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PREFACE; 

The motion of an electron in a Coulombic field of atoms or 

molecules is given by the Schr~dinger equation. The equation has a 

differential equation form in ordinary position space, while in momen-

tum space, which is the canonical conjugate space of position space, 

it has an integral equation form. It is usual to solve the Schd~dinger 

equation in position space, since in practice a differential equation 

is usually easier to handle than an integral equation. 

There are, however, some mathematical physicists who have 

studied the equation in momentum space. V. Fock is particularly out-

standing among them. In the present thesis, Fock's work is extended. 

In his study of the hydrogen atom Fock solved the integral equation by 

projecting the 3-dimensional momentum space onto the 4-dimensional hypE~r-

sphere in the way of projective geometry. Then after symmetrizing the 

integral equation he reduced it to an eigenvalue problem for the R4 

spherical harmonics. He obtained the eigenenergies of the hydrogen atom 

very elegantly and also explained the so-called "accidental" degeneracy 

problem of the hydrogen atom purely mathematically. 

In Chapter I of this thesis, the one-center (Kepler) problem 

in 2-dimensional momentum space is discussed in the same way as Fock 

did for the hydrogen atom problem. 

For many years Fock's work has remained a curiousity because 

or its mathematical difficulty, and because little has been known about 
\ 

.? 
the R4 spherical harmonics. However recently L. C. Biedenharn has done 
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much to remove this trouble. In Chapter II of this thesis, by the use 

of his results it is shown that the one-electron many-center problem 

is nicely formulated in terms of the R4 spherical harmonics. Also some 

approximatiop problems are discussed. 
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CHAPTER I 

THE KEPLER PROBLEM IN TWO-DIMENSIONAL MOMENTUM SPACE 

ABSTRACT 

V. Fock studied the hydrogen atom problem in momentum space by 

projecting the space onto a 4-dimensional hyper-sphere. He found that as 

a consequence of the symmetry of the problem in this space the eigen-

functions are the R4 spherical harmonics and that the eigenvalues are 

determined only by the principal quantum number .!l..· In this chapter we note 

that if his method is applied to the 2-dimensional Kepler problem in momen-

tum space,) the eigenfunctions are the R3 spherical harmonics, Y lm, and the 

eigenvalues are determined only by the quantum number 1· These facts enable 

one to give a visualizable geometrical discussion of the dynamical degener-

acy. 

INTRODUCTION 
I 

A geometrical illustration of a dinamical symmetry is often a 

greaLaid to the understanding. We have found that a 2-dimensional analog 

of Fock 1 s treatment of the 11 accidental" degeneracy and "extra'' symmetry of 

the hydrogen atom(l) is particularly helpful in this regard. 

Fock began his discussion of the dinamical symmetry of the hydro-

gen atom with the momentum space Schr!Jdinger (integral) equation for the 

atom. He made a change of the independent variables.in this equation and 

then redefined his dependent variables to symmetrize the integral equation. 

We proceed analogously for a corresponding 2-dimensional problem. 
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I-1. FOCK TREATMENT OF THE TWO-DIMENSIONAL KEPLER PROBLEM 

The Schr~dinger equation for an electron in the potential, V(r), 

is given in llartree's atomit units by 

(I-1) 

~vhere r is the position vector of the electron, u(r) the wave function, E 

the electronic energy associated with u(~), and v2 the Laplace operator 

for the electron. This position space equation may be Fourier-transformed 

into a momentum space equation, which in the 2-dimensional case is: 

= (I-2) 

The corresponding equation in the 3-dimensional case is formally the same 

if d2p is changed to d3p. In equation (I-2), 

p 0
2 = -2E, 

and 

I -.2f -.lif~;(_ 2 
V rp) = (27T) e ' Vt.ii) cl/l ; 

(I-3) 

(I-4) 

(I-5) 

Analogous equations hold in the 3-dimensional problem if 21T ---,)o (2 'iT )
312 

and d2 ---? d3. 

As shown in the Appendix of this chapter, if the 2-dimensional 

potential is 11 Coulombic", that is, 

v("r) = -z/r, (I-6) 

where Z is the charge of the center, then 

V' (p) -Z/(27Tp). (I-7) 

Substitution of (I-7) into (I-2) gives 

z J .1 = . 1i I f;-f~l 
(I-8) 
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Now we may project the 2-dimensional momentum space onto the 3-

dimensional sphere of radius p0 in the same way that Fock did for the 3-di-

mensional momentum space problem. A sphere is drawn around the origin of the 

p plane 

-' -' 
= ipx + jpy 

Px = p cos 'f 

Py = p sin f 

FIGURE I-1. 

p -7 p 
0 

tan 8/2 ; 

p space so that the center of the 

sphere coincides with the origin. 

The projective origin is taken at 

~ the south pole S. Then a vector p, 

whose components are Px' Py,is pro-

jected onto the sphere where it may 

be described as (p0 ;9,~) using ordi-

nary spherical polar coordinates. 

From Figure I-1, we find that, for 

this stereographic projection, 

(I-9) 

If the rectangular coodinates of the point~P(p 0 ;9,~) are x, y, z in a 3-

dimensional Cartesian space with origin at the center of the sphere, then 

we may define our variables so that: 

(~/po)2 + (y/po)2 + (z/po)2 = 1, (I-10) 

x/po ... sine cos 'f = 2f'c,~ 
fo2+ p2 ' 

y/po = sine sin~ = 2/!..o f!J:. 
!;/- -r p:J. 

z/po = cose = 
Po:J._ P2 

f/·-r p.2 .. (I-ll) 

Leto be the angle spanned between P(p
0

;e,o/) and P'(p0 ;e~~) on the surface 

of the sphere. Then 2p0 sino/2 is the distance between P and P', and 



4 

The area element on the unit sphere is, by the third equation of (I-11), 

).J'L .s .4k e Je df 

- ( to;!/f2 )2 rJ; Jr (I-13) 

Using (I-12) and (I-13) we can temporarily write equation (I-8) as 

( f/-+ f2 l~ <ftp) ::: ~~(J f 1. r· (f,/-t P':~/12cfrp'J J.f2.'. 
2..4-Vn- (I-14) 

L 

This is a symmetric integral equation, so that the function (f/+p 2 j 12 fCf) 

may be found as an eigenfunction of the kernel (2sin¥/2 )-1• Introducing 

a new function, 

y.; (.fl.) 
into equation (I-14), we obtain 

~(.I'L) = zltoj __ J_ 
21r 2~-f 

(I-15) 

(I-16) 

where.D., means the collection of variables $ ,f. In equation (I-15), the 

·factor (/8 p0
2)-1 is inserted to normalize the function ~(~)to 1. 

