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INTRODUCTION

It is well establishned that many vphysical and chemical
phenomena such as those in chemical reaction kinetics, laser

cavities, rotating fluids, and in plasmas and in solilid state
phivsics are governed by nonlinear differential equations whose

soiutions are of variable character and even may lack

-

regu

arities. Such systems are usualiy first studied
quailitatively by examining their temporal behavior near singular

points of their phase portrait.

In this work we will be concerned with systems governed

by the time evoiution equations

The Xy may generally be considered to be concentrations of
speciaes in a chemical reaction, in which case the f's are rate
constants. In some cases the X, ma§ be considered to be nosition
and momentum variabies in a mechanical system. We will divide
the equations into two classes:; those in which the evoiution

can he carried out by the action of one of Lie's transformation

groups of the plane, and those for which this is not possible.



Members of the first class can be integrated by quadrature

either directly or by use of an integrating factor:; those in the

second class cannot. Of those in the first class the most

interesting evolve by transformations of the projective group,

and these, as well as the equations that cannot be integrated by

quadrature, we study in some detail. We seek a gualitative

analysis of systems which have
equations when the origin from
critical point. The standard,

of course not adequate for our

no linear terms in their evolution
wiich the x, are measured is a

linear, phase piane anaiysis is

purposes.



TRANSFORMATIONS CARRIED OUT BY ZXP(al)

Consider a continuous group consisting of transformations

which transform the coordinate x,; into x,, with

3

Here X = {x,,x,5...,x,), and X = {£1.£2,...§p} are vectors in 7

-

dimensional space and « represents -~ effectiive group narameters.

The transformation could be written in detaii as-*-
x; = @i(xi.xa..-.,xn; LR PURER LN
(1.2)
{i=3,2,..,n)
The narameters are chosen such that
X = 2(x,0}. {1.8)

2f we perform an infinitesimal transformation de from the

identity, X is tranformed into X =X + gx, i.e

X = X = gx = Z{X, z-ga} -4

Thig yieids



Expanding about

_owest order of

ax

we have

X = @x, a~-da) -Z(x,0)
some neighborhood of ¢=0, we can write
do:

2(x,0) + Z=ax, «)! -da - B{x,0)

9 w=0
=% bl
et DX, «) + ge
- < a=0
abbreviation

U) = 52 B(xe)

or in standard form,

Here

. o=
gxX = WX} Ja,
QX
-— = ],
de. J:p{x)
U, = 5o 2,(X.e)
L. = .3 o)
T BRI

(:.8)

(1.7}

—~
[y
4]

—

(i.8a)

We couid also write the infinitesimal change of an analiytic

F{x) under the transformation as



0
11

Since

X
rhen

d=
Here

o

=0

are ihe generators of

3
=
Th,

0
%
%
1]
9]
f5e)
m
) k
&
S

vh

UiX) Qo

37(x) LX) de

ax

) 2EX)
da { U{x) —gy-il

PO TP

= Sda, £ (x) B(X) . | (1.9)
pod 2w

= 3u, )&
Z in'” 3x;

S5 5 :
25 000 B (1.10)

the groun.

Now because of the group property of infinitesimal

transformations, the finite Iransformation is obtained by a non-

denumerable infinity of such transformations. Let

e

then

2
= WE , {with ¥ a large number) (1.11)



F(x,a) = 2im (1 + £ da ¥ F(x,0)
A s “p

= rim (1 + %, MY rix,0)
Nyoo

= exp{ zp aﬂ) F(x,0)

= P(X,2)F(x,0) . (1.12})

It is clear that

1, =
V(X,x} = exp( &, ).

hd
§73
is the groﬁp operator and xu are the group generators.

The previous discussion may be generalized. If one has a

set of n ordinary differential equations of the form

one may view this as defining an infinitesimal transformation of

the variabies x4

Iif du“ is replaced by d¥ (time), then the evolution operator

of the system is obtained.



CHAPTER 2

PROJECTIVE GROUP

In this chapter we will focus our study on investigating

the projective group of transformations and its properties.

2.1 DERIVATION OF PROJECTIVE GROUP OF THE PLANE IN TERMS OF A

PAIR OF DIFFERENTIAL EQUATIONStz]

Consider the projective group of the plane

(Tvay )y + agxy + g

% -
1 = QpXy T GgX, + 1
(2.1)
P a U (1+ ag)xy + og
2 T ®gXy T XgXn * 1

The identity transformation is obtained by making all

parameters equal zero.

If we consider the infinitesimal transformation where a,

becomes d“i and use expression {(i.6), we have

(=

n
tvi
o
o
b
"
R,
3

Xyodoy + Xpeda, +odrgt xgexycdag Fox x,deg
(2.2)



o (Jaxy t (lmeg)xp * e )l e
@« o + _

.
@xs = Z - -
2 o 19 M 7% %gXgy 1 om0

= Xgeday = xpedag F dugtx, Xy @Xgyxy <Xy doy

if we set daf = §,da ( ¢a is an infinitesimal of first

order) we have

dxy = ( klxi * o kgxg * k3 + kvxg + ksxlx2 ) da

These two equations are a pair of ordinary differential

equations whose infinitesimal generators are [al

- 2
Y111 7 Yaae = X1 B, T %1¥e Ba, (2.4)
| 2 3 o
Yooe = Y112 = % §; ¥ *1%2 Bx;

The operator of a general transformation of the projective

group is a linear combination of the above generators:
_ . 2, 3
L= lhgo = kg * kipXp + Rygp¥iXp * K131%1) 3% (2.5)

2 3
* lkgg * kpyXgt kooXo * kyqp%, + *111%1%0 )5

The finite transformation is carried out by exp{af). As



mentioned earlier, an evolution operator is obtained by

replacing the parameter dag by d¢, where ¢ is time.

2.2 THE NON-LINEAR SUBGROUP OF THE PROJECTIVE GROUP

Consider the nonlinear part of the ahove differential

equations

Q2
X
e

2
FE =t kig1%q T okqgp%4%p
{2.6)
dx
2 2
7 Tt kiq1Xq%g T ky19%5

{Notice that #.,,, and £,9, are common in both equations).

If we multiply both sides of these two egns by X and -x,

respectively, and add them together, we obtain the identity

ax 4 dxy
g ~Xigr "0 (2.7)

If we divide both sides by xg, we have

%o dxlldt - %y dxa/dt

xa =0 (2.7a)
2

The ieft hand side is simply the time derivative

x
3 x; ) =0 (2.7b)

which identifies the bracketed quantity as a constant. This
determines the phase curves and suggests that the original

equations may be selved exactly.



In fact the general solution of (2.3) is (2.1), if one
interprets the x; as initial values, the Ei as final values, and

sets ai=kia.



CHAPTER 3

NON-PROJECTIVE TRANSFORMATIONS

In this chapter we will consider differential equations

whose evolution operator contains no contribution from

generators of the projective group.

