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PREFACE

. The motion of an electron in a Coulombic field of atoms or
molecules is given by the Schrddinger equation. The equation has a
differential equation form in ordinary position space, while in momen-
tum space, which is the canonical conjugate space of position space,
it has an integral equation form. It is usuai to solve the Schrddinger
equation in position space, since in practice a differential equation
is usually easier to handle than an integral equation.

There are, however, some mathematical physicists who have
studied the equation in momentum space. V. Fock is particularly out-
standing among them. In the present ihesis, Fock's work is extended.

In his study of the hydrogen atom Fock solved the integral equation by
projecting the 3-dimensional momentum space onto the 4-dimeﬁéidnal hyper-
sphere in the way of projective geometry. Then after symmetrizing the
integral equation he reduced it to an eigenvalue p;oblem for the Ry
spherical harmonics. He obtained the eigenenergies of the hydrogen atom

- very elegantly and also explained the so-called "accidental" degeneracy
problem of the hydrogen atom purely mathematically. |

In Chapter I of this thesis, the one-center (Kepler) problem
in 2—dimen§iona1 momentum space is discussed in the same way as Fock
did for ;he hydrogen atom problem. ‘

For many years Fock's work has remained a curiousity because

_pf its mathematical difficulty, and because little has been known about

?
the R, spherical harmonics. However recently L. C. Biedenharn has done
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much to remove this trouble. In Chapter II of this thesis, by the use
of his results it is shown that the one-electron many-center problem
is nicely formulated in terms of the R, spherical harmonics. Also some

approximation problems are discussed.
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CHAPTER I

THE KEPLER PROBLEM IN TWO~DIMENSIONAL MOMENTUM SPACE

ABSTﬁACT

V. Fock studied the hydrogen atom problem in momentum space by
projecting the space énéo a 4-dimensional hyper-sphere. He found that as
a consequence of the symmetry of the problem in this space the eigen-
functions are the R, spherical harmonics and that the eigenvalues are
determined only by tﬁe principal quantum number n. In this chapter we note
that if his method is applied to the 2-dimensional Kepler problem in momen-~
tum space,, the eigenfdnctions are the R3 Spherical hérmonics, Ylm’ and the
eigenvalues are determined only by the quantum number 1. These facts enable
one to give a visualizable geometrical discussion of the dynamical degener-

acy.

IN%RODUCTION
A geometrical illustration of '‘a dinamical symmetry is often a
great:aid to the understanding. We have found that a 2~dimensional analog
of Fock's treatment of the "accidental' degeneracy and "extra" symmetry of

the hydrogen atom<l)

is particularly helbful in this regard.

Fock began his discussion of the dinamical syﬁmetry of the hydro-
gen atom with the momentum space Schrddinger (integral) equation for the
étom. He made a change of the independeﬁt variablestin this equation and

then redefined his dependent variables to symmetrize the integral equation.

We proceed analogously for a corresponding 2-dimensional problem.

L
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I-1. FOCK TREATMENT OF THE TWO—DIMENSiONAL KEPLER PROBLEM
The Schrbdinger equation for an electron in the potential, V(¥),
is given in Hartree's atomit units by
(2E +92) u(®) = 2v(®) u(@), (1-1)
where T is the position vector of the electron, u(¥) the wave function, E
the electronic energy associated with u(¥), and ‘VZ the Laplace operator
fof the electron. This position space equation may be Fourier-transformed
into a momentum space equation, which in the 2-dimensional case is:
(B2 p2) $UF) = -2 [y /(F-p) pi 4" (1-2)
The corresponding equation in the 3-dimensional case is formally the same
if dzp is changed to d3p. In equation (I-2),
po2 = -2E, | | (1-3)
R : et g
PP = &w)’lfé"""uci)/??- ;U (2/7)‘764'0'495@7 4p .y a-
and

Vip) = (z-rrfzfeﬂ’mi/(ﬁ) 25 V)

It

it

s o
fé"m"‘ Vip) dp. (1-5)
Analogous equations hold in the 3-dimensional problem if 27 =~ (277‘)3/2
and d? —> 43,
As shown in ﬁhe Appendix of this chapter, if the 2~dimensional

potential is '"Coulombic", that is,

V(Y) = -Z/r, (1I-6)
where Z is the charge of the center, then

v'(p) = ~-z/(2mp). | (I-7)
Substitution of (I-7) into (I-2) gives

92 2 = - __Z_ﬁ_ Z =, 2 (1_8)
(P p2) PPy = . = fml/'bl,?'t ¢ pry 4,




Now we may project the Z-dimensional momentun spéce onto the 3~
dimensiona1'Sphere of radius p, in the same way fhat Fock did for the 3-di-
mensional momentum space problem. A sphere is drawn around the origin of the
p space so that the center of the
sphere coincides with the origin.

P(pg30,¢)

0 , The projective origin 1s taken at
p plane R
ol - ‘ the south pole S. Then a vector P,

whose components are py, py,is pro-

Iy S =)
P = Ipy *+ Jpy jected onto the sphere where it may

Px = P cos ¢ .

?mﬂ fﬂ,~;¢g S. be described as (po;e,?) using ordi~
x . .
[%&t Py =P sin<? nary spherical polar coordinates,
From Figure I-1, we find that, for
FIGURE I-1. this stereographic projection,
P— Pytan8/2 3 @ — ¢ . (I-9)

If the rectangular coodinates of the pointsP(po;Qgp) are x, y, z in a 3-
dimensional Cartesian space with origin at the center of the sphere, then

we may define our variables so that:

(x/po)? + (y/p)? + (2lp)? = 1, (1-10)

. x/pp = sinbcosp = 7—%;%—- 3
= { = 'ZOP
y/po sind sin ¢ -———-—Z——"L"—62+ P ,
P~ p?
kN
Let ¥ be the angle spanned between P(PO;G,?) and P'(po;eﬁ¢5 on the surface

z/p, = cosB (I-11)

of the sphere, Then 2p, sin?¥/2 is the distance between P and P', and




(2oinf] = (]« (£) + (555]
2 2 |
PP
(pRa pR) PR ) o (I~-12)
The area element on the unit sphere is, by the third equation of (I-~11),

A = 4%549‘6ﬂ9 dp

—2 ] 2 — ___;2_&-——-2 2
Using (¥~12) and (I-13) we can temporarily write equation (I-8) as
3/2 d Z/Po Z 3/2 =,
(p2+p) PP = -2[7;—” §2m:}:' (p2+p3) () dI, (1-14)

This is a symmetric integral eéquation, so that the function (ﬂz-f,v’)]/zsb (ﬁ)
may be found as an eigenfunction of the kernel (2sin372I-l. Introducing

a new function,

) -7 )
W@y = (F R (g p )RR, (1-15)

into equation (I-14), we obtain

z 1 ‘ T Ik

piay = 2oL wa
27T 2.44¢1%%

where{l means the collection of variables 0 ,¢. In equation (1I-15), the

(1-16)

- factor (/gﬂpoz)‘l'is inserted to normalize the function YQﬂ)to 1.

