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Turning Stealth Liposom~s· into ·.Cationic . Liposomes for 
Anticancer Drug Delivery 

Abstract 

by Vijay Gyanani 

University of the Pacific 
2013 

Targeting the anticancer agents sele~ively to cancer cells is desirable to improve the 

efficacy and to reduce the side effects ofanticancer therapy. Previous·Jy reported passive 

tumor targeting by PEGylated lip()s()mes (stealth liposomes) llaye resulted in their higher 

tumor accumulation. However their interaction with cancer cells has been minimal due to 

the steric hindrance of the PEG coating. 

This dis~rtatiort reports two approa¢hes to enhance the interaction of stealth liposomes 

with cancer cells. Firs~ we designed a lipid-hydrazone-PEG conjugate that removes .the 

PEG coating at acidic pH as in the tumor interstitium. However~ such a conjugate was 

highly unstable on shelf. 

Second we developed lipids with imidazole headgroups. Such lipids.· can protonate to 

provide positive charges on liposome surface at lowered pH. Additionally. negatively 

charged PEGylated phospholipids can cluster with the protol}ated imidazole lipids to 

display excess, positive charges on the surface of the liposomes, thus enhancing their 

interiction with negatively charged cancer cells. 
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We prepared convertible liposome formulations I, U and III consisting of one ofthe three 

imidazole-based lipids DHI~ DHMI.and DHDMI with estimated pKa values of5.53, 6.2 

and 6.75, respectively. Zeta potential measurement confirmed the increase of positive 

surface.charge of such liposomes at lowered pHs. DSC studies showed that at pH 6.0 

fonnulation r formed two lipid phases, whereas the control Jiposome IV remained a one­

phase system at pHs 7A and 6.0. The interaction of such convertible liposomes with 

negatively charged model liposomes mimicking biomembranes at lowered pH was 

substantiated by 3-4- times increase in average sizes of the mixture of the convertible 

liposomes and the modelliposomes at pH 6.0 compared to pH 7.4. 

The doxorubicin-loaded convertible liposomes show increased cytotoxicity in Bl6Fl0 

(murine melanoma) and Hela cells at pH 6.0 as compared to pH 1A. Liposome III shows 

the highest cell kill at pH 6;0 for both the cells. The control formulation IV showed no 

difference in cytotoxicity at pH 7.4 and 6~0. Uptake of convertible liposome U by 

BJ6FIO cells increased by 57% as the pH was lowered from 7.4 to6.0. 
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Chapter 1: Introduction 

an~er Epidemiology 

ancer is a group of dise~ses cbarac~erized by tincontmlled growth ofabnonnal cells that 

ave a potential to invade other tissues (1,2}. Cancer is a foremost cause of death 

·orldwide which lead .to 7.6 million deaths worldwide (around l3 %of all deaths) i.n 

008 (3). The t{)tal number ofc.feaths due to cancer will continue to rise to an estimated 

~. J million in 2030 (3). Iri United States cancer is the most common cal.lse of death 

. Jcceeded by only heart ,disease~ American cancer society estimates that in 2013- ab<)ot 

80~350 Americans are expected to die of cancer, which acco.uf1ts for 1600 deaths a day 

nd nearly one of every 4. deaths. About 1.660,290 new c:ancer cases are. expected t9 be· 

iagnosed in 2013 (1}. From 1991 to 2006,. the death rate from heart diseases (most 

ommon causeofdeath) declined. to two :thirds but that from cancer declined .much more 

Jowly to 83% despite technological advances in medical and allied health fields (4). 

!his highlights the importance of anticancer Tesearch and warrants the time,. money and. 

1m~rt to~iscovcr novel ways to trea,t cancer. 

~ancer Nomenclature and Pathology 

rhe term ~cancer· is a derived from the Greek word •J<:arkinos' meaning crab (5). Early 

1bseryers s~w spread and persistence ofcancer as crab-like and hence the term (6}. An 

~nonnal growth ofcells forming a lesion or lump is called a 'Neoplasm' or 'Tu~ot'. A 
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widety accepted definition of Neoplasm by Sir Rupert Wittis (Willis, 1952) states ••an 

.!bnonnal mass of tissue~ the growth of which . exceeds· and is uncoordinated with that. of 

normaltissue and persists in the same excessive manner after cessation of stimulus which 

evoked the change". Neoplasm is characterized by its irreversible nature. Tumors can be 

cancerous or non cancerous. Non cancerous tumors, also called benign tumors, are 

limited to certain part of body and are not ominous to the host~ White cancerous tumors 

or malignant tumors de-differentiate from the tissue of origin and invade to other parts of 

the body causing significant damage to the host owing to its uncontrolled growth and 

spread. The development of malignant tumor is a multistep process .comprising of 

initiation, promotion and propagation stages. Initiation of tumor invorves genetic 

, alteration in a single cell leading to abnormal growth (8). During the cell promotion 

stage actively proliferating cell population is generated by the division of the mutated 

cell. Tumor progression continues as the further mutations of the proliferative cell 

population takes place and some of these mutations result in a clone of cells with higher 

growth potential. This clone of cells outnumbers other cells in the tumor in a process 

called 'clonal selection'. The clone. of cells may undergo fr¢quent genetic alterations to 

produce a new clone of cells with higher mutation potential as a result of their ·increasing 

genetic instability. The progression stage is thus a multi step process in that a series of 

· clone of cells with ever increased proliferative capacity and metastatic potential are 

produced (8). 

, It is very important for a pathologist to identify the tumor and classify a tumor as benign 

or malignant. The criteria for the diagnosis of a malignant tumor· include size of primruy 

tumor, the depth of tissue invasion at primaty tumor site, the extent of spread to local 
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rmph nodes and presence or absence of distant metastasis (7). The deliverance of 

nticancer therapy depends on the: diagnosis of a malignant tumor. 

:'umor nomenclature describes tumor by the tissue of their origin- epithelial. connective~ 

nuscular or nervous (5). As a general rule; a suffix ~oma• is applied to n¢arly all tumor 

ypes whether benign or malignant and irrespective ofthe histological origin (5) except 

br tumors of hematopoietic and lymphopoietic systems where a suffix •emia~ is used. 

Challenges and Limitations~ of Current Anticancer Therapies 

Current most commonly employed anticancer strategies include sutgery, radiotherapy 

and chemotherapy. Although these anticancer strategies have their own advantages-, there 

are certain limitations associated with them. 

1.1 Ca,neer surgery. Surgery, for instance, may seem to be a convenient option for· 

removing solid twnors; but it should be noted that not all tumors can be :surgically 

removed. If the tumor is sufficiently big so as to impose serious damage on the 

surrounding normal tissue or regular functioning of the organ e.g. nonnal functioning of 

brain including thinking, speaking etc. surgery is not considered as an antitumor strategy. 

Prostrate, ovarian and uterine surgery may cause pennanent damage to fertility, while 

1ung cancer surgery.may cause breathing problems and bre~thlessness. Lung. surgery, in 

some instances, has also been known to affect voice and vocal cord tissues. Oral cancer 

surgecy· pr<Jcedures ·such· as· Glassactomy although ·may not eliminate the.ability to speak 

but speech is not as dear and swallowing may be difficult. On the other hand 

laryngectomy completeTy eliminates regular speaking. Regardless of the above 
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nentioned complications associated with tumor removal t . · · · a vanous sttes. surgery itself 

Jas inherent issues. such as infection and local nerve damage. 

L2· Chemotherapy. For treatments su~h as chemotherapy either free drug ('f mo~t 

ikely a combination of drugs is administered in the body. Although chC"mOthcrapy is tm~ 

of the few treatment options for metastasized cancer the- major dr.t\\bad; of 

chemotherapy is its poor selectivity. Since cancer cells originate from normal cells that 

grow out ofcontrol~ anticancer drugs that suppress gro\\th of cancer cells also a fleet the 

growth of no]lilal cells. The poor selectivity of common chemotherapeutic drugs is due 

to the proliferative nature of cancer cells. Not only that the anticancer drugs have toxic 

effects on cancer cells, they also have potential to impose serious damage to ~me 

marrow. gastrointestinal tract and hair follicle (9). To cite a few cxamplr:s: the dose~ 

limiting hematotoxicity including thrombocytopenia and neutropenia are prevalent in 

carboplatin and/or carboplatin in combination with other chemotherapeutic agcnls. Skin 

effects especially keratitis are common side effects of chlor:ambudL Cisp1atin has been 

known to accumulate in the kidney by a transport mediated _process aflcr continu(lUS aod 

prolonged exposure and caqse severe dose dependent tubular and glomerular dysfunction. 

mitochondrial swelling and nuclear paUor in distal nepltron (11 ). Cumulative toxidt~· 

due to Anthracyclines, doxorubicin being a most common example~ may cause 

cardiomyocyte damage and apoptosis due to production of free radicals and acute 

· · ·· · · 1 h hm.. • rditis mvocarditis and acute hcan cardtotoxtclty that may me ude arr yt tas. penca , · *· . 

failure. Additionally~ chronic cardiotoxkity associated with anthracydines include 

··b .· cer treatment in particular. 
conditions such as left ventricular dysfuncuon. For reast can 

"1 (CMF).ree:imen has been known 
the cyclophosphamide~ methotrexate and 5-fluorouract . · · -
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' cause neutropenia, alopecia and emesis (14). In case of 5-fluorouraciJ .containing 

:gimens e.g. cyclopho$phamide, doxorubicin (Adriamycin), and 5-fluorouracil (CAF) or 

·fluorouracil, doxorubicin, and cyclophosphamide (F AC), mucositis appears to be 

ommon than non fluorouracil regimens like doxorubicin and cyclophosphamide (AC) 

14). It is interesting to note that paclitaxel when administered in higher dose (i.e. 225 

.1glm2
) in sequential regimen has shown severe .and recurrent neuromuscular toxic"ity as 

ompared .to lower dose (i.e., 175 mg/m2
). 

Jesides aforementioned notable examples of severe .side effects of chemotherapeutic 

1gents, there are cases where patients are beleaguered with side effe-cts that are not 

nalignant but do have a significant effect oil the quality of life and may result in 

:liscontinuation or undue disruption of chemotherapy. Skin diseases are the prominent 

l1110ngst them (16). Common side effects on skin i.e. skin rash, skin dryness. 

hyperpigmentation and on mucosal membrane include Steven Johnson Syndrome and 

toxic epidennic necrolysis are cau-sed by commonly used drugS such as 

Cyclophosphamide, Chlorambucil, Busulfan and Procarbazine. Novel anticancer agents 

such as EGFR inhibitors markedly cause skin dryness and follicular rash which can then 

result in pruritis or other infections (16). The most common ofthe follicular rash is the 

papulo-pustular rash. Other common skin e.ffects such as Erythma and sweUing are 

associated with administration of antimetabolites such as 5~Fiuorouraci1 and capecitabine 

(16). 

In .addition to the poor· selectivity of chemotherapy mentioned hitherto, the other major 

limitation is the development of rnultidrug resistance (MDR) (Fig. 1.1). Cancer cells 

may develop resistance that might begin against a single drug or a group of drugs with 
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similar mechanism of action but may transfonn into cross resistance against other drugs 

with different> targets or mechanism of actions in a process called. multidrug. resistance 

(MDR) (27). MDR leads to growth of ·heterogeneous cancer cells due to mutator 

phenotype as a result of selection of cells that are ·able to gr.ow in the presence of 

chemotherapeutic drug/s (27). Drug resistance in cancer cells is developed either by 

modification in drug target or by enhancement ofthe repair mechanisms of the cells such 

as DNA repair and induction of cytochrome oxidases(27), Additionally, one of the most 

prominent mechanisms ofmulti..drug resistance is the over-expression of ABC binding 

cassette transporters based efflux transporters. The increased effiux transporters· reduce 

the amount of drug to suboptimal 1eveJs in the cells (27). MDR can also develop from 

reduced intracellular uptake of hydrophilic drugs e.g folate analogues • .cisplatin etc. (89). 

Examples for the later are ciaplatin, methotrexate, 5 fluorouracil etc. Funhennore 

inefficiency in apoptotic · cycles ll}ay .lead to · MDR, precisc~ly due to ineffective p53 or 

alterations in ceramide levels. 
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Fig. 1.1 Overexpression of Pgp transporter proteins leading to efflux of drug from the 
cells. (Reproduced from (92)) 
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Of the reasons mentioned above and the fact that chemotherapeutic agents have narrow 

therapeutic index in that there is a small difference in the dose required for an anticancer 

effect and the dose causing significant toxicity, limits the therapeutic implication of 

chemotherapy. Furthermore, the damage to normal cells entails reduction in the dose of 



22 

he anticancer drug which eventuany leads to inefficient disease control~ drug resistance 

md metastasis. 

1.3 RadiQfherapy. Radiotherapy, another commonly practiced anticancer therapy. 

~mploys the use of high energy X rays for the treatment of cancer. The applications of 

radiotherapy vary from tumor kill to tumor shrinkage to pain. relief. While the side 

effects of an anticancer drug or a combination of drugs are systemic. the .side efTt-cts of 

radiation therapy are more of the local nature (in the proximity of the tumor). Radiation 

side effects on patients are manifested either· as early effects or late ·effects. Early effects 

are mainly skin related effect.~ which include skin erythema and desquamation. Late 

radiation effects include fibrosis~ atrophy, radiation induced blood vessel and ncuronar 

damage. While it is important to note that short term effect-are reversible, late effects are 

either irreversible or aggravate with time. The response manifested as late effects are 

. medi;:tted by inflammatory; stromal, endothelial and parerK:hymal cells. Fibrosis. one of 

the late effects. is characterized by excessive extrncellular matrix and collagen deposition 

in region of irradiated tissues. The early phase offibrogenesis is simi-lar to the·wound 

healing process characterized by initiation of cytokine·cascades essentially marked by 

release oftumour-necrosis factor-a (TNFa),Jnterleukins I and 6 (IL 1 and IL6} and other 

growth factor in the irradiated tissue ( 17). While in a regular wound healing process 

TNFa and connective tissue growth factor (CTGF) downregulate· TNF f3 which is a strong 

fibrotic factor; the wound healing in irradiated tissues continue for years7 which leads to 

fibrosis of tissues (J 7). Al)other aspect. of radiation side effects is the kno""n to be 

affected by the reduced oxygen content (hypoxia) in the tumor environment. lt is 

reported that radiosensitivity of cells is diminished due to hypoxic environment which 
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nduces high J¢vels .of heat shock pt6t~iit in tumor cetlsand also stimulate io.creasein 

.tu.mber of cells with high proliferative capabilities (13). Specifically the increased 

txpression and stabilization of hypoxia inducing factor· HIF 1 a is responsible for the 

jncrea$e in radiotesi~~ce Qf cells~ The HIFt a expression is increased by activation of 

phosphatidylinositol 3-kinase (Pl3K)/Akt/mamma1ian target of rapamycin (mTOR) 

pathway and increased stability of HIP I a by itS interaction. with Heat shock protein 90 

(Hsp 90) (18). 