3.1 THE SIX-PARAMETER FAMILY OF NON-PROJECTIVE DIFFERENTIAL

ZQUATIONS

Consider the 6-parameter family of differential equations

ffl = x2 F CugnXay + € x2
ot 1137 1127172 12272
(3.1)
ffg = C x2 + ChipXXn * € x2
dt 21171 2127172 22272
where the Cijk are parameters.
The evolution operator
_ 2 ) 2,8
T o= (eg19%y T Cyyp%1%p * C1pp¥Xa)Ey
{8.2)

2 2,3
* (Cg11%] ¥ C1pX1%p * Cpp9%Xs }é?c;

is not a linear combination including any projective group

generators in the sense that €119 ® Cogp, ANA Cypny F Cpya-
{ Notice in the differential equations of the projective group

that k111, and k112 are common to both differential equations.)
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By a suitable choice of ¢ and x scales, we may put
i 6111=6211=1 in (3.1). The above equations are then reduced to the

4-parameter tamily of differential equations.

. dxs 4 2
: gE T X1 T Cy3pXq¥Xg F CygaXg
o (3.3)
i ax
2 2 . 2
gF T X1 T C212%1%p * CoppXp

! For simplicity we let ¢,,, =

then the above equations become

ax
E?l = x? T oax Xy * 3“22
e (3.4)

2 2 .2
gE- T Xyt YXyXpT 0Xg

% The general solution of the above sysiem is of the form

xR
-t
|

= Xy (t. @ B.7.6 %1 (0) x5 (0))
{3.5)
xz = xa(ta X, 517:6 vxl(o} :XZ(O))

These may be considered as parameter dependent parametric

equations of curves in the phase space {xl,xz}, the evolution

parametier being 7.

3.2 THE PHASE SPACE OF SYSTEMS WITH QUADRATIC NDNLINEARITIESLB]

In general the nonlinear differential eguations {3-1} can
not be solved by quadrature. Non-linear ODE's are studied

qualitatively by:




-11-

1) Lecating the critical points (equilibrium states) of the

system and determining whether they are stable, unstabie or

neutral points.

2) Investigating trajectories x(*) near the critical points

to see if points near the critical points remain nearby or move

away.

We are considering a system of 2 first-order differential

equations of the form

dx1
g = Falxg.xp.2.8)
(3.6)
dxz
gr = falxy.xp07:8)

where fl and f, are continous and have singie-valued and
continuous derivatives throughout the phase plane. Thus the
values of the phase space coordinates (xi.xz). at any instant of
time, completely define the state of the system at that time and

compietely determine its future {and past) evolution.

A given soiution to the equations with fixed «,f,v,8 will
map out, as a function of time, a smooth curve in the phase
space. The motion along the collection of such curves is
termed a flow because, due to the singie valuedness of fi and fz.

no two such curves can cross.

The geometry of the phase space is described by the
vector field (d§1,d§2, xl,xz} which indicates the direction and

speed of the evolution of the system at (xl'xz)‘ Trajectories in
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phase space are formed by plecing together infinitesimal steps in
the direction indicated by the local vector field. The result is

a curve whose tangent is always aligned with the vector field,

[71

[

.e., with (d;i.d;z) at (xl,xa).

Fig. 3.1 illustrates the velocity vector fielid and the curve

describing the motion of a point in the phase piane.

It is worth emphasizing that the vector field as well as the
trajectories have the property that only one vector exists at
each point and only one trajectory passes through each point in
the phase space. The set of all these trajectories define a phase
porirait of the system (if the system parameters are considered

figed).

The solutions (trajectories) plotted in this Thesis were
obtained by numerical time integration using a fourth order

Runge-Kutta routine.

Though iwo phase curves don't cross one another they may
meet at equilibrium points of the motion. At such points, whose
coordinates x, and x, will be denoted by x,, and x,,, the phase
flow is stationary, i.e, these are points for which £1=f2=0.
These points are also called critical points, and there can, in
general, be any number of voints satisfying these conditions. 1In

our case we have

2 2 _
Fi =g T Xjg *t @y T Bxpo = 0
- (3.7)
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ax
A%y 2
fo = @& = %ip T Y™ q1g¥g0 T 9%gp = 0

Solving these equations one obtains

(a-'y}xlo"' (B -4 )xao =0 {3.8)

It is obvious that the central critical point for the given
system is x, = X4g = 0, Xy = Xgq = 0, when « # v, and £ # 4.
There are also solutions of (3.7) which define critical lines.

These will be discussed in Chapter 4.
From a iarger standpoint there are critical surfaces in

the space [x,,xz,a,ﬁ,y,é} defined by the relation

X 2
X, = x? +axyxXy * fx; =0

_ *2 - 2
or xy = 3= (-« /(a® - 46)), (8.92)

and the similar relation

.2 2 _
Xo = Xy + IX4Xp + 6x2 =0

(3.9b}

x -
or Cox, gg {(-r = V/§2 - 46)

The investigation of this thesis may be thought of as a
study of the way in which these surfaces determine properties of
the solution of the family of differential equations (3.4) when
the RHS are considered functions of X4 .%o With coefficients

«,8,y, and &,

Having identified the critical points, and any criticail

lines, motion near them can be determined by examining the
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evolution of small displacments (dxl,dxz). about the point
(*10'%20) |

In order to more easlly understand the motion, we
investigate equations (3.1) geometrically by considering the

conic sections which they define when il' and ¥2 are set egqual to

constants other than zero.

3.3) TOPICS_IN ANALYTICAL, GEOMETRY

The conics are circles, ellipses, parabolas, hyperbolas,
and straight lines. These curves can be obtained by cutting a
cone with a plane either perpendicular to its axis or tilted with

respect to the ax:’ts.[S*|

Consider the following equations

P
[y

2 . . _
X1 = C111%1 T C112%1%2 T Cipa%g T
(3.10)

C 2 2
Xg = Ca31%X1 T Ca12%1%Xp T Cpga¥ny T Ag

Here ki. and }3 are constants.
Depending on the nature of their roots, the right hand
equations of this pair define ellipses, parabolas, hyperbolas,

and straight lines. The roots of the equations are

x
= 2 3 2 _ 2
1% e, leyyp = 461416195055 + A1)/26444
| (3.11)
X
T S 2 )
X1 % T T leg1s — 46511C020)%5 * 23) /26555
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The discriminants are

) 2 2
1 = {61197 = 46441C10)%5 * Ny s

~ 2 2 (8.12)
2 = (eg0 4€911C202)%5 *+ Xy

Diand D2 are the parameters that determine the shapes of the
curves defined by (3.11). If D is positive we have hyperbolas,
if zero, straight lines. If D is negative we have ellipses.
Because the eguations (3.10) don't have a linear term, they don't
exihibit the standard form of the parabola (x1= 4px§). Therefore

we obtain no paraboliic curves in this work.

Figures 3-2a,b show typical conic sections we do obtain.
Each of these figures represents a family of curves plotted for
fixed parameters (Cijk) with different values of xi. 'In addition
we obtain straight lines when f1 or f2 contains repeated

factors; ¢.f. appendix.]