It is a well-known result of the theory of homogeneous symmetric 

integral equations that if one can find an expansion of a kernel K(iL,&r') as 

L, .A-n f: (.fl.') f71 (lL) then the eigenfunctions and eigenvalues of the 
?1 

kernel are f-n(Jl,)and A?1.( 2) It is not difficult to find such an expansion 

for the kernel (2sina/2)-1: The common expansion of the 3-dimensional Coulomb 

potential, 

1 1 
ll.;j 

= L 
.1'111 

gives on the unit sphere: 

(I-17) 
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Thus, if 

and 

-L 
./'1H 

1 ( z )2. 
fim = - 2 j+.L 1 

..2 

then equation (I-16) is solved. This may be verified by substitution. 
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(I-18) 

(I-19) 

(I-20) 

Now, in solutions (I-19) and (I-20), the quantum number~ can take 

all the integr'al values from -1 toll, so that there exist 21 + 1 eigen-

functions which belong to the energy state 1.: in other words, the degeneracy 

' 
of the state is 21 + 1. From (I-19) and (I-20) we see that the ground state 

wave function is 

1 

and the first excited state wave functions are either 

v - IT' ctK1 e - IT" .J: • v -- ;-:r- ~ e e~-t 'f 
Ito - 'I# - Y# fo J ltz1 - 'I 71{ 

or any linear combinations, such as the real functions: 

. 
ff [ h1 - J.;_,] 

~0 

= hfr ,aim (j U<J cjJ 

= fli: ~ B .44, <f 

:::: IIU2-0e Y# 

X -, 
Fo 

(I-21) 

(I-22) 

(I-23) 

The momentum space wave functions corresponding to the equations of (I-21) and 

(I-23) are, respectively, 

(I-24) 

and 
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1 [ A.. -h J _ n;_ 2 ( 2 .2 -.r/.z 7f /11 -t- Tt-1 - 17( fo fo -t f ) 2/?,f.t_ J 

~ r c/11- f1-1J = -H t/ r f/+ r:Jrs-122f"l! , 

(I-25) 

The position space wave functions corresponding to these functions in momentum 

space or in Fock's projective space may be obtained by Fourier transformation 

(using the second equation of (I-4)), or may be found directly as solutions 

of the position space SchrHdinger equation (I-1). 

For the 3-dimensional Kepler problem, Fock obtained as the SchrBdinger 

equation in his projective momentum space on the 4-dimensional hyper-sphere: 

(I-26) 

Here W is the angle analogous to/{ in (I-12) but now on the 4-dimensional 

hyper-sphere, so that 2sin W/2 is the "distance" between two points on the 

unit hyper-sphere spanned by the angle OU ; Jl4 is the collection of angular 

variables 0{, 8, <f (p ~ p0 tan r/../2 , 8 ~ 6 , Cf- Cf) for the 4-dimensional 

hyper-sphere, and d.fl.4 is the "area" element on the hyper-sphere. He solved 

this equation finding that the eigenfunctions are the R4 spherical harmonics: 

(I-27) 

where 

(I-28) 

and 

Ji+t 
CtJl-0 ?Ia( 

) 
(I-29) 

,_ 
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and eigenvalues are: 