It is a well-known result of the theory of homogeneous symmetric
integral equations that if one can find an expansion of a kernel K(Il,(xs as
jzﬂn;zo,j§f¢aq f;(JL)‘, then the eigenfunctions and eigenvalues of the
kernel are j;(ﬂ)and )qu.(z) It is not difficult to find such an expansion

for the kernel (ZSinB?Q.)'l: The common expansion of the 3~dimensional Coulomb

potential,
V4 - .
lﬁi‘zj'l B Aj B %HJ i L+ % EM(JL) ﬁm(ﬂ)’ (1-17)

gives on the unit sphere:

L

e T T TR T R T AR T M T T RS £




/ Y T <Y SRV
<'77;§)/q=/zj=1 - . - )_,, 3 %mt(ﬂ)‘ﬁ,,.,(ﬂ') -

2 dind T A+t (1-18)
Thus, if
%7’1 ("Q’) = 7;411 ("O‘ ) ‘ (1—19)
and ‘ :
/ -
F R A I P

then equation (I-16) is solved. This may be verified by substitution.

Now, in solﬁtions (I-19) and (I-20), the quantum number m can take
all fhe integral values from -1 to’l, so that there exist 21 + 1 eigen-
functions which belong to the energy state 1: in other words, the degeneracy
of the state is 21 +.1. From (I-lé) and (I-20) we sée that:the ground state

wave function is

' 1 _ .
= , S I-21
o = 77 I

and the first excited state wave functions are either

, ‘ . , i_-. B

or any linear combinations, such as the real functions:

7 .
T Nt Yl = [ smiaoy = [ 2o,
o s ST iy _ [3
7—;[%7-)7—7] B 2’%/“— snf s =g ——g_—’
Yo = ce0® =2 - (1-23)

The momentum space wave functions corresponding to the equations of (I-21) and

(I-23) are, respectively,

...3/
oo = /T 2P B

and

T SV TR e R T

PR TR R A ST

S s o




1 ‘ , =$/2
75 [7577"' 75%7] = )/:7%: @2_(/’02”‘/’1) 2—2/2/”;_; 5
w; - A
Ll bl == [ER 2+ T 2p0y

~$/2
Pro S g (pre 2T (A  z-25)

The position space wave functions corresponding to these functions in momentum

it

space or in Fock's projective space may be obtained by Fourier transformation
(using the second equation of (I-4)), or may be found direcfly as solutions
of the position space SchrBdinger equation (I-1).

'For the 3-dimensional Kepler problem, Fock obtained as the Schrbdinger

“equation in his projective momentum space on the 4~dimensional hyper-sphere:

Z /P, 1 / /

ﬂere w is the angle analogous tofK'in (I~12) but now on the 4-dimensional
hyper-sphere, so that 2sinw/2 is the ''distance" between twd points on the
unit hyper-sphere spanned by the angle b ; L4 is the collection of angular
variables of, eﬂ, @ (p—>py tan /2,0 —§ » (p-»c)o) for the 4-dimensional
hyper-sphere, and aU24 is the "area'" element on the hyper-sphere. He solved

this equation finding that the‘eigenfunctions are the R, spherical harmonics:

%//m (L) = ):Mrm () = /441/(00 Yom (1), _ (1-27)
where
¥ J« :
fﬁ%"/(ﬂ¢) ):Lp%(-o-zi.) 0/—[24 CE O, | (1~28)
and '
‘ LA 41
Ae) = A A Ha——— (1-29)
V#2 (n2 12) e = « (7%~ 42) d (toaut) _




and eigenvalues are:
. . ' 7 2 '
(Z/ﬂ )fn.ffm = 7 o E"’/W: h ?(Z/”) * (1-30)

Since the quantum number 1 can take all the integral values from 0 ton - 1,
and the quantum number m from -1 to 1 for each 1 state, the degeneracy of

n=1
the energy statern is Z (2Al+1) = n=2.
' £=0

I-2. DISCUSSION OF THE DEGENERACIES

The degeneracies in the 2- and 3~dimensional Kepler problems arise
because, iﬁ the 2-dimensional problem the momentum space 'potential' has the
symmetry of the three dimensional sphere, while, in the 3-dimensional problem,
the momentum space "ﬁotential" has the symmetry of the 4~dimensional hyper-
sphere. The way in which functions, which a?e obvipusly degeneratg on the
sphere, project intocfunctions, which are obviously different on the plane,
is 1llustrated for the first excite& state wave functions of the 2-dimensional
problem in Figure I-2,

In Figure I-2, photographs (a) and (b) correspond to the cases of
the 2-dimensional first excited "s" state, Y;(, and the 2-dimensional first
excited "p" states, 2~ (Y31 +Yy.9) or -2—% ( Y97 = Yj-7 ). Pictures (a)
and (b) indicate that in the angular space we can not distinguish one distri;
bution on the sphere from another, since the distributions differ only in
orientation. On the other hand the projected functions in the p plane are
clearly different. The “s" function has a circular node at the equator of the
sphere and the '"p" function has a linear ﬁode parallel to the x- or y-axis.
Photographs (a') and (b') indicate more clearly how the lines on the spheres

project into those in the p planes. The lines draw on the nothern hemisphere




correspond to those in the p plane inside of the‘equator of the sphere whose
radius is p,, and the lines on the southern hemisphere correspona'to those
in the p plane outside of the equator.

Exactly analogous relationships exist for the ordinary hydrogen

atom problem,

NI T T TR T T ST L e

o P e e
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photograph (a)

FIGURE I-2,
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photograph (b)

FIGURE I-2.
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photograph (a')

FIGURE I-2.
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photograph (b')

FIGURE I-2.
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APPENDIX. THE FOURIER TRANSFORMATION OF THE 2~-DIMENSIONAL COULOMBIC POTENTIAL

If the potential V(¥) is given, in 2-dimensional position space, by

- =N
VR) = ~-2=e¢e7,

then its Fourier transform V'(P) in the 2-dimensional momentum space is
obtalned as follows:

o AP iz -0l
(zw)_*je Fh2 2 A%

(

V(P

it

A
=2 i ~N 277—4‘ 2 Cad ‘
= (27) (-Z)jd/z e j e g
. 4 . o

Now

o

e, 0 T
J s = 2{ cod (preoas) do = 27 ], (p2) ¥

%)

S YR = (.zvr)"(—Z)f éo,(ajo (prdr =

-Z
Ry po?
When X —-» 0, we have

7) = 2
Viz) = >

and the Fourier trans form

-

/(.1 - -7

ST T T S

e e

4 L T
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CHAPTER II

MOLECULAR ORBITALS IN MOMENTUM SPACE

ABSTRACT

The.troubleSOme problem of developing cusps in ofdinary molecular
wave functions can be avoided by working with momentum space wave functions,
for these have no cusps. The ;eed for continuum wave functions can be elimi-
nated if one works with a hydrogenic basis set in Fock's projective momentum
space. Thié basis set is the set df the R, spherical harmonics and, as a
consequence, one may obtain, solely by the ordinary angular momentum calculus,
algebraic expressions for all the integrals required in the solution of the
vmomen;um space Schrbdinger equation.