Tumor Targeting and its Challenges 

As mentioned earlier chemotherapy .and radiotherapy have many side effects and the 

most common reason for chemotherapeutic. side effects is the .non specific, .indiscriminate 

effect on nonnal and tumor cells. The anticancer dtug effect has its basis in fast 

multiplying cancer cell lines, which therefore can affect rapidly dividing nonnal ceJls. It 

is interesting to note that only 5-10% of the drug administered reaches. tumor tissue (25). 

Paul Ehrlich introduced the tenn •magic bullets1 to selectively target a drug. to disease• 

~ausing organisms. Since then a number of targeted drug delivery systems have been 

, develo~. Most of Qle nov¢ld¢g delivery systems developed in the past few decades 

include liposomes, prodrugs, polymer cpnjugates, micelles and dendritic systems. tumor 

.targeting approaches. can be broadly divided .into two categories: Active' and passive 

targeting. 

1.4 Active .targeting. Active targeting exploits phenotypict biochemical and 

morphological differences between nonnal and cancer .cells (26). Most common tumor 

targeting strategy employ biologically specific interactions .such as antigen-antibody or 
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ligand· receptor binding for delivering cytotoxic agents locally in the tumor tissue and 

may .involve drug uptake by receptor mediated endocytosis through association of the 

drug or drug carrier molecule with the antigen or ligand (26). Precisely~ tumor targeting 

incorporates tumor specific ligands on nanocaniers/drug conjugates that can bind and 

deliver antiCancer drugs to tumor cells, thereby sparing normal cells. Conversely, antigen 

heterogeneity in cancer cells presents a major limitation to activ.e targeting; .different 

types of cancer or even same type of cancer.at different .developmental stages express 

different pathological and biochemical profiles. Receptor density is also an important 

parameter in active targeting. It is crucial that the number of receptors/targets is over­

expressed in the tumor cells compared to nonnal cells. For example~ a receptor density 

of I 0~ per cell (29) of ErbB2 is required for improved breast cancer therapeutic efficacy. 

Similarly Bcell targeting by liposomes grafted with anti-CD 19 antibody requires a.-CD 19 

density in the range of l 04 
- 1 os per cell (28). Atany stage of cancer development down­

regulation or shedding of antigen from cancer cell surface might severely affect 

therapeutic outcome. Shed antigens circulating around cancer cells may compete- for 

binding of the ligand and therefore reduce the binding and internalization of the 

therapeutic agent(29). Furthennore, if the binding.affinity between the targeting ligand 

and its teceptor is too high it wi11 hinder the quantitative uptake of anticancer agent in the 

tumor due to high affinity binding with the first few target cells - a phenomenon known 

as binding-site barrier (29). As an example, Adams et al (30) showed that bio­

distribution of single chain Fv molecuJ~s {SCFv) in SK·OV-3 tumors is regulated by the 

binding affinity of the SCFv molecules to the her2neu receptor overexpressed by the 
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:sneer cells. The excessively high binding affinity of mutant scFv beyond l 0-9 M 

~tateaued the quantity ofscFv distributed in the tumor (30). 

/.4~1 Antibody. and ,Qntibody fragments. As targeting agents, whole antibodies are 

stable in solution but are usually immunogenic and can bind to macrophages via the Fe 

domain, thus increasing their clearance and shortening their circulation half Jives (29). 

To reduce the immunogenicity of antibodies, chimeric or humanized antibodies were 

developed but their· production is very expensive. Addtionally, large antibodies when 

used as targeting moieties for ilan()particles thwart attempts of multivalent decoration on 

the rtanoparticJe. surface due to the steric hindrance. Antibody fragments. on the other 

hand. sucfl. aS. the .Fab or scFv <fontains are mote Spt!cific to their targets but have stability 

issues Md carry less avidity due to their monovarent binding domain. When non~ 

antibody small molecules such as RGD, folate and transferrin are used as the homing 

moiety, the targeting is not exclusive to tumo.- tissues and affect nonnal tissues. Also. 

free folate molecules present in the body .can compete with the forate target ligand for its 

receptor on cancer cell surface (29). 

].4.2 Immunotoxins and · immunoc(}njuglllts. lm.rnunotoxins and lmmunoconjugates. 

although have been recently clinically approved but find limitations for anticancer 

therapies due to their moderate to severe side effects. Immunotoxins are either antibodies 

or antibOdy derived proteins that are linked to. toxins. Patients on immunotoxins as 

anticancer agents have expressed high levels of hepatic transaminase levels; indicating 

localiZation of toxin in liver; Additionally flu·like symptoms and vascular leak syndrome 

have been observed in patients on immunotoxins. Anti B4 blocked ricin have 

demonstrated Human antimouse antibody responses and anti~ticin responses (29). 
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mmunconJugates are similar to immunotoxins except for the c)1oto~ic drug :is linked to 

fie antibody or protein instead of the toxin. Jmmunoconjugates-works on the principal of 

mtigen-antibody binding as mentioned earlier. The major limitation these systems is the 

aumber of drugs linked to antibody. On an average 3-lO molecules of drug have bc.cn 

known to be attached to an antibody molecule without affecting the antibody binding 

affinity (29), e.g. approximately 8 molecules of doxorubicin are coupled w'ith AR96 

antibody (31). lmmunoconjugates have shown limited success due to: l) large number 

of antibodies needed to .deliver therapeutic amount of drug 2) reduced intemali;~.ation of 

drugs 3) suboptimal drug release from the conjugate (29) 4) toxicities induced hy the 

treatment~ e.g. severe gastrointestinal toxicities induced by BR96-Dox.. immunoconjugate 

(Jl). 

1.4.3 lmmunoliposomes. Liposomesare nanometer lipid bilayer vesicles with aqueous 

interiors that can encapsulate hundreds of thousands ()f drug mol~:culcs and thus address 

the issue of limited number ofdrug molecules bound to the antibody or any other ligand. 

thereby reducing the high amount ofimmunoconjugates required to be administered tO 

have sufficient drug at the tumor site. ImmunoJiposomes, are Hposomes with targeting 

antibodies attached to their surface. The high payload ensures very high drug to antibod)· 

ratio. However, the challenges with immunoliposomes are similar to .other acti\'e 

targeting approaches viz .. the decoration of 1arge number of antibody molecutcs on 

liposome surface increases their clearance~ development and production. The 

receptor/antigen density and the avidity of ligand for the receptor/antigen may pose 

· 1· · · · · th ·b·· d. • • b · phe· no·men·on leading to limited tumor mterna u.at10n tssues or e m mg-stte amer . 

penetration and reduced cytotoxic effect on antigen negative cancer cells. 
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1.5 Passive tumor targeting. Passi"·e targeting of nanocarriers does not employ any 

targeting ligand but relies only on the 'Enhanced Permeation and Retention' eflect (Fig. 

1.2) for their accumulation in the tumor tissue and retention in the tumor cells. The 

enhanced penneation of nanocarriers in the tumor occurs due to leaky tumor vasculature 

while the retention of the nanocarrier at the tumor site is due to the dysfunctional 

lymphatic drainage (28). Although the challenges imposed by active targeting e.g. 

antigen heterogeneity, ligand avidity etc are not associated with passive targeting, it has 

certain limitations. The major limitations associated with only liposomal systems will be 

discussed here. 

No~··.··.····. 

Fig. I .2 'Enhanced Permeation and Retention' effect showing the extravasation of 
liposomes in tumor tissue (reproduced from http://www.regulon.orglprofile.html) 

1.5.1 Conventional /iposomes. The first generation liposomal introduced were the 

conventional liposomes (90). Upon intravenous administration conventional liposomes 

are recognized and captured by the reticuloendothelial system (RES). This approach has 
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been exploited in treating. parasitic and microbial infections of the RES. A classiC 

example is Ambisome (ArnB) which delivers amphotericin B. to fungus-infected 

macrophages. However~ conventional !iposomes have miniiJ1al effect beyond cells of 

RES due to extensive blood clearance and short circulation half life·(JS, 36), Semple et 

al (40) reported that cationic Uposomes made of l~.-dioleyl-3-N,N,N­

trimethylaminopropane chloride (DOTMA):DOPC (1 :1 mol mor1
) and DOTMA:DOPE 

{1: 1 mol mof1
) have a protein bitlding (PB) value in excess of500g protein /mol and are 

cleared rapidly from circulation in mice (40). Inclusion of 50% of the cationic lipid 

DOTMA in the liposome composition results in strcmginteractions with serum protein to 

the extentthat they together form. Clots in plasma ( 4 t). A similar formuJation employing 

DODAC instead of OOTMA with DOPE acquired a PB value of 800 g protein /mol and 

had a circulation half life of only few minutes ( 40). A series of cationicliposomes made 

by oku et al, 1996 (42) have displayed PB values ranging from 400--11 O() g proteins/mol 

of total lipid (40), (42). The results are not surprising considering the fact that majority 

ofplasmaproteins carry negative charges at physiological pH (40). 

Different approaches have been employed to increase the circulation half life of 

Uposomesin vivo~ Papahadjopoulos. and coworkers (39) prepared stericaUy stabilized 

liposomes with hydrogenated phosphotidyl inositol/ phosphatidyl choline/ cholesteror 

(HPIIHPC/chol) which showed a liposome .. assodated doxorubicin half Hfe .of 15.5 hrs 

while conventional fiposomes based on egg-derived phosphatidyl glycerol, phosphatidyl 

choline and cholesterol showed a liposome associated drug half life ofonly l hr · 
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·1.5.2 Stealth Liposomes.. Another strategy to im_prov(lip()sc>rne blood circulation time 

is to coat a hydrophilic polymer such as Polyethylene Glycol (PEG) on the Jiposome 

surface. The mail\ fe~ture of having PE:O gra6ed on the liposome surface is the 

flexibility· which permits a SJ11all percentage of PEG~lipids on the liposome to imp;1rt a: 

stericalJy stabilized hydrophilic shell around the' Hposome. The hydrophilic, sterically 

· stabilized PEG coating reduces adsorption of serum proteins on Uposomes and their 

subsequent Clearance by the R.ES. As the PEG ~ides the surface of liposotne from being 

recognized these liposomes are called 'stealth liposomes'. The drug epirubidn has a 

halftife ofonly 14 min. However, when encapsulated in Stealthliposomes (SL)the half 

life increased dramatically to 1 S hrs. Also, the free epirubicin and its SL encapsulated* 

epirubicin showed more than 200-fold difference in both AUC and in clearan~e (39). 

An example of stealth liposome~ which is now commerciaJly available is 'Ooxil'· 

. manufactured by Janssen Phannaceuticals (Fig. 1.3). 



Doxorubici 

Hydrogenated 
Cholesterol 

PEG 

Pig. J .3 Doxil coated with Polyethylene Glycol (adapted from {94) 
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The protein binding values of PEGylated liposomes are reported to be much lower 

compared to the conventionalliposomes. Semple et al ( 40) reported that liposomes made 

ofDSPC:CH and EPC:CH:DOPA in a lipid mol ratio 55:45 and 35:45:20 had PB values 

of 19 and 46 respectively. When 5% DSPE-PEG were included in above compositions 

the PB values dropped to 7 and 25 respectively ( 40). Du et al ( 46) showed that adhesion 

of erythrocytes, lymphocytes and macrophages onto glass surface coated with 

DPPE!DSPE-PEG liposomes drastically decreased as the DSPE-PEG mol% in such 

liposomes increased from 0 to 1%. However, the rate of decrease slows d0\\11 ac; the PEG 

mol% increases further from I to 5 %. 

Despite the increase in the accumulation of sterically stabilized Jiposomes in the tumor 

vicinity, the steric hindrance of the polymer chains on the liposome surface has posed a 

challenge in the interaction of liposome with tumor cells. Hong et al 1999~ ( 43) reported 
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that the Te (AUCtumor/AUCplasma) ratio of DSPC/CholesteroJ liposomes were 0.87 

compared to0.31 in the PEGylated liposome with 6% DSPE-PEG in mice bearing C26 

tumor. Similar findings were reported by ·Parr et al 1997; (44). where DSPC/Cholesterol 

and DSPC/CholesteroJIPEG-PE liposomes in Lewis Jung model suggesteda Te vaJue of 

0.76and 0.4 respectively. 

The reducedinteraction and bmdin~ ofstericaUy stabilized Jiposomes with· tumor ceUs 

reduces intracellular uptake .of these caniers which causes the therapy to completely rely 

on the slow release of encapsulated drug from the liposome which might be ·suboptimal 

for tumor elimination. 

Strategies of Triggered Release from Liposomes. 

To increase the release of drug from the liposornes various strategies have been 

introduced including external stimuli (ultrasound; light and temperature change) but each 

one of them. have their-own challenges. 

1.6 Triggered release by ultrasound. Ultrasound is a non invasive technique which 

can be focused to target tissues~ can- alter the penneabiJity ofcell membranes and can be 

controlled (47) (48). Acoustically active liposomes (ACL)~ Hposomes that have air 

pockets and are responsive to reduced pressure or ultrasound, prepared by Huang et al 

(47) used ultrasound as the triggering mechanism for calcein release from 

EggPC/DPPEIOPPG/CH liposomes at a molar ratio of 69:8:8:15. Although the calcien 

release was carefidly controltedt the encapsulation efficiency of calcein during lip<>some 

preparation was very low (~ 20%) and the encapsulation and triggered release of 

hydrophobic. drugs remained untested. 
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: 1.7 Triggered release by ligllt. The ligbt·sensitive Jiposomes exploit 

photoisomerzation, photocleavage or photopolymerization of photoresponsive lipids in 

liposome membrane. The majority of photoisomerizable liposomes incorporate. 

azobenzene lipids that isomerizes to cis fonn upon -illuminated by ultraviolet light and 

switches back to the trans- fonn upon exposure to blue light (49) (Fig. 1.4 (a)). 
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Fig. 1.4 (a) Drug release from liposomes by photoisomerization of lipids 
(Reproduced with permission from (49)) 
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Conversion to the cis- fonn can destabilize the membrane and release drug contents. 