J. 2 
r /) = - -(Z/n) 
~~~~ z . (I-30) 

Since the quantum number l can take all the integral values from 0 to n.- 1, 

and the quantum number m from -1 to l for each 1 state, the degeneracy of 
?1-l 

the energy stater:n. is .Z., (2.1.+ 1) == n 2 
• 

. f= (;I 

I-2. DISCUSSION OF THE DEGENERACIES 

The degeneracies in the 2- and 3-dimensional Kepler problems arise 

because, in the 2-dimensional problem the momentum space "potential" has the 

symmetry of the three dimensional sphere, while, in the 3-dimensional problem, 

the momentum space "potential" has the symmetry of the 4-dimension~l hyper-

sphere. The way in which functions, which are obviously degenerate on the 

sphere, project intonfunctions, which are obviously different on the plane, 

is illustrated for the first excited state wave functions of the 2-dimensional 

problem in Figure I-2. 

In Figure I-2, photographs (a) and (b) correspond to the cases of 

the 2-dimensional first excited "s" state, 

excited "p" states 2-~ ( Y + Y · ) or , 11 1-1 

YlO' and the 2-dimensional first 

-~ -2 ( Y11- Yl-l ). Pictures (a) 

and (b) indicate that in the angular space we can not distinguish one distri-

bution on the sphere from another, since the distributions differ only in 

orientation. On the other hand the projected functions in the p plane are 

clearly different. The "s" function has a circular node at the ~quator of the 

sphere and the "p" function has a linear node parallel to the x- or y-axis. 

Photographs (a') and (b') indicate more clearly how the lines on the spheres 

project into those in the p planes. The lines draw on the·nothern hemisphere 

,, 
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correspond to those in the p plane inside of the equator of the sphere whose 

radius is p0 , and the lines on the southern hemisphere correspond to those 

in the p plane outside of the equator. 

Exactly analogous relationships exist for the ordinary hydrogen 

atom problem. 
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APPENDIX. THE FOURIER 'TRANSFORMATION OF THE 2-DIMENSIONAL COULOMBIC POTENTIAL 

If the potential V(r) is given, in 2-dimensional position space, by 

z.. - C(/1.. -::::--e. 
17. ' 

then its Fourier transform V'(p) in the 2-dimensional momentum space is 

obtained as follows: 

Now 

..... 

When 0(-? O, we have 

v (~) 
and the Fourier trans 

V 'r.-J f) 

7{· 

= 2 J. C<>-<1 (fA C6<> ~) J B - 2 7T ]. {fA),< G) 

-
form 

-z -/!. 

-z -
21Tf 

-z (4) 

.27T(p·:l"+¢(2 • 
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CHAPTER II 

MOLECULAR ORBITALS IN MOMENTUM SPACE 

ABSTRACT 

The troublesome problem of developing cusps in ordinary molecular 

wave functions can be avoided by working with momentum space wave functions, 

for these have no cusps. The need for continuum wave functions can be elimi~ 

nated if one works with a hydrogenic basis set in Fock's projective momentum 

space. This basis set is the set of the R4 spherical harmonics and, as a 

consequence, one may obtain, solely by the ordinary angular momentum calculus, 

algebraic expressions.for all the integrals required in the solution of the 

momentum space SchrBdinger equation. 

A number of these integrals and a number of R4 transformation co­

efficients are tabulated. The method is then applied to several simple united-

atom and LCAO wave functions for H2+, and ground.state energies and corrected 

wave functions are obtained. It is found in this numerical work that the 

method is most appropriate at internuclear distances somewhat less than the 

equilibrium distance. In Fock's representation both LCAO and united-atom 

approximations become exact as the internuclear distance approaches zero; 

The united-atom expansion can be viewed as an eigenvalue equation 

for the root-mean-square momentum, p0 =/-2E. In the molecule, the matrix 

operator correspQnding to p
0 

is related to the operator for the united-atom, 

by a sum of unitary transformations, one for each nucleus in the molecule. 



15 

INTRODUCTION 

Much of our knowledge of the properties of the momentum space wave 

functions of molecules is due to C. A. Coulson and his co-workers, W. E. 

Duncanson and R. McWeeny. Coulson and Duncanson(S-B) used the Fourier trans-

forms of atomic wave functions to obtain the momentum space counterparts of 

a variety of ordinary LCAO and valence bond wave functions. In earlier work, 

Hicks(9) had investigated the momentum space wave function of the hydrogen 

molecule, and recently F. M. Glaser(lO) has obtained the Fourier transform 

of Bates' hydrogen molecule-ion wave function(ll). for momenta parallel to the 

bond axis. 

Momentum space wave functions have the attractive property that 

their first derivatives are continuous everywhere. This suggests that it may '· 

be possible to approximate them by eigenfunction expansions more readily 

than is the case for position space wave functions which possess a cusp at 

each nucleus. In addition LCAO momentum space wave functions have a particularly 

simple dependence upon the coordinates of the nuclei in a molecule, so that 

they are well adapted to studies of the effects of changes in nuclear framework. 

( 12 13) McWeeny' ' investigated the solution of the momentum space 

integral equation for the hydrogen moll:kul~don by Svartholm 's modification (l4) 

of Kellog's method. In his study of the first iterative correction to the 

LCAO function he concluded that, because of the awkwardness of the required 

integrations, the momentum space approach was not promising. 

. (15) 
Recently, however, L •. c. Biedenharn has obtained· the Wigner co-

efficients of the R4 group in terms of those of the R3 group. This makes it 

practicable to use Fock's remarkable work on the Kepler problem in momeiltum 

space(l) in such a way as to avoid the difficulties McWeeny had to face. 
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II-1. FOCK'S TRANSFORMATION 

The integral equation in momentum space corresponding to SchrB-