These figures are not interconverted by rotation or scalings.
Consider a rotation through an angle @ that transforms the axes
of an Xq Xy coordinate system into an xl‘,xz‘ coordinate system,
with

1 1
X, = xlcose - xzszne
' ' (3.13)
Xg = xzcose + x151n9
Under the rotation, the right hand side of the second equation

in (3.10) becomes

clil(cosze + acos@sing + ﬁsine)xiz
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* €qqp(-2ac0505in0 - «(5in0 - cos’e) + 2851n9c0s6)x ] x}

+ c122(sin26 - 208in6coso + ﬁcosze)xéz = Xy (3.14)
if the parameter € is chosen such that the cross product
coefficients are eliminated, i.e

2sindcoso(f -1) + a(cosze ~ sfn29)=0.

i-g

then cot2o = -

If equation (3.11) defines an elliipse or a hyperbeoia in

(xl,xz), then this rotation puts them in the standard form

x4 %2
G2+ G2 =
or {3.15)
x4 X
2 - G2 =1,

¢
respectively. Here a, b.c.d are new parameters.
A rotation which puts kl in standard form will of course
seldom simplify the 22 equation. We will discuss the 22

equation below.

If the x; variables are rescaied (x; = ay,. and x; = By},

the above equations become

p-:<[\)
+
X
(A%
]
»
bt

(3.186)

*C
e
|
X
[\ 34
I}
>
(71

respectively.
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3.4 INDEX OF A CRITICAL POINT AND INDEX OF A CURVE

In order to give a complete picture of the behavior of
equations {3.3} in the phase plane it is usual to classify
the system topologically close to its critical points {and far
from its critical points). To aid in this task, we introduce

the basic concept of the index of a critical point.

i) INDEX OF A CRITICAL POINT

Consider the following system

;1 = fl(yl’yz)

o= {3.17)

When the time evolves {g¢>0), the coordinates of a point P will

increase by dyl, and dyz. where

dyl = fl(yl.yz)dt. ady, = fz(yl,ya)dt {3.18)

Ee

The slope of the vector ¢ = (fi’fz) can be measured by the angle
o which it makes with the Yy axis (measured anti-clockwise from

the positive ) axis). One has

Filyq,¥5)
- ) 3.19
S Ry vy 219

The number of times that fl/fz changes its sign {negative/

positive} to (positive/megative), respectively, as P moves

completely around a closed curve surrounding the eguilibrium



point can be used to classify the equilibrium point.

The number of changes in fame obtained in this way is

called the index of the critical point (9]

The concept of the index of a point discussed above has
proved to be very useful in investigating the nature of our
equilibrium points. It is of interest, in passing, to generalize

it along the following lines.

ii) INDEX OF A CURVE

Consider again the pair of equations given by (3.10). As
mentioned in the preceeding section, the 91‘ and 92 equations are
either of hyperbolic or elliptical type. This suggests the

following few paragraphs.

a} CIRCULAR INDEX

Equation 3.9 is supposed converted by rotation and scaling

transformations into

- 2 2
v, = {¥I + ¥5)
1 172 (3.20)

. 2 2
Yo = dp19¥1 * d212¥1Y2 T 92075

where dZij are new parameters and the right hand side of
dyl/dt defines a family of circies for dyi/dt = kl(constant)

centered at the origin with axis aiong the coordinate axes. The
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eguation dyz/dt = Az may still define circles, hyperboias,

ellipses, etc.

On the above circles the ¥y component of the vector
field is constant. The behavior of the trajectories in
the phase space near or close to a circle are determined by
considering the other component of dyz/dt. The number of times
dYI/dyz changes sign on the circle is called the index of the
circle and it wiil be used to classify the phase portrait. The
index of the circle is necessarily the same as the index of the
point at its center. Let r be the radius of a circle, and 6 a

polar angle, then

¥y = rsing, Yy = rcoss

This gives y% * y% = rz. and 91 = rz. This implies of course

that 91 is independent of the rotation anglie, but
v, = 72(d . 15IN%68 + d4.,5iN0C086 + d,,,C0526)
2 ’ 211 212 - M2zt
Then the co-slope of any point in the phase space is

_ . 2 2
dvz/dyl = dyq45in70 + d212sinecose + d55,C08 =] (3.21)

That is, the siope of the curve is a function of & only, and the

magnitude of ¢v., and hence, by the above, the magnitude of dyz

for fixed & is proportional to rz.

it is apparent that the index characterizes not just the

eritical point, but ail circles y? + yg = const. that surround
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it. The circles themselves are characterized by the number of

times dyl/dyz changes sign on them. Now if

ay
1 3 . 2
d—yz = 1/(d222~1 + d2125!necose + (d211 - dzza)Sln 9)!

then, taking cos@siné= 1/2s5in26, and sin°e = 1/2 (l-cos28), the

above equation becomes

dy
1 = —_

{3.21a)
Changing to a new polar coordinate o such that,
d -d
where £ = 211d 222 , converts {3.21a) to
212
@y ,

This expression has three fundamentally different cases:

1) #R = dyyq * dppo.0r [RI= dyyq + dpyy. then dy,/dyy
will go to zero at just two values of ¢ separated by 90%.
i1) {RI> dyqq *+ dypp o d¥,/dy, will not vanish any where.

iii) RIL d211 + d222 dyz/dyl will vanish for 4 values of

v, separated from each other by two differnt angles.
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b) HYPERBOLIC INDEX

We assume the RHS of the first equation in (3.9) defines a

hyperbola, so that the standard form becomes

: 2 2
Vo= [(wI ~ v
1= ) (3.22)

© 2 2
¥9= d991¥1 * 9212¥1Y2 * 92222

If the Yo equation defines an eliipse then we could have

interchanged the roles of yl.and ¥ and reduced‘the equations
to the previous case. Suppose that, instead, the 92 equation
defines a hyperbola. Then let

¥y = § cosha, v, = 5 sinfie.

Then

and

92= sz(dzllsfnhza + d21zsinhacosha + daazcoshaa)

+

2 o117 " 912 dglz dogp * 9311

) +

= g sinh2a + cosh2a ) (3.23)

The inclination of the vector field at any point on the

hyperhola 32 = A; is then

a4 o171 ~ 9gpp  dp1p
av,

dy0p * 9214

= 1/{ 5 * —z—=sinh2e + coshoa )

(3.24)
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it is clear that the slope of the vector field at any point is

hY

independent of s. The magnitude of both &v,, and dy2 for fixed
«, are proportional to 52. The number of times dy1/dY2 changes
sign {negative/positive) to {positive/negative) on the hyperbola

Yz - yg = constant we term the index of the hyperbola,

We investigated its use in classifing phase portraits with
open trajectories. However, in the end we found that it was not
necessary for this purpose, so we will not pursue the matter

further in this Thesis.