Although azobenzene derivatives have been extensively studied, retinoyl-phosphoJipids 

(50) and spiropyran, which converts to merocyanine at low wavelength of 365 nm have 

also been reported (51). The major drawback of photo-isomerization is that the 
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wavelength required to photo-isomerize the photosensitive lipids is in the lower range 

(lower visible or UV) which has limited penetration in the body. 

The second major strategy of triggering liposomes by light is to incorporate 

photocleavable lipids in the liposomaJ membrane (Fig. 1.4 (b)). Thompson et al (52) 

reported the use of photocleavable lipids derived from plasmologen. Photocleavage is 

enhanced by incorporating photosensitizers such as zinc phthalocyaninet tin 

octabutoxyphthaJocyanine, or bacteriochlorophyll a. into the hydrophobic region of the 

Jiposomal bilayer (42). 

b 

Fig. 1.4 (b) Drug release from liposomes by photocleavage of lipids 
(Reproduced with permission from (49)) 
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Apan from naturally occurring plasmalogen lipids, synthetic photocJeavabte dithiane­

based lipids have been reported (53) (54) to increase the drug release from liposorttes. 

Interestingfy Zhang and coworkers synthesized a DOPE-based photocleavable lipid 

called NVOC-DOPE which upon· illumination by xenon lamp yielded free DOPE and 

subsequent membrane destabilization. 

To date, the .most successful of an the photo-induced triggering mechanisms is the 

plasmalogen based photosensitive liposomes although the sensitization ofphotocleavage 

of -plasmalogen by sensitizers have resulted in production of reactive oxygen species 

which compromises the ,safety in patients. 

A third light-induced drug releasing mechanism is the· photo•polymerization (Fig. lA 

(c)). The polymerization of cross a linking lipid 1,2-bis(l0-(2\4•-hexadienoyloxy)­

decanoyl}·sn-phosphatidylcholine in Hposomes up<>n UV illumination yielded more than 

I 00-fold increase in the release of fluorescent agent (56). The wavelength of the UV 

light can be adjusted by encapsulating pbotos~nsi~izer dyes· that can trigger the 

polymerization of lipids at higher wavelengths of light that are considered biologically 

safe. The incorporation of l, 1'-dioctadecyl-3,3.3',3'• tetramethylindocarbocyanine iodide 

(Oil) dye is one such example (49). 
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Fig. 1.4 (c) Drug release from liposomes bypbotopolymerization of lipids 
(Reproduced with pennission from {49)) 
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Although similar to photocleavable triggering strategy in tenns of safe wavelength range. 

the stability ofpolymerizable lipids have not been tested yet (49). 

In a photochemical triggering approach, O.V. Gerasimov et at, who explon.~ photo-

oxidative triggering in Bcbl:DPPlsC Hposomes, suggested that the photo-oxidative 

triggering method is severely limited by the low P<n level in the tumor environment. The 

ineffective photo-oxidation leads to creation of physiologically conducive atmosphere for 

growth of non apoptotic cells due to faulty photo-oxidation of tumor tissues (57). 

1.8 Triggered release by hyperthermia. Yatvin et al {58) in 1978 reponed heat-

triggered release of neomycin from thennosenstive liposomes. An array of 

thennosenstive liposomaJ syStems have since then been developed to increase the drug 

release at the tumor site. The thermo-triggered release approach is multifaceted in that 
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· the application of heat I} enhances vascular penneability and therefore accumulation at 

the wmor site, 2) e~ the release of drug from thennosensitive liposome at the 

, tumor site, 3) probably increases localized blood supply and alter the intracellular uptake 

,: of drugs. Fig. 1.5 aptly illustrates the first two points. 

Fig. 1.5 A) enhanced accumulation ofliposomes by EPR 8) increased pore size of tumor 
vasculature C) increased drug release from the liposomes. (reproduced with permission 
from (59)) 

Traditionally tbennosensitive liposomes have employed lipids that undergo 

conformational change from the trans- form to the gauche- form. (59) at the lipid 

transition temperature, which converts the lipid membrane from the gel phase to the 

liquid crystalline phase of higher fluidity, which in tum enhances the drug leakage from 

the liposome. However the incorporation of purely lipid of lower melting temperature 
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such as DPPC (MP = 41°C) has.shown slow and less amount of drug release. Also. the 

retention of drug molecules during circulation has been challenging. Incorporation of 

lipids .of higher melting temperature such as DSPC (MP = 54°C) to increase packing 

incompatibility and therefore enhance drug release yielded broad peaks in Differential 

Scanning Calorimetry and n~cessitated higher triggering temperature (higher than 43°C) 

which can cause necrosis to nonnal tissues surrounding the tumor tissue. An estimate by 

Mosher.er and coworkers (62) showed that the initiation of necrosis on porcine muscle 

begins after .30 min. of heat application at 40-43°C. Fine tuning the drug release at mild 

hyperthermia conditions (3941°C) while maintaining the sharp melting peak so as to 

ensure efficient drug release in ·1ethal doses remains a challenge for thenno·sensitive 

liposome research. 

Another approach of .preparing thennosensitive liposomes is the incorporation of 

Jysolipids in the. lipid membrane. Lysolipids are lipids that have bulkier head group with 

single acyl chain. These lipids typically fol'IIl micelles at]d the lateral movement of these 

lipids as the temperature approaches transition. results in the accumulation of these lipids 

at pockets which start melting first, thus creating a micelle like curved structure at these 

pockets (Fig. 1.6). 



Lysolipid-\."()Urainjng thermosensitiv«j ··uposome 

Fig 1.6 Traditional and lysolipid containing liposomes. 
(reproduced with permission from (59)) 
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The formation of curved structures releases drug through the pores thus formed. 

Needham and coworkers (63) incorporated 10 % of the lysolipid MPPC in liposomes 

which resulted in reduction in phase transition temperature from 430C to 3940 °C and 

rapid drug release (approx. 500AJ released in 20s heating at 42°C). In general induction of 

lysolipids in liposomes drasticaUy reduces the heating time which in tum reduces the 

possibility of onset of necrosis in surrounding tissues (59). However, the in vivo stabi.lity 

of the lysolipid containing liposomes remains a cbaUenge. Banno and coworkers (65) 

reported that 70 % of the lysolipids were desorped from the liposome surface in vivo 

after one hour of injection and the amount of drug released from the Jiposomes recovered 
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from mice plasma after and 4 hrs of injection was 20% and 50% less. This suggests 

decrease in thermo sensitivity of liposomes after desorption of lysolipids. Sandstrom et 

at (66) demonstrated release of 50 % drug from lysolipid liposomes after I hour of 

injection in vivo. 

The application of heat has been thus fart limited to superficially located tumors with 

regional heating. For localized hyperthennia microwave and radiowave applicator have 

been used ( 64} but the therapeutic depth of the external temperature stimuli is limited to 3 

em. For deep seated tumors microwave and radiofrequency electrodes with expandable 

prongs can be used but this approach remains invasive and is limited to the body area 

where insertion is practical (59). 

Focused ultrasound although has been developed that can control the temperature 

remotely in deeply seated tissues with restricted focal zone but the monitoring of 

temperature still is done by invasion of temperature probe (59). 

1.9 Triggered release by magnetic field from magnetic liposomes. Another strategy 

to triggered drug release is the application of magnetic field. Amstad et aJ. incorporated 

lipid coated iron oxide nanoparticles in the liposome membrane (Fig. 1.7) and showed 

the enhanced release of contents upon application of alternating magnetic field (AMF) 

due to local heating by iron oxide nanoparticles and thereby increase in membrane 

penneability. (68). 



Fig J • 7 Iron oxide nanoparticJes incorporated in lipid membrane. 
(reproduced with permission from (68)) 
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Similar work was done by Babincova et al (69) where increasing concentration of 

ferromagnetic material in the membrane showed increased membrane penneability viz. 

as much as 70 %release of adriamycin at a ferocolloid concentration of J .2 mg Fe/mL 

Another approach to prepare magnetic liposomes is to encapsulate magnetite particles in 

the Hposomes which can then be directed to the tumor site by placing a magnet in the 

tumor vicinity externally. Nobuto et al (70), showed that the application of steady 

magnetic field of 0.4 tesla around tumor implanted limb of Syrian male hamsters 

increased the dox. concentration in tumor by 3 to 4 fold after intravenous administration 

of the magnetic liposomes. In the similar limb tumor model design, (71) instead of 

externally placing a magnet, magnet or non magnetic alloy was placed in the center of the 

tumor. Intravenously administered, adriamycin-loaded magnetic Uposomes showed 
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~ignificant antitumor activity and greater accumulation in tumor vasculature under 

,magnetic force compared to magnetic liposomes without magnetic torce (non magnetic 

alloy). 

ln one example, Hposomes loaded with Tc 99 albumin resulted 25-fold increase in 

;;radioactivity in the left kidney of the rats under study where SmCo magnet was implanted 

compared to the right kidney without the magnet (72). 

: In an interesting study (73) RGD coated magenetic liposomes were first uptaken by 

•· monocytes and neutrophils and then magnetically directed to brain for the delivery of the 

model drug diclofenac sodium. 

Furthermore, Magnetoliposomes prepared with bacterial magnetic particles containing 

• cis-diamminedicbloroplatinum (II) (CDDP) have been observed (74) to have 1.7 fold 

concentration at tumor site than the one ones prepared by artificial magnetic materiaL 

Conclusion 

Commonly employed anticancer therapies and common tumor targeting strategies were 

reviewed and their limitations and challenges were discussed. Although active targeting 

employs specific ligand to enhance the drug delivery, antigen heterogeneity, high cost of 

production~ immunogenicity and insufficient stability remain as its pressing challenges. 

Passive targeting by liposomes is an attractive approach to bypass these issues but the 

release of the cargo drug needs to be optimized. Because the drop of pH is involved in 

the interstitial space of many solid tumors, it serves as an attractive approach to trigger 

the release of anticancer drugs from liposome. Liposomes that respond to low pH (pH­

sensitive liposomes) will be discussed in the following chapters. 
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The pH gradients in the tumor tissues present an interesting trigger. The pH in the tumor 

interstitium is 6.5 to 7.0 while the pH of the tumor core may be as low as 6.0. Once the 

fommlation is endocytosed it meets even lower pH environment in the 

endosomal/lysosomal pathways where the pH is 2~3 units lower than in the blood 

circulation. Such lower pH can be exploited for either increased intracellular uptake of 

liposomes in the tumor tissue or destabilization of the liposome membrane for drug 

release intracellularly. 

One attractive approach of designing pH-sensitive liposomes is to incorporate pHw 

cleavable lipids in the Jiposomes. pH-cleavable lipids can be constructe-d by 

incorporating an acid labile linker betWeen the hydrophilic head and lipophilic tail of the 

lipid. The acidic environment cata:lyzes the hydrolysis of the lipid. An ideal liposomal 

formulation made of pH-cleavable lipids will be relatively stable at physiological pH and 

will destabilize upon cleavage of pH sensitive lipid either in the tumor environment or in 

the endosome/lysosome compartment of the cancer cells to release drug contents. Cordes 

and bull (76) have described the mechanism and catillysis of acetals. ketals and 

orthoesters. A number of acid-labile lipid structures have been designed to study their 

enhanced cytotoxic effects. The hydrolysis mechanism and pH sensitivity of such lipids 

are discussed m this section according to their acid-labile linkers. 
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Acetal.Linker 

Acetal Jinker (Fig. 2.1) is an acid-labile linker where one carbon is attached to an alkyl 

group; a hydrogen atom and two alkoxy groups~ The acidic hydrolysis oftheacetallinker 

is shown in Sebeme 2.1 

OR" 

I 
R--C--H 

I 
OR' 

Fig. 2.1 Acetatlinker 
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Scheme 2.1 Acidic hydrolysis of Acetal 

Song and Hollingsworth (77) designed pH-sensitive acetaJ·based glycolipid (Fig. 2.2) 

and measured its pH sensitivity in ethanol. While 0.01 %addition of DCJ started acetal 

cleavage which completed in 5 hours, addition of acetic acid from I to 20% did not show 

any ·significant acetal .cleavage after 14 hours of observation under NMR. The pH 

sensitivity of the acetal based glycolipid remains to be tested in vivo. 
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Fig. 2.2 pH-sensitive acetal based glycolipid 

' Asokan et al in 2004 (78) designed a ' his-detergent' BD2 (Fig. l.J) by cross linking two 

single chain tertiary amine detergents through an acetal linker. The pKa of headgroup 

, was detennined to be 6.37 ± 0.36. Liposomes prepared by 75 mol% of BD2 and 25 mol% 

: of phosphatidyl choline demonstrated a hydrolysis half life of 3 brs at pH .5.0 and showed 

' complete hydrolysis at pH 4.0 after 6 hrs. The design of 'his-detergent' irreversibly 
. . 

, cleaves two single chain lipids which results in disruption of Jiposomes and release of 

drug content(Scheme l.l). 
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OH'YN............._,OxQ~N~OH 
OH . OH 

Fig. 2.3 Chemical Structure of BD2 lipid 

S~heme 2.2.Mechanism ofacidc~y~hydrolysisBD2lipid. 
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The Hposomesnutde ofBD2 were shown to enhance the intracellular deliveryofTexas 

red-labeled oligonucleotides (TR·ON) and ON-705 compared to liposome with BDl 

lipids (bis-detergent without pH labile linker}. 

;Vinyl Ether Linker 

··Vinyl ether (Fig. 2~4) is another linker which is relatively stable ar neutral. pH and 

hydrolyzes in acidic environment (Scheme 2.3). 