clinger's equation is 

( f,/- + p3 ) <f (f) = J K <f (I') l? ~ 
Here 

t/·=--2E; K=X.j !<'.;· i Kj =?i:~"/1-1'f2zjeXff.i(p-p')·i;·]. 
If yvrp)is related to u(f). the position space wave function, by 

<f If>. = u7rr3/2 J e_<P·li u r4.) J'lt ' 

then 

One often symmetrizes equation like (II-1) by defining a new 

function cp~p)which obeys 

(II-1) 

(II-2) 

(II-3) 

(II-4) 

(II-5) 

where K' is still a symmetric function ofp and p', while~ is the eigen-

value corresponding to yJ}f(). 

For the Kepler problem Fock in addition made the following trans-

formation of variables: 

2fof-x. - ~o( ~e UP4Cf 
f/+P 2 (II-6a) 

~ f/)f:t. .4-4-.ot ~e ~'f - (II-6b) f/+p2 

..2l'o fJ:; -Po .z+ f2. 
~ot u-oB (II-6c) 

loz.-1.,_ - ~o( •. 
fr/·+;;' (II-6d) 
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This transformation is analogous to a stereographic projection from a plane 

onto a sphere, but it is from the 3-dimensional hyper-plane onto the 4-

dimensional hyper-sphere, ~ .2. + '7 2 + ) .l + :X:2 
::::. 1 . In terms of the p sys tern 

of variables, this hyper-sphere has radius p0 •/-2E, so that while in the 

( ~ , 7, ~ , X) system it is a unit sphere, in the p system its radius depends 

upon p0 • In terms of a spherical polar coordinate system in 3-dimensional p 

space the transformation may be symbolized by r~ lo tan 0(/.1.) e~ e J 'f-'? Cf. 

On making the further identifications: 

and noting that 

(2~ 1t- ( ~-$')2 -t-(7-1'/·+ cr- (t+ c-x-x'f 
4 fo.Z rt -f I 12. 

' 
Fock found that for the Kepler problem equation (II-1) becomes 

(II-7a,b) 

(II-7c) 

(II-8) 

(II-9) 

He identified this as an integral equation for the 4-dimensional spherical 

harmonics, solved it, finding 

and used it to explain the "accidental" degeneracy of the Kepler problem. 

Fock normalized his harmonics to the surface area of the hyper-sphere: 

(II-10) 

From equations (II-7) and (II-8) this is equivalent to having 
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(II-11) 

The functions ~~'1#1 t/) of constant p0 thus are orthonormal ,with weight 

factor'( p0 2 + p2 )/( 2p0 2 ). In contrast, no weight factor is required for 

functions of constant z • np0 , 

l.fi S"/2 -.2 
Yj,-n.{IQU{'f) = {-/'+ 1

(l') ; fv (fr/'+f 2
) ~I1H{of,r7,tf) ) }:::::"11/o, (II-12) 

obtainable by Fourier transformation of the hydrogenic-atom position space 

functions uz,nlm('f) • 'Vf'll.tl/ll, =' ,:.t.f.4,,,1g 111.J"t-) 

The phase factor (-)n+l(i)i in equation (II-12) is a product of 

two terms: A factor(-)n-.R-1 is required because the argument of Fock's 
0 

Gegenbauer polynomials is the negative of the argument of B. Pod).sky and L. 

Pauling(l6). An. additional factor of (-i)i obtained by Pod)sky and Pauling 

(after a correction is made for an omission in equation (16) of their paper) 

was omitted in their abstract and in the Handbuch at:ticle of H. A. Bethe and 

E. E. Salpeter(l7). 

The relation between the functions of constant z and those of 

constant Po is thus 

(II-13) 

In order that the projection from p space to angular space shall be onto 

the same sphere in every case» one must require that p0 be the same for all 

1{ , 0 tf} ; i.e. , that z • np0 • An expansion in terms of Fock' s R4 spherical 
'.}- )11-r'4«" ' 

harmonics .consequently corresponds to an expansion in p space using hydrogenic 

functions with z proportional ton and a weight factor (p0 2 + p2)/(2p0 2). 

Since the R4 spherical harmonics constitute a complete set on the unit hyper-

sphere, one need not deal with continuum basis functions if one uses this set. 
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A number of these functions are listed in Table I. 

II-2. THE MANY CENTER PROBLEM 

When the general momentum space SchrBdinger equation (II-1) is 

symmetrized and Fock's transformation is applied to it, one obtains: 

\.//; = f; 1JZi:z.i expf:-.lrf-p')·~f] -r.JJ;o<' {)' , '12.~ . 
.I (o() e, f J .2.1r2. 

4 
~ .2. !::!d. L· <" 1 1 'I ) ct. 

'2 J ·-' 
For simplicity in notation we have written exp(-ip•R) where it would 

(II-14) 

have 

been more natural to have expressed things in terms of angular variables. 

Henceforth, we shall also write Jl for the collection of variables D(, f7, 'f• 

In the position space problem one often seeks an expansion of u(~ 

in terms of hydrogenic functions uz,nl~(~) based on one or several origins, 

as in united-atom or LCAO expansions. In momentum space this amounts to 

IIJ ,_) -' ~ (/) _, expanding ;{f}in terms of functions exp(ip•R) TJ,·ni'-u/1). Thus we shall seek 

solutions (of equation (II-14) in which lj!"(.Sl.) is, in general, expressed in 

terms of a series of functions exp(ip•R)~~~(Jl). In order to proceed it is 

necessary to do integrals of the form: 

\.If (Jll) r}J)/ 
.I "1114tf • (II-15) 

If we. let 

(II-16) 

then, since the ~:ylJl.)are eigenfunctions' with eigenvalues v ' of the kernel 

(4sin2 ~ )-1 

(II-17) =L 
.v~ 

.J_ 
JJ 
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To evaluate S we note that from (II-10) and (II-16) 

S :t: OiJ = 
2
;, ) <fl·il ~~(Jt) Y::.t.,..(Jl) J.D..: (II-18) 

Now let 
.~ J 1 

-Af·~ -e - ) o(NI..H ( f/--r f 2
) '.:1!;;'-I•_,(JL) • 

1JrM (II-19) 

Then again from (II-11), (II-12) and (II-13) 

0(/JL/'1 - 1-/H (.;/ ~ f/1"] e_.<f·~ w,;,IJLHq/J JJ, (II-20) 

Making use of equation (II-4) one finds, after taking complex conjugates, 

i.f·R \ N+L+ 1 I J. _. 2 2)- 1LLT j 
e_ =- 4 (ij: ~ (-) (.() UNfo, NLM (R) (fo +/ L NLH(JL). (II-21) 

Substituting (II-21) into (II-18) now gives 

S '1111H ...> ~ N+L+ 1 I L . -3/2 -' 
v'l,. (/() = L.-/ {-) (.d lfi ~ UNft JI/LM('R)T(rn/4HjV}.,M i NLH) (II-22) 

IY'" . ,VLH 10 J •• 

The coefficients 

(II-23) 

may be evaluated by ordinary angular momentum algebra because R4 is locally . 

isomorphic with R3 x R3. 

The discussion of this evaluation, however, is reserved for the 

appendix, because in order to obtain the T in this way, it is first necessary 

to make explicit some results of Biedenharn on the connection between R4 and 