3.5 NON-PROJECTIVE CRDINARY DIFFERENTIAL EQUATIONS IN A POLAR

COORDINATE SYSTEM

We have found it is helpfull to use polar coordinate systems

tio provide a new way of anaiyzing the behavior of trajectories in

phase space.

i) CIRCULAR- HYPERBOLIC TYPE

Consider the pair of egquations given in (3.20) to

be transformed to polar coordinates by the substitutions
Y. = * sipd, Yo = T cose. {3.256)

-
i

Then the left hand sides of equations {3.20) become

91 = 1 5in6 *+ 7 cosd ©
- (3.26)
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92 = v cos8 - r $ind é

Solving for r., and é, and replacing the ;4 in the result by the

right hand sides of equations {3.20) we obtain

2

r = 12 {{ cos®e * sinze) sing - (dalisinae +

i 2
dalastne cosd + dagzcos 8) cos6}
(3.27)
é =r {—(dzllsinae + d21asinecose +

2

dzzzcsoae)sine + { cos®e + sin°e)cose}.

Since
40 , dr _ d¢
¥1/e, = gt/ It = ar
we have
{a sin29 * o, ,5iN8COS6 + & cosze)sine
g6 _ 1 211 212 222
dar T (c0529 + sfnze)sfne + (dallsinze + dzlzsine
+ (cosze + sinze)cose .
cos9 + deazcosae)cose
= 1z (3.28)
= .
if Z{®) is zero then %% vanishes. This means that &

becomes consiant and the trajectories approach radial straight
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lines for specific values of 6 determined by the function

£(©) when its numerator vanishes:

2

{sin®6 + cosge)cose - (d21lsin26 + dyy,5in6cose +

n
[}

dzzzcosze)sine

+

1= dyy,tan®e + ((dyi,- 1) tan®e + dgpotand . (3.29)

Solving for #gné (which is yl/yz), one may find the roots of the
above equation and determine the siope of the radial straight
rlines which are solutions of (3.20), the system of circular-

hyperbolic type.

ii) HYPERBOLIC-HYPERBOLIC TYPE

Similar transformatons can be used to write equations
(3.22), the system of hyperbolic - hyperbolic type, in polar

coordinates. The result is

~(d2115in29 + d,,,005051N6 + dzzzcosze)sine

g _ 1
ar 7 (sin29 -cosze)sfne + (daiisinae + d212cose
+ (sfnae - cosze)cose
sino + dzzzcosze)cose
s Z(8) ' (3.30)
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As in the previous case, if one considers Z(8) to be zero
de/dr becomes zero. Again the trajectory approaches a radial
straight line determined by a real root obtained when the

numerator of Z(6) is set equal to zero:

(dallsinae + d212cosesin9 + dzgzcosze)sine
~cosé{sin29 - cosze) =0

In this case

dalltanse + (d212 - l}tanze + dzzztane = -1, {3.31)

an equation which differs from (3.29) only by a change in the

sign before 1.

iii} CIRCULAR-ELLIPTICAL TYPE

In this case the differential equations of circles and
ellipses are written in the following form using the

transformation equations (3.25):

26 2

o= 22 { sine + ( s£"2 + C°§ €y coso }
a b :

. . 2 2

9=r{cose—(S’ge+coge)sfne}.
a b

{3.32)

Then -
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(3.33)

) cos59 - aa 5
€@ . }
26 26
dr T sing - (sinz . co; ) cose
Q b
z Zig!

it is apparent that the trajectories approach radial

straight lines at large . These lines are defined by the

equation obtained by setting the numerator of Z{(e) = 0, viz.
= 0

cose — | sinze/a2 + cosze/bz) sineG

1+ tan®6 - tane/a® - tané/p° = 0.

iv) CIRCULAR-CIRCULAR TYPE

Consider the foliowing pair of equations:

It immediately foliows that

dylfdyz = 1/k

SO

{3.34)

(3.35)

{3.36)
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Yy = (I/k)yz + const.

The phase plane is filled with a family of parallel straight

iines.

In conciuding this section we wish to draw attention to
several consequences of the invariance of egquations {(3.1) under

the scaling transformation

-
1

1. This makes the tangent dyl/dyz independent of the distance
of the point P(yl.yz) from the origin (Section 3.4), so that
the direction of the tangent vector field (d;l.d;z,yl,yz) is
known everywhere once it is known on any circle centered on the

origin.

2. The rate of evolution at a point with angular coordinates

r,9 scalies as r2.
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CHAPTER 4

CLASSIFICATION OF NON-PROJECTIVE SYSTEMS IN TERMS OF

THEIR CRITICAL POINTS AND PHASE PORTRAITS

[1=Y
"-A

INTRODGCTION

Poincare showed that much can be learned about dynamical
behavior from an analysis of trajectories in a multidimensional
phase space in which a singie point characterizes the entire
system at an instant of time.£7] A key feature of Poincare's
analysis was its emphasis upon topological properties. In

this section we will focus our attention on the classification of

non-projective systems in terms of their topoliogy.

We will make use of the fact that rotations of coordinates
and dilatations of coordinates only change the orientation and
scaling of curves. They do not change the basic topological
properties of curves. We first concentrate our attention
oh phase curves that are chosen because of a simple reiationship
'between dyl/dt and fl(yl.yz) and a simple relationship beiween
dygldt and fz(yl,ya). We consider sets of curves fq o= AI, and
f2 = kz in which all members of each set have a common topoiogy
and investigate the way in which the topology and the orientation
of these curves affects the topoleogy of the phase curves of the

system,
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Before we proceed to do this, we define the following types

of invariant subspaces found in our phase portraits. [A subspace
ig termed an invariant subspace if the phase curves in the

subspace never leave the subspace.}

4-2 DEFINITIONs .8l

i) Inset of an eqguilibrium point: This is the portion {Is}
of the phase portrait where a set of trajectories asymptotically
approach the equilibrium point. We distinguish two types of

inset regions:

In the first type each trajectory "begins" at an arbitrarily
large distance from the critical point. By this we mean that any
point on the trajectory (critical point excluded) recedes from
the critical point to an arbitrarily large distance when the time
ig reversed. We denote the region containing such trajectories,

and only such trajectories, an open inset. {Ios}.

In the second type all points on each trajectory are a
finite distance from the critical point. We denote a region

containing only such trajectories, a closed inset, {ICS}.

ii) Outset of an equilibrium point: This is the portion {Os}
of the phase portrait where trajectories permanently depart the

region of the equilibrium point.

iii} Some trajectories neither approach nor depart regions

arbitrarily close to the critical point; they may get close to
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it, but not arbitrariiy close to it. We term the regions where

these trajectories exist intermediate regions, {It}‘

Trajectories in all these regions may be characterized by
their behavior under space inversion and time reversal. Letting
S represent the operation of space inversion, T represent the
operation of time reversal, and I represent the identity

operation, these operations have the following effect on the pair

of vectors (?, d?) which represeni the vector field at a point on

a trajectory and its direction of motion during time J¢:

S(r.dr) = (-7,-d*r) = ~(+.d7)
{4.1)

T(7,d1) = (r,-d7),

Note that T2 = I, 82 = I and the product operation ST = TS

leaves our differential equations invariant:

TS{ICS} = {I_ '}, TS{I

TS(Iyg) = (05). TS(04) = (I ) (4.2)

TS(I.) = (I'), TS(I") = (I).