Fig. 2.4 VinylEther Linkage 
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Scheme 2.3 Hydrolysis mechanism ofVinylEther under acidic conditions 

. . 
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Thompson and associates (79) have designed a series of Hpids (Fig. 2.5) with vinyl ether 

linkages betWeen the lipid tail and p0iar head group. · They prepared liposomes with 

DOPE and pH-sensitive vinyl ether lipids. The mol % ofOOPE was 90 %or higher, the 

high percentage of DOPE helps the transition of liposome from lamellar to hexagonal 

phase as the head group of vinyl ether pB-sensi.tive lipid cleaves from the lipid. The 

conversion of the liposorne from lamellar to the hexagonal phase is dependent upon the 

kinetics of acidic hydrolysis of vinyl ether group. The best fonnulation that could 

achieve content release as much as 60"/o when calcein was uSed as a model dye was ST 

352/DOPE in the molar ratio 5/95 after:::::. 4~ hours at pH 4.5. The slow release of 
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~ontents from the lipO.s<>me suggests slow rate of hydfQiysis of pH-sensitive vinyl ether 

lipids ai:td therefore slower transition from lamellar to hexagonal phase; 

(n=4S) 
(n= ll4) 

0 0 0 

· MeOfv-00NJ-.o""'v0~o)lN.A.v<>-:"f-01 
' II H H · a- 0 
; 0 
· (n=4S) 

(n=l14) 

Fig. 25 Vinyl Ether lipids prepared by Thomson and Associates 

· Thompson and assoch1tes .(80) in 1998,.synthesized vinyl ether based pH-sensitive lipids 

(DPPfsC) (Scheme l.4) where vinyl ether was linked between each of the two 

hydrophobic tails and the rest of the lipid molecule~ Although the liposomcs made of 

DPPisC were very stable at pH 7.4 the calcein release kinetics of these liposomes 

suggested less pH sensitivity (see Table 2.1). 
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. " .. 
-P-~ 
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tt _ ._·_ HO _, -~ 
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Scheme 2.4 Acid catalyzed hydrolysis ofDPPisC 

Table. 2.1 pH Dependence of 500/o Release Time of Calcein 

pH ~% release (min) 

2.3 1.5 

3.2 3.6 

4.5 76 

5.3 230 

6.3 1740 

The calcein release studies from liposomes made of pure DPPisC at 37°C indicate that 

the time required to release 50% of calcein was::: 4 bat pH 5.3 while it took ::::: 29 h for 

50% caleein release at pH 6.3. Slow calcein release at lowered pH coupled with the fact 

that .no calcein release was detected after 48 hrs of incubation at .pH 7.4 suggest high 

stability of liposomes and less pH sertsitivity ofthe vinyl ether lipids. However, less pH 
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sensitivity at lower pH's reduce the release ofencapsu1ated contents from the Hposomes. 

,-Another study by bergstrcJ.nd et al, (82) employed. DHCh~MPEG 5000 (Scheme 2.5) 

lipids where vinyl ether ~as linked between PEG 5000 and hydrogenate(f cholesterol. 

i The leakage percent ofD}lCh-MPEG 5000!DOPE Hposomes at am.olar ratio of 1:99 was 

about 22 % after 20 hrs ofincubation at pH 4.5. Also, even 5 days of incubation of the 

conjugate at that pB could not completely hydrolyze the conjugate. 

OH 

DHCho MPEGSOOO 

Scheme. 2.5 Acid Hydrolysis ofDHCho-MPEG5000 



: Ortho Ester 

• Orthoester is a more pH-sensitive linker than vinyl ether and is also found to be relatively 

· stable at physiological pH. The acid-triggered hydrolysis of orthoester involves a 

: stabilized diaJkoxy carbonium ion (Scheme 2.6) that further degrade to an alcohol and an 

ester compound (81). 

HlO,slow 

Scheme 2.6 Hydrolysis mechanism of Orthoester 

Guo and Szoka synthesized a pH sensitive 'POD~ lipid with a diort:hoester linker (Fig 

2.6) and incoporatedit into liposomes. (Hydrolysis Se.heme 2.7) 
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. . . . 

Pig. 2.6 Structure of the 'POD' lipid 

~0 OH 

R,-()H + X . + R2-0H 

HO 0~ 
0 

Scheme. 2.7 Acidic hydrolysis oforthoester based lipid 

The incorporation of POD and DOPE in a ratio of 1/9 in liposome membrane stabilizes 

the liposome at physiological pH but at low-pH POD hydrolyzes to shed off the PEG 

coating to wnvert the DOPE-rich liposome membrane to a hexagonal phase. 

The stability of I 0 mol % of POD incorporated into liposomes at alkaline pH 8.5 was 

about 2 weeks. In vivo studies on POD/DOPE liposomes suggested a half life of200 min 

(83) while the half life. ofDSPE-PEGIOOPE lipoSomes \\'35 ~ 295 min. Stability studies 

of POD conjugate suggested that it remained intact for 3 hours at 3 7°C while complete 



5.4 

: hydrolysis was observed at pH 5 within 1 hour (81 ). The POD liposomes resulted in 

: extensive content release and aggreagation at pH 5*6 (81 ). The release of contents from 

the liposomes contains two phases: a lag phase when the contents slowly leaks through 

the liposome membranes followed by a burst phase when sufficient POD hydrolysis 

triggers the lamellar-to-inverted hexagonal , phase change of the liposomes to quickly 

release most of the contents. 

The POD has also been exploited in intracellular delivery of plasmid DNA (8 1 ). 

Stabilized plasmid-lipid particles (SPLP) composed of OOT AP~ OOPE and plamid DNA 

and 1.3 mol% POD resulted in liposome collapse within 110 min. at pH 5.3 whereas the 

pH*insensitive lip()somes witboutPOD remained stable at 1owered pH. 

Instead ofdiorthoester, masson et al (84) designed five and six membered ring orthoester 

based lipids (Fig. 2. 7) and incorporated them into lipoplexes. The conjugates were stable 

for 8everal days at pH 7.5 but the long tenn stability of lipoplexes composed of the pH 

sensitive orthoester lipids was not determined. 



55 

0 

o~ ./'-.... . Jlyo~ ,... _ r -N . o 
0
.J-0 H 110 

1l r o 1~ ,... 
oy~' Y '1; 1~o 

0~0 . 

0~~
0 

0~ N · . · . . 0/ ~ . · H IlO 
0 0 

0 . . ·JYO . . 0'-h / 0 N 0 · 

)l .· .. ~YH 110 
o N~o o . H 

Fig. 2.7 Ortho ester lipids designed by Masson et aL 

Hydrazone Linker 

Hydrazone presentS another linker (Fig .. 2~8} that has been exploited by researchers for 

pH-triggered drug/gene delivery. 
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Fig.2 ,8<Chemical structureofhy.drazone tinker. 

Aissaoui .et al (95) synthesized a series of cationic guanidinium based lipids- (Fig. 2.9) 

' where acylhydrazone iinker was used to link head group with a steroid. lipid tail. All .the 

lipids were demonstrated to undergo. acid-catalyzed hydrolysis; It was observed that 

unsatlltated compoUnds BGBH,chotest-.4:0enone and BGTH·cholest•4~enone showed 

s]o\Yer hydrolysis kinetics with halftives t.9 and 2j days at pH 4.8 than the saturated 

8GBU~cholestimone and BGTH~cho)estanone compound~Lwith halflives oft.2 and 1.3 

days reSpectively. The lipoplexes composed of bis-guanidinium bis~(2~aminoethyl)arnine 

hydrazone (BGBH)-chcdest;,.4-eri()P¢/l)NI\ m¢diated efficient gene transfection in 

mammalian cells and. in mouse airw:ays. 



51 

1~19, BG8H~hoie$tano~ 

1-20, BGBH-cholest-4-enone 

H'N 2 \..._ . 
11NH .· 0 

HN ~ .- -~ U ~ 
N- ........., ---~-N ( . . 

NH 

HN~NHz 
, 3. CH~OzH 1-21, BGTH.,Cholestanone 

i-22, BGTH:.Cholest-4--enone 

Figure 2.9 Chemical structures of gliarii(liniurihbased cationiclipids. 
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Shedding of PEG Coating by Hydrolysis of Hydrazone Linker 

. eased on the review of pH~sensitive linkers we propose a strategy to improve 

intracellular uptake ofliposomes by shedding the PEG coating that hinders the .interaction 

ofliposomes with the cell surface in the V1~inity of tumor. The PEG coating can be 

removed ~Y placing a hydrozone linker between lipid tails and polar head group~ Whil~ 

hydrated PE(J . ~oating around the liposome st~rfac~ hinders the hydrophobic: interactions 

with serum proteins and immun~ .ceJls in blood circulation, the removal of the PEG 

coating will lead to increased interaction of the liposomes with cancer cells at the acidic 

tumor interstitium. 

One C()tnmon feature of all cells is ne,gatively charged celt surface. The presence. of 

negatively charged lipids such as .phosphatidylserine (PS) and phosphatidyJ inositol {PI) 

impart negative charge on the cell surfac~. Vance and Steenbergen in 2005 (85), 

determined. that approximately 15 % of.PS and PI were found in rat liver .cell membrane. 

Additionaly the ~ell surface has an abundance of extracellular matrix (ECM} that contains 

proteogJycans and glycosaminogtycans which provide a majority {)f negative charges at 

the cell surface (Fig. 2.10). Additionally, tumor surface charge was found .to be even 

more . rtegative than normal cells (88). The glycosaminoglycans in the ECM include 

heparan sulf~te. chondroitin sulfate and hyaluronic acid. 
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Fig. 2.1 0 ExttaceUuraf matrix over cells 

Work of Mounkes et al (86) and Mislick et al (87) established that heparin!heparan 

sulfate and chondroitin sulfate play a crucial rc)ie in intracellular uptake of cationic 

• lipoplexes. 

Based on the aforementioned, we propose a pH .. sensitive liposomal system that will act 

as a stealth liposome at physiological pH and convert to cationic liposome at lowered pH 

in the tumor environment for increased intracellular uptake (Fig. l.Jl ). 



~ 
TUIIlOl' Iutentiti:wll 

Weak Acidic 
(pH 6 .!\-7.0) 

CeU 
Fig. 2.11 Concept of design of hydrazone based pH -sensitive liposome 
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To achieve the pH triggering a novel PEG-lipid conjugate containing hydrazone linker 

can be introduced in the liposome membrane as mentioned earlier. The hydrazone tinker 

is expected to hydrolyze at Iow·pH environment to shed off the PEG coating and leave a 

hydrazide lipid which cmt acquire positive charges on liposome surface in the weakly 

acidic tumor interstitium (Scheme 2.8). The formulation design can also contain 
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' 

lxcessive positively charged lipid (elg J)()TAP)to overcome the limited mol% ofPEG~ 

~pid conjugates that Call be incorprirated into the liposaine membrane. 

Rt 

R1 R3 
\ H /(") .. 
N-N\. . C_,_O-H 

I :.' \ 
R') ' + R$ - H 

I 
\ . . 

+ N-NH,. 
I -

Ri 

Scheme 2.8 Acid HydrolysiS of Hydrazone 

·. ·.·. 
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2.1 Materials and methods. 1,2:..Di..O-hexadecyl-rac-glycerol (DHG) was purchased 

from Bachem. Ethyl B~oace~te. sodium hydride (60% dispersion in mineral oil). 

hydrazine hydrate (80%), Iodobenzene diacetate {BAlli), 2,2,6,6-Tetramethylpiperidine-

1-oxyl-4-amino-4-carboxylic acid (TEMPO) were acquired from Fisher Scientific. 

Polyehtylene glycol 2000 monomethyl ether was obtained from Sigma Aldrich. All other 

organic solvents were purchased either from Sigma, Fisher or VWR. 

2.2 Synthesis 

2.2.1 Synthesif of ethyl-2-(2,3-bis(hexadecy/oxy)propoAy)acetate (DHG Ester)(1.9.2, 

Scheme 2.9). 1,2-Di..Q..hexadecyl-rac-glycerol (DHG) (1.5 g. 2.77 mmo1, 1 equiv.)1 

(2.9.J, Scbe• 2.9) was dissolved in 20 mL oftetrahydrofuran. Sodium hydride (60% 

in mineral oil) (0.44 g, .11.08 mmo~ 4 equiv.) was washed with hexane in a separate 

round bottom flask. Hexane was removed and DHG solution was added to sodium 

hydride at the bottom of the flask. The reaction was allowed to run for 30 min. under 

argon at room temperature. Temperature was lowered to OOC and Ethyl Bromoacetate 

(I .85 g, 11 .08 mmol, 4 equiv.) was added to the reaction mixture. The reaction mixture 

was stirred under argon for 6 hours and monitored by TLC (silica gel 60 F254, EMD 

chemicals, Germany) developed with ethyl acetate/hexane = l /10. Then H~ was added 

and the mixture was washed with diethyl ether. The combined organic layers were dried 

over sodium sulfate, filtered, concentrated in vaccum and purified by silica gel 

chromatography w ith a gradient mobile phase of Ethyl acetate/Hexane (1120 to 1/1 0, vlv). 

(Yield 51%) (MALDI +ve ion mode: 650.6 (M+Nat, 1HNMR (600 MHz, CDCh) (Fig. 

2.12): o 0.83-0.87 (t, 6H, 2 C!b(CH2)w ), 1.18-1.32 (m, 52H, 2 -OCH2CH2(CH., )uCHJ), 
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1.53 (m, 4H+ 2 ·OcH:!GHi(CJi2)uCHJ); 3.38-3.68 (11tt 7.1:1~ C~J(~Hi)t4Ct!...,OC!hCHO­

,CH.,); 4.1-4i26{m,4H~ CffiCOOQfu); 



+ 
CHa(CHz)IS-0 

2~9.1 OH 

NaH J~~c, 

CHj(CH:z)1s-· 0 

0 

O-(CH2)2-. -O_jj__CH2Br 

NH2NHz, 180-85 °C 
Ethanol Reflux 6 h 

0 

II O-(CH2)z--O-...&J--NliNHz 

mPEGl<)O(>CBz CHO I r.t., 
Overnight 

0 
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2.9.2 

2.9.3 

II H 
O-(CH:z)2-o--· --'.&...-NHN.. C-PEG2ooo 

2.9.4 

Scheme 2.9 Synthesis ofDf{G-Hz-PEG conjugate 
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2.1.2 Synthesis ,of2-(2,J-bis(hexadecyloxy)propoxy)eth)·IHydrarinecatbox)'lnte (DHG 

Hydrazide) (2.9.3, $~heme 2.9). Ethyl-2•(2,3~is(hexadecyloxy)propoxy)acetate (2.9.2. 