R3 Wigner coefficients. When the evaluation is carried out one finds that, 

because of the triangle conditions on the angular momentum addition coeffi-

cients, the sum of equation (II-22) is restricted to 

{11-V} < /'/ ~ rJ1+j) I 

J 
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The only functions required for the evaluation of S and hence 

are seen to be hydrogen atom position space wave functions 

uNpo,NLM(R) and angular momentum addition coefficients. The function 

Po -3/.auNpo,'NLM(R) is a dimensionless function of p0 R. A number of the S 

functions are listed in Table IV. 

The function S can be given a simple interpretation in position 

space. One has 

s:;; nh = 

(II-24) 

... ...J l/J ..J) * ......... One may view exp(ip•R) Tvpo,i~(p as the Fouri~r transform of u)Jpo,JI)fl (r-R) 

and [(p0 2 + p2)/(2p0 2)]St,:'., ,0 (p)as the Fourier transform of [(p 0 2 -rt2)/(2p0 2)1. 
. "roJ'll-r'b( V ~ 

(II-25) 

Since the difference between the kinetic and total energy operators is the 

negative of the potential energy operator -z/r, S is proportional to the 

...J -> J 
matrix element of the potential energy between uvpo,v~(r-R) and Unpo,nlm(r) • 

....1 
The func~ions SD~(R) are ~lements of a unitary matrix as may be 

seen by multiplying equation (II-16) by its complex conjugate and integrating 

_over the hyper-sphere. 

II-3. UNITED-ATOM EXPANSION 

Let us now rewtite equation (II-14) as 

fo lj'(A.) . -
(II-26) 



Expanding the kernel in terms of R4 spherical harmonics one has 

K· 'J 

Hence, if 

then 

where 

[. ........ ..... ] 
Z.j e~e. -,.l(p-p')·l<,t 

4 . J. w . ..tUM-
. 2... 

'j/(.IL) · = X..' Ct:t~c ~c (..Q),' 
tdc 

The resulting secular equations when put in matrix form are therefore: 

(JP to 1I. ) rc 
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(II-27) 

(II-28) 

(II'-29) 

(II-30) 

JP i h i f a'b'c' Here s t e matr x o Pa b c' Jl the identity matrix, f[ the vector 

matrix of the expansion coefficients in (II-28), and @ the null matrix. 

·If iff is the (diagonal) matrix of (1/n) then these equations may evidently 

be written as . . 

( ·~ . z . $~1. ;nr $. 
.L..J 'j 'j uu J fol ) ({_ = · (II-31) 

It is a valuable check to notice that the "united atom" expansion 

(II-28), when transformed into momentum space and then into position space, 

gives, respectively, 

=L 
CH-I-+ 1. J. 

(-) ( i) C a.lf.c (II-32a) 
a.$c 
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and 

U (it. J L a +-l+ i .a. ....) -= <-) a; c4.~c Ua..d et.6c (/L) • 'I'd J 

a.&c (II-32b) 

Though the functions ~ 0 (f) and uap b (~) are not orthogonal, they are 
O{b 1 Cl-t>-C o , a c 

·closely related to orthogonal functions introduced by H. Shull and P.-o. 

LHwdin in their calculation on heliurn(lS) and then later used by K. M. Howell 

and H. Shull in their one-center calculation on the hydrogen molecule ion<l9). 

Further discussion of this problem is given in section II-5 and. Appendix C. 

II-4. rSOME FIRST ITERATED WAVE FUNCTIONS FOR H2+ 

To gain some idea of the numerical features of the Fock represen-

tation approach, we have applied it briefly to the hydrogen molecule ion. 

Setting R1 • -R2 ... Rand Z1 = Z2 = 1, and also letting ·y(.Q):::11.r (..fl..)=1, 
I too 

we may treat equation (II-14) as an iterative scheme for approximating the 

ground state .wave function and root-mean-square momentum Po• The first iter-
. :t. 

ative function ~(~)is then 

(II-33) 

At this stage we may view p0 R • s as an arbitrary parameter. (In the corre~ 

sponding position space problem p0 becomes the scale parameter in the wave 

function.) The first iterated function is then a source of information on 

the appropriateness of the choice of starting function. Now equation (II-33) 

may be viewed as a sum of LCAO functions ±(-i1+1. (ifexp(±ip•R) ~J.)A (.12.) 

with positive real coefficients +<-)vti (-ii" (1/)})Sb~<+R). Using Table IV 

we have evaluated these coefficients for s • ~, 1, 2. The results are ob-

-r· ; 



tainable from Table V. Since plausible values of p0 lie in the range 

1~ p0~ 2, it is apparent that even at quite small internuclear distances, 

the first iterate is fairly extensive mixture of LCAO functions when the 

starting function is a ls "united atom" function. 

We may also determine how the first iterate is built of united-

atom functions in Fock space. Making use of identity (II-16) once again 

transforms (II-33) into 

1/Pi.(.fl"' ) ~ [ ..V).,.P __, i. S 1oo ~ S JJ~~ _, :L S toot -')] 1./F ('fl) ..r ' = ~ L SC>l~((-R) ·-v v;y.JR.) + o((33'(1l.)-;; P~,-R I'¥~' 
o<f r Jl i\.fl 

= L [ w~;~ab + w;~~(-~)J ~6CIL). <n-34) 
o<[J( ' 

The coefficients of the hydrogenic functions 1:f:0n·(.Q.) are tabulated in 

Table VI for the same values of p0 R as in previous paragraph. If the starting 

function is the LCAO function 

-y;-;00 (J2)' (II-3Sa) 

which C?orresponds to the position space LCAO function 

) (II-3Sb) 

then the first iterated function is given by 

(II-36) 

When p0 R • 1, as in the simple LCAO model of·the hydrogen molecule ion, 

orie finds that in the first iterated wave function the coefficients of various 

LCAO functions are.as indicated in Table VII. 

; 
E 

f 
\i 
t 
I' 

r 

! 
I 



25 

II-5. ESTIMATION OF ENERGIES OF SOME H2+ WAVE FUNCTIONS 

There are a number of ways in which Fock representation wave func-

tiona may be used to estimate energies. In each of these one treats s = p0 R 

as a parameter and calculates the value of p0 corresponding to a particular 

value of s. One then may ~valuate the corresponding value of R • s/p0 • 

In Kellog's method, the first approximate eigenvalue is given by 

[ 
j 1 0 0 J 1/2 <Y (..12) J Y! rJl>> ..;. <""'F (_Q) I Y! ( .. o.J>- · 

Using a united-atom ls function ~0 (.IJ.) for lf 0(.Il.), choosing the small value 

s = ~ appropriate to such a function, and using the approximate W values 

of Table VI, one finds the approximation -2E = p0 2 • 3.228 at R = 0.278. 