A number of these integrals and a number of R4 transformation co-~
efficlents are tabulated. The method is then appiied to several simple united-
atom and LCAC wave functions for H2+, and ground'state energies and corrected
wave functions are obtained. It is found in this numerical work that the
method is most appropriate at internuclear distances somewhat less than the
equilibrium distance. In Fock's representation both LCAO and united-atom
épproximacions become exact as the internuclear distance approaches zero.

The united—-atom expansién can be Qigwed as an eigenvalue equation v
for the root-mean-squére mbmentum, Po =,/:EE: In the molecule, the matrix
operator correspanding to p, is related to the operator for the united-atom,

by a sum of unitary transformations, one for each nucleus in the molecule.
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INTRODUCTION
Much of our knowledge of the properties of the momentum space wave
functions of molecules is due to C. A. Coulson and his co-workers, W. E.

(5-8) used the Fourier trans-

Duncanson and R. McWeeny. Coulson and Duncanson
forms of atomié wave functions to obtain the momentum‘space counterparts of
a variety of'ordinary LCAO and valence bond wave functions. In earlier work,
‘Hicks(g) had investigated the momentum space wave function of the hydrogen
molecule, and receptly.F. M. Glaser(lo) has obtained the Fourier transform
of Bates' hydfogen molecule~ion wave function(ll).for momenta par&liei to the
bond axis.

Mbmentum space wave functions have the attractive property that
their first derivatives are continuous everywhere. This suggests that it may "«
be possible tb approximate them By eigenfunction expansions more teadily
thaﬂ<is the case for position space wave functions which possess a cusp at
each nucleus. In Addition LCAO momentum space wave functions have a particularly
simple dependence upon the coordinates of the nuclei in a molecule, so that
tﬁey are well adapteé to studies of the effects of changes in nuclear framework.
€12,13)

McWeeny investigated the solution of the momentum space

integral equation for the hydrogen'moléeuléaion by Svartholm's modification(la)
of Kellog's method., In his study of the first iterative correction to the
LCAO function he concluded that, because of the awkwardness of the required
integrations, the momentum space approach was not promising.

Reéently, however, L. C. Biedenharn(15> has obtained the Wigner co-
efficients of the R, group in terms of those df the Ry group. This‘makes it
‘practicable to use Fock’s remarkable work on the Kepler problem in momentum

space(l) in such a way as to avoid the difficulties McWeeny had to face.
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II-1. FOCK'S TRANSFORMATION

The integral equation inv‘momentum space corresponding to Schrb-
dinger's equation is ' .

(p2+p?) Yip) = IJK W (p) Ly 5 (11-1)
Here ’ l :

- )

pr=-2E; K=5;K ; K=m*Ip-PTejepbtif7IRi1. 11,
Ifyj(f"}is relateq to u(t), the position space wave function, by

WYp) = (z7r)'3/2jé"ﬁ'zu0i) A, (11-3)
then ,.

- _ -3/2( t',b_"/i 3 '3
Uy = (202 P WP 4. (11-4)

One often symmetrizes equation like (II-1) .by defining a new
function Sﬁlfﬁ)which obeys B :

Wip = N[K YE)Ip; - (11-5)
where K' is still a symmetric function of P and p', while /| 1s the eigen-
value corresponding to VJI(P')

For the Kepler problem Fock in addition made the following trans-

formation of variables:

It

N
i
.
ANt
R

:,44};«0( L B cad f | (11-62)

-
i
N
>
"
it

,euuo( N MﬂSﬂ ‘

I

— : —2/)ofi: v | ' »
( - P4 pP = Gtnd €9 0 | (II-6c)

7{ — M - CMO(,'

£ p? - - . (II-64)

(II-6b)
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This transformation is analogous to a stergographic projection from a plane’
onto a sphere, bﬁt it is from the 3-dimensional hyper-plane onto the 4~
dimensional hyper-sphere, $zﬂ+ 724- rz-r'xz = 1 . In terms of the p system
of variables,Athis hyper-sphere has radius p, =fCEE: so that while in the

(? , 7 . ; y X)) sygtem it is a unit sphere, in the p system its radius depends
upon py. In terms of a spherical polar coordinate system in 3-dimensional p
space t;hé transformation may be symbolized by p~> /;fm o2 , 60260, >,

On making the further identifications:

4% = {.&f_t_/_’f)yﬂ 5 L = eein sino Ao do dy (Ii-fa,b)_

2/

' I -s)2 2o
Wi, e,0) = 7 AR PP, arre
and noting that ' ‘
’ 2 / ’ o
(20im @) = (5-5Pr (=14 (3= ¢ P+ (X=%F
.:: 4/702/?7‘_?’//2
(PP P+ P?)
Fock found. that for the Kepler problem equation (II-1l) becomes
Wi p) = 2/ '~——5-L~6;—Z YWiie,¢) dS. (11-9)

27 (z,wlw.:z_

He ldentified this as an integral equation for the 4-dimensional spherical -

- (-8)

harmonics, solved it, finding

W) = Y, (0.4) i EZ/p =7

and used it to explain the "accidental" degeneracy of the Kepler problem.

Fock normalized his harmonics to the surface area of the hyper-sphere:

1 ¥ | ' ~
272 j K%“;(«'el‘f}—%f}m@({a V)J/‘Q = J’”fﬂ“": b, (I1-10)

From equations (II-7) and (II-8) this is equivalent to having
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¥
j% Brtem' P) Do P) A7 = Sttt mtn .

o ‘
The functions 9é%%“(p) of constant pQ thus are orthonormal with weight

(I1-11)

factor'( ﬁoz + p2 Y/ ( 2p°2 ). In contrast, no weight factor is required for

functions of constant z = npg,

b ymtm(P) = '(”11'”(‘7/”’;'}{ P ) Y 0t) 5 j=p, ara
obtainable by Fourier transformation of the hydrogenic-atom position space'
functions “z,nlm(?)‘ | %im&ng F?t‘&gwfafﬁv

The phase factor (—)n+1(151 in eqﬁation (II-12) 1is a produqt of
two terms: A factor(-)“‘1'1 is required because the argument of Fock's
Gegenbauer polynomials is the pegative of the argument of B. Poéisky and L.
Pauling(16)e An.additional factor of (-i)l obtained by_Po@isky and fauling
(after a correction is made for an omission in equation (16) of their papery
was omitted in their abstract and in the Handbuch article of H. A. Bethe and
E. E. Salpetet(17).