0.48.g~ () .765 mmol, 1 equiv.)was dissolvedin·ethanol at 50°Cunder argon followed by 

addition ofhydrazine hydrate (2.3 mmok3 equiv.). The temperature was raised to 80-

850G and ~than of. was allowed to reflux for ·6 hours tinder argon. Th~. reaction mixture 

was monitored by TtCdeveloped with .ethanol/ 2%NH40H. The reaction was cooled to 

OOC; the separated precipitate was filtered off and washed with· ethanoL (Yield· 100 %), 

AccuTOF(M +H)+ 613.5 1HNMR(600 MHz, CDCh)(Fig.l.J3): 8 0.84•0.89(t. 6H; 2-

(CH2)tsC!::b), 1.2-1.35 (Ill. 52H, 2 ·OCH2CHz(Clb)nCH3)~ J 56 (m, 4H, 2 -

OCJ-hCfu(CH2)t3CHJ), 3;38.;3.72 (m, 7H,CHl(CH:!)t4CH,QC!::bC!!O.., CH2). 4A (s.2H, 

-NH-.NH,)~9.04 (s, 1H,.;NH-NHzJ 
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·· 2.23Synthes;s ofmPEG-2000 Acetaldehyde (2.10~Scheme 2.10) .. Polyehtylene glycol 

2000 monomethyl ether (mP.EG) (2g) was dissolved in 20 mL of anhydrous toluene and 

dried under vaccum. 15 mL of dichJorometbane was added to previously dried mPEG. 

TEMP0(0.035g, 0.224 mmol) was added followed by addition ofBAIB 0 & 3.1 mmol). 

The reactiort was stirred at room temperature overni~ht under argon. ·The mixture was 

then precipitated by addinglSO mL·ofanhydrous diethyl ether. filtered and dried. (Yield 

1 . . . . ·. . . . . . . . . . . . . . . . . . . . . ··.. . . . 
56%) HNMR (600 MHz, CDCh)(Fig.l.l4); 6 3.35 (s, 3H), J.50- 3.70 {m. 1 76H), 

4.13 (s. 2H) •. 9.7J (s~lH) 

TEMPO/ 
. . BAIB · · · · · CHO) CH c-o H3C .. ·· O-(CH2CH0)44-·· CH2CH20H . . . • H3CO-{CH2 . :.w- 2 -

· · · · · · Ovemtght 1 
~L H 

2.10 

Scheme 2.10 Synthesis ofmPEGiooo Acetaldehyde 
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. 2.2.4 Synthesis of DHG-Hz-PEG (2.9.4, &he~~te 2.9). Hydrazide activated DHG (O.lg, 

0.172 mmol} was dissolved in ~hloroform followed by addition of mPEG-Aidehyde 

; (0.86g, 0.43 mmol). The reaction mixture was . stirred overnight under argon at room 

; temperature and monitored by TLC developed with CH30H!CH2CI2 1/9 with 2% 

ammomium hydroxide (Fig 2.15). 
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DHG Hydrazide 

DHG-Hz-PEG 

Fig. 2.1 S TLC showing the formation ofDHG-Hz-PEG lipid 
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•H-seasitivity of DHG-Hz<OPEG 
' 

fhe pH sensitivity of DHG-Hz-PEG was tested by adding 2% acetic acid in the ethanolic 

$Oiution of the reaction mixture. The acidified reaction mixture immediately shows the 

&pot characterstic of DHG hydrazide (Fig. 2.16) suggesting hydrolysis of the DHG-HZ· 

pEG conjugate (Scheme 2.8). 

DHG Hydrazide 

DHG-Hz-PEG 

Fig. 2. t 6 Acidified hydrolysis of the reaction mixture shows the formation of DUG­

hydrazide 
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: Sepantioa of DHG-Hz-PEG 

; Separation of the conjugate DHG-Hz-PEG using HPLC did not show any peak with C4. 

. C8 and C 18 Columns. Neithe.r did silica gel column show any conjugate eluting out of 

: the column. Subsequently sepharose-crosslinked 48 gel column ( l em x 23 em* Length x 

Diameter) was used to purify the conjugate using pure water as eluent but did not show 

the conjugate eluting from the column at pH 7.4 . However, at pH JO.S (pH of water 

1 adjusted with 2 N NaOH) the conjugate started eluting out (Fig. %.17). The elution time 

was 30-40 min. 

DHG Hydrazide 

DHG-Hz-PEG 

. . -PEG eluting out of the column 
Fig. 2.17 TLC of the eluent showmg the DHG-Hz 
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'The purification results of the DHG-Hz-PEG cqnjugate at different pH conditions using 

gel chromatography, indicate that the hydrazone-based lipid conjugate is highly unstable 

'at physi()logical pH. 

:Torchilin et al (91) have previously synthesized a series of aliphatic and aromatic 

·.Aldehyde based hydrozone lipid conjugates. Their findings indicate that the half life of 

: the aliphatic conjugates ·were less than 2 min. at pH 55 while the half life of the most 

stable aliphatic conjugate was no more than 2;5 h at pH 7.4. Inclusion of aromatic ring 

next to the . hydrazone linker yielded very high stability where the half lives were more 

than48 hand 72 hat pH 55 and7.4, respectiv~Jy for all the aromatic conjugates. 

Our results show that the hydrazone.:.based lipid conjugates were highly unstable at pH 

7.4 and therefore not suitable for Jiposome preparation and subsequent anticancer studies. 



74 

Chapter 3: Design, Preparation and Characteriati~n ofpH,.~nsidvc Convertible 
Liposomes for Anticancer DrugDclivery · 

. IntrOduction 

~ Advanc~s in liposomal tumor targeting have received consideralYie attention for their 

potential advantages(I02)(l03}including: high drug to carrier ratio, ability to formulate 

lipophilic as well as ~ydrophific drugst targeting to tumor. long circulation halfJifc (I 03 ), 

biocompatibility of the carrier and minimal toxicities of the constituent 'lipids. Th~ 

·advent of •stealth liposomes' have resulted in increased blood circulation. halflife of the 

JipoS<>ines(35)and therefore increased accumulation in the perivascular environment by 

the 'Enbaru:ed Penneation arid Retention Effect'. However the 'PEG coating. of the 

stealth liposome also reduces their interaction with tumor cells (see chapter I, Passive 

targeting) and their penetration in solid rumors( I 11 ). 

To increase the celi.:.JipoS<>nie interaction and intracellular uptake of the drug .a broad 

spectrum of PEG-shedding strategies have been previously introduced ( 104 ). Of note, 

the strategies to shed. the PEG coating from stealth liposomes include the jm:orporation of 

pH-sensitive linkers whiCh can hydrolyze in the low-pH environment (see chapter H). 

However, lipids containing such pH-sen~itive linkers show either poor stability (see 

chapter II~ Separation of DHG-Hz-PEG) at physiological p'H~ or insufficient pH-
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sensitivity to the mildly acidic pfl in the tumor interstitium (see chapter II, Vinyl ether) 

(77) (79) (80). Fur:thennore, poor stability on shelf is another concern for such 

hydrolyzable.lip()some_s (127). It is thus desirable to develop liposornes that are stable 

both onshel fand in blood circUlation and yet can reniove the PEG coating in response to 

lowered pH. 

This project proposes a stratew to improve the shelf stability andintrac:ellular delivery J>f 

· drug by PEOyJated liposomes. Instead ofusing lipids. w'ith an· acid;.; labile linker we have 

developed imidazole-based lipids that can protonate at low-pH as seen in the tumor 

interstitium. The proposed convertible Jiposomes containingprotonable imidazole lipids 

could convert: from stealth to cationic liposomes in the tumoral interstitium (Fig. J.l). 

The conversion to cationic Jiposome is based on protonation of imidazole lipids and 

chistering of PEG lipids on the 1iposome surface. The newly fonned cationic liposome 

can then have greater interaction with the negatively· charged celt membrane and 

extracellular matrix (123) (see chapter II). Because the liposome converts from stealth 

to cationic Jipo~ome we have giveri them the term •convertible Liposomes'. 

The concept of design (Fig. 3.1) is based on the inherent properiy of the lipids to 

segregate into different phases- based on electrostatics and vander waals Ioree of 

interaction amongstthem{l24). 
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~pH 

Convertible liposomes 

Fig. 3 .I Concept of design of convertible liposomes: protonation and clustering of PEG 
coating on liposome surface in .response to lowered pH. 

The convertible liposomal system essentially comprises of three different types of lipids 

(Fig. 3~3) 1) a negatively charged PEGylated lipid with two Cl6 hydrocarbon chains as 
. . . 

the lipid tail (1 ,2~dipalmitoyl-sn-"glycer<r3-phosphoethanolamine~N-

[methoxy(polyethylene gJycoJ)-2000 (DPPE-PEG, shown by Jetter •p, in Fig. 3~2), 2) an 

imidazole-based, protonable lipid with two CI6 hydrocarbon chains as the lipid tail 

(shown by tetter 'N' in Fig 3.2), and 3) a Cl8 chain lipid DSPC (1,2-distearoy.J-sn-

glycero-3-phosphocholine). that has no net charge. The molecular stimulus that triggers 

the phase separation of the lipids is the acidic pH of the tumoral interstitium. At acidic 

pH, protonable "lipids will protonate and acquire positive charge on the ·surface. The 

protonated· lipids are attracted to negatively charged PEGylated lipids due to the 

electrostatic interaction and vande,r waals force of intera~tion o:wing to the same carbon 

chain length (Fig. 3.3), This leads to the fonnation of PEG cluster on the membrane 

exposing excess posi,tiye charge on tipo$ome surface. Such a fonnulation will allow for 

increased binding with cancer ceUs and higher uptake by the. tumor cells. 
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Fig. 3.3 Three types of lipids (DPPE-PEG, Imidazole lipid and DSPC) comprising the 
convertible liposome, Negatively charged DPPE-PEG and protonable Imidazole lipids 
interac.t ~t low pH 
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Tumor pH 

· The trigger of the proposed convertible liposomal system is the pH of the solid tumor. 

The pH ofthe extracellular interstitium in solid tumor is between 6.0 to 7.0 .(105}(106) 

. ( 1 07) with th~ pH approaching close to .6.0 at the tumor core. The aCidic pH in the tumor 

is due to the heterogeneous network of blood vessels in. solid· tumors which leaves parts 

of the tumor without sufficient oxygen supply (Fig. 3.4). The tumor cells in the hypoxic 

region are forced. to undergo anaerobic glycolysis (lOS) (109) as a major metabolic 

pathway leading to the production of lactic acid and thencethe acidic pH. Additionally, 

findings ofSvastova et aJ suggested the role of carbonic anhydrase lX in the ~reation of 

acidic microenvirorunent in tumor ( 11 0). 



ilt Cancer stem 

Vascularized 
circumference 

Tumor core 

Fig. 3.4 Picture of solid tumor showing heterogeneous and leaky vasculature and hypoxic 
region (adapted with pennission from (128)). 

The convertible Jiposomal system has tunable surface topography (I 24) that starts as a 

stealth liposome and yet converts to a cationic liposome at the pH mimicking the tumor 

environment. The principal behind the formulation development is that the convertible 

liposome will remain masked by the Polyethylene Glycol (PEG) shell during the systemic 

circulation but the PEG shell will progressively de-shield as it encounters low-pH 

environment mimicking solid tumor and thereby exposing excess positive charges on the 

liposome surface acquired by protonation of imidazole lipids. 
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, In this study, we. have synthesized a series of imidazole based pH-titrable lipids with 

increasing pKa values (Fig. 3i5, estimated pKa values· ranging from 5.36 to 6.75) and 

incorporated them into convertible liposomes to·. render liposomes with increasing pH­

sensitivity. The fonnation of lipid domains and the potential of these Hposomes to 

associate with and kill cancer .cells at tumOl'-relevant pH is evaluated in Bl6Fl0 (mouse 

melanoma) and llela (human cervical) cancer cells. 

DHlpKa 553 ± 0.5 

oi_ .· H 

o . s-{J 
N 

.~· 

DHMI pKa 6.2 ± 0.5 

DHDMl6.75 ± 0.5 

0 

~i_ JJ 
o . s-{ J 

N 
DPL5.36 ± 0.5 

Fig; 3.5Structure ofpH .. protonable imidaiole lipids 
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. Materials and Methods 

. 3.1 Materials. 1.,2-Di-0-hexadecyl-rac-glycerol (DHG) was .purchased from Sachem. 

·Torrance~ CA, p-Toluenesulfonyl chloride, Pyridine (anhydrous) ·.from fisher scientific~ 

· 1.2-Dipalmitoyl-sn-.glycerol fr.om Chem-Jmpex Intemational, Inc., Wood Dale, IL, 1~2-· 

dioleoyJ-sn-glycetol, 1 ,2-.distearoyl·sn-glycero-l-phosphochoiine (DSPC). 1.2~ 

dipalmitoyl-sn-:-glyceto-3-phospboethanolamine:..N-[methoxy(polyethyJene slycoJ)-2000 

. (OPPE-PEG) from Avanti Polar Lipids, Inc., Alabaster, AL,. 2-Mercaptoimidazole, Tri­

ethyl amine from Sigma Aldrich, 4;.Methyl-1 H-imidazoJe-2-thiol and 4;S-DimethyJ.; 1 H­

imid:.tzole-2-thiol from Oakwood Prod~cts, Inc.~ West Columbia. SC, Doxorubicin 

hydrochloride from Ontario chetni~als, ON. Canada. All organic solvents were purchased 

from Fisher sc·ien.tific, VWR orSigina Aldrich~ 

l .2 Synthesis of E~ter lipid DPI 

J.i~ 1 Synthesis· of sn1--J·((phenylsu/fonyl)oxy}pt'opl!ne-1,2-diJ'I dipalmitote (DPG 

Tosylote) (3.1./, Scheme J.l).. 1,2.'-Dipa·Jmitoyl-sn-gJycerol (DPG) (0~25 g, 0.44 mmol, 1 

equ·iv),~ was dissolved in 20 mL of dichJoromethane, followed by dropwise addition of 

pyridine (1.82 mL, 22 mmol~ 10 equiv). [r'ToltJenesulfonyl chl¢ride(O.J7 g, 0.88 mmol, 

2 equjv) was th.:n added to the above solution. The reaction mixture was stirred under 

argon at room temperarure· for 8 h, and monitored by TLC developed with 

dichloromethane (Scheme 3.1). The reaction mixture was then washed three times with 

saturated sodium carbonate sollJ.tion. The· combined organic layers were dried Qver 

·magnesiUm. sulfate., filtered, concentrated in vac(lu,m and separated by silica gel 
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chromatography with dichlorornethane as mobile phase to yieid the product. (Yield 56 

%), DART {M+Ht 551.5 

J.2.2 Syntliesis of (sn)•J-((IH•imidar.ot-2~);1)ilrio)p~;opane•1;1-diJ'I-:-dipalmitate (DP/) 

(J./~2, Scheme J.l)~ 2~MercaptOimidazole (0.1 g. 1.0 mmol, 5 equiv.) was disSolved in 