This energy value is 5.0% higher (or smaller) than Bates' value for an inter-

nuclear distance of 2R = 2x9.278 = 0.557. 

·In Svartholm's method the first approximate eigenvalue is given by 

Using the same starting function, and s and W values as in previous paragraph 

one finds the approximation -2E = p0 2 = 3.166 at an internuclear distance 

0.562, a value for the energy 6.6% higher than Bates' value. 

If one uses the exact value of zwigg(R) for s = ~, 1.7924 (Foot­

note of Ta~le VI)., then -2E ~ 3.2127 at an internuclear distance of 0.558. 

The energy value is 5.4% higher than Bates' value. 

The matrix equations (II-30) and (II-31) are identical with the 

equations one obtains when one uses Ritz'.method to approximate the solution 

of the Schrljdinger equation in Pock's representation (II-26). In using Ritz' 
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method, a basis set of n functions leads to a P matrix of dimension n x n. 

If the elements of this matrix are to be evaluated exactly, one requires . 

an S matrix of dimension·n xoa. Since, both in practice and in principle, 

this makes little sense, it becomes important to know how truncation of 

the S matrix affects the calculated values of Po• We are not in a posit:lon 

to give a general discussion of this question, but we have made a short 

numerical study of it, using a basis set composed of ls, 2s, and 3d func­

tions to build the ground state wave functionr:of H2+. If S is a 3 x 3 matrix 

of S~ functions in which a and b are each ls, 2s, 3d, then when s • ~' one 

obtains an appro~imate energy, -2E = 3.055 at R = 0.286. This is higher 

. than Bates' value by 9.6%. If S is enlarged to a 3 x 4 matrix by including 

s!P functions, then for s = ~ one obtains an energy -2E = 3.276. This energy 

is higher than Bates' value by 3.7%. Including sis and s~P functions gives 

a 3 x 6 S matrix which for s = ~ leads to an energy of -2E = 3.297 at 

R • 0.275. This is 3.1% higher than Bates' value. 

In general, it is not as~easy to estimate the energies corresponding 

to LCAO functions as it is to estimate the energies corresponding to united 

atom functions. However, it is not difficult to apply Svartholm's method 

to LCAO functions. One finds that if~1~Jis the function of equation (II-35a), 

then when~~ 1, use.of Table VI for 2Wt88(2R) gives -2E • 2.542 at R = 

0.627. This is 5•1% higher than Bates' value. If one uses the exact value 

100 of 2w100 for s • l, viz. 0.9450 (Footnote of Table VI), then -2E = 2.640 

at R = 0.616. This is 2.1% higher than Bates' value. As R~ 0, p0 ~ 2, (E~ -2), 

and the LCAO function becomes the ls function appropriate to the helium ion 

He+. 
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In the above paragraph we have shown some simple numerical calcu­

lations for H2+ using the secular equation in Fock representation (II-30). 

for some united-atom expansion functions. We have also briefly discussed 

the truncation problem involved in the S ma~rix when we evaluate the P 

matrix. In the procedure for the estimation of the energy we first obtained 

p0 as an eigenvalue of the operator P from the equation /JP- fol I:::: 0 , and 

then found the energy E .from the value of p0 by the relation p0 2 a -2E. 

Since C is an eigenvector of P, the expansion coefficients in (II-30) are, 

in fact, associated with the eigenvalue p0 • 

On the other hand, if we apply the variation method to an equiva­

lent expansion function in position space representation (II-32b) and obtain 

the energy minimized with respect to the expansion coefficients, then the 

energy is found as a function of p0 , and may be finally minimized with respect 

to the parameter p
0

• In this case the expansion coefficients are associated 

directly with the energy. At the final point where the energy is minimized 

with respect to the parameter p
0

, the energy value and the. parameter value 

may not be related by the relation p0 2 = -2E. 

To compare the two appr~aches we refer to the numerical work of 

K. M. Howell and H. Shu11<19>. In their one-center calculations on H2+ they 

used orthogonal basis functions <nR)Ypm(e,~), which form a complete set, 

introduced by H. Shull and P.-o. LBwdin(lB). As shown in Appendix C, the 

basis functions in (II-32b) Unpo,n~m(f) are closely related to their basis 

functions. And in fact both basis functions span the same space if'we take 

the same number of them successively from n R = ( f + 1)1 for each .f , All 

functions used by Howell and Shull are composed of a series of such successive 



28 

basis functions. Therefore, exactly the same arguments can be applied to 

our one-center expansion functions in position space representation (II-32b) 

if we replace their parameter 1 by Po• 

In Figure II-1 are shown photographs of Howell and Shull's figures 

in which they show relations of energy values E to the parameter values 

for various one-center expansion functions at an internuclear 

distance Rab "' 2. Under the figures is shown a table, also from the same 

article, in which are tabulated basis functions used in their calculations, 

the parameter values which give the minimum energy values, and the minimum 

energies. In the table we also add a columnfor (ye2i)Rab, in which all the 

values were evaluated by us from their ene~gy values. 

From the table we see that the values of ('(-ZE) Rab are all about 

2.85 for the functions composed only of <s)basis functions ("spherical ap­

proximation"), except a function composed only of <"ls). For these functions 

we see, in Fig.l of Figure II-1, that the energy values.for this parameter 

value, 2.85, are slightly higher than the minimum energy values, but that 

the differences are at largest only 0.3 to 0.4%. Thus, we may conclude that 

as far as the "spherical approximation" is concerned, finding the energy 

from an eigenvalue p0 by the relation p0 2 = -2E is fairly exact, except in 

the case that the wave function is approximated only by a (ls) function. 