The relation betweeﬁ the functions of constant z and those of

constant p, i1s thus

M+ 1
)

2 =y

(4 ) nlm (P) = %'/a! 1. fm (/0) . . (X1-13)
In order that the projection from p space to angular space shall be onto
the samé sphere in every case, one must require that p, be the same for all

. ) - ' e

%g)ijxp7 ; 1.e.;, that z = npg. An expansion in terms of Fock's R, spherical
harmonics consequently corresponds to an expansion in p space using hydrogenic
functions with z proportional to n and a weight factor (ﬁoz + pz)/(2p02).
Since the R4 spherical harmonics constitute a complete set on the unit hyper-

- gphere, one need not deal with continuum basis functions if one uses this set.
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A number of these functions are listed in Table I.

II-2. THE MANY CENTER PROBLEM
When the general momentum space SchrBdinger equation (II-1) is

symmetrized and Fock's transformation is applied to it, one obtains:

. A7 P -BN) R,
YWee.9) = bo ((ZiZ; oLl 7)%] Wirere) di. (II-14)

2972 4 .441142 u)
For simplicity in notation we have written exp (- ip-R) where it would have

been more natural to have expressed things in terms of angular variables.
. Henceforth, we shell also write (). for the collection of variables &« , é,lf.
In the ﬁosition space problem one often seeks an expansion of u(f§
in terms of hydrogenic functions “z,nlﬁ(?) based on one or several ofigins,
" as in united-atom or LCAO'expansions. In momentum space this amounts to
expanding quﬁ)in terms of functions exp(iﬁ?i)%g’,uaagﬁh Thus we shall seek
solutions{of equation (II-14) in which?fftﬁ)is, in general, expressed in
terms of a‘series of functions exp(iﬁfﬁ)Tfﬁ;ﬂmLﬂJ. In order to proceed ;t is

necessary to do integrals of~the form:

I%("m (2, R)

2 r? f 4,4««20)

If we.let .
; .‘) ./ — = - 5
Y ) = TSI ¥ )

thenysince the ?f/- ﬂ)are eigenfunctions, with eigenvalues )/, of the kernel

(II-16)

-1
(4sin 5 )

J'u/mg(—a/i) Z;M -—3* MM (k’ %M('f)‘) (11-17)

}_‘f,,, pmeace A, (II-15)

TR TR TS T R 0 TR R S TR A
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To evaluate S we note that from (II-lO) and (1I-16) .

SZ{::(R) = fé FoR Y (-Q) P ‘/—QV' (11-18)

Now let

P

4 PR 21_4 &Ky M (ﬂ +F ) %LM(‘Q‘)

(11-19)
Then again from (IIfll), (1I-12) and (II-13)
N+1 - L 2 1/2 ~iPR X o 3 '
O(NLM = (=) (4) "'"},/7]-:' Fo je' %/",,NLM(/] &//' (11-20)

Making use of equation (II-4) one finds, after taking complex conjugates,

PR C o N#L+T 2. 2y 7 g |
(),{P)R= 4/7_’7%;,{4(—) (4) Upp, nem R UST RS W ED) (I1-21) -

Substituting (II-Zl) into (II-18) now gives

v L+1
Sz);ﬂfk) = %(" ++(J f/ U,qﬂ NLM(P)T(W/%VM /VLM) (II—ZZ)

The coefficients

T{w/w)ﬂ)/“nvm) = Zr f e > Lot )}FM(Q} Y/ () ‘(11-23)

may be evaluated by ordinary angular momentum algebra because Ry is locally

isomorphic with R3 x Rj.

The discussion of this evaluation, however, is reserved for the

appendix, because in order to obtain the T in this way, it is first necéssary

" to make explicit some results of Biedenharn on the connection between R4 and
R, Wigner coefficients. When the evaluation is carried out one finds that,
because of the triangle conditions on the angular momentum addition coeffiF

clents, the sum of equation (II—22) is restricted to

[n-pl £ N< n+y ; |I-2] 2 Lz 4+

AT ST, SRR T

T

Y R A SN L
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The only functions fequired for the evaluation of S and hence
1-77/'»1 (_(J,, R‘) are seen to be hydrogen atom position space wave functions
“Npo,NLM(R‘) and angular momentum addition coefficients. The f;mction
Po's/zuNpo,'NLM(ﬁ) is a dimensionless function ~of PoR. A numbgr of tﬂe S
functions are listed in Table IV, .

The function S can be given a simple interpretation in position

space. One has -

Iom 4.15"§ ¥
ShmR) = =, ¢ }VWUL} W, () diL

27
U-O"n A= 1 “’ = Fa1+ £2 2. /3
T J sU/’m")/“‘ 7 2p2 (/;/ﬂ,,mfm(/f)/f' (11-24)
One may view exp(ip- R) SU M(P) as the Fourier transform of “Vpo VAU (z-R)
and [(po? + pz)/(2p02)]$ﬁ (p}as the Fourier transform of [ (po2 -vz)/(Zpoz)J
“npo,nlm(r)° Parseval's ‘relation then gives

Iz v A~
SZ);:'(R) =" (4) ZJUW ,va“’?)(“E"““V)Uwp wtm®) d% . (11-25)

Since the difference between the kinetic and total energy operators is the
negative of the potential energy operator -z/r, S is proportional to the.
matrix element of the potential energy between u,p, 3. (¥-R) and “npo,nlm(i")~
The functions Sgﬂ(ﬁl) are elements of a unitary matrix as may be
seen by multiplying equation (II-16) by its complex conjugate and integraﬁing

over the hyper-sphere.

I1-3. UNITED-ATOM EXPANSION

Let us now rewtite equation (II-14) as

L) = L Zj 2 epLUE-PORI . Wiy Jo. (11-26)
0 . .

~27r‘2 4_Mzw
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Expanding the kernel in terms of R4 spherical harmonics one has

i AR I e
= BLLUEDAL < 23 [TV 5[5 Y]

‘?.44«‘ ég
- ¥ 4 At . & Y
= )7 Z CS st @] =[Sy HuR)] %,3,«('{2') }U;%,(a’l (11-27)
~ Hence, if
Yy = ‘% Cage W, (), (11-28)
then ' ‘
A Case = 6%76, :ﬁgl CaZ'c’ 3 (11-29)
wheré

e’ et ‘“7 ”
PLe =X, Wil wikia = s, cm,)] [s255 )]

The resulting secular equations when put in matrix form are therefore:

(P -pl)c = 0. (1I-30)
Here ﬂ? is the matrix of Pg'g'g; Il the identity matrix,  the vector

matrix of the expansion coefficients in (II-28), and () the null matrix.
-If T is the (diagonal) matrix of (1/n) then these equations may evidently

be written as

o -1 )
(ZijSj mS; - Al ) ¢ = 0. | ~ (11-31)
It is a valuable check to notice that the "united atom'" expansion
(I1-28), when transformed into momentum space and then into position space,

gives, respectively,

4 ' b+1
W@ = 2

.4 - | |
(i) Casc %%, ase (P) . (1I-32a)
ab¢ -
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and

4+1 . ) -t
uty = 3 N0t Cose Uapy,ase R,

abc (I1-32b)

Though the functions %;, g}ﬁ and Yape, abc('i") are not orthogonal, they are
. 1

2, a8
‘closely related to orthogonal functions introduced by H. Shull and P.-O.

