=freqz(b,a,128) % compute freq. response
t=0:.001:1.023; %define a time index
x=sin (2*pi*125*t) + % synthesize signal
 1+sin(2*pi*50*t) + % undesired components
 .5*sin(2*pi*100*t) +

 .25*sin(2*pi*150*t);
y=filter(b,a,x); % filter the data
z=filtfilt(b,a,x)

Fig. 4 shows the frequency response of the comb
filter, and the filtered signal using “filtfilt”.

Figure1. A 30Hz synthesized square wave and its
frequency spectrum.

Figure2. A noisy 50Hz synthesized sine wave and its
frequency spectrum.

Figure3. The frequency response and the geometry of the
poles and zeros in a butterworth HPF.

Figure4. A comb filter and the filtered signal using
“filtfilt”.

References

1. The MathWorks, Inc., "MATLAB Reference Guide",
1992.
2. The MathWorks, Inc., "Signal Processing Toolbox User's
Guide", 1992.
3. Neeman, S. , “Using MATLAB to illustrate the
phenomenon of aliasing”, ASEE 95 Annual Conf. Proc.
4. Leland B. Jackson, " Digital Filters and Signal
Processing", 2nd edition, Kluwer Academic Publishers (pp
47-50, 94-97).

	Johnson & Wales University
	ScholarsArchive@JWU
	1996

	Incorporating MATLAB's Signal Processing Toolbox into a DSP course at an undergraduate E.E. program
	Sol Neeman Ph.D.
	Repository Citation

	Incorporating MATLAB's Signal Processing Toolbox into a DSP co