Similar arguments may be applied to other approximate functions 

than the "spherical approximation,". though the arguments can not be so clear 

as in the case of the spherical approximation, because Howell and Shu~l show 

the effects of the parameters on the energy values separately for (s)terms, 

<d) terms,. and a (g) term. 
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FIG. 1. Energy of the lowest root of the ith order matrix for 1 • 

H2+ containing only (s) functions as a function of scale param­
eter ~•""'1•R.w; Rab=2 a.u. Here, ia 1, 2, • • ·, 6. E is the total 
electronic energy in Hartree atomic units. ' 

Matrix Functions 
size included ~4 sc~ ~~ 
1 ls 1.824 

2 2s 3.102 

3 3s 3.827 

4 4s 3.827 

5 5s 3.961 

6 6s 4.989 

7 6s + 1d 5.000 4.397 

8 6s + 2d 5.000 6~346 

9 6s + 3d 5.000 6.351 

10 6s + 4d 5.000 . 5. 309 

11 6s + 5d 5.000 7.254 

15 6s + 5d + 4g 5.000 7.000 13.59 

FIGURE II-1 
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FIG. 2. Energy of lowest root of the matrices for H2+ contain­
ing six (s} functions with ~.=5.0 and i (d) functions; i=1, 
2, • • •1 5 as a function of l;a=wR.~; Rab=2 a.u. Also shown is the 
variatiOn of the lowest root of a 15th order matrix containing six 
{s}functions with J;,=S.O, five {d) functions with l;d=7.0, and 
four (g) functions as a function of J;.='1•Rabi R.w= 2 a.u. E is the 
total electronic energy in Hartree atomic units. , . 

-E C/-=2E)Rab 

0.96732 2.782 

1.01617 2.851 

1. 01744 2.853 

1.01743 2.853 

1.01832 2.854 

·1.01842 2.854 

1.07947 2.939 

1.08239 2.943 

1.08230 2.942 

1.08288 2.943 

1.08330 2.943 

1.09563 2.961 

' 



APPENDIX A. EXPANSION OF PRODUCT OF TWO R4 SPHERICAL HARMONICS OF THE 

SAME ARGUMENT 

30 

Biedenharn defines(l5) R4 spherical harmonics, Ynlm' with the 

following properties: 

(Al) 

(A2) 

His phase and nomalization conventions are different from those of Fock 

so that 

'Fn~-m (11) - a/.(iii ~~'tf((:IL) • 

Note that 
;i -r., i'- -m ( J2.) lf.<_~tm (.fl.) = (-fm • 

For the Kronecker product of the rotation matrices of the R4 group, 

Biedenharn writes 

D[p l, <J'~ ( . ] rr j5 fJ g 

He then shows that the Wigner coefficients of the R4 group, the matrix 

elements of U, are 

i (f·rg) 

1 (p-g) 

J 

f Cf-rQ} } 

~ ~-Q) • 

(A3) 

(A4) 

(A5) 

(A6) 

Here (iiJM{ut/1'1 LM) is the Wigner coefficient::;of the R3 group and the 
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{ - : :} are 9-j coefficients. 

In Biedenharn's notation the 4-dimensional spherical harmonics 

are 

(A7) 

Taking relations (A3) and (A7) into account one obtains 

• .R D[-n-t,o] 
(-d 17 .f-m) 00 (Il). (A8) 

Writing n for ~(n - 1) and using equations (AS) and (A6) gives 

l..Lr* '12. lJF:k Jl .-, .~4-R-L. I ' . 

.L?Jt;~11,l ) I.,;,/ . ) = L... (i) 
71N-71 (2ii' o/l~'J11'; 2ii oi'»~/U/2if'o.zn Oj2.Jl oLM) 

~M . 

xy;;L:(l2) (:<n' o.zff o; .2.F/ ooo/U/1 ii'ooo; .2n ooo). (A9) 

On using relation (A9), taking complex conjugates, noting that all the Wigner 

and 9-j coefficients are real, and making use of well-known properties of 

these coefficients, one obtains: 

x (iJ1n'm fi!RLM>{;: : N~; 1/F (.:.D..) 
i' J L I NLM .. (AlO) 

APPENDIX B. EVALUATION OF THE T(nlm;V~;NLM) 

One first notes that 

4 = 2 -r 2 c~rx = 2 '1/f (..Il) + 1.Lr (..fl.) 
.I.too L.2oo • (Bl) 1 + :tan:z ~ 

Equation (II ... 23) can therefore be written 

T(11i111 ;J/)..u; NLf1) ::: _1.
2 

( Cz.·u/ (.n.) -1- ·p: (JL)]'Y{,JJ (Sl.)'j{J~~.J1) :J::::'.(..n.)r/Jl.(B2) 
r 2 7f ) (" L too 200 ram v,.Y'.. ,.'LM 

Applying equation (AlO) one then obtains the results shown in Table III. 
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APPENDIX C. THE FUNCTION Unpo,nlm(r) 

The hydrogen-like wave functions for a nuclear charge z are given 

by 

where 

n .. 1, 2, . ... , R= 0,1,2, ••• ,n-l; m = -g,-1+1, ... , P., 

. f~h1 
and Ypm(l7,'f) are the R3 spherical harmonics. In (C2), cJ...- -n+i' are the 

associated Laguerre polynomials defined by(20) 

and 

n-f-1 (-f) A 

j_.2i+1 = -[(n+f)/].2 .[ 
11-t-i'(f) }'.:::0 ).!(11-.f-1-?..)!{:d-rl+'A)/ 

f.2.R-t2 (f) 
"'-n-rl 

Substituting z.= np0 into (Cl) and (C2), we have 

where 

These functions are normalized to 1, but not orthogonal. 

(Cl) 

(C2) 

(C3) 

(C4) 

(CS) 

(C6) 

H. Shull and P.-o. LBwdin introduced the orthogonal functions(lS): 

1/:z . 
((n-.f-:t)!} (2nl/.2(2 !l)i e-'112 f;;..R-r.z (.2 .!l.) 
[(-n+t+J.)/]3/:.l. ( f. oZ...?J-r.f-t:J. 1 . (n.f) = 

(C7) 
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These functions were used by K. M. Howell and H. Shull in their one-center 

calculations for hydrogen molecule ion<19). 

1.2R+t d 1.21'+2 ( Since the polynomials {f) an f) give the same 
n+.f ·n+irt 

number of terms in the variable f for the same values of n and R , and 

((J+iii) = R(R+1)» (Ht)R(/1.) = [ 1 v, (2~f2(2?~l e_'JII 
't' . (.21+2.)!] ' 

(C8) 

we can expand Rn? ,nR (r) in terms of <n '£) : 

' (C9) 

where the matrix elements an,n' form a unitary matrix. 

Therefore, any vector which is expressed by a basis set { ((.R+t)i) 
1 

• , • ; (nJ) J can be also expressed by a basis set { R.~+t)J!, (..f-tf)l(.lt)) • • .. ; 

R 'll1, -n.f (/Z) ]. 



TABLE I. THE SPHERICAL HARMONIC FUNCTIONS ""'j!;l-m ( o<, e, CfJ ) 

nlm 

100 1 

200 2cos ()( 

300 4cos~ - 1 

400 4(2cos2c<-l) coso< 

500 16cosfb< - 12costx+ 1 

600 2(4cos~ - 1) (4costx - 3) cos <X 

210 2sin 0( cos e 

310 !6 sin2<X cos e 

410 (4/!S)sinO( (6cos20( - 1) cos e 

510 .fi sin2cx (8cos20{ - 3) cos 0 

610 2/3/35 sinO( (80cos%< - 48cos~ + 3) cos e 

·:;: 
320 .(2 sin201. (3cos2e - 1) 

420 2sin<X sin2()( (3cos26 - 1) 

520 /10/7 sin20< (8cos2o< 1) (3cos2e - 1) 

620 4/2/7 sin2o< (lOcos~ - 3) coscx (3cos 2e - 1) 

430 (4//S)sin3cx (5cos 2t3 - 3) cos e 
530 z{I. sin2D< sin2D< (5cos 2e - 3) cos e 
630 4/2/15 sin30( (lOcos%< - 1) (5cos 2e - 3) cos e 

540 fiT7 sin41X _(35cos 4e - 30cos2e + 3) 

640 2/6/7 ·sin 4o<. coso< (35cos 4e - 30cos2e + 3) . 
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TABLE II. REDUCTION OF THE PRODUCT OF THE R4 SPHERICAL HARMONIC FUNCTIONS* 