LBwdin in their calculation on helium(la) and then later used by K. M. Howell

and H. Shull in their one-center calculation on the hydrogen molecule ion(19>.

Further discussion of this problem is given in section II-5 and Appendix C.

II-4. SOME FIRST ITERATED WAVE FUNCTIONS FOR H2+'

To gain some idea of thé numerical features of the Fock represen-
tation approach, we have applied it briefly to the hydrogen molecule ion,
Setting ﬁl‘u 4§2 = R and A = Zo = 1, and also letting Tfr%ﬂ)= }ﬁ;odﬂ)=.l,
we may treat equation (II~14) as an iterative scheme for approximating the
- ground state wave function and root-mean-~square momentum po.'The first iter-

- P
ative function ¥/()is then

1 1 (2cee(P-P)-R] h /
Yo = g [2es PR Y w) do
[ 2

R y - -'4'/" = "'ﬁ"ﬁ |
,,%;; [Lsie@e™ + Lsipenre jy{%m). (T1-33)

At this stage we may view p,R = s as an arbitrary parameter. (In the corres

i

sponding pésition space problem pg beéomes the scale parameter in the wave
function.) ihe first iterated func;ion is then a source of information on
the appropriateness of the choice of starting function..Now equation (1I-33)
may be viewed as a sum of LCAO functions +(-)"*! (ifxexp(ii§~§) nggyd(JZ)
with positive real coefficients ;(-fﬁi (—171(1/9)8522(;§). Using Table 1V

we have evaluated these coefficients for s = %, 1, 2. The results are ob-

T L
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tainaﬁle from Table V. Sincé plausible values of Po lie in the range
1<fpd 2, it 18 apparent that even at quite small internuclear distances,
the first iterate is fairly extensive mixture of LCAO functions when the
starting function is a 1ls "united atom" function.

We may also determine how the first iterate 1s bullt of united-
atom functions in Fock space. Makihg use of identity (II—16) once again

transforms (II~-33) into

Y =7, 5 [SheRi£shad) + S 2§ ] Y, (0)

oBY u%ﬂ
= o% [ Wy (R) + W (B)] Yooy @ (136

The. coefficients of the hydrogenic functions'EPr (L) are tabulated in
Table VI for the same values of pyR as in previous paragraph. If the starting

function is the LCAO function

PR SipR - A
[+ 7] W), (11-35a)
which Eorresponds to the position space LCAO function
~HIZ=RI _p A+ R
é + e’ ;- (II-35b)

then the first iterated function is,given by

-

—S.U-ZQ') 2—4 [ {Jvllfm, 200 Tt 55,%«(22)} e

'rl {Jﬁm 100 * SW/ ('222} e’ ]%]m(ﬂ) * (I1~36)

When p,R = 1, as in the simple LCAO model of -the hydrogen molecule ion,

1&
XL

 ore finds that in the first iterated wave function the coefficients of various

LCAO functions are . .as indicated'in Table VII.

TR T T e

i e i T
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II-5. ESTIMATION OF ENERGIES OF SOME H2+ WAVE FUNCTIONS

There are a number of ways in which Fock representation wave func-
tions may be used to estimate energies. In each of these oﬂe treats s = poR
as a parémeter and calculates the value of p, corresponding to a particular
value of s. One then may evaluate the corresponding value of R = 8/pge

In Kellog's method, the first approximate eigenvalue ;s given by

| 1 v . - o . 0 1/2
fo= Wi |Wia) +<¥ [ Vi) |
0 Ly . o

Using a united~atom ls function ﬁﬁgaéﬂ) for?ff(jn, choosing the small value
s = ) appropriate to such a function, and using the approximate W values
of Table VI, one finds the approximation -2E = po2 = 3,228 at R = 0,278.
This energy value is 5.0% higher (or smaller) than Bates' value for an inter-
nuclear distance of 2R = 2x0.278 = 0,557,

" In Svartholm's methqd the first approximate eigenvalue is given by

£ o= (Vi |Vay (v V).

Using the same starting funcfion{ and 5 and W values as in previous paragraph
;ne finds the approximation -2E = po2 = 3,166 at an internucleaf distance |
0.562, a value for the energy 6.6% higher than Bates' value.

If one uses the exact value of ZW%gg(ﬁ) for 8 = %, 1.7924 (Foot~
note of Table VI), then -2E = 3.2127 at an interpucleaf distance of 0.558.
The energy value is 5.4% higher than Bates' wvalue.

The matrix equatioﬁs (II-30) and (II-31) are identical with the

equations one obtains when one uses Ritz' method to approximate the solution

of the Schrddinger equation in Fock's representation (II-26). In using Ritz’

AR SRR R 1Ty O T T T rs Y




method, a basis set qf n functions leads to a P matrix of dimension n x n.

If the elements of this matrix are to be evaluated exéctly, one requires

an 5 matrix of dimension n x0o . Since, both in practice and in principle,

this makes little sense, 1t becomes important to know how truncation of

the S matrix‘affects the calculated values.df Po+ We are not in a position

to give a general diécussion of this question, but we have made a short

numerical study of it, using a basls set composed of 1ls, 2s, and 3d func~

tions to build the ground state wave function:sof H2+. If S 1s a 3 x 3 matrix

of Sg functions in which a and b are each 1ls, 2s, 3d, then when s = %, one

obtains an approximate energy, -2E = 3,055 at R = 0.286. This is higher

. than Bates' value by 9.6%. If S is enlarged to a 3 x 4 matrix by including

Sgp funétions, then for s = )% one obtains an energy -ZE ='3,276. This energy
is higher than Bates' value by 3.7%Z. Including Sgs and sgp functions gives

.a‘3 x 6 S matrix which for s = ) leads to an energy of -2E = 3,297 at

R = 0,275, This is 3.1% higher than Bates' value.

In general, it is not as~easy to estimate the ehergies corresponding
to LCAO functions as it 1is to estimate the energies corresponding to united
atom functions. However, it is not difficult to’ apply Svartholm's method
to LCAO functions. One finds that if?%f%ﬂ)is the function of equation (II-35a),
then when s - 1, use of Table VI for 2W%88(2ﬁ) gives -2E = 2,542 at R =
0.627, This is 5:1% higher than Bates' value. If one uses the exact value
of ZW%gg for s = 1, viz., 0.9450 (Footnote of TaBle VI), then -2E = 2,640
at R = 0,616. This is 2,17 higher than Bates' value. As R—+ 0, po—> 2, (E— -2),
and the LCAO function becomes the 1ls function,apprépriate to the helium ioﬁ

He+ .