Because ( ST)2 = I, intermediate regions can only occur in pairs;
one could nof have, e.g., ST{It') = (It").

"Inset", "outset" and "intermediate" are global terms. Thus
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in an intermediate region there are local subregions in which =
trajectory at first may appear headed toward a critical point

but then turn around and head away from the critical point.

We find that, for our non-projective systems, in inset
regions there may be a linear attractor - a line which
trajectories approach tangentially as they approach the critical
point. 1In some case the linear attractors become critical lines

which trajectories approach directly.

We find corresponding linear repelliors in some outset
regions. We define linear repellors as lines which are converted
to linear attractors by time reversal. We aliso find that there

may be linear attractors in outset regions.

Furthermore we find that there may be linear attraétors and

iinear repelliors in intermediate regions.

iv) Separating inset from outset, intermediate from inset,
and intermediate from outset, are special trajectories. Two
regions of the same type can at most meet at a single point. The
special trajectories separating regions of different type are
called separatrices. Separatrices may themselves be liinear

attractors and/or repeliaors.

it wiil be shown below that alil our attractors and
repellors, as well as separatrices, are straight iines defined by

equations

Yy =m Yy (4.3)
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where m is the #ané of equations (3.29, 3.31, 3.34).

4.3) TYPES OF NON-PROJECTIVE SYSTEMS

We start with a study of equations of the form

= k(y§ + yg)

-
[S5%
I

(4.4}

© 2 2
Yo = dp11¥] * 12¥1Y2 * daap¥s

We wish to investigate the manner in which changing the
dZij aiter the phase portrait. We classify the }2 equation into
two fundamental cases by setting its RHS equal to a constant.
This yields either

1) the eguation of an ellipse

or

2) the equatlion of hyperbola.

We ask how, changing the constants in these cases, without
changing the topology of the figures, affects the phase portrait.
Then changing the constants in each case simply changes the scale
of coordinates.and the orientation of the figures defined by 52 =
12' We may think of our study as a study of the effects of
scalings and the orientation of these figures on the phase
portrait. We first note that by scaling t we put £ = 1 in the

first equation of (4.4). (This changes the values of the dZij

without changing their relative values.) In the following



discussion, it shouid be kept in mind thaf it is changing the
dzfj that changes the scaie and orientation of the figure defined
oy f2 = kz. No real rotation or scaling of Y1 and ¥a is
intended. [A real rotation, for example, would simply change the

orientation of phase curves, a matter which is of little interest

here.]

We now turn to a consideration of the various types of phase

portraits we have observed.

1) HYPERBOLIC-HYPERBOLIC TYPE

In this type both of the equations (4.4) define hyperbolae
and we analyze vector fields, one of whose components in the
phase piane is constant in magnitude on a hyperbola y12 - y22 =

const.

Case 1-1

Consider the folliowing pair of equations obtained by

setting QT = Ay, &2 = xz

L2 2

Ay =Yy Yy

A, = y2 + By,¥, + 4y2 {4.5)
2 1 172 2 )

Both equations define families of hyperbolae. The first one,

represents the y, component of the vector field, which has the

2 2

same magnitude and direction on the hyperbola ¥y =Yg = Al.



We define a line on which fi or f2 {(and hence dyl/dyz)
changes sign, to be a "flip line”. The total number of radial
flip lines is hence equal to the index if two flip lines do not

coincide. The eguations describing the flip lines are in this

case
fi =¥y - yg =0
i.e
Yy = ¥y
and, fz = vy ﬁylya + 4y2 =0 |,
which gives B (4.8)
vy = ¥p/2(-6 +/(36-16))
l.e.
¥, = ~-76x2. and Yo = —5.24Yz

Fig. 4.1.1.a shows these four flip lines and the signs of £

Fy. Note how these functions change their signs from positive to.
negative and vice versa when a point crosses the corresponding
lines({the arrows show the positive signs). It is apparent that
dyl/dya changes its sign 8 times on a circle surrounding the
origin if no flip iines coincide; the index of the eguilibrium

point is 8 in this case.

As the figure shows, the entire phase plane is divided
into two primary regions, inset and outset. The inset is

separated into three compartments, two of which coentain closed



trajectories. The trajectories in the inset approach the
critical point along two different attractors which are observed
to be given by ¥y = —4.7y2 in the lower right hand quadrant, and
Yy = —.Syz in the upper left hand guadrant. These attractors

become repellors as they pass through the origin.

The outset, most of which lies in the upper right quadrant,
is contained between the separatrix ¥y = -4.7v, in the upper left
quadrant and the separatrix vy = -.5 Y5 in the lower right
gquadrant. The trajectories in this outset approach the latter
liﬁe asymptotically as ¥ + «, so that this line is an attractor

of trajectories in the outset.

The separatrices, atiractors and repellors are observed to
be defined by straight lines through the origin, and hence have

the equation v, = mv,. Therefore dv, = mdv,, and
1 2 1 2

2 2
Al %% - (4.7)
2 y2 + 6y,v, + 4y2
1 i"g 2
Substituting ny, in place of Y4+ One has
m2—1
T =n (4-T7a)
m°= + 6m + 4
Solving for m one finds two real roots my = -4.7 , and my, = -.5,

as observed. The existence of these strajght lipes is consonant
with equation (3.30) which shows that the trajectories approach

radial straight lines for some values of 8. This foliows from
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the fact that the separatrices (a;tractors, repellors) are
themselves moving solutions of the differential equations
determined by eqn.(3.31), so a point on them moves along them.

As two solutions cannot touch for 0 < Yy < o and 0 < ye < 0
a solution which is not a separatrix can only tangentialily
approach a separatrix which is a moving solution of the

differential equations.
Notice that v, and Yo don't change very much ciose to the

critical point. As the evolutions are quadratic,

1im s'»z.= 0 (4.8)
Yi ,Yz"*o

and the critical point is approached asymptotically.

Now let us see whether the behavior of the trajectories
through any given point P(?) can be qualitatively predicted once

one Knows:

1. The "flip lines" of the system along which 91 = 0, and/or

;2 = 0, and the sign change at each.

2. The attracting/repelling character of the nearest linear

solutions on each side of P.