'Etm (JL) Y';)yw (JL) = L C ( nl-m j vA}i; fiLM) ~ (J2.) 
!{Lf1 NLM 

C(lOO; v)..~;NLM) 1 

C(200;200;NLM) 1 1 

C(200;210;NLM) /<2/3) 

C(200;300;NLM) 1 1 

C(200;310;NLM) /(2/3) /(5/6) 

C(200;320;NLM) . 1//2 

C(200;400;NLM) 1 1 

C(200;410;NLM) /(5/6) 3//10 

C(200;420;NLM) 1//2 /O /10) 

C(200;430;NLM) /(2/5) 

C(210;210;NLM) 1 -i/3 (2/3)./z 

C(210;300;NLM) -1/3 (1/3)/5 

C(210;310;NLM) /(2/3) -1//6 /<2/3) 

C(210;320;NLM) (2/3)/2 - (1/3)/cz/5) 3//10 

C(300;300;NLM) 1 1 1 

C(300;310;NLM) 1/2 (1/2)/3 

C(300;320;NLM) -1/2 . (1/2)/(7 /5) 

C(300;400;NLM) 1 1 1 

C(310;310;NLM) 1 1/2 -1/2 1//2 /0/10). 

C(310; 320;NLM) 1//2 -(1/5)/(3/2) (3/5)/(3/2) 

C(310;400;NLM) ~1//6 /(2/15) /CV/1.0)') u;;·~.) r:.· /) ')) 



C(310;410;NLM) 

C(320;320;NLM) 

C(320;400;NLM) 

C(320;410;NLM) 

C(320;420;NLM) 

*Convention: 

j(S/6) /(2/15) -lb/10) 

(2/5) (21/5) 

1 -1/2 1/10 1/ 2 

- (2/5) /2 (1/5) h 
,;_ (1/ 3) /(2/5) (34/75)/2 

(9 /25) /3 

1//2 -(2/5)/2 (1/5) //2 

(6/5) /(3/7) 
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(8/5) /(2/15) 

-1//70 (9/5) /<2/7) 

- (1/2!>) /42 -(6/25)/2 

(2/5)/2 -(2/5) 1/7 

The coefficients C(nlm;V~;U;NLM) are listed with all those of 

smallest L first (the smallest N first then larger N), then next smallest 

L, and so on. 

N is restricted by 

N = /n-).Jj + 1, ln-lll + 3, ... ' n+).}- 3, n+V- 1 

and L is restricted by 

with M = m +.JA = 0. 

As an example of the use of the table: 

~0 'f;.10 
=· -(1/3)/(2/.f) 't';10 + (34-/7s)/2 'K-to -(1/2.))/4-2 Yt1o 

.- (6/2S)/2 1£;..
30 

+ ( c; /25")(3 lJ;30 • 

Notice that N)L. 

i+.R'-L t 
These C coefficients are (i) vtn n'/N) times the R4 Wigner 

coefficients ( f U I ) .. 
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TABLE III. THE COEFFICIENTS T(n1m;v.)u;NLM)* 

T(100;100;NLM) 2 1 

T (100; 200 ;NLM) 1 2 1 

T(100;210;NLM) 2 /(2/3) 

T(100;300;NLM) 1 2 1 

T(l00;310;NLM) /(2/3) ' 2 /(5/6) 

T(100;320;NLM) 2 1//2 

T(100;400;NLM) ·1 2 1 

T(100;410;NLM) /(5/6) 2 3//10 

T(100;420;NLM) 1//2 2 y~b11o> 

T(100;430;NLM) 2 /(2/5) 

T(200;200;NLM) '12 2 :~ 2 1 
\ 

2/(2/3) (1/3) /s T(200;210;NLM) 2/3 

T(200;300;NLM) 1 2 2 2 1 

T(200;310;~LM) 2 /(2/3) 3/2 /(10/3) (1/2) /3 
T(200;320;NLM) 1/2 /2 (1/2) /o /5) 

T(210;210;NLM) 2 2/3 -2/3 -1/3 (4/3)/2 2/3 

T(210;300;NLM) -2/3 1//6 (2/3) /5 1//2 

T(210;310;NLM) /(2/3) 2 /(2/3) 1//6 - /(2/3) -1//6 

1//3 2 /(2/3) lo /15) 

T(210;320;NLM) (4/3)/2 1//3 -(2/3)/<2/5) -1/5 3/<2/5) 

3/5 



T(300;300;NLM) 

T(300;310;NLM) 

T(300;320;NLM) 

T(310;310;NLM) 

T(310;320;NLM) 

2 2 2 2 2 

1//6 1 7//30 /3 

-1 (1/5) l/2 /0!5) 

2 3/2 1 -1 

/(14/5) (1/5)/14 

1//3 ~ (8/5)//15 

(3/5)/(3/5) (3/5)/6 
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1 

./<7/10) 

(1/5)/7 

-1/2 /2 6/5 

-(1/5)/6 - (1/S)/(7 /5) 

(9/5) !/10 

T(320;320;NLM) 2 1/2 -1 -2/5 1/5 1/10 /z 
. 2/5 - /cz/35) - (1/5) /<2/7) (18/5)/(2/7) 

(3/5)/(6/7) 

*Convention: 

The coefficients T(nlm;Y~;NLM) are listed with all those of smallest 

L first (the smallest N first, then larger N), then next smallest L, and so on. 

N is restricted by 

N = In-V I, . /n-lJ I + 1, ... ' n+}} -;I. , n+ }) 

and L is restricted by 

L = I 1.-.AI) /i-.A/ +2) .. j i+)-2., i-t) 

with M = m + = 0. 

For example: 

T(210;320;210) = (4/3)/2 

T(210;320;410) = -{2/3)/(2/5) 

T(210;320;430) = 3/<2/5) 

Notice that N) L. 

T(210;320;310) = 1//'3 

T(210;320;510) = -1/5 

T(210;320;530) = 3/5 



TABLE IV. THE FUNCTIONS S~~(R) 

n1m 

100 100 

100 200 

100 210 

100 300 

100 310 

100 320 

400 

410 

100 420 

100 430 

200 200 

200 210 

200 300 

200 310 

200 320 

210 210 

210 300 

210 310 

210 320 

300 300 

300 310 

(1+s) exp-s 

(2/3)s2 exp-s 

i(2/3)s(1+s) exp-s 

-(1/3)s2(2-s) exp-s 

-i(1//6)s(1+s-s2) exp-s 

- (1/3)/ (1/2) s2 (1+s) exp-s 

(2/15)s2 (5-5s+s 2) exp-s 

i(2/75)V5s(5+5s-12s2+3s 3) exp-s 

(2/15)s2(2+2s-s2) exp-s 

-i(2/15)/(1/5)s3(1+s) e~p-s 

(1/3)(3+3s-s3) exp-s 

-i(1/3)s(1+s-.s2) exp-s 

(2/15)s 2(10-5s+s2) exp-s 

i(1/5)/(2/3)s(5+5s-4s2+s3) exp-s 

(1/15)/2s2(2+2s-s2) exp-s 

(1/3)(3+3s-s3) exp-s 

-i(2/15)s3(4-s) exp-s 

(1/5)/(2/3)s2 (3+3s-s 2) exp-s 

i(1/15)V2s(6+6s+s 2-s3) exp-s 

(1/45)(45+45s-60s 2+60s 3-1Bs4+2s5) exp-s 

-i(1/15)yi(l/6)s(15+15s-39s2+16s3-2s4) exp-s 

39 

) 
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300 320 -(l/45)yi(l/2)s 2(3+3s-12s2+2s3) exp-s 

310 310 (l/45)(45+45s-18s2-33s 3+2ls4-3s5) exp-s 

310 320 -i(l/15)/(l/3)s(6+6s-3s2-ss3+s4) exp-s 

320 320 (1/45)(45+45s+6s2-9s3-3s4+s5) exp-s 
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TABLE V. THE COEFFICIENTS (1/J))S~~CtR) 

(for s = p
0
R = ~, 1, 2) 

v)..;. s = ~ s = 1 s = 2 

100 0.9098 0.7358 0.4060 

200 0.0505 0.1226 0.1805 

210 i 0.1516 i 0.2453 i 0.2707 

300 - 0.0253 - 0.0409 0 

310 -i 0.0516 -i 0.0501 i 0.0368 
' 

320 - 0.0179 - 0.0578 - 0.1276 

400 o. 0139 0.0123 - 0.0180 

410 i 0.0220 -i 0.0055 -i 0.0363 

420 0.0139 0.0368 0.0361 

430 -i 0.0017 -i 0.0110 -i 0.0484 

Note: 

. * 
[ s~~o(j~) J - S too (-R) 

v).o · 
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VI. APPROXIMATE COEFFICIENTS 100 ~ 100 ~ * TABLE HIX~o(R) + Wo<~ 0 (-R) 

oi.f( s = ~ s = 1 s = 2 

100 1. 7794 1.4288 0.8588 

200 0.1866 0.3730 0.4852 

210 0 0 0 

300 -0.1596 -0.2276 -0.0938 

310 0 0 0 

320 -0.0376 -0.1006 -0.1212 

* Approximated by the first six non-zero terms in their series expansion 

in :VA)" , equation (II-34). 

It may be shown that 
:l 

W ·/(X1(....l) ·- ...£f[Ug,,too(X)l r)~ 
. 100 R. - fo ji~-RJ 

1 [ -.2/bl?] 1 [ -,2,(}] = i-:R 1-(t·tfb'R.)e = 7 1-(1+4)-e. • 

Using this one finds that the exact values of 2wigg(R) are 1.7924 (for s = ~), 

1.4586 (for s = 1), 0.9450 (for s = 2). 



[ 
( 100 ... J TABLE VII. THE COEFFICIENTS (1/n) cln1m, 100 + Sn1m(2R) 

(for p
0

R = 1) 

n1m 

100 1.4060 

200 0.1805 

210 i 0.2707 

300 0 

310 i 0.0368 

320 - 0.1276 

400 - 0.0180 

410 -i 0.0363 

420 0.0361 

430 -i 0.0484 
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