- DMF and a smaJ.I amouritof Dichloromethane was. added, Triethylamine (0.14 mL, 1.0 

mmol, 5 equiv~) was added to the above solution fQUqwed by (sh)-3-

((phenylsuifonyl)oxy)propane-1,2~iyldipalrnitate (0.15 g, 0.2 mmol, I equiv) and the 

reaction was allowed to run fo~ 48 h at ss·c under argon. The solvent was evaporated 

and reaction mixture was re-dissolved in ethyl acetate and washed thrice with saturated 

sodium bicarbonate solution. The combined organic layers were dried oyer s.odiurn 

carbonate, filtered, concentrated in vacuum and separate<! by silica gel chromatography 

with Ethyl acetate I Hexane = 3n as mobile phase to yield the product (Yield 9-%), 

DART(M+Ht 65l.5 (Fig. 3.6), 1H-NMR (600 MHz, CDCh) (Fig. 3.7): o 0.87 (t, 6H. 2 

CH3(CJ·b)15-), o 1.15-1.35 (m, 52H, 2 -OOCCHiCI-h(Cfu)hCHJ), o 158 (t, 4H, 2 -

OOCCH2CH7(CH2) 13CH3), o 23 (t. 4H, 2 -OOCCJ:hCfh(CH2)t3CI-h), o 3.38, 3.66 (q, 

2H, -l::hCSCNH-), o 42, 4.4 (q~ 2H, CH3(CH2)t4COOC.l:b-), o 7.08 (d, lH, 

H2CS0==NHC='CH-NH-)~.o 8~04 (d, 1H9 H2CSC=NHC=CH~NH-) 
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. 3.3 Synthesis ofEther lipids DHI; DHMI and DHDMI 

, J.J.l Syntllesis of 1,2"-Df ... O·hexadec)'l-rac-g/ycet)•/ tosJ'Iate (DHG ToSJ•/au) (3.2.1, 

Sclteme 3•2). 1,2-Di;.Q. .. hexadecyl~rac;.g)yc~rol (DHG)(2.43 g, 4,5 mmol, 1 equiv}, was 

· dissolved itt20 rnL ofdichJoromethane~ followed by dropwise addition ofp)'ridine{l8;6 

mL, 225 inmol, 50 equiv). pToluenesulfony1 chloride (1.71 g, 9.0 mmol, 2 equrv) was 

then added to the above solution (Scheme·3.l). The reaction mixture was stirred under 

argQn at rorim , temperature for 8 h, and monitoted by TLC (silica gel 60 F254, EMD· 

chemiCals, Gennany) developed with dich1oromethane. The reaction mixture was then 

washed three times with saturated sodium carbonate solution. The ~ombined organic 

I~yers wer.e dried over magnesium sulfate~ filtered, concentrated in vacuum and separated 

by silica gel chromatography with dichlotornethane as mobile phase to. yield the product. 

(Yield 65 %);, DART (M+H)+ 695.5~ 1H·NMR(600 MHz, CDCh.-6 ppm): 0.87(t, 6H. i 

CI:b(CH2)w), l..i8-L3l (m, 52H, 2 -OCH2CHi(CH~)13CH]), 1.4"6 (m, 4H, 2 -

OCH2Cfu(CHz)t3CH3), 2.44 (s, JH, -(C6H4)Cfu), 331-3.61 {m, .5H, 

CH3(CHz)14CfuOC!:bCHQ.;), o 4.14 (m, 2H, ..C!bSOt~), S.7.3l(d, 2H, aromatic protons 

or tho- to ~S02~ ), and fJ7 .78 (d, 2H, aromatic protons ortho-. to·CH3-) 

3.3.2 Synthesis of (sii)~2-((2,J-bis(hexadecy/oXJ')prop}'l)thio)~J H-iinldazole (DHI) 

(3.2.2, Scheme 3.2)~ 2- Mercaptobnidazole (0.66 g,. 6.61 mmo~ 5 equiv.)·was dissolved 

in DMF and ;:t small amount of Dichloromethane;was added. Triethylamine (0.92 mL, 

(;.61 mmol, S equiv.) was added to the. above solution followed by 1 ,2;;.Di•O-hexadecyl­

rac~glyceryJ tosylate (3;2.1) (0~92 g, 1.32 mmol, lequiv)and the reaction was aUowed to 

run for 48 b at 5'5''C under argon (Scheme 3.2). The solvent was evapotated and reaction 
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mixtUre was re-dis~olved in ~tbyta<;etate and washed with saturated sodium bicarbonate 

solution (3x). Th(! coinbirie(f organic layers were dried over sodium carbonate, filtered. 

concentrated in vacuum and seperated· by. siiic~ . gel chromatography with Ethyl .acetate / 

Uex:llJ)e = 3(1 as :ti10bile phase. (Yield 26. %), QART(M+Ht 623.5 (Fig. 3-.8). 1H-NMR 

(600.l\1Hz, COCb) (Fig •. 3~9): o Q;87 (t, 6f{,.2 C!.!J(CH2),~~), o 1J9-Ll2 (m, S2H.2 """' 

OCHiCH2{Clli)13CH3)~ 6 1.55 (m, 4H, 2 "-OCH2CH.;(CH2)13Cl-h, 5 3;22~ 3.65 (d.t:f2H, • 

H.,CQCJh(CH2}1.tCH3), ~;: 3..38.., 3~6 (d,d 2H, - ,lliCSCN.f:l~)~ o ~.44, lSS (m, 4H. 2 -

H2COCfu(CB2)t4CH)), ·~ 3~73 (m, 1 H, CH3(CH2)rsOCH~). o 7;02 (d, lH. 

. HtCSC=NHC==CH-NI-i-), o 7.21 (d~ 11:1. H2CSC=NHC=CH.;NH~) • 
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DHI R1 = H, R.2 = H (3~.2.2) 
OHMI R1 = Cll3, R2 = 1-1 (3.2.3) 
DHDMI R1 = CH3~ R2 = CHi (3~2.4) 

Scheme 3.2Synthes1s ofDHI, DHMI and DHDMI 
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3.3.1 Synthesis of sn·2-((i,J-bis(hexadecyloXy)propyl)tllio)w5.;.meth)'I~JBw imidazole 

(DHMI) (3.2.3, Scheme J.2). 4wMethyl-1H-imidazole-2~thiol (0.75 g, 6.61 mmol, 5 

equiv.) was dissolved in DMF and a small amount of Dichloromethane was added, 

Triethylamine (0.92 mL, 6.61 mmol, 5 equiv.) was added to the above· solution followed 

by 1,2-Di-0-hexadecyl .. tac-glyceryl tosylate (3.2.1) (0.92 g, 1.32 mmol~ 1 equiv) was 

then added to this solution _and. reaction was allowed to run for 48 h at· 5 5"C under argon 

(Scheme 3.2). The washing and purification was the same as mentioned in 3.3.2. (Yield 

22 %), DART(M+Ht 6375(Fig.J .. l0). 1H·NMR (600 MHz, CDCh)(Fig. 3.1 1): o 0.87 

(t. 6H, 2 C.lli(CH2),5·)~ c5l~l9-1.34 (m~52H, 2 -QCihCI:h{CH,)uCHJ), o 1.53 (m,4H, 2 

-OCH2Clli(CH2)t3CH3), 52.31 (s; 3H, -HzCSC=NHC=CH-C!h), o 324, 3.66 (d,d, 2H~ -

fuCOCH2(CH2) 14CH3), o 3.4, 3,6 (d,d 2H~ "' _lliCSCNH~). o 3.44, 3.55 (m, 4H, 2 • 

H2COClb(CHz)t4Cll3), S 3. 73 (~ lH,. CH3(Cth)1sOCH-'), o 6.81 {d. lH, 

H~SC=NHC=CH-NH-) 
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3.3.4. Synthesis . of sn~2-((1,J-bis(hexadec)"'oxy)prop)'l)lhio)-4;5-iit~tii)'I-JH~i,idal.()/e 

(DHDMI) (3.2.t/, Scheme 1.2). 4.:Methyl-lH-ilnidazofe-2~thiol (0.84 g~ 6 .. 6 J mmol, ~· 

equiv .) was dissolved in DMF and a small amount of Dichloromethane w~s added. 

Triethylamine (0;92 mL, 6.61 mmoJ, S equiv.) was added to the ~bov¢ S0lution.foJiowed 

by i;2-bi.:O-hexadecyi~rac~gtyceryl tosylate (3.2 .. 1) (0,92 g, 1.32 mmol; I equiv) and 

reaction was allowed to run for 48 hrs at ss·c under argon (Scherile 3~2). The washing 

and purification was similar as mentioned in. 3.3;2 {Yield22 %), DA.RT (M+Ht 651.5 

(Fig. 3.12), 1H-NMR:(600 MHz, CDCIJ) (Fig. 3~13): .o 0.87 (t, 611, . .2 Clb(CHz)l5~). o 

L 19-,1.34 (m, 52H, 2 -OC~2CH2(Clli)tJCH3)~ o 1.53 (m, 4H, 2 -OCH2C.th(CHz)uCH3), 

52.11 (s, 3H, -H2CSC=NHC=Cft..,C.lli) •. o 2.17 {s, 3H,. -H2CSC=NCC.lli); o 3 .14; 3.65 

(d,d 2H, ~!hCOCH2(CH2)a4CH3), o .3.29, 3.59 (d~d 2H~ - !bCSCNH~) •. o 3A2,. 355~ (m, 

4H,2 .;H2COGI:h((:'H2)t4CH3), 6 3;73{mi lH, CHJ(CHz)t,OCR·) 
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3.4 ,Calculation of p:Ka. The pka of the lipids (DHI~ · OHMJ, DHDMI and .DPI) was 

calculated using ACD/pKa DB softWare (Advanced Chemistry Developmet, Inc., 

! Ontario, Canada)(l26). 

3.5 Preparation otl..iposomes. Liposomes were prepared by lipid film hydration and 

extrusion (98). Chloroform solutions of appropriate lipids (Table 3.1) were mixed in a 

25 · mL round bottom flask~ Chloroform· was evaporated in a Buchi rotavapor and funher 

dried in vaccum oven for 3 hours at room temperature to. remove traces of the solven~. 

The lipid film was then hydrated with HEPES buffer {pH 7A,. 5 mM HEPES) with or 

without 140 mM NaCI using intennittent agitation to obtain a suspension of · 7.5 mM 

total lipids. For pH dependent· change of Zeta potential measurements •. interaCtion 

between convertible and model Jiposomes and nsc experiments liposomes were 

prepared in () mM NaCJ whiJe for the cytotoxicity and doxorubiein uptake experiments, 

140 mM. NaCl was used to prepare liposomes. The Hposorne suspension was freeze· 

thawed (alternate immersion in dry ice/acetone and water bath at 40 °C) eleven times and 

extruded sequentiaUy through 40Q rim and 200 nm poJycarbonate membranes 

(Nucleopore Corp., Pleasanton, CA) using .a Mini.extruder (Avanti Polar Lipids fnc:. 

Alabaster, AL) at7o• :C to yield the liposome preparation. The particle diameter and ~· 

potential of the preparations were measured by photon correlation s~ctroscopy 

(Zetasizer ZS90, Malvern. Instrum-ents Ltd., UK). 

The average liposome sizes for all the formulations studied ranged from 200-270 nm 



98 

3.6 Composition of*Convertible.. Control·and 1\fodd lipc>s()me$ 

Table J.l Lipid Composition of Convertib1e (I, II, JII}and Control (IV) Liposomes 
. . 

Mol% 

Liposome 
Preparation 
No. 

om DHMI DHDMI DSPC 
DPPE-
PEG 

I 25 70 5 

II 25 70 5 

HI 25 70 5 

IV 95 5 

*The ester basecl ifJiidazole lipid (DPJ) was not used for liposott1e prepranion and 
subse.quent experiments because oflow yield and expensive pr~cursot lipids. . 

Model liposomes (118) (ll9), that ·mimic the lipid composition of biomembranes were 

prepared with the lipid <:Qmposition 50 mol .% POPC, 20 mol % POPE, 5 mol %POPS, 

lO mol % L-a-PI and 15 mol %cholesterol 

3.7 pH dependent change of Zeta potential. The pH of an aliquot (lmL) of a liposome­

suspension· (see section 3.5) was adjusted \\lith acetic acid ( 5 ·. mM, final pH con finned. by 

pH meter) immediately before taking zeta potential . measurements. The zeta potentials 

were m.easured at 37 °C by electrophoresis mobility under applied voltage using Zetasizer 

ZS 90 (Malvern Instrument, Malvern, UK). 
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3~8 lnt~racdop betw~en ~oavertible and model liposomes. Liposome suspensions of 

pH.;serisitive liposomes •~ II~ Uland IV (see section 3.5) were ·mixed with equa1 vol\,lme 

of model liposome (see section. 3.S} and pH was adjusted. with acetic acid · (5 mM, final 

pH confinned by pH meter). The liposome mixture was incubated for. one hour at 37 °C 

and average sizes were measured at 370C by dynamic light scattering \ISing Zetasizer ZS 

.90 (Malvern Jnstr\lment, Malvern, UK). 

3.9 Differential Scanning Caiorimetry of liposome formulations I . and IV. A VP­

DSC Instrument (MicroCal, LLC, Northampton, MA) Was· used for the differential 

scanning calorimetry (DSC) studies. DSC scans were performed. oil vesicle Suspensions 

of0:5 mL sample volume containins 2.5 mMtotal lipid at pH values 7A and 6;0. The 

thermograms of vesicle ~uspensions. were acquired ftom35°Cto 70°C at a scan rate of 5° 

Clh. The excess heat capacity curves of samples were normalized by subtraction of the 

thennograms-.of the buffer acquired simultaneously under identical conditions. 

J.lO Loadingofdoxorubi~in (D()X) in Jiposomes 

3.10./ Doxorubicin loading by ammonium sulfate gradient. Earlier in the study, the 

remote loading of doxorubicin into liposomes were .driven by a transmembrane 

ammonilim sulfate gradient according to reference .(99) (100) with minor modification. 