Let an initial state of the system, defined by the equations
{4.5), be contained in the region where f1 is negative and f2 is
positive, say P{-.2,-.8) in the lower left hand quadrant. After

a short time ot, this point moves to P(-.Zhdyl.-.Sﬂjyz) with
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(4.9)

Since fl is negative, dyl is negative while dyz is positive,

so dr = (dyl, dya) inclines toward the line fi =0 (i.e y1=+y2).
Once the trajectory governing the motion of the above point hits
the line ¥ = Yy {in the lower ieft hand quadrant), it changes
its direction as fy { Y4 component) changes its sign. This means
that the slope of the vector field dyl/dyg becomes positive in
this new region as both fl, and fz are positive. The situation
continues until the trajectory reaches a point where dyz changes

its sign (fz becomes negative)., This takes place when the

trajectory crosses the flip line given by 92 = 0 just before the
linear solution {the attractor) ¥y = —4.7y2. As two trajectories
never coincide, the trajectory in question asymptotically
approéches the linear attractor and the point eventually moves
almost parailel to the attracting line. The resultant motion

will thus be toward the critical point.

r
With spatial inversion the same point becomes P (.2,.8), and
with time reversal, this point will move to the left with

negative slope (dyl/dy2 = —fl/fz) heading toward the flip line

(91 = 0, in the upper right guadrant) where the-trajectory
changes its slope from negative to positive. (Remember time is
now running backward.) This motion goes on until the trajectory

crosses the flip line 92 = 0 where the ¥, component of the vector
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field is changed from peositive to negative. Then the trajectory
approaches the repellor (now an attractor by time reversal) and
then asymptotically approaches the critical point (again because

of time reversal).

Considering the motion of additional points in the same
manner, we have been led to the hypothesis that once the
attractors, repellors and separatrices are known, the qualitative
features of the evolution of any initial point in the phase plane

is completely determined by the following two rules:

1) Attractors, repellors dominate the global behavior.

2) Flip iines restrain the response of the trajectory to
the attractor/repellor by constraining the slope of the

{rajectory at every point.

Case 1-2

We consider a new function gz(yl,yz) = kz to be a mapping of
the second function fg(yl,yz) = const. in eqgns.(4.5) obtained by
an aiteration of the parameters daij equivalent to a rotation of
the figure defined by fa = 12 anti-clockwise through an angle of
45%. Then the equations {4.5) become

-
Yi= Yy T ¥ (4.10)

- 2 ) 9
Yo" 5.5y1 + 3y1y2 .5y2

Fig.4.1.2 shows that equations (4.10) have a different phase

L



portrait which is entireiy intermediate. This region is
separated into two portions by a straight iine trajectory which
is a linear attractor on the lower right hand guadrant and a
iinear repeilor on the upper left quadrant. All trajectories,
excepi the straight line one determined by the equation (3.31)
avoeid the critical point and approach the ilinear attractor as
#+o. If the Time is reversed these trajectories asymptotically
approach the linear repellor. Notice that the repeliing and
attracting portions of the phase portrait are interchanged: time

reversal interconverts pairs of intermediates.

The above mentioned straight line (attractor/repellor},
which is the only moving linear soiution of the system, is
givep by egn. (3.31) and found to he tane = yl/ya = -.76
(con;idering d211= 5.5, d212 = 3, and d222 =-,5, the only

real root) or

= = = = ,B .
dya 5.5y§ + 3 Yi¥o .Syg

As ¥y = ﬁya, we have dy1 = ﬁdya, the above equation becomes

5.58° + 382 - .58

o
!
s
1

Solving for 8, and taking the real parts, we obtain g§ = -.76.

Notice that although the index of the critical point is
8, {as in the previous case), we observed no trajectories that
asymptotically approach the critical point. The rotation process

has markedly changed the phase portrait.
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Now let us examine the qualitative behavior of a point's
motion if it is contaimned in the upper right quadrant and
confined between the fiip lines 91 = 0, and 92 = 0. We take into
account that we have a repellor in the upper left quadrant and an
attractor in the lower right quadrant. and the sign changes
across the flip lines shown in Figure 4.1.2 . Note that the
sign of fl in this region is negative, and the sign of fz is
positive, so the inclination of the trajectory in this region is
negative {(toward the line 92 = 0). This inclination is changed
when the trajectory crosses this line, after which the Yo
component of the vector field becomes negative'and the slope
becomes positive - pointing toward the flip line 92 = 0 (in the
lower right gquadrant). Again, once the tfajectory passes the
flip line ;2 = 0, the ¥, component of the vector field beconmes
positive while the Y4 component is still negative, so the sliope
of the trajectory is nepgative. As we have a linear attractor in
this region given by ¥, = —.76y2. the above mentioned trajectory

asymptotically approaches it as #-eo.

Simiiariy., when the time is reversed, the initial point

asymptotically approaches the former linear repelldr ¥y = —.76y2.

Note the straight iine (the solution of the system, ¥y =
~.76y2) separates two regions that are interconverted by space
inversion, so0 under combined space inversion and time reversal
the trajectories in the lower side of the straight line behave

the same way as the upper trajectories behave.
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Case 1-2'

Consider the case

L2 L2
1Y T Y2
(4.11)

5.28% + 4.99y.y, -.26v2

Y2

which is a special case of case 1.2 in which one of the

asymptotic lines of the 91 conic coincides with an asymptote of

the Yo conic.

As illustrated in Fig. 4.1.2' the straight line trajectory
(attractor/ repellor) shown in Figure 4.1.2 is replaced by the
criticail line at which motions cease. This critical line
divides the phase portrait into two paris interconverted by a
rotation of 180°. Al}l trajectories asymptoticaily approach the

critical line as both #»+=, and -,

Note that the flip lines are now 6 in number and there is no
attractor or repellor in the phase plane except the critical
line. This line attracts the nearby trajectories in the lower
right quadrant, and repells the nearby trajectories in the upper
left gquadrant. Note also that a point on this line never moves,
so trajectories end or begin upon it. This feature allows the
trajectories to approach the line, or leave the line, at a

non-zero angle.
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Case 1-3

Consider now the following pair of equations

L _ e _ .2
Y1 - fl "'yl yz

’ 2 2
Yo = Gy = 4¥] - By v, + v g (4.12)
Where g, 1s a new function obtained from f, by anti-clock wise

rotation by 909 . Again when 2, is set equal to a constant a

hyperbola is obtained.

As shown in Fig.4.1.3, the behavior of the system is similar
to that of case 1.2, except that there are a number of iinear
attractors and linear repellors. Every single initial point
evolves to one of the attractors as the time #»+», and to one of
the repeliors as #+-o., The three attractors, which becone
repellors when they pass through the origin, are observed to he

given by:
v, = —.31y2, Yy = 1.43y2. Yy = +.60Y2

None of them is a stationary solution. These three relations are

in fact the three roots of equation {3.31).

Now let us examine the system qualititively by choosing any
paint in the phase plane. Let a point P{(+) be chosen at the
upper right quadrant between the repelior v = .60v2
and the flip line ¥y = ¥y Here both £y and £y are negative,

so the traiectory's slope is negative (note that aithough the
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slope of the repellor is also negative, the trajectory moves
away from the repellor because the Ya component of the vector
field is getting bigger and the slope of the trajectory is
increasingly negative as the time evolves; there is no way the
trajectory can move along the linear solution given by ¥y =
.60y2) in the direction pointing out toward the flip line ¥, = 0.
Once the trajectory hits this flip line it changes its direction
as the ¥4 component of the vector field flips from negative to
positive. Once again the trajectory, as time goes on, changes
its direction when it hits the flip line 91 = 0, and it ends up
asymptotically approaching the linear attractor. When the time
is reversed, the point P(?) approaches the (former) repellior ¥y =

60y,

[ =y
With spatial inversion, the point P(?) becomes P {-r) in

the lower left hand quadrant contained between the attractor v,
= .60y2 and the flip line 91 = 0. This point, when the time is
reversed moves to the right, and when it hits the flip line y, =

0 it changes its direction toward the next fiip line ?2 = 0.