= e

N

e BT

S e
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In the above péragraph we have shown some simple numerical calcﬁ—
lations for H2+ using the secular equation in Fock representation (II-30).
for some united;atom expansion functions. We have also briefly discussed
the truncation problem 1nv61ved in the S matrix when we evaluate the P
matrix. In the procedure for the estimgtion.of the enérgy we first obtained
Po as an eigenvalue of the operator P from the equation [_[)?—;/9(,][[-1 0 , and
then found the energy E from the value of p, by the relation po2 = ~2E,
Since ¢ is an eigenvector of P, the expansion coefficients in (II-30) are,
in fact, associated with the eigenvalue p,.

On-the other hand, if we apply the variation method to an equiva-
lent expansion function in position space representation (II-32b) and obtain
the energy minimized withvrespect to the expansion coefficients, then the
energy is found as a function of p,, and may be finally minimized with respect
to the parameter p,. In this case the expansion coefficients are associated
directly with the energy. At the final point where the energy is minimized
with respect to the parameter po,‘the energy- value and the parameter value
méy not be related by the relation po2 = ~2E,

To compare the two apprpaches'we refer to the numerical work of
K. M. Howell and H. Shull(lg). In their oné4center calculations on Hz+ they
used orthogonal basis functions {uf)¥p. (6,¢), which form a complete set,
introduced by H. Shull and P.-0. Ldein(ls). As shown in Appendix C, the
basis functions in (II-~32b) “npo,nﬂm(?) are closely related to their basis
functions. And in fact bo;h basis functions span the same space if:we také

the same number of them successively from nf = ({¢+ 1)/ for each f . All

functions used by Howell and Shull are composed of a series of such successive

/
T R T

R TSR B S
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basis.functiéns. Therefore, exactly the same. arguments can be applied to
our one-center expansion functions in position space repreéentation (1I-32b)
if we replace their parameter n by pge.

In Figure II-1 are shown photographs of Howell and Shull's figures
in which they show relations of energy values E to the parameter values
gf =7 Rqs  for various one-centef expanéion functions at an interﬁuclear
distance Rgp = 2. Under the figures 'is shown a table, also from the same
article, in which are tabulated basis functions used in their calculations,
the parameter values which give the minimum energy values,vand the minimum
eneggies. In the fable we also add a columnfor (VCEE)Rab, in which all the
values/were evaluated by us from their energy values.

From the table we see that‘the values of (yCEE)Rab are all about
2.85 for the functions composed only of {s)basis functions ("spherical ap-
proximation'), exceﬁt a function composed only of {1ls). For these functions
we seé, in Fig.l'of'Figure II-1, that the energy values.for this parameter
value, 2.85, are slightly higher than the minimum energy values, but thét
the differences are at largest only 0.3 to 0.4%. Thus, we may conclude that

as far as the '

'spherical approximation" is concerned, finding the energy.
from an eigenvalue p, by the relation P02 = -2E 1s fairly exact, except in
the case that the wave function is approximated only by a {1s) function.
Similar arguments may be applied to other approximate functions
than the 'spherical approximation,' though the arguments can not be so clear
as in the case of the spherical approximation, because Howell and Shull show

the effects of the parameters on the energy values Separately for (s)terms,

{d) terms, and a (g) term.
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Matrix Functions
size

1

2

10
11

15

included ?4

1s 1.824
28 3,102
3s 3.827
4s 3.827
55 3.961
6s 4.989
6s + 1d  5.000
6s+ 24 5.000
6s + 3d | 5,000
6s + 4d 5.000
6s + 5d 5.000
6s + 5d .+ 4g 5.000
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Fic. 2. Energy of lowest root of the matrices for H,* contain-
. ing six {s) functions with &=25.0 and i (d) functions; i=1,
¢ 2, -+-, Sasa function of £s=7¢Ras; Rap=2 a.u. Also shown is the

variation of the lowest root of a 15th order matrix containing six
i {s){functions with &=5.0, five {d) functions with £;="7.0, and
four (g) functions as a function of {,=7%,Ra; Ray=2a.u. E is the

i total clectronic energy in Hartrec atomic units. ,

fd'ggn

4,397

6.346

16.351

- 5.309

7.254

7.000 13.59

FIGURE II-1

~-E

0.96732"
1.01617
1.01744
1.01743
1.01832
-1.01842
1.07947
1.68239
1.08230
1.08288
1.08330°

- 1.09563

2.782

2,851

2.853

- 2.853

2.854
2,854
2.939
2,943
2.942
2.943
2.943

2,961

PRI ST T ST

R TR T Y

SR S R




30

APPENDIX A. EXPANSION OF PRODUCT OF TWO R, SPHERICAL HARMONICS OF THE

SAME ARGUMENT

Biedenharn defines(ls) Ry spheriéal harmonics, Ynlm’ with the

following properties:

* .
S‘nl’l%’(ﬂ)}{n/m(ﬂ) dn = Jo.'l’m’,m/w y (A1)

VR . Yt | ,
Ytn @ = & Lo (A2)

His phase and nomalization conventions are different from those of Fock

so that : ‘
A :
}U?, M(JL) = () y2m? wa(ﬂ)- (A3)
Note that '
»
0 = ;M 0 .
}U;‘W( ) " W2 a6

For the Kronecker product of the rotation matrices of the Ry, group,

Biedenharn writes

£P5¢'1 =~rp,gl t ~0P,Q] -
D - D '=ZJ v D ‘ U . (A5)
| 7R
He then shows that the Wigner coefficients of the R4 group, the matrix

Pl

elements of U, are

P mty pytm | UL P pg s POLM> = [(Pro-1)(Pqri)(2tsnat+1)]"

2 (P%e)  Lprg)  1(P+Q)
ly 7 4 '
L JBALM) {4 gty Lipegy L (pe@) [ -
¢ y L (46)

Here { g% m fm//’/ZM> 1s the Wigner coefficientwof the Ry group and the
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} are 9-j coefficients.
In Biedenharn's notation the 4~dimensional spherical harmonics

I ]
11

are
. n . X[?)—f, o]
(—Q') , (A7)

Yn fm(‘o‘) = y2n? fom , 00 -

Taking relations (A3) and (A7) into account one obtains
L[—- 7103 .
(A8)

%Ivn @) = (-4.) D bm , 00

Writing n for %(n - 1) and using equations (A5) and (A6) gives

* ¥ o
Xﬁ(’fm (4) -yj??_/m (ﬂ) - 22—-

¥ =~y P M - PR
X%LM(ﬁ) (2702705 2W000{U] 27000 ; 27 000> (A9)

On using relation (A9), taking complex conjugates, noting that all the Wigner

and 9-j coefficients are real, and making use of well-known properties of

these coefficients, one obtains:
‘ 2547

Q0 A == )

Y WYt = 200

| i
x HAm'm /I.’UM)[,;;/
[/

L -
[naN (24% 1)24+1)] i

). |
W p ) w10y

SRS
~ %) %

APPENDIX B. EVALUATION OF THE T(nlm;M%M;NLM)