Briefly, chloroform solutions of appropriate lipids (Table 3.1) were mixed in a round 

bottom flask. Chloroform wa.s evaporated in a Buchi rotavapor and further dried in 

vaccum oven for 3 ·· hours ·at room temperature: to remove traces of the solvent. Each lipid 

film was hydrated with 250 mM ammonium sulfate solution in water and agitated 

intennittently to fonn·a liposomesuspension. ThepHofthe ammonium sulfate solution 
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was adjusted to 7.0 with ammonium hydroxide solution. The resultant liJ)9some 

suspension was freeze/thawed (dry ice/acetone, water bath at 40 °C) eleven times and 

extruded sequentially through a 400 run arid a 200 run poJycarbonate membrane 

(Nudeo.pore Corp., Pleasanton. ·CA) using a Mini~extruder (Avanti Polar Lipids Inc., 

Alabaster; AL) at 70 °C to yield the Iiposome preparation. To establish the: 

transmembran~ ammonium sulfate gradient, the extruded Uposomes were separated from 

unencapsulated ammonium sulfate by a Sephadex G-25 column (Sigma, St. Louis, MO) 

equilibrated with isotonic HEPES buffered saline (5 mM HEPES, 140 mM NaCl~ pH 

7.4). One volume of 0. 75 mg/mL DOX in the same isotonic HEPES buffered saline was 

added into 2 volumes of liposome suspension (lipid concentration =· 7.5 mM) and 

incubated for 1.5 h at 70 °C. The liposome preparations were then passed through 

Sephadex G.-200 column eluted with isotonic HEPES buffered saline to separate the 

liposomal-DOX from unencapsulated DOX. 

3.10.2 Doxorul!icin loading by manganese sulfate gradienL Later in this study, the 

"loading of doxorubicin was driven by a transmembrane manganese sulfate gradient ( t 01) 

with minor modification. Lipids film was prepared as mentioned eariier (see section 

3.5). Each lipid film was hydrated with 300 mM Manganese sulfate solution prepared in 

HEPES buffer (pH 7.4t 5 mM HEPES, 140 mMNaCI) arid agitated intermittently to get 

the Iip·osomal suspension. The resultant liposome su~pension was freeze/thawed (dry 

ice/acetone, water bath at 40 °C) eleven· times and extruded sequentially through a 400 

nm and a 200 run polycarbonate membrane (NucJeopore Corp., Pleasanton, CA) using a 

Mini·extruder (Avanti Polar Lipids Inc., Alabaster, AL) at 70° C to yield t1te Jiposome 

preparation. To establish the transmembrane manganese sulfate gradient, · the extruded 
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lip<)somes Were separated fr<>m unencapsulated ammonium sulfate by a Sephadex (j .. 2s 

column (Sigma. St. Louis~ MO) equilibrated with isotonic HEPES- buffered saline (S mM 

HEPES, 140 mM l\laGI~ pH 7.4). l volume of 0~75 rnglmL OOX in the .same isotonic. 

HEPES buffered saline was added into 2 volumes of liposome susl?ension (lipid 

concentration = 7.5 mM) and incubated for 1.5 h at 70°C. The liposome preparations 

were then passed through· Sephadex G:-2()0 column eluted witl:l isotonic HEPES buffered 

saline to separate the :liposomai-OOX from unencapsulated OOX, 

3.~11 [)cterinination of DOX concentration .and encapsulatio,r efficiency. An aliquot 

of a D()X'-Joaded liposome formulation was lyzed with 90% ist>propanol containing 

0.075 M HCI (125) foiJowed by quantification of the released DOXby Spectroflurometer 

(Shimadzu, rf5301 pc. Ex.= 484 nm, Em.= 587 nm). The OOX in the corresponding 

liposome formulation before purification was quantified in parallel. The Encapsulation 

Efficiency(EE)ofthe liposome formulation was then calculated usingtheformula: 
. . 

EE= . DOX in purifed lipo.mme fi)rmulatian . x JOOolo 
DOX inliposOliJe formtllation before purification 

DOXencapsulation by MnSO-t yielded an EE40-45% for all the liposome fonnulations 

while the encapsulation by (NH.)2S04 yielded an EE ~·12 % 

3.12 Dc)xorubi~in retention studies .. Retention of OOX in Jiposomal fonnulation J was 

determined by equiHbrium microdiaJysis using rapid equilibrium dialysis device (Thenno 

Scientific, inserts with membrane, MWCO = 800() Da) according to manufacturer's 

recommendations. The pH ofliposome fonnulatlon of OOX (see section 3.10.2) was 
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adjusted with MES buffer (pH 5.937 50mM~ 145niM NaCI). Preci~ly~ 40, 100 al1d 500 

f.!L of theMES buffer was added to lmL ofliposome suspension roadjust the pH to 6.97. 

6.5 and 6.05 respectively. 100 JJL of 1iposome SIJSpension was. add-ed to the sample 

chamber while 300 fJ.L of buffer was added to tile bl).fer chamber. The percent DOX 

retained in liposomes at different time points was calculated using the following 

equation. 

% DOXretained = 100 x{l- (Vb+vs)(Cb)) 
CdVd ·. 

Where, Vb = Volume of buffer chamber, Vs = Volume of sample ~harnb(r, Cb = 

concentration of DOX in. buffer chamber, Cd = initial Jiposomaf DOX concentration 

added to sample.chamber,Vd = initial volu~eofsample .chamber 

3.13 Cell (ultore (onditions. The 816-FiO (murin~ melanoma) cells and Hela (human 

cervical cancer) cells were purchased from American Type Cuiture Collection 

(Rockville~ MD). Bl6 .. FJ O cells were maintained in DMEM media supplemented with 

lO% feta1 bovine serum, J% Glutamine and I% peniciUin-streptornycin. Hela cells were 

maintained in EMEM media supplemented with IO%fetal bovine serum, 1% Glutamine 

and f% penicillin:-streptomycln. Cells we~ cultured with complete medium at 37oc in a 

humidified atmosphere of S% CO:! in air. ·Cell concentrations wete determined with a 

cell" coulter counter. 

3.14 MTS cytotoxicity assay on B16FlQ alid Hela cells. f3J6.;FJO cells f- 20,000 

cells/well) and Hela cells (:- 80~000 cells/well) we~ seeded on 96·\VelJ plates and grown 

overnight in complete- medium. The cells ·were then . washed with ·pas· and treated with 
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tOO !!L o(either complete or serum free media containing free DOX. Liposornal.DOX at 

a dosage .of 0.1 ~ 1 .0. 10.0 pg OOX per mL and empty liposome fonnulation 1. 

The pH of the media (10 mL) was adjti$ted with glacial acetic acid (Table J.2)and final 

pH was conflimed with pH meter. 

Table3.2 Adjustment of pH of the media wi.th glacial acetic·acid 

Media Glaciat ·AceticAcjd btL) 
(lO mL) 

pf{7~0 pH 6.5 pH 6.0 

OMEM 
(Serum F~ee) 

65 13 20 

DMEM 7 17 20 
(Cornol¢te Media) 

EMEM 05 2 s 
(Serum Free) 

EMEM 05 3 6 
(Complete Media) 

Each test was perfonned in quadruplet Cells were incubated for 3 h and J 2 h at37oc 

and 5% CO:!. After incubation for 3 and 12 hours respective·ly, the medium wAS 

removed, and the cells- were washed three times with 100 pL PBS buffer and 

supplemented with 100 ,.uweil of the cornpJete medium and 20 J.!UW.¢11. of ~tTS'•based 

CelJTiter 96® AQi.le0\8 One S~lution Cell Proliferation Assay Reagent (Ptom:ega Corp., 

WI, USA) and incubated at 37°C for2 h. The absorbance at 57(1 run w~s. measured using 

a micfo.plate reader(Berthold Tristar, LB 941 ). 
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The cells thatare not treated by any formulations were grown at pH's 7.4. 1.0. 6.5 and 

6.0 and their viabilities were detennined by MTS assay to rule out significant cytotoxicity 

caused by the change of pH in the media. 

' 3::JS Quantitation ()(~ellul~r uptake ofdoxorubicin with now cytomdry. Bl6~FJO 

cells (- 6'00,000 cells/well) wete seeded on 6.-well piates and grown overnight in 

co~plete medium.. The cells were tlten wa5hed with -PBS and treated with 2 mL of serum 

free media containing either free pox or DOX loaded liposome formulation II at a 

dOsage of 10 flg DOX per mL. The pH of the media was adjusted with glacial acetic acid 

(Table 3.2). Cells were incubated for 4h at .37°C and 5% COt. After -incubation cells 

were detached with detach in (Oenlantis; San Diego; CA), centrifuged and res\lspended in 

PBS before taking measureme.nt in .FL2-H channel in F ACScan (Becton Dickinson, San 

Jose, CA. US.'\). 

Results and Discussion 

3~16 Design ofimada:zole-basedlipids. We· have choserlimidazole head group in our 

lipid design due it's unique properties. The Nl position ofimidazo1e moiety is basic and 

.protonates at mildly acidic conditi()ns (130). AdditionaJiy, addition · of methyl group at 

the C4 and C5 position of the imidazole moic~ty gives the .. flexibility to tune the pKa of the 

molecule to a higher value (Table 3.3). When incorporated into liposomes. the 

protonation of imidazole at low pH pn>vides positive c-harges . to these · lipids which 

interacts with. neg~tively charged PEGylated lipid (DPPE-.PEG). To further aid this 

interaction, we ba.ve chosenG16 chains as lipid tails for the imidazole lipid which renders 
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additioru!J force of attraction (Vander Waals) with the Cl6 cha·in DPPE-PEG owing to 

same chain length. 

3.17·Synthesis of imidazole-based, pH-t~tratable, lipids. The synthesis of both ·ester· 

and ether based lipids were earned out to yield a ~fies of pH titrable lipids. The 

synthesis was based on ·firSt the tosyl activation of the commercially available lipid 

(DHG J or (DPCJ) with para tolpeJ1e sulfonyl chloride and· then substitution of the tosyl 

group with the imidazole moiety using mercaptoimid~zole compounds (l J 2) (l J 3). 

Tosylate is a good leaving group and therefore was exploited for the conjugation oflipid 

with the imidazole compounds .. the high temperature conditions were maintained and 

DMF was added to the reaction mixture because of the- limited solubility of 

mercaptoimidazole in dichloromethane. The-reaction time was optimized for best yield 

and at the same time fewer side products. 

3.18 Lipid pKa calculation. The pKa ofthe lipjds{DHI. DHMDI, DHDMI and DPI) 

were determined by ACD/pKa software. Catcuiadon was used rather than the 

experimental methods for pKa detennination as these lipids assemble in aqueous media 

and therefore it,s bard·to. trace each molecule. Additionally pKa .of a lipid molecule is 

sensitive to its lipoSQmal environment. W,e calculated this. but later did the:zetapotential 

measurements of lip(>sornes composed of these lipids was measured at different pH 

conditions to ,monitor the protonation process which is more rilevantto the function of 

these lipids. The im idazole•based lipids showed estimated pKa ranging from 5-36 to 6. 7 5 

(Table 3.3). 
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Table 3.3 Calculated pKa of Imidazole based Lipids. 

Lipid pKa 

nm 5.53 ±.0.5 

DHMI 6.2 ±0.5 

DHDMI 6.75" .± 0.5 

DPI 5.36 ± 0.5 

3~19 Zeta potential measurements. The ability of the imidazole lipids .to protonate at 

. mild .acidic condtions wneri incorporated in liposomes has been previously demonstrated 

( J 16)~ moreover their efficiency as carriers for gene transfer has also ·been ~xamined at 

acidic pH (114)(117). 

The convertible liposomes (I. II, Ul). prepared and tested herein, show increase in their 

zeta potential with increasing pKa of the corresponding imidazole lipids. The liposome 

formulation l:shows an increase in average zeta potential value from . .;5.43 mVatpH 7.4 

to 2.72 mVatpH 6.0 while formulation n shows ;zeta potential increase from ·2.5 mV to 

5.04 mV (Fig• 3~14 (a), (b)). The liposome fonnuJationlll starts at ... 0.93 rnV and reaches 

12.99 mV value at ;pH ~.0. The zeta potential change of the control liposomeJV did not 

show signi'tlcant <:hange in the zeta potential values from pH7.4 to pH 6.0. The increase 

in t¢ta potential values ofthe pH tunable liposomes is indicative of the protonation ofthe. 

imidazole lipids, moreover the increase in zeta potential values is consistent with the fact · 

that liposomes with higher calculated pKa. ofthe imidazole. lipid show high initial and 
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·final zeta potential values, suggesting the protonation. of more ·number of the imidazole 

lipids with increasing pKa of the lipids. 
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Fig. • 3 .• 14 (a) Change of.zeta potential values oflippS()rne formulations (I-IV) with 

pH 
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Fig. J.l4(b) Change of zeta potential values Qf liposotne fonnulations (I-IV) with 
percent (%) Ionization of imidazole lipid ·incorporated in eonvertible liposomes. 
•Percent Ionization was calculated by Henderson-Hasselbal~h equation using 
estimated average pKa values of imidazole lipids. 

3.20 Phase separation of Jip(,lsome into lipid domains (DSC characterization). The 

liposomes prepared with saturated lipids ofcarbon chain lengths diffe,ring by only two 

carbon· atoms or Jess show ideal mixing of lipids (120) (121). The OSC thermogram ·of 

lipoSome I (Fig. 3.15) show one broad melting ~ak at pH 7.4 between 56 °C to 65 °C 

indicating hom()genous mixing of the Ct6 and Cl8 chain lipids. At pH 6;() the 

fonnulatlon I shows the emergence of a second broad peak at 52° C suggesting the 

fonnation of the domain rich in DSPCJipids (Tm = 55 °C) doped with the :C 16 chain 

imidazole- lipids. The formation of 1he. DSPC domain- on the Jiposome is due to the 

interaction of newly protonated imidazle Jipids and negatively charged PEGylated lipids 

which squeezes out the DSPC lipids~ thi.l$ fonning a two phase system. 
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The DSC thermogram of the control liposome IV (Fig. 3.l5) show one melting ·peak 

suggesting the homogenous mixing. of lipids at both pH 7.4 a~d 6;0 and therefore a one 

• phase system~ 

~-2l Interaction of convertible liposomes with model liposomes mimic){ing 

cell membrane. To evaluate whether the in~rease in the ·zeta potential values ii'J fact 

translates into interaction with negatively charge cell membrane~ we prepared model 

liposorne ( 118)' (J 19) cai"tying t 5 mol % of. negatjveJy charged lipids to mimic the 

charge of the cell membrane (85) (8S). The convertible !iposom¢s. were mixed with equal 

volume of equimolar ;model liposomes and their sizes were measured at .different pH 

conditions. 



Tbe increase in the average size of the model Hposome upon mbdng \\ ith the rlt 

convertible- Jiposomes is consistent with the increase in th~ pKa ,-a lues ofthc inti,.U.ttlk 

lipids and the corresponding increase in zeta potential of the res~('tivc: liposomcs (f'ia:. 