Once again the trajectory faces the repelior ¥y = 1.43y2: Keeping
in mind that the time is reversed and this repelior is now an
attractor, the trajectory asymptotically approaches the iine vy =

1.43y2.

Case 1.3
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If the figure defined by fy = la is rotated by 82°, one of

the 92 asymptotes coincides with an asymptote of the ;, RHS, and

Figure 4.1.3' is obtained.

As a result, two intermediate regions are eliminated. One
now has a critical line, which replaces the attractor in the
Jower ieft quadrant of Figure 4.1.3, where nearby trajegtories

cease.

The trajectories in the remaining part of the phase

portrait, depending on their location, asymptotically approach

either the attractor given by v, = —.47y2 in the lower right
quadrant, or ¥y = 1.6y2 in the upper right quadrant. These

trajectories asymptotically approach the corresponding repellors

when the time is reversed.

Case i-4

Now consider a rotation of the figure defined by f2 = lz in

(4.3) anti-clockwise through an angle of 135°. One obtains

. 2 ) 2 {4.13)
Yo ==.0¥y - Sylyz + 5.5?2

In this case, as shown in Fig.4.1.4, the phase portrait is
divided by two separatrices into four regions, an inset, an

outset, and two intermediate regions. The inset region contains
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a linear attractor ¥y = 1.35y2 whose points asymptotically
approach the critical point as ¥4, This attractor is tangent
to the nearby trajectories which also head toward the critical
point. If the time is reversed these trajectories, depending on
their location with respect to this linear attractor,
asymptotically approach either the separatrix given by Y, =

—7.1y2, or the separatrix given by ¥Yi = -.17y2.

In this system the outsei contains a linear repellor
¥y = 1.35y2 which separates nearby trajectories. These repelled
trajectories, depending on their location with respect to this

iine, asymptotically approach one of the separatrices

¥y = = AT7,, ory, = ~T.1y,.

In the intermediate regions, trajectories in the lower right
gquadrant asymptotically approach the separatrix ¥ = —.17y2 as
t¥, and the separatrix ¥, = —7.1y1 as fr—w=, Similariy,
trajectories in the upper left quadrant asymptotically approach

the separatrix y, = ~T.1y, as 1w, and asymptotically approach

1}

the separatrix v, —.17y2.

Note that the inset and outset are interconverted by
spatial inversion and time reversal. As before, combined
time reversal and spatial inversion interconvertis intermediate

regions.

Case 1.4
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If f, = A, in the equations (4.5) is rotated by 120°, the
following equations are obtained
Y1 5¥1 " Y2

{4.14)

o 2 _ 2
Yg = .2y1 3.2¥1V2 + 3.2y2

As indicated in Fig. 4.1.4' one of the ¥, asymptotes coincides

with one of the ;2 asymptotes and the rotation of the figure has
eliminated the inset and outset regions from the phase portrait.

The attractor and the repellor originally in the inset and

outset regions are replaced by a critical line which consists
of stationary solutions. The behavior of the trajectories in

the phase plane is similar to that of case 2.3'

2) CIRCULAR-HYPERBOLIC TVPE:

In this case we consider the RHS of the first equation in
{3.4) to define a circle. As dyl/df is fixed in magnitude and
direction around the circle, the index of the phase portrait is
determined by the number of‘times dyz/dt changes its sign on the

circle.

Case 2-1

Consider The following pair of equations

' 3 2
.= ¥ + ¥
171 2 (4.15)
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vam Yi * Gvyyy ¢ W
where the RHS of the first cone defines a family of circles when
set egqual to a constant, and the second RHS defines hyperbolae.
As illustrated In Fig.4-2-1, the phase portrait is separated by
two sepgrarices into four portions, inset, outset, (each of which
nas an attractor and repellor respectively given by ¥y = =8.7%,),
and two intermediate regions. This figure 1looks similar to that
seen in Fig. 4.1.4. The trajectories in the inset asymptotically
approach the linear attractor and eventually approach the
critical point as #+ «. Correspondingly the ouiset repellor
repells the nearby trajectories which, depending on their
locations with respect to this repellor, asymptotically appreoach
the separatrix {attractor, in the upper right hand quadrant)
Yy = .19y2, .or the separatrix (attractor in the upper left

guadrant ) Yy = —1.3y2.

The trajectories in the upper left and lower right quadrént
belong to the intermediate region and asymptotically approach the
separatrices Y1=—1.3Y2 and ¥, = .19?2 respectively as ¢ » «. They
asymptoticaliy approach the separatrices ¥y = .19y2. and ¥y =

—1.3y2 as t =+ —oo,

These attractors, repellors and separatrices are themselves

moving solutions of the system defined by the eguation (3.28}.

and are observed experimentally to be so.
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Case 2-2

Consider the following coupied equations

= vo + v (4.16)

V- 2
Yo —4y1 6"1”2 * Yo o

where the second equation is a mapping of the RHS of the second

equation in case 4.2.1 by a rotation of 90° anti-clock wise.

Fig. 4-2-2 shows that the phase portrait represents an
intermediate region separated into two parts {interconverted by a
rotation of 180%) by the straight line y, = 1.6y,, a linear

solution of the system.

All trajectories asymptotically approach this straight line

which is a linear attractor as the time * + +¢, and a linear

repellor as the time # &+ - respectively. Notice that this

case is similar to the case 4.1.2.

Since dy1/dy2 changes its sign only 4 times, and drl/df is
always constant in the positive direction of y., we observe no

curves similar to that in case 4.1.1, and 4.1.3.

3) CIRCULAR-ELLIPSOIDAL TYPE

In this type, one equation defines circies and the other
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defines circles or ellipses. The vector field and the

trajectories can at most change direction by less than 90°.

Case 3.1

Conzider the following equations

L2, L2
Yi ¥y T ¥,
{(4.17)

2 -2
¥p T ¥yt ¥¥y t Oy

equations whose RHS define a family of circles and a family of

ellipses respectively.

Figure 4.3.1 shows the behavior of the system in the phase
riane (yl,ya). All trajectories asymptoticalily approach a
straight line (a linear attractor as ¢ » « and a linear
repeillor as ¢ -~ «) which is part of a single solution of the

differential eguation determined by eqn.(3.34).

Case 3.2

Lo L2 2
(4.18)

2(y§ + yg).

Y2
Here the RHS of both equations define family of circles with
different radii. Figure 4.4.2 shows that all trajectories are

strajight iines. There is no attractor/repellor in this

circullar- circuilar case; the trajectories don't approach a
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radial straight line.

in the appendix we consider several degenerate cases not
considered above. These develop when f1 and/or fz have repeated
factors. However they add nothing new to our essentially

topological classification scheme.