One first notes that

__.ﬂoai = 4- = | = ’ __('),
i+ P s T RFReON =2 ) Y M. e

Equation (II-23) can therefore be written
(nbm i Wirg) = <= 2w (o) + W (Y, W) Y ) da
T lwbm i wirg) = S |2, (o) + Y YY) @Y ()4l gz

Applying equation (Al0) one then obtains the results shown in Table III

@4—2 ~-L
7”” 24 Lo 0/27” 27 o/rmlULZ?? 027 0;2N o LMD

T S T D TR T R TR e TR
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APPENDIX C. THE FUNCTION up, o1, (%)

The hydrogen-like wave functions for a nuclear charge z are given

by
uz,nﬂm(—é) = Rz,nﬂ(f) Y (6, 5 ' :ﬁ
n=1,2, ...; [= 0,1,2,.;.,n-l; m = ={,-f+1,..., 4,  (Cl) :
where . ‘
/l
Ryaptny = - L=tz 0117 (ﬁ)m(i“‘z ”)pé' M”(“‘M)
37 [‘(77 [)113/2[2 ]1/2 7 7 N+l (C2>
and Yy (6,9) are the Rj spherical harmonics. In (C2), gc ‘/ are the
associated Laguerre polynomials defined by(20> 5
i~ 1 A
240+ 1 2 (_f)
(P) =~[(n+¢)!
Loysg () = -Lne01] ;o Al (n-t-1-2)! (20¢1+2) (€3)
and y
24+2 2 +7
"wa-l (f) = "CW+1
| 2SR £
2
= [(n+0)!] ;ZJ ; Iy 7o -
oo A,‘('n—l—z—z).(zfuv«a). (c)
Substituting z.= np, into (Cl) and (C2), we have :
Saps,ntn(® = Rapg,ne(r) Ym(0,), (c5) |
where
((n-p-1)1 J 2441
, - 250
Koyt ) [(n40)1 777 Cem] (Zf) (zﬂ'/l) e ‘Z’”*’{ ). (cé)
These functions are normalized to 1, but not orthogonal.
H. Shull and P.-0. LBWdin introduced the ofthogonal functions(ls):
e
~ [(n=p-1)!] 3/2 4 =y p2dt2
. = g 2 .
<k E(w+1+1)/13/2( 7eny e °Cwuf+z o). €7
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These functions were used by K. M, Howell and H. Shull in their onme-~center

calculations for hydrogen molecule ion(19>.'

20+ :
Since the polynomials ozm/(f) and iﬁf 7(j’) give the same

number of terms in the variable f for the same values of n and {, and

. /2, X =pn
1) gy = ’thf);;,(/u)x/(’” = s (2'7)9 em) &t , (C8)

7
[(22+2)!]
we can expand Rn)],nl(f) in terms of {(n'{> :

7
R?n;,w/(/?) = Z/ An,n’ <777> y : (€9)
Nl O ]

where the matrix elements a v form a unitary matrix,

n,n

Therefore, any vector which is expressed by a basis set {(([4-1)1)7

. )<77f>} can be also expressed by a basis set {k&*”’?» (IHW(,Q)) .oy

Rm],'nj (/Z)]_
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TABLE I. THE SPHERICAL HARMONIC FUNCTIONS %/m (%, 8,¢)

nlm
100
200
300
400
500

600

210
310
410
510
610
320
420
520

620

430
530

630

540

640

1

2cos

beosX - 1
4(2coszo(-l) cos

16coszb( - 12cos%{+ 1

' 2(4coszo< - 1) (4cos%( - 3) cos«

2sin X cos 6

,/—6_ sin2& cos 6

(4/~/§)sin9( (6coszo( - 1) cos8
;/I—Z-Asin20< (8co$20<' ~ 3) cos®

243735 sinx (80cos ~ 48cos¥ + 3) cos @

/E sinx (3c0526 - 1)
2sinK sin2& (3cosy - 1)
/10/7 sindx (8cos - 1) (3cos2g - 1)

4y2/7 sinzo( (10(:03%( ~ 3) cosX (300529 - 1)

(4/f§)sin30< (5c08%8 - 3) cos®
2/7 sin?y sin2i (5c0529 -3 éos@

4/2/15 sin3o(v(10cos20< - 1) (5c0529 - 3) cosd

V277 sin®( .(35cosl'9 - 30cos? + 3)

2V6/7 'sin4o( cosX (35cos49 - 30c0526 + 3)

C 34
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TABLE II. REDUCTION OF THE PRODUCT OF THE R, SPHERICAL HARMONIC FUNCTIONS*

%,m () }/{M(ﬂ) = Z_, C (nlm 5 vAp; NLM) ~S_l/N"z_M(_Q)

NLM

C(100; yAu; NLM) 1

C(zoo;zoo;&LM) 1 1

C(200;210;NLY) J2/3)

C(200; 300;NLM) 1 1

C(200; 310;NLM) /(2/3) A5/6)

¢(200;320;NLM) 1//2

C(200; 400; NLM) 1 1

(2003410 ;NLM) /(5/6) 3410

(2003 420;NLM) 14/2 J(71/10)

C(200;430;NLM) /(2/5)

C(210;210;NLY) 1 -1/3 (2/3)/2

C(210; 300;NLM) -1/3 (1/3)¢%

C(210;310;NLM) J273) -14/6 J273)

C(210; 3205 NLY) 2/3V2  -@/3M2/5 3410

C(300; 300; NLM) 1 1 1

C(300; 310; NLM) 1/2 (1/2)/3

C(300; 320;NLM) -1/2° @/2)y/(7/5)

C(300; 4003 NLM) 101 1

C(310; 310; NLM) 1 1/2 ~1/2 W2 [1/10)
| €(31053205NL0) W2 =SB (353302
" C(310; 400;NLM) ~14/6 »/(2/15) Y110y (A/5Y (2/18)
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C(310;410;NLM) J(5/6) A2/15) - /3/10) (8/5) /(2/15)
(2/5) (21/5)

C(320; 320;NLM) 1 -1/2 1/10 1/ 2 -1//70 (9/5)/(2/7)

C(320;400;NLM) -(2/5)/2 (‘1/5)»/7

" C(320;410;NLM) ~(1/3)/(2/5) (34/75)/2 -(1/25) /42 —(6/25)/2

(9/25)/3

C(320;420;NLM) U =@isye @IS @IS =@y

' C(6/5) /(37

*Convention:

The coefficients C(nlm;u&M;NLM) are listed with all those of

smallest L first ( the smallest N first then larger N), then next smallest

L, and so on.
N is restricted by
N = |n=-v]+ 1, |n-v| + 3,

and L is restricted by

L o= |2-Xl, (4-Al+2, -

Cwith M =m+M4 =0,

ceey Y = 3, n+y-~-1

-';I+A‘2j L+

As an example of the use of the table:

%o %/o' =" =(1/3)/(2/$) %70 + (34/_75)/2 Yoro = (150422 s
=6/25)2 Y+ (9/25)/3 P70

~Notice that ND> L.,

044/

These C coefficients are (i)

Ut .

coefficlents

‘ " :
4 Lyfn n'/N) times the R, Wigner

ST T




TABLE III. THE COEFFICIENTS T(nlm;u&M;NLM)*

T(100;100;NLM)
T(100;200;NLM)
T(100;2103;NLM)
T(100; 300;NLM)
T(100;310;NLM)

T(100; 320;NLM)

T(100;400;NLM)

T(100;410;NLM)

“T(100;420;NLM)

T(100;430;NLM)

T(200; 200;NLM)

 T(200;210;NLM)

T(200;300;NLM)

T(200;310;NLM)

T{200;320;NLM)

T(210;210;NLM)

T(210;300;NLM)

T(210;310;NLM)

T(210;320;NLM)

3/5

(1/2)/3

2 1

1 2 1

2 @)

1 2 1

J@2/3) 2 J(5/6)

2 14/2 |
1 2 1

J(5/6) 2 3//10

1/V2 P A7/10)

2 J2ss)

}2 2 2 1

2/3  2/K2/3) W35

1 2 2 2 1

2/(2/3) 3/2 (10/3)

/2 Y2 @) A/5)

2 2/3  -=2/3 -3 (4/3)/2
-2/3 1//6 (2/3)/5 1/Y2
A2/3)  2k2/3 e =2/
/3 2/2/3) /(7/15)

wave s -@/lers)

-1/5

37

2/3

~1//6

3/(2/5)

R R TR T T T IR A AT T

TR

T T TR A S R e T3 T
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T(300; 300;NLM) 2 2 2 2 2 1

T(300;310;NLM) 1//6 1 7/y/30 /3 A7710)

T (3003320 ; NLM) -1 (1/5) H/2 A715) 1/5)/7

T(310;310;NLM) 2 32 1 -1 -1/2 2 6/5
§/<14/5> (1/5)/14

T(310; 320 ;NLM) /3 (8/5) //15 ~(1/5)/6 -(1/5)47/5)
B/5)0/3/5)  (3/5)6 (915110

T(320; 320;NLH) 2 12 -1 ~2)5 s Y10 2

| C2/s = f2/3%) -@/sHLany sy

(3/5)/46/7)

*Convention:

The coefficients T(nlm;M&M;NLM) are listed with all those of smailest

T T T T T T £ T T S N T R

L first (ﬁhe smallest N first, then larger N), then next smallest 1L, and so on.
N is restricted by | |
N = |n-y|, [n-v|+1, ..., otV -1, n+V
and L is restricted by | A :
J L= |4-2l) 11"11+2)‘»'f'£+)~27 LA

withM=m+ =0,
For example:

T(210;320;310)

T(210;3203210) = (4/3)/2 = 1//3
T(210;3203410) = -(2/3)/(2/5) T(210;320;510) = -1/5
T(210;320;430) = 3y(2/5) T(210;3203530) = 3/5

Notice that Ny L.




TABLE IV. THE FUNCTIONS SHyn(R)

nlm

100
100
100
100
100
100

100

100

* 100

100

200
200
200
200

200

210
210
210

210

300

300

YA

100
200
210

300

310

320
400
410
420

430

200
210

300

310

320

210
300
310

320

300

310

nlm, s

(1+s) exp-s

(2/3)s2 exp-s

1(2/3)s(1+s) exp-s
-(1/3)s2(2-s) exp-s

-1 (14/6)s(1+s-s2) exp-s
-(1/3)/(1/2)s2(1+s) exp-s
(2/15)s%(5-55+s2) exp-s
1(2/75)v/5s (5+58-125%+353) exp-s
(2/15)s2 (2+25-52) exp-s

—1(2/15)/(1/5)33(1+s) exp-s

(1/3)(3+3s—53) exp-s

-i(l/3)s(l+s—§2) exp?s

. (2/15)32(10-Ss+32),exp~s

1(1/5)¢Q2/3>s(5+53—432+s3> exp-s

(1/15)¢§s2(2+23f32) exp-s

(1/5)(3+3s-s3) exp-s
hi(2/15)s3(4-s) exp-s
(1/5)¢Q2/3)s2(3+3s-sz) exp-s

1(1/15)y/2s (6+6s5+s%-s3) exp-s

(1/45) (45+455-6082+60s3-185%+257) exp-s

~1(1/15)/(1/6)s(15+155-3952+1653-25%) exp-s




300

310

310

320

320

310

320,

320

-(1/45)\/(1/2) s (3+3s—1232+283) exp-s

(1/45) (45+455-1852-335+21s%~387) exp-s

 =1(1/15)Y(1/3)s(6+65-352-553+s%) exp-s

(1/45) (45+453+6sz~953—334+55) exp~s
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TABLE V. THE COEFFICIENTS (1A)SJACR)

VAM
100
1200
210
300
310
320
400
410
420

430

Note: -

~(for s = pR = L,1, 2)

s =1 s =1
0.9098 0.7358
0.0505 0.1226
i 0.1516 i 0.2453
- 0.0253 - 0.0409
-1 0.0516 -i 0,0501
- 0.0179 - 0.0578
0.0139 0.0123

i 0.0220 -1 0.0055
0.0139 0.0368

-i 0.0017 - -1 0.0110

[stew] = s

foo

o ("ﬁ) .

s = 2

0.4060
0.1805
0.2707
0

0.0368
0.1276
0.0180

0.0363

' 0.0361

~i

0.0484

41
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100 = 100

TABLE VI. APPROXIMATE COEFFICIENTS Wa(@b’(R) + WO(FD'("ﬁ) *

514 s =k | s=1 s =2
100 ' 1.7794 1.4288 0.8588
200 0.1866 0.3730 0.4852
210 0 0 0

300 ~0.1596 -0.2276 -0.0938
310 0 o 0 0

320 ~0.0376 -0.1006 -0.1212

* Approximated by the first six non-zero terms in thelr series expansion
in YAp , equation (II-34).

It may be shown that

400 ;2 _i‘[u@,Wo(;{)]‘z&/iz “;1; e =25 R
Wioo(R) = 7 ) IA-R -/M’[7 (1tpR) € j

Using this one finds that the exact values of 2Wloo(ﬁ) are 1.7924 (for s = %),

]

L1109 T

100
1.4586 (for s = 1), 0.9450 (for s = 2).




TABLE VII. THE COEFFICIENTS (1/n)[c§ lm 100 * Sigg(Zﬁ)J
‘ H

nlm

100

-200

210

300
310

320

400
410
420

430

(for PoR = 1

1.4060

0.1805

i 0.2707

i 0.0368

0.1276

0.0180
-i 0.0363
0.0361

-1 0.0484
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