3.16). Liposome formulation III shows approx. three tirn~s increase in a-\cragc sitt' 

values at pH 6.0 (:::: 2770 nm) compared to average sizes at pU 7.4. Simit;nb 

fonnulations I and ll show increase in average sizes 3.5- to 4- times >the \:alucs at plf7A . 

The average sizes ofthe Jiposomes ofthe control liposomc on the mhc:r hand ~ht)\\cd no 

significant change in the average sizes of the liposomal mixture at both the pt I 

conditions. 
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· 3.22 Doxotubiein loading in liposomes~ Doxorubicin has been conventionally Ioad'-'"d 

in liperomes using an ammonium sulfate gradient wherein the concentration of 

ammonium sulfate is higher in the Jiposome than· the extraliposomal medium. The pH 

. inside .the liposome is maintained at 4M5 pH .units while the extraliposrnal pH is at pH 7A 

The re_mote ·toading of DOX occurs when the unprotonat~ DOX molecule diffuses from 

the ~xtraliposo~alspace ·and gets charged atthe low pH environment inside the liposomc 

and fot1llS a sulfate salt from the. sulfate of the ammonrum sulfate ~olution {fig. J.J7). 

The DOX -sulfate salt is then precipitated in the low pf I environment. The limitation with 

this approach is. the t¢q~irement to form the liposomcs at low pH environments which is 

a cha1Jengingtask for pH sensitive liposomes. 

t! 

fig. 3.17Loading ofDOX into liposomesby ammonium sulfate gradient 



I 

I 
j 
I 
I 
l 
I 
l 
j 
' j 
,. 
i 

I 
I 
j 

i 
! 
i 
j 
I 
I 

112 

' For our study, we· firstattempied a modificati<>n in· this. pt:ocedure where w¢ adjusted· tl}e 

(NI-I4)2S04 solution to·pH7.0 instead·ofpH4-5 ~nd thenpr£>ceededwith lipid hydration, 

extrusion, purification and remote loading of DQX. However, StiCh IllOdifkation resulted 

in poor [)OX encapsulation(:::: 12 %) and poor DOX reteniion where only 40% ofthe 

DO X remained inside the Iiposome after 50 h ofincubation at pH 7 ;4 at37 °C (Fig .. 3.18) 
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Fig. 3:.18 OOX retention in convertible liposome fonntllation I at pH 7A prepared by 
a:rl1ino11iurn .sulfate gradient.method 

J To circumveri1 this problem we prepar~ the IipoS()m~ itl mang:nese sulfate solution 

I 
1 mainta:inedatpH 7.4 (101). The manganese is known to complex ~wiih OOX molecules-
j 
j and therefore increase the retentiot:tofthedrug in liposome (101). The retention ofOOX .. 
I 
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with this method was at' around 64 % at pH 7.4 and . 56 % at pH 6.0 after 48 h of 

inc~batiQn ar37-o C (Fig~ 3~19) 
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:Fig. 3J9 DOX retention in liposorrie formulation I prepared by mangane~e sulfate 
method 

3~23 Cytotoxicity of convertible Jiposumal·formulations ofDOX •. Bl6FIQ andHela 

cells were treated with all the iiposomatfonnulations (I~IV)'and free. DOX. The free 

DOX was studied as positi~e .control white .Ilposome IV was taken as a negative control .. 

AHthe fonnulations show·dose dependent c)itotoxitityin both ~ell l~es. The pHtunable 
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liposomes show increased cytotoxicity as the pH is loweredfrom·7A to 6.0 at 10 Jlg/mL 

DOX concentration both in complete media and serum· free media. In B 16fl 0 cells, the 

average tell viability values for formulations l, nand III were:::: 71 %, 75% and 50% 

respectively at pH 7.4 while the averages values were :::: 59-%, 57 % and 41 %at pH 6.0 

in serum free media at 10 Jlg/mLDOX.concentration after 3 hrs of incubation (Fig. 3.;2.0). 

After 12 hr ofincubation the average cell viability values were:::: 57 o/o, 54 and 42% at 

pH 7.4 and:::: 46 %, 43 % and 31 % at pH 6.0 respectively for .liposomes I, U, and Ill 

(Fig. 3.21, 3•28). The control liposome IV did not show any significant difference 

between the cell viabilities at pH 7.4 and 6.0 after 3 and 12 hrs of incubation (Fig. 3.20, 

3.21 ). Free DOX was the positive control and showed highest toxicities with cell 

viability at :::: 25 % after 12 hours o( incubation at both pH values (Fig. 3~21, 3~28). The 

c.Ytotoxities we~ diminished for all fonnulations in complete media. After .3 hrs of 

incubation although there was a clear trend in the decreasing cell viabilities as the pH 

decreased from 7.4 to 6.0, the values were not significantly different (Fig. 3.22). 

However after 12 hours of incubation the cytotoxicity values for fonnulations I, 11, and 

III became significantly different with liposome Ill showing highest cytotoxicity .at :::: 

61% and:::: 52% cell viability at pH 7.4 arid 6.0 repectively (Fig.-3.23). 

For He Ia cells, the cell viabilities w¢re :::: 67 %, 65 % and 53 % at pH 7.4 and ::::55%, 53 

%and 43% at pH6.0 respectively for fonrtu1atioris I, II and lll after 3 hrs of incubation 

in serum free media (Fig. 3~24). After 12 hrs of incubation with the convertible liposome 

formulations I, II and III the cell· viability values were :::: 63 %, 58 % and 38 % at pH 7.4 

and :::: 50 %, 46 % and 28 % at pH 6.0 (Fig. 3.25, 3.19). Free DOX showed highest 

toxidty with :::: 22 % at both pH 7.4 and 6.0 (Fig. 3.25, 3.29). The observations for 
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cytotoxicities in complete .media were similar as observed . in B16Ft0 cells where cell 

viabilities did not show any significant difference at pH 7.4 and 6.0 for fonnutations 1? H 

an£! m (Fig • . 3.26). However cell viability difference at pH 7A and 6.0 did become 

significant after 12 hours of incubation (Fig. 3~27) with. Jiposome III . showing highest 

cytotoxicity at59 % and 51 %at pH 7A and 6.0 respectively. 

For both the cell lines the increase. in toxicity was greater after 12 hours of in~ubation 

compared to the 3 hr of incubation which indicates .the high uptake ofdrug by the ceHs at 

longer times. Additionally, the difference-in the cytotoxicity (>f the c()ntr()l lip()some JV 

remained insignificant at pH 7.4 and 6.0 at all DbX concentrations suggesting .its lack of 

interaction with the negatively charged cell surface~ 

Furthennoret at both iilcubatic:m times~ the cytotoxicity was greater for fonnulation III 

which is consisteJ}t with the lip050me binding assay with model liposome, suggesting 

more interaction of liposome with higher percentage of positive charges at low pH with 

the negatively .charged cell surface and hence higher uptake and greater toxicity~ 

Also, the cytotoxicity ()felripty liposome I remained insignificant for all the experiments 

indicating inherent insignificant cytotoxiciiy of the, imidazole lipids. 
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Fig. 3.20 Cytotoxicity of free OOX, liposome formulations of DOX and empty liposome 
(formulation I. without DOX) against B16-FI O murine melanoma cells in serum-free 
medjum after three hours of incubation. Mean and SD of cell viability {%) are presented 
(n = 4) (* p < 0.05, student t-test) 
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Fig. 3.21 Cytotoxicity of free OOX, Jiposome formulations ofDOX and empty Iiposome 
(formulation I without OOX) against BI6~Fl0 murine melanoma cells in serum·free 
medium after twelve hours of incubation. Mean and SD of cell viability(%) are presented 
(n = 4) (* p < 0.05, student t· test) 
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Figure 3.22 Cytotoxicity of free OOX, liposome fonnulations of DOX and empty 
Jiposome (fonnulation I without OOX) against B 16-FJO murine melanoma cells in 
complete medium after three hours of incubation. Mean and SD of cell viability(%) are 
presented (n = 4) 
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Fig. 3.23 Cytotoxicity of free DOX, liposome fonnulations ofOOX and empty liposome 
(tonnulation I without OOX) against 816-FlO murine melanoma c.ells in complete 
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Fig. 3.24 Cytotoxicity of free OOX, liposome fonnulations of OOX and empty liposome 
(fonnulation I without DOX) against Hela cells in serum-free medium after three hours 
of incubation. Mean and SD of cell viability (%)are presented (n = 4) (* p < 0.05, student 

t-test) 
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3.24 Cellular uptake of free DOX and li.,Osomal DOX. Based on the cytotoxicity 

results of the previous section, the uptake of pH-convertible formulation II and control 

liposome by B 16F I 0 cells was characterized by flow cytometric analysis of the 

fluorescence of the cargo drug doxorubicin. Free DOX was employed as the positive 

control. A detachin solution (Genlantis, San Diego, CA) was used to detach cells as the 

detachin is much milder than the trypsin for detachment and centrifugation of cells. The 

time of incubation of the fonnations with the ceJis is critical as high time points result in 

the high cell kill and which results in poor analysis ofthe OOX uptake by cells. On the 

other hand a very short time may not result in sufficient formulation uptake by the cells. 

After optimization, 4 hours of incubation was elected for the uptake stud.ies. 

The flow cytometry data (Fig 3.30, 3.31) indicate that the change in mean fluorescent 

intensity of cells incubated by controlliposome was not significant between pH 7.4 and 

pH 6.0. In contrast, the average fluorescence values for liposome II show an increase of 

57% at pH 6.0 compared to pH7.4. This clearly indicates higher OOX uptake by cells at 

lowered pH owing to the increased interaction between the cells and the newly turned 

cationic liposome n. 

It is also interesting to note that the uptake of free DOX infact decreased at lowered pH, 

which might be due to higher proportion of charged DOX molecules at low pH with 

doxorubicin being a weakly basic drug. However, this small decrease did not trans1ate to 

lower cytotoxicity of free OOX at pH 6.0 

Our strategy to fonnulate doxorubicin in pH tunable liposomes insulates doxorubicin 

from the low pH microenvironment and yet exploits the acidic microenvironment for the 
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increase in the surface charge of the liposomes and subsequent greater interaction with 

cancer cells. 
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Fig. 3.31 Mean fluorescent intensity ofB16FIOceUs treated with free OOX or liposomal 
DQX by flo\.vcytometry. 
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Cbapter4: .Summary and Conclusion 

Lippsomal ~liug delivery system that can encapsulate and deliver anticancer agents ·was 

developed in our studies. Al_l ideal anticancer (jelivery system has primarily four 

requirements; (l J selectivity to c$cer (2) efficient delivery ofanticancer agent inside the 

cancer cells (3) stability of the liposome formulation ( 4) high blood circulation half life~ 

To achieve. these goals. two strategies wer~ employed. 

Firstly. a pH-sensitive Iiposome was envisaged by incorporating a pH~sensitive 

PEGy!ated lipid that can hydrolyze at low pH tumor environment. The hydrolysis at 

mildly acidiC tun1or cortdidons was envisioned to be exploited by placing a hydrazone 

linker between the PEG head group and hydrocarbon chains of the PEGyJated lipid. The 

shedding of PEG coating would expose positive charges and would result in greater 

tumor interaction. The .synthesis of the hyd,rqzone-b~sed pH•sensitive lipid revealed that 

the iipid hydrolyzes even at a neutral pH and was riot highly stable at physiological pH. 

TberefQre, such approach would not be a good choice for developing a phannaceuticaiJy 

viable drug delivery system. 

To achieve the aforementioned goals; we changed the strategy .to desi~ing a pH­

convertible liposome with more stable imidazole-based lipids. The design principal 

works on the basis of acquisition .of positive charges by protonation of the imidazole 

moiety rather than hydrolysis. Such protonation strategy renders better formulation than 
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· previously reponed acid-labile Jiposomes owing to its better· stability on shelf; 

Additionally, the PEG coating on the surface of the convertible liposomes is also 

clustered upon exposure to mildly acidic pH as seen. in tumor interstitium due to 

electrostatic and vander waalmteraction between the protonated imidazole lipids and .the 

negatively charged PEGyJated lipid. 

We have used do:x:orubiciJ~ as the liposome cargo to study the cytotox.icity and cellular 

uptake of these liposomes. DOX ·acts both as an anticancer age(lt ·encapsl.lhite4 in the 

liposome and also as a fluorescent marker ofintracellular uptake of this. Jiposomal system 

using flow .cytometty. The encapsulation and retention of our model drug doxorubicin 

was enhanced· by using a previously reported manganese sulfate remote loading approach 

(101). 

Our cytotoxic studies indica,te the increase of cytotoxicity at pH 6.0 in all · the pH· 

convertible liposomes compared to pH 7A in t\VO caric¢r cell lines (B 16 FlO and Hela). 

Furthermore, the formulation (II) show significantly higher l!ptake in the B t6F 1 0 cells at 

lower pH. The anticancer cytotoxicities of the pH-convertible lip()somes are better than 

the control PEGylated Iiposomes which .werereported to·haveminiinum interaction with 

the cancer cells and rely mostly on ·the slow release of drug from the fotinulation~ which 

can be suboptimal to etlicieJtdy'ldlhhe cancer cells. The slow release· of doxoi'ubidn and 

many other anticancer dnigs for a su~ined period can induce the: pr.eviously mentioned 

'multi-drug resistance' and thereby further reducing the efficacy ofthe formulation. 

Our studies ·supports the approach of ¢xploiting the lower pH in tumotal inte~titium by 

carefuLchoice of lipids in the design ofliposomes thatinteract more strongly witlt cancer 
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cells in response to lowered pH. Another potential advantage ofthi.S liposomal delivery 

system would be its Jower cost because its lipid components are .either inexpensive or can 

be conveniently synthesized. 

It is interesting to note-that while increasing the pKa of the imidazole lipid does increase 

the cytotoxic effect of the formulation, it also increases the interaction of these systems 

with negatively charged model lipoS<>mes at the physiological pH. It remains to be 

explored whether the increase in pKa of the imidazole Jipid in the liposomal fonnulation 

would cause higher interactio[lwith components of blood in circu1ation, 

Itis alsooimportant to notethatthe proposed liposome formulation will find:limitation in 

patients with conditions ofmetabolic acidosis which rnay arise ·dUe tO dysfunction of liver 

(lactic acidosis), kidney or lung (hypoventilation). The resultant decrease in blood pH 

under such clinical situations may trigger premature display of positive charges by the 

liposomes and subsequently their excessive Clearance from the blood~ by RES. 
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