We conclude this section with a brief discussion of our
observations when they are expressed in canonical coordinates

defined by the invariance of the equations under scaling

transformations.
Define the new variables
p = ln(r}, gdr = rdt .
Recailing equations (3.28, 3.30), we find that in these new.

coordinates they take on the form

dp/dr = p(8), d8/dr = q(6),

and

de/dé = p/q = 1 / Z(8).

Here, depending on whether one is dealing with equation 3.28 or

3.30 one has
= c a2 2 5 .2 .
p = {(3in“e % cos‘8) sine + (d2115‘” 0 + d21aszn9 coso

+ dzzzcosze) cosﬁ

q = (sinze I cosae) cosd - (dzllsinze ~ d,,,5iN8 cosd
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+ dazzcosze) stne

As r takes on the values 0,1, , p takes on the values -, 0, .

In all the cases where there are attractors or repeliors

one has three cases depending

1. If Z(8) = 0, one obtains

and repelilors.

2. if Z(8) remains positive

attractor defined by Z(8) = 0

+ 00

3. If Z(9) remains negative
the nearest attractor defined

approaches - o, that is, as r

This analiysis provides a
observation that trajectories

as r -> « and as » -> 0.

upon the value of Z(8}:

the separatrices, i.e., attractors

as p grows with v, then the nearest

is approached as ¢ (and r) approach

as p decreases while = grows, then
by Z{6) = 0 is approached as p

approaches zero.

simple explanation of the

may approach linear attractors poth



CONCLUSIONS

We have investigated non-projective dynamics globaily with a
fuil exploration of the behavior of phase trajectories over a range

of parameter vaiues. A wide variety of dynamical behavior has been

observed.

The numerical results displayed and anaiyzéd in Chapter 4,

showed that every phase portrait contains at least one straight line

soiution given by dyl/dya = fl/f2 =-k (where A is some constant).
Each such line consists of two halves: one half lies on one side of
the origin. The half on the other side is obtained from the first
half by space inversion. Points on one of these half-lines approach
the critical point arbitrariiy closeiy as # » «, (but does not reach
«), This we may term an inset trajectory. The sécond half-line is
obtainable from the first one by space inversion and becomes a
correctly oriented trajectory when time is then reversed. This
trajectory we may term an outset trajectory. We also observed that
the linear inset trajectory is either an attractor which nearby
trajectories asymptotically approach as they approach the critical

point or it is a repellor from which nearby trajectories depart.

Correspondingly, we found that the linear outset trajectory is
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either a repellor which nearby trajectories tangentially depart,
or an attractor which nearby trajectories tangentially and

asymptoticaliy approach at large distances.

The number of these straight lines is determined by the number

of real roots of the equation dy,/d¥, = A, a cubic in X.

We observed that when a flip line of one equation coincides with
a flip line of the other equation, the number of the these straight
iines decreases by one and an attractor and a repellor is replaced
by a critical line. All trajectories on one side of such a line
asymptotically approach it and cease, while on the other side all

trajectories are repelled.

We noticed that every trajectory in the phase porirait must
asymptotically approach a straight line trajectory {attractor) as
# 2 », and another straight line trajectory (repellor) as t 2 =~
If the attractor is in the inset them a curved trajectory will
asymptoticaliy approach the linear trajectory and the critical point.
if the attractor is in the outset or in the intermediate then a
curved trajectory asymptotically will approach a solution of the

system determined by y. = AY g

The behavior of a trajectory as it proceeds on its way toward an
linear attractor, or away from a linear repelior, is governed by its
position relative to the nearest fiip lines, on which either 91 or 92
vanisii. The number of such flip lines is equal to the index of the
critical point which itself is equal to the number of different real

roots of the equations v, = 0 and Yy = 0, equations which are not
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required to hold simultaneously. We found that the behavior of

trajectories is summarized by the rules:

1) Attractors, repellors dominate the global behavior.

2) Flip lines restrain the response of the trajectory to
the att{ractor/repellor by constraining the slope of the trajectory at

every point.

We have found that these two rules are sufficient to enable one
to qualitatively sketch the trajectory tnrough any point in the
phase plane once the linear attractors, repellors, and flip lines
are characterized. These lines are all obtained by the solution of

simple algebraic equations.



=55~

APPENDIX

In this appendix we consider degenerate cases where one or

both of the #, define singie straight lines, that is

v, - 2
— = f,’- = - (aYA - b}’z) (A.l)
a4t - -

it is sufficient to iet ¥, define a hyperboia, an eilipse, or a
single straight line and let LN define a single straight line.
We wish to emphasize that (A.1) does not define flip lines

hecause ¥ does not change sign as a point passes through the

0. The behavior of {rajectories is as a conseguence

line v,
dominated by any fiip iines of the other equation. Therefore we
expect either phase portraits similar to that of cases 4.2.1 and
4.2.2 (circular - hyperbolic cases where the index is four}, or
phase portraits similar to that of case 4.83.1i (circuiar -
eiliptical cases where the index is zero). We expect systems in
whtich both fl and fz are perfect squares to yeild phase portraits
which are ilimiting cases of the hyperbolic - hyperbolic case

obtained in 4.1.4.

Case A.1l

Consider the following case

ar

1

2
Y. o+ 3.y, + .5y
1 172 2 _ (A.2)
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dya

FEe = i vy - vE = -lyy v ovp)?

where the RHS of first egquation represents a family of hyperbolae

while the RHS of the second one represents a straight line.
Figure A.1 shows that the trajectory does not change the
sign of its slope when it crosses the line given by Yy = Vg

Again we notice that there is a straight iine solution, the
single linear solution of the system, given by v, = - .15y2. The

figure is obviously similar to Fig. 4.2.2, as expected.

Case A.2

lQ
t»q.l X
[
I
~
(S

(A.3)
ady

2 2
ge = (Syy - .dvy)

where the RHS of the first equation defines a circle while the

RHS of the second equation defines a single straight 1line.

Fig. A.2 Shows that the trajectories don'i change the sign of
their siope any where. The system has a single linear solution
(attractor/repelior), which nearby trajectories asymptotically
approach as 7->», and ¥->—, Notice that this figure is simiiar

to that of case 4.3.1

Case A.3

Consider the case



dy :
1 2
g = ¥y - -B¥y)
(A.4)
dy
2 2
gE = T )

where now both equations define straight iines. Figure A.3
verifies that there are three linear solutions of the system
given by Yy = 1.86 Yo, ¥ = 7.2y2, and Yy = .15y2, as expected
from (3.34). The first of these is an attractor/repellor. The
latter two are separatrices which divide the phase portrait into
four portions: an inset where all nearby trajectories
asymptotically approach the critical point (the origin}, an
outset where the trajectories depart the critical point, and two
intermediates where trajectories come in from large distances,
turn around, and recede into the distance. Note that this case

is the limit of a hyperbelic - hyperbolic case